JP2011099332A - Two-stage supercharging system - Google Patents

Two-stage supercharging system Download PDF

Info

Publication number
JP2011099332A
JP2011099332A JP2009252747A JP2009252747A JP2011099332A JP 2011099332 A JP2011099332 A JP 2011099332A JP 2009252747 A JP2009252747 A JP 2009252747A JP 2009252747 A JP2009252747 A JP 2009252747A JP 2011099332 A JP2011099332 A JP 2011099332A
Authority
JP
Japan
Prior art keywords
intake
pressure
engine
pressure stage
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252747A
Other languages
Japanese (ja)
Inventor
Hideki Kato
秀輝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009252747A priority Critical patent/JP2011099332A/en
Publication of JP2011099332A publication Critical patent/JP2011099332A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-stage supercharging system capable of reducing the diameter of a high pressure stage turbocharger with no hindrance without using waste gate piping. <P>SOLUTION: The waste gate piping and a waste gate valve used for a conventional two-stage supercharging system are eliminated, and an intake throttle valve 17 (an intake throttle means) for throttling an intake amount (flow rate of intake air A) supplied to an engine 1 from a high pressure stage compressor 4 is provided between an after-cooler 13 and an intake manifold 5 to throttle the intake amount by the intake throttle valve 17 in a high-speed high-load region of the engine 1 where exhaust G has been diverted to the waste gate piping in a conventional system. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二段過給システムに関するものである。   The present invention relates to a two-stage supercharging system.

近年、低速軽負荷域での燃費向上、トルクアップや高EGR率の実現のために、小径の高圧段ターボチャージャを採用した二段過給システムが検討されており、この種の二段過給システムにおいては、図5に示す如く、エンジン1の排気マニホールド2から送出される排気Gにより高圧段タービン3を作動させ且つ高圧段コンプレッサ4で圧縮した吸気Aをエンジン1の吸気マニホールド5へ送給する高圧段ターボチャージャ6と、該高圧段ターボチャージャ6の高圧段タービン3から送出される排気Gにより低圧段タービン8を作動させ且つ低圧段コンプレッサ9で圧縮した吸気Aを前記高圧段コンプレッサ4へ送給する低圧段ターボチャージャ10とが備えられている。   In recent years, a two-stage turbocharging system that uses a small-diameter high-pressure turbocharger has been studied in order to improve fuel efficiency, increase torque, and achieve a high EGR rate in the low-speed and light-load range. In the system, as shown in FIG. 5, the high-pressure turbine 3 is operated by the exhaust G sent from the exhaust manifold 2 of the engine 1 and the intake air A compressed by the high-pressure compressor 4 is supplied to the intake manifold 5 of the engine 1. The high-pressure stage turbocharger 6 and the exhaust A sent from the high-pressure stage turbine 3 of the high-pressure stage turbocharger 6 actuates the low-pressure stage turbine 8 and is compressed by the low-pressure stage compressor 9 into the high-pressure stage compressor 4. A low-pressure turbocharger 10 for feeding is provided.

更に、前記低圧段ターボチャージャ10の低圧段コンプレッサ9の吐出側と前記高圧段ターボチャージャ6の高圧段コンプレッサ4の吸入側との間のエンジン吸気流路には、インタクーラ12が介装されており、前記高圧段コンプレッサ4の吐出側とエンジン1の吸気マニホールド5との間のエンジン吸気流路には、アフタクーラ13が介装されている。   Further, an intercooler 12 is interposed in the engine intake passage between the discharge side of the low-pressure stage compressor 9 of the low-pressure stage turbocharger 10 and the suction side of the high-pressure stage compressor 4 of the high-pressure stage turbocharger 6. An aftercooler 13 is interposed in the engine intake passage between the discharge side of the high-pressure compressor 4 and the intake manifold 5 of the engine 1.

また、エンジン排気流路の高圧段タービン3よりも上流側(具体的には排気マニホールド2)からエンジン吸気流路のアフタクーラ13よりも下流側(具体的には吸気マニホールド5)へ至るEGR配管14が設けられ、該EGR配管14には、エンジン排気流路から分流した排気Gを冷却するEGRクーラ15と、エンジン吸気流路へ還流すべき排気Gの流量を調整するEGRバルブ16とが設けられている。   Further, the EGR pipe 14 extends from the upstream side (specifically, the exhaust manifold 2) of the engine exhaust passage to the downstream side (specifically, the intake manifold 5) of the aftercooler 13 of the engine intake passage. The EGR pipe 14 is provided with an EGR cooler 15 that cools the exhaust gas G that has been diverted from the engine exhaust flow path, and an EGR valve 16 that adjusts the flow rate of the exhaust G to be recirculated to the engine intake flow path. ing.

而して、斯かる二段過給システムにおいては、エンジン1が稼動状態である時に、排気マニホールド2から送出される排気Gが、高圧段タービン3へ流入して高圧段コンプレッサ4を駆動した後、低圧段タービン8へ流入して低圧段コンプレッサ9を駆動し、該低圧段コンプレッサ9に流入して圧縮された吸気Aは、インタクーラ12を経て高圧段コンプレッサ4に送給され、該高圧段コンプレッサ4で再び圧縮され、アフタクーラ13を経て吸気マニホールド5へ送給されるので、シリンダへの吸気Aの送給量が増加し、1サイクル当たりの燃料噴射量を多くすれば、エンジン1の出力を高めることができる。   Thus, in such a two-stage supercharging system, when the engine 1 is in operation, the exhaust G sent from the exhaust manifold 2 flows into the high-pressure turbine 3 and drives the high-pressure compressor 4. The intake air A that flows into the low-pressure turbine 8 and drives the low-pressure compressor 9 and flows into the low-pressure compressor 9 and is compressed is supplied to the high-pressure compressor 4 through the intercooler 12, and the high-pressure compressor 4 is compressed again and supplied to the intake manifold 5 via the aftercooler 13. Therefore, if the amount of intake A supplied to the cylinder is increased and the fuel injection amount per cycle is increased, the output of the engine 1 is increased. Can be increased.

また、前記排気Gの一部は、排気マニホールド2からEGR配管14へ流入し、EGRクーラ15で冷却され且つEGRバルブ16で流量調整が行われた排気Gが、吸気Aと一緒に吸気マニホールド5へ送給され、これによりシリンダ内の燃焼温度の低下が図られ、NOxの発生が低減される。   Further, a part of the exhaust G flows from the exhaust manifold 2 into the EGR pipe 14, and the exhaust G cooled by the EGR cooler 15 and adjusted in flow rate by the EGR valve 16 is combined with the intake air A with the intake manifold 5. Thus, the combustion temperature in the cylinder is lowered, and the generation of NOx is reduced.

尚、前述の如き二段過給システムと関連する一般的技術水準を示すものとしては、例えば、下記の特許文献1、2等が既に存在している。   For example, Patent Documents 1 and 2 listed below already exist as the general technical level related to the two-stage turbocharging system as described above.

特開2005−147030号公報JP 2005-147030 A 特開平5−180089号公報JP-A-5-180089

しかしながら、このように小径の高圧段ターボチャージャ6で高出力を実現した二段過給システムにおいては、排気Gの流量が大きい高速高負荷域(図6のグラフ中にクロスハッチングを付して示す運転領域)で小径の高圧段ターボチャージャ6が過剰に回転して過給圧が必要以上に高まり、エンジン1の各気筒の最大筒内圧が制限値を超えて運転不可となってしまうため、高圧段タービン3を迂回するウエストゲート配管7を設けると共に、該ウエストゲート配管7の途中に流路を開閉するウエストゲートバルブ11を設け、該ウエストゲートバルブ11を高速高負荷域で開けて適正な流量の排気Gのみ高圧段タービン3に流し、残りは高圧段タービン3を迂回させて低圧段タービン8へ導くようにしているが、このような高温の排気Gが通るウエストゲート配管7を増設することは、単に配管構成の複雑化を招くだけでなく、電子基盤等の熱に弱い周辺機器を近くに配置できなくなるためにレイアウト面で大きな制約がかかり、しかも、ウエストゲートバルブ11に十分な耐熱性を持たせなければならないことで設備コストが高騰するという問題もあった。   However, in the two-stage turbocharging system that achieves high output with the small-diameter high-pressure turbocharger 6 as described above, a high-speed and high-load region where the flow rate of the exhaust G is large (shown with cross-hatching in the graph of FIG. 6). In the operation region), the high-pressure turbocharger 6 having a small diameter rotates excessively and the supercharging pressure is increased more than necessary, and the maximum in-cylinder pressure of each cylinder of the engine 1 exceeds the limit value, so that the operation becomes impossible. A waste gate pipe 7 that bypasses the stage turbine 3 is provided, a waste gate valve 11 that opens and closes the flow path is provided in the middle of the waste gate pipe 7, and the waste gate valve 11 is opened in a high-speed and high-load region to obtain an appropriate flow rate. Only the exhaust gas G is allowed to flow to the high-pressure stage turbine 3, and the rest is bypassed to the high-pressure stage turbine 3 and led to the low-pressure stage turbine 8. In addition to simply complicating the piping configuration, adding additional wastegate piping 7 has a great restriction on the layout because peripheral devices such as electronic boards that are vulnerable to heat cannot be placed nearby, There is also a problem that the equipment cost increases due to the waste gate valve 11 having to have sufficient heat resistance.

一方、高速高負荷域でも過剰回転せずに全排気ガス量に対応できるよう高圧段ターボチャージャ6を大径化して容量を上げることも考えられるが、そのようにしたのでは、低速軽負荷域において燃費が悪化したり、NOx低減に必要なEGR量を得ることができなくなるといった問題を招いてしまうことになり、小径の高圧段ターボチャージャ6で高出力を実現しようとする意義が損なわれてしまう。   On the other hand, it is possible to increase the capacity by increasing the diameter of the high-pressure turbocharger 6 so that it can accommodate the total exhaust gas amount without excessive rotation even in the high speed and high load range. This will cause problems such as deterioration of fuel economy and inability to obtain the EGR amount necessary for NOx reduction, and impairs the significance of achieving high output with the small-diameter high-pressure turbocharger 6. End up.

本発明は、斯かる実情に鑑みてなしたもので、ウエストゲート配管を用いることなく、高圧段ターボチャージャの小径化を支障なく実現し得る二段過給システムを提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a two-stage turbocharging system that can realize a reduction in the diameter of a high-pressure turbocharger without any trouble without using a wastegate pipe.

本発明は、エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムにおいて、高圧段コンプレッサからエンジンへ送給される吸気量を絞り込む吸気絞り手段を備え、エンジンの高速高負荷領域において前記吸気絞り手段により吸気量を絞り込ませるように構成したことを特徴とするものである。   The present invention relates to a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas delivered from an engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and the high-pressure stage turbine of the high-pressure stage turbocharger. In a two-stage supercharging system having a low-pressure stage turbocharger that operates a low-pressure stage turbine by exhaust gas and supplies intake air compressed by a low-pressure stage compressor to the high-pressure stage compressor, the intake air is supplied from the high-pressure stage compressor to the engine Intake throttle means for reducing the intake air amount is provided, and the intake air amount is restricted by the intake air throttle means in a high-speed and high-load region of the engine.

而して、このようにした場合に、エンジンの高速高負荷領域で吸気絞り手段により吸気量を絞り込むと、吸気絞り手段を絞り込むほどに該吸気絞り手段の前後で差圧が大きく生じて過給圧が下がり、これに伴いエンジンに供給される吸気量(新気量)が減らされて該エンジンから排出される排気も減ることになり、小径の高圧段ターボチャージャでも過剰回転せずに全排気ガス量に対応することが可能となる。   Thus, in this case, if the intake amount is narrowed by the intake throttle means in the high speed and high load region of the engine, the pressure difference between the front and rear of the intake throttle means increases as the intake throttle means is reduced. As the pressure decreases, the amount of intake air (fresh air) supplied to the engine is reduced and the exhaust discharged from the engine is also reduced. Even with a small-diameter high-pressure turbocharger, the entire exhaust gas does not rotate excessively. It becomes possible to cope with the amount of gas.

一般的に、単段過給の場合には、エンジンの高速高負荷領域における過給圧が高く且つタービン回転数も高いため、高速高負荷領域で吸気を絞り込んでしまうと、過給圧アップによりコンプレッサ周速制限にかかってしまい、高速高負荷領域における吸気絞りを実施することができない。   In general, in the case of single-stage supercharging, the supercharging pressure in the high-speed and high-load region of the engine is high and the turbine speed is high. The compressor peripheral speed limit is imposed, and intake throttling cannot be performed in the high speed and high load region.

しかしながら、二段過給の場合には、単段過給の場合よりも高速高負荷領域における高圧段ターボチャージャでの過給圧が低く且つタービン回転数も低いため、高速高負荷領域で吸気を絞り込んでもコンプレッサ周速制限までの十分なマージンが確保できる領域で運転でき、コンプレッサ周速制限にかかってしまう心配がない。
また、吸気絞り手段で吸気量を絞り込むにつれ、運転領域が高圧段コンプレッサの高効率領域側へ移動することになるため、コンプレッサ効率が向上(単段過給では効率が低下)して燃費悪化が極めて軽微に抑えられることになる。
However, in the case of two-stage supercharging, the supercharging pressure in the high-pressure turbocharger in the high-speed and high-load region is lower and the turbine speed is lower than in the case of single-stage supercharging. Even if it is narrowed down, it can be operated in a region where a sufficient margin to the compressor peripheral speed limit can be secured, and there is no concern that the compressor peripheral speed limit will be imposed.
In addition, as the intake air amount is reduced by the intake air throttle means, the operating region moves to the high efficiency region side of the high pressure stage compressor, so the compressor efficiency improves (single stage turbocharging reduces efficiency) and fuel consumption deteriorates. It will be very slight.

本発明の二段過給システムによれば、ウエストゲート配管を用いることなく、吸気絞り手段で吸気量の絞り込みを行うことで高圧段ターボチャージャの小径化を支障なく実現することができるので、配管構成の簡素化を図ることができると共に、電子基盤等の熱に弱い周辺機器の配置に関するレイアウト面での制約を大幅に緩和することができ、しかも、耐熱性を有する高価なウエストゲートバルブも不要となることで大幅な設備コストの削減を図ることができるという優れた効果を奏し得る。   According to the two-stage turbocharging system of the present invention, it is possible to reduce the diameter of the high-pressure turbocharger without hindrance by using the intake throttle means without using the wastegate pipe, so that the pipe can be reduced without any trouble. The configuration can be simplified and the layout constraints on the placement of heat-sensitive peripheral devices such as electronic boards can be greatly relaxed, and there is no need for expensive heat-resistant wastegate valves. As a result, it is possible to achieve an excellent effect that the facility cost can be greatly reduced.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 吸気絞りの効果を示すグラフである。It is a graph which shows the effect of an intake throttle. 最大筒内圧の制限値内での運転が可能となることを示すグラフである。It is a graph which shows that the driving | operation within the limit value of the maximum in-cylinder pressure is attained. 吸気絞り適用時の高圧段ターボチャージャの作動線図である。It is an operation diagram of the high-pressure stage turbocharger when the intake throttle is applied. 従来の二段過給システムの一例を示す概略図である。It is the schematic which shows an example of the conventional two-stage supercharging system. 従来のウエストゲート配管を利用していた運転領域を示すグラフである。It is a graph which shows the operation area | region which utilized the conventional wastegate piping.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明を実施する形態の一例を示すもので、図5と同一の符号を付した部分は同一物を表わしている。   1 to 4 show an example of an embodiment for carrying out the present invention, and portions denoted by the same reference numerals as those in FIG. 5 represent the same items.

図1に全体図を示す如く、本形態例の二段過給システムにおいては、先に図5で説明した従来の二段過給システムと基本的な構成は同様であるが、従来の二段過給システムに用いられていたウエストゲート配管7(図5参照)及びウエストゲートバルブ11(図5参照)を廃止する一方、高圧段コンプレッサ4からエンジン1へ送給される吸気A量を絞り込む吸気絞り弁17(吸気絞り手段)をアフタクーラ13と吸気マニホールド5との間に備えており、従来においてウエストゲート配管7(図5参照)に排気Gを分流していたエンジン1の高速高負荷領域(図6のグラフ中にクロスハッチングを付して示す運転領域)で前記吸気絞り弁17により吸気A量を絞り込ませるように構成している。   As shown in FIG. 1, the basic configuration of the two-stage turbocharging system of this embodiment is the same as that of the conventional two-stage turbocharging system described above with reference to FIG. While eliminating the wastegate piping 7 (see FIG. 5) and the wastegate valve 11 (see FIG. 5) used in the supercharging system, the intake air that narrows the intake air amount supplied from the high-pressure compressor 4 to the engine 1 is reduced. A throttle valve 17 (intake throttle means) is provided between the aftercooler 13 and the intake manifold 5, and a high-speed and high-load region of the engine 1 that conventionally shunts the exhaust G to the wastegate pipe 7 (see FIG. 5) ( The intake air amount is narrowed down by the intake throttle valve 17 in the operation region indicated by cross-hatching in the graph of FIG.

ここに図示している例では、前記吸気絞り弁17がエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置18からの制御信号18aにより制御されるようになっており、例えば、この制御装置18に燃料噴射量とエンジン1の回転数との二次元制御マップを組み込んでおき、吸気絞り弁17を開けたままでは、高圧段タービン3が過剰に回転して各気筒の最大筒内圧が制限値を超えてしまうことが想定される高速高負荷領域において、前記二次元制御マップから読み出される開度に従い吸気絞り弁17を絞り込む制御信号18aが制御装置18から出力されるようにしておけば良い。   In the example shown here, the intake throttle valve 17 is controlled by a control signal 18a from a control device 18 constituting an engine control computer (ECU: Electronic Control Unit). If a two-dimensional control map of the fuel injection amount and the rotational speed of the engine 1 is incorporated in 18 and the intake throttle valve 17 remains open, the high-pressure turbine 3 rotates excessively and the maximum in-cylinder pressure of each cylinder is limited. A control signal 18a for narrowing the intake throttle valve 17 according to the opening degree read from the two-dimensional control map may be output from the control device 18 in a high-speed and high-load region where the value is expected to be exceeded. .

而して、このようにした場合に、エンジン1の高速高負荷領域で吸気絞り弁17により吸気A量を絞り込むと、吸気絞り弁17を絞り込むほどに該吸気絞り弁17の前後で差圧が大きく生じ、吸気マニホールド5の圧力(過給圧)が下がることになり(図2のグラフ参照)、これに伴いエンジン1に供給される吸気A量(新気量)が減らされ(図3のグラフ参照)、該エンジン1から排出される排気Gも減ることになり、小径の高圧段ターボチャージャ6でも過剰回転せずに全排気ガス量に対応することが可能となる。   Thus, in such a case, if the intake A amount is narrowed by the intake throttle valve 17 in the high speed and high load region of the engine 1, the differential pressure before and after the intake throttle valve 17 is reduced as the intake throttle valve 17 is narrowed. This greatly occurs and the pressure (supercharging pressure) of the intake manifold 5 decreases (see the graph of FIG. 2), and the intake A amount (fresh air amount) supplied to the engine 1 is reduced accordingly (FIG. 3). The exhaust G discharged from the engine 1 is also reduced, and the small-diameter high-pressure turbocharger 6 can cope with the total exhaust gas amount without excessive rotation.

この際、吸気絞り弁17により吸気A量を適切に絞り込めば、エンジン1の各気筒における最大筒内圧Pmaxを制限値(許容Pmax)以下に抑えることが可能であり、従来のウエストゲート配管7(図5参照)を用いた場合と同様に、エンジン1の各気筒の最大筒内圧Pmaxが制限値(許容Pmax)を超えて運転不可となってしまう事態を回避することが可能である。   At this time, if the intake A amount is appropriately throttled by the intake throttle valve 17, the maximum in-cylinder pressure Pmax in each cylinder of the engine 1 can be suppressed to a limit value (allowable Pmax) or less. As in the case of using (see FIG. 5), it is possible to avoid the situation where the maximum in-cylinder pressure Pmax of each cylinder of the engine 1 exceeds the limit value (allowable Pmax) and the operation becomes impossible.

一般的に、単段過給の場合には、エンジン1の高速高負荷領域における過給圧が高く且つタービン回転数も高いため、高速高負荷領域で吸気Aを絞り込んでしまうと、過給圧アップによりコンプレッサ周速制限にかかってしまい、高速高負荷領域における吸気A絞りを実施することができない。   In general, in the case of single-stage supercharging, the supercharging pressure in the high-speed and high-load region of the engine 1 is high and the turbine speed is high. Due to the increase, the compressor peripheral speed is limited, and the intake A throttling cannot be performed in the high speed and high load region.

しかしながら、二段過給の場合には、単段過給の場合よりも高速高負荷領域における高圧段ターボチャージャ6での過給圧が低く且つタービン回転数も低いため、図4にグラフで示す如く、高速高負荷領域で吸気Aを絞り込んでも高圧段コンプレッサ4の周速制限までの十分なマージンが確保できる領域(図4中に三角形で示しているポイント)で運転でき、コンプレッサ周速制限にかかってしまう心配がない。   However, in the case of two-stage supercharging, the supercharging pressure in the high-pressure turbocharger 6 in the high-speed and high-load region is lower and the turbine speed is lower than in the case of single-stage supercharging. As described above, even if the intake air A is throttled in the high speed and high load region, it can be operated in a region (a point indicated by a triangle in FIG. 4) that can secure a sufficient margin until the peripheral speed of the high-pressure compressor 4 is limited. There is no worry of it taking.

また、吸気絞り弁17で吸気A量を絞り込むにつれ、図4のグラフ中に矢印Xで示す方向に運転領域が移動するが、これは高圧段コンプレッサ4の高効率領域側へ移動することになるため、コンプレッサ効率が向上(単段過給では効率が低下)して燃費悪化が極めて軽微に抑えられることになる。   Further, as the intake A amount is reduced by the intake throttle valve 17, the operating region moves in the direction indicated by the arrow X in the graph of FIG. 4, which moves to the high efficiency region side of the high-pressure stage compressor 4. Therefore, the compressor efficiency is improved (the efficiency is reduced in the single-stage supercharging), and the deterioration of the fuel consumption is extremely suppressed.

従って、上記形態例によれば、ウエストゲート配管7(図5参照)を用いることなく、吸気絞り弁17で吸気A量の絞り込みを行うことで高圧段ターボチャージャ6の小径化を支障なく実現することができるので、配管構成の簡素化を図ることができると共に、電子基盤等の熱に弱い周辺機器の配置に関するレイアウト面での制約を大幅に緩和することができ、しかも、耐熱性を有する高価なウエストゲートバルブ11(図5参照)も不要となることで大幅な設備コストの削減を図ることができる。   Therefore, according to the above embodiment, the diameter of the high-pressure turbocharger 6 can be reduced without any trouble by reducing the intake A amount by the intake throttle valve 17 without using the wastegate pipe 7 (see FIG. 5). As a result, the piping configuration can be simplified, the restrictions on the layout related to the arrangement of peripheral devices that are vulnerable to heat, such as an electronic board, can be greatly relaxed, and the cost is high with heat resistance. Since the waste gate valve 11 (see FIG. 5) is also unnecessary, the equipment cost can be greatly reduced.

尚、本発明の二段過給システムは、上述の形態例にのみ限定されるものではなく、吸気絞り手段の制御については、必ずしも燃料噴射量とエンジンの回転数との二次元制御マップに基づいて行うことに限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The two-stage turbocharging system of the present invention is not limited to the above-described embodiment. The control of the intake throttle means is not necessarily based on the two-dimensional control map of the fuel injection amount and the engine speed. Of course, various modifications can be added without departing from the scope of the present invention.

1 エンジン
3 高圧段タービン
4 高圧段コンプレッサ
6 高圧段ターボチャージャ
8 低圧段タービン
9 低圧段コンプレッサ
10 低圧段ターボチャージャ
17 吸気絞り弁(吸気絞り手段)
18 制御装置
18a 制御信号
A 吸気
G 排気
DESCRIPTION OF SYMBOLS 1 Engine 3 High pressure stage turbine 4 High pressure stage compressor 6 High pressure stage turbocharger 8 Low pressure stage turbine 9 Low pressure stage compressor 10 Low pressure stage turbocharger 17 Intake throttle valve (intake throttle means)
18 Control device 18a Control signal A Intake G Exhaust

Claims (1)

エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムにおいて、高圧段コンプレッサからエンジンへ送給される吸気量を絞り込む吸気絞り手段を備え、エンジンの高速高負荷領域において前記吸気絞り手段により吸気量を絞り込ませるように構成したことを特徴とする二段過給システム。   A high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a low-pressure stage by exhaust gas sent from the high-pressure stage turbine of the high-pressure stage turbocharger In a two-stage turbocharging system that includes a low-pressure stage turbocharger that operates a turbine and compresses intake air compressed by a low-pressure stage compressor to the high-pressure stage compressor, the amount of intake air supplied from the high-pressure stage compressor to the engine is narrowed down. A two-stage turbocharging system comprising an intake throttle means, wherein the intake air quantity is reduced by the intake throttle means in a high speed and high load region of an engine.
JP2009252747A 2009-11-04 2009-11-04 Two-stage supercharging system Pending JP2011099332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252747A JP2011099332A (en) 2009-11-04 2009-11-04 Two-stage supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252747A JP2011099332A (en) 2009-11-04 2009-11-04 Two-stage supercharging system

Publications (1)

Publication Number Publication Date
JP2011099332A true JP2011099332A (en) 2011-05-19

Family

ID=44190719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252747A Pending JP2011099332A (en) 2009-11-04 2009-11-04 Two-stage supercharging system

Country Status (1)

Country Link
JP (1) JP2011099332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108603A1 (en) 2012-01-20 2013-07-25 ヤンマー株式会社 Ship engine
WO2013145514A1 (en) 2012-03-28 2013-10-03 ヤンマー株式会社 Marine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121731U (en) * 1981-01-26 1982-07-29
JPH03106133U (en) * 1990-02-16 1991-11-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121731U (en) * 1981-01-26 1982-07-29
JPH03106133U (en) * 1990-02-16 1991-11-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108603A1 (en) 2012-01-20 2013-07-25 ヤンマー株式会社 Ship engine
US9777619B2 (en) 2012-01-20 2017-10-03 Yanmar Co., Ltd. Ship engine
WO2013145514A1 (en) 2012-03-28 2013-10-03 ヤンマー株式会社 Marine engine
US9790848B2 (en) 2012-03-28 2017-10-17 Yanmar Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
JP4168809B2 (en) Exhaust turbocharged engine with EGR
JP4741678B2 (en) Diesel engine with supercharger
JP5444996B2 (en) Internal combustion engine and control method thereof
JP5031250B2 (en) Engine three-stage turbocharging system
JP2007100627A (en) Egr system for internal combustion engine
JP2009115089A (en) Engine with supercharger and its operating method
JP2007077900A (en) Two-stage supercharging system
JP2007071179A (en) Two stage supercharging system
JP5912240B2 (en) Exhaust gas recirculation device
JP2005009314A (en) Supercharger for engine
JP2012197716A (en) Exhaust loss recovery device
JP2007138798A (en) Multiple stage supercharging system
JP2007127070A (en) Internal combustion engine with supercharger
JP2012132370A (en) Diesel engine with turbo-supercharger
JP2011099332A (en) Two-stage supercharging system
JP2010127126A (en) Two-stage supercharging system
JP2010223077A (en) Internal combustion engine
JP2004156572A (en) Exhaust gas recirculation device of diesel engine
JP2011111929A (en) Internal combustion engine and method for controlling the same
JP2007077899A (en) Two-stage supercharging system
JP5461226B2 (en) Two-stage turbocharging system
KR20150010842A (en) Engine system
WO2013010923A1 (en) Exhaust gas recirculation for an i.c. engine
JP2017125429A (en) Two-stage turbocharger system
JP2005256651A (en) Intake recirculation device for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507