JP2019026245A - 着氷脅威に対する応答の管理 - Google Patents

着氷脅威に対する応答の管理 Download PDF

Info

Publication number
JP2019026245A
JP2019026245A JP2018093669A JP2018093669A JP2019026245A JP 2019026245 A JP2019026245 A JP 2019026245A JP 2018093669 A JP2018093669 A JP 2018093669A JP 2018093669 A JP2018093669 A JP 2018093669A JP 2019026245 A JP2019026245 A JP 2019026245A
Authority
JP
Japan
Prior art keywords
icing
data
air
aircraft
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018093669A
Other languages
English (en)
Other versions
JP7131959B2 (ja
Inventor
グラント・ゴードン
A Gordon Grant
ジェイソン・ガーデ
Garde Jason
ブレット・ゴードン・ノースカット
Gordon Northcutt Brett
グレゴリー・ジェイ.・チャプマン
J Chapman Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2019026245A publication Critical patent/JP2019026245A/ja
Priority to JP2022133034A priority Critical patent/JP2022167958A/ja
Application granted granted Critical
Publication of JP7131959B2 publication Critical patent/JP7131959B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/02De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
    • B64D15/04Hot gas application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • B64D15/22Automatic initiation by icing detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/12De-icing or preventing icing on exterior surfaces of aircraft by electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing

Abstract

【課題】航空機のための防氷システムを提供する。【解決手段】本システムは、航空機の近傍にある浮遊粒子のサイズ、形状、密度及びタイプのうちの1つ又は複数を示すデータを生成するように構成された1つ又は複数のセンサーを含む。1つ又は複数のセンサーは、処理のためのデータを準備するように構成されたデータ調整器に結合される。データ調整器は、データから、機体、少なくとも1つのエンジン及び少なくとも1つのエアデータプローブへの着氷脅威の重大度を決定するように構成された、推論器に結合される。1つ又は複数のコントローラは、推論器に結合される。1つ又は複数のコントローラは、推論器によって決定された着氷脅威に応じて、少なくとも1つのエンジン、機体、及び少なくとも1つのエアデータプローブのうちの少なくとも1つのための防氷機構を自動的に動作させる。【選択図】図1

Description

本開示は、着氷脅威に対する応答の管理に関する。
[0001]長年にわたって、機体着氷の脅威は、著しい航空危険であった。航空機が着氷条件に遭遇したとき、氷の抑制されていない蓄積が、増加された空気抵抗、揚力の損失及び増加された重みを招くことがある。これらの要因は、航空機性能全体を低減し、詳細には、より高い失速速度を生じる。曝露が延長された場合、氷蓄積は著しくなることがあり、航空機は、安定した飛行を続ける能力を失うことがある。
[0002]統計的に、機体着氷事故は、総航空事故の小さい割合を占めるにすぎないが、それらは、1982年から2000年までの19年間に583件の事故と800人以上の死者を生じた。Kevin R.Petty及びCarol D.J.Floyd、「A statistical Review of Aviation Icing Accidents in the US(米国における航空機体着氷事故の統計的検討)」、国家運輸安全委員会(NTSB)、ワシントン、DC。
[0003]この期間にわたる国家運輸安全委員会(NTSB)からのデータは、機体着氷事故の40%が、飛行機が、パイロット作業負荷が比較的低く、着氷を監視し、それに応答する機会が高くなるべきである期間である、巡航中であったときに発生したことを示す。着氷事故の、次の最大の割合は、エンジンが通常最大出力において動作しており、パイロット作業負荷が高い、離陸中に発生した。事故データのさらなる調査は、経験を積んだパイロットと経験のないパイロットの両方が機体着氷危険を受けやすいことを示す。また、過冷却液滴(SLD:supercooled liquid droplet)など、いくつかのタイプの着氷条件は、異なる氷蓄積パターンにつながることがあることを示す。「かなりの量の...過冷却大型液滴(SLD:supercooled large droplet)に対する注意が発生され、そのとき、ATR−72が...制御された飛行からの指令のない離脱に遭遇し、インディアナ州Roselawnの近くで墜落した(1994)。除氷ブーツの後ろに付着した氷の突起部が、予期されない補助翼ヒンジ瞬間反転及び制御の急激な喪失の原因となった。」SLDによって提示される脅威の理解の増加に加えて、今では、技術基準書TSO−C16a、認定要件において現在定義されているものよりも粗い氷形状及び大きい氷サイズが、大きい空気力学的ペナルティを生じることがあると認識されている。すべての機体着氷脅威が等しく引き起こされるとは限らない。
[0004]飛行機旅行に対する着氷条件の脅威は、機体着氷に限定されず、エンジン事故及びエアデータ計器故障の脅威もある。Masonらによれば、1990年代から2006年までに、240件以上の着氷関係事故があり、それらのうち62件が、氷粒子着氷による可能性があるターボファン出力損失に分類された。Jeanne G.Mason、Walter Strapp及びPhilip Chow、「The Ice Particle Threat to Engines in Flight(飛行中のエンジンへの氷粒子脅威)」、第44回アメリカ航空宇宙学会航空宇宙会議、2006年1月、リノ、ネバダ。
[0005]過去に、氷粒子は、凍結した粒子が、冷たい翼又はエンジンコンポーネント表面に跳ね返ることにより、機体及びエンジンに無害であり、いかなる付着をも生じないと考えられた。しかしながら、機体及びエンジン製造業者によって行われた最近の調査及び分析は、エンジンロールバックの原因が、エンジンコア通路内の第2の段上の氷の蓄積であったことを証明した。大きい輸送機事故の大部分が、過冷却液体水を含んでいる雲のための、TSO−Cl6a、付録C着氷エンベロープの極値における、22000フィート超であったことに留意することが重要である。「パイロット報告は、航空機が、通常、雲中にあった(IMC条件)ことを示すが、それらは、航空機表面上の氷蓄積をめったに報告せず、Rosemount氷検出器が設置され、報告が利用可能であった場合、それは、氷付着のいかなる指示も決して与えなかった(6つの事例)。パイロットは、「どの段においても、風防、ワイパ、又は小翼の周りに着氷の認識できる(visible)兆候はなかった」、及び「ずっと雲中にいたが、着氷は観測されなかった」など、コメントを行った。これらの発見は、すべて、エンジン事故についての原因(culprit)としてのこれまで認められていない氷晶の存在を補強する。発見はまた、多くの通常使用される氷検出器が着氷条件に反応しなかったことを示した。これの理由は、氷晶が冷たい機体表面に付着せず、むしろ跳ね返ることである。しかしながら、結晶は、部分的に溶融し、エアデータプローブ及びエンジンコア表面など、比較的暖かい表面にくっつくことができる。したがって、機体に無害であり、通例の検出から隠された環境は、エンジン又はエアデータプローブにとって極めて有害であり得る。
[0006]最近、ドラフトEUROCAEドキュメント、ED−103、「Minimum operational performance specification for inflight icing detection systems(飛行中着氷検出システムのための最小動作性能仕様)」が、5つの異なる着氷条件、すなわち、3つの液体水(LW)滴着氷条件(LW−C、LW−FZDZ、LW−FZRA)及び2つの氷水粒子(IC:完全に氷層でおおわれた氷晶、MP:混相)を定義した。それらは、さらに、飛行中着氷検出システムのための意図された機能を、これらの条件のうちの1つ又は複数を検出し、弁別する能力を含むものとして定義する。しかしながら、この検出及び弁別能力が、すべての異なる着氷条件にわたって利用可能であった場合でも、現在の制御システムは、その情報を使用する能力がない。
Kevin R.Petty及びCarol D.J.Floyd、「A statistical Review of Aviation Icing Accidents in the US(米国における航空機体着氷事故の統計的検討)」、国家運輸安全委員会(NTSB)、ワシントン、DC 技術基準書TSO−C16a Jeanne G.Mason、Walter Strapp及びPhilip Chow、「The Ice Particle Threat to Engines in Flight(飛行中のエンジンへの氷粒子脅威)」、第44回アメリカ航空宇宙学会航空宇宙会議、2006年1月、リノ、ネバダ TSO−Cl6a、付録C ドラフトEUROCAEドキュメント、ED−103、「Minimum operational performance specification for inflight icing detection systems(飛行中着氷検出システムのための最小動作性能仕様)」
航空機のための防氷システムを提供する。
[0007]一実施形態では、航空機のための防氷システムが提供される。本システムは、航空機の近傍にある浮遊粒子のサイズ、形状、密度及びタイプのうちの1つ又は複数を示すデータを生成するように構成された1つ又は複数のセンサーを含む。1つ又は複数のセンサーは、処理のためのデータを準備するように構成されたデータ調整器に結合される。データ調整器は、データから、機体、少なくとも1つのエンジン及び少なくとも1つのエアデータプローブへの着氷脅威の重大度を決定するように構成された、推論器に結合される。1つ又は複数のコントローラは、推論器に結合される。1つ又は複数のコントローラは、推論器によって決定された着氷脅威に応じて、少なくとも1つのエンジン、機体、及び少なくとも1つのエアデータプローブのうちの少なくとも1つのための防氷機構を自動的に動作させる。
[0008]好ましい実施形態の説明及び以下の図に鑑みて考慮されると、本発明の実施形態がより容易に理解され、さらなる利点及びそれの使用がより直ちに明らかになり得る。
[0009]限定はしないが、航空機の機体、エアデータプローブ及びエンジンを含む、航空機の様々な特徴によって直面される異なる着氷脅威を識別し、弁別し、管理するためのシステムのブロック図である。 [0010]限定はしないが、航空機の機体、エアデータプローブ及びエンジンを含む、航空機の様々な特徴への異なる着氷脅威を識別し、弁別し、管理するための方法のフローチャートである。 [0011]限定はしないが、航空機の機体、エアデータプローブ及びエンジンを含む、航空機の様々な特徴への異なる着氷脅威を識別し、弁別し、管理するための別の方法のフローチャートである。
[0012]慣例によれば、様々な説明される特徴は、一定の縮尺で描かれておらず、本発明に関連する特徴を強調するように描かれている。参照符号は、図面及びテキスト全体にわたって同じ要素を示す。
[0013]以下の発明を実施するための形態では、本出願の一部を形成する添付の図面への参照が行われ、それらの図面には、本発明が実施され得る特定の例示的な実施形態として示される。これらの実施形態は、当業者が本発明を実施することができるように十分に詳しく説明され、他の実施形態が利用され得ることと、論理的、機械的及び電気的変更が本発明の範囲から逸脱することなく行われ得ることとを理解されたい。したがって、以下の発明を実施するための形態は限定的な意味にとられるべきではない。
[0014]上記で詳述されたように、航空機着氷脅威をより効果的に検出し、弁別する必要がある。しかしながら、現代の航空機は、現在、氷、氷晶、混相水状態又は超大型液滴を見分けるための十分正確な水及び氷測定デバイスを有しない。これらの限定のために、航空機製造業者は、航空機の乗員の安全性を保証するための保守的手法を規定する。また、事業者及びパイロットは、安全性を保証するために、防氷及び除氷の使用において保守的である傾向がある。本発明の実施形態は、ブリードエア加熱が除氷のために使用される、航空機の機体及びエンジンへの異なる着氷脅威を識別し、弁別し、管理するための手法を提供する。この手法の実装形態は、安全性と動作効率の両方を向上させるための利益を提供することが意図される。
[0015]図1は、航空機への着氷脅威に対する応答を検出し、弁別し、管理するように設計された、100において概略的に示される、システムの構成要素を示す高レベル機能ブロック図である。システム100は、一実施形態では、既存のエンジンブリードエア制御に対するスレーブ又は拡張であり得ることが予期される。
[0016]システム100は、航空機の近傍にある浮遊粒子を示すデータを測定する。一実施形態では、システム100は、氷と水とを含む浮遊粒子のサイズ、直径、形状、及びタイプを正確に検出し、測定するための1つ又は複数のセンサー102−1〜102−Nを採用する。たとえば、偏光検出を伴う後方散乱雲プローブ(BCPD:Backscatter Cloud Probe with Polarization detection)プローブなどの単一のセンサー(102−1)が、それ自体によって使用され得る。代替的に、BCPDは、他の実施形態では、全空気温度(たとえば、全空気温度(TAT:total air temperature)プローブ又は他の温度センサー)、高度、速度並びに/又は航空機の近傍にある浮遊粒子のサイズ、形状及びタイプを決定する際に有用であり得る他のデータをキャプチャする、他のセンサー(102−2〜102−N)によってサポートされる。
[0017]システム100はまた、データ調整器104を含む。データ調整器104はセンサー102−1〜102−Nに結合される。データ調整器104は、たとえば、センサー102−1〜102−Nからのデータの特徴セットに対するトレンディング、平滑化、データ誤り検出及び他の信号処理向上を与える。
[0018]複数のセンサー102が使用される場合、検出及び弁別段にロバストネスを追加するために、データ融合器105によってデータ融合技法が採用される。データ融合は、改善された精度、及びデータの単一のソースのみから取得され得るものよりもより具体的な推測を達成するための、複数のソースからのデータの統合及びアグリゲーションである。データ/情報融合概念の下にある基本原理は、システムの診断能力、信頼性、及び精度を向上させるために、たとえば、フォールスアラームの数を低減するために、すべての利用可能な情報を活用することである。
[0019]システム100は推論器106をも含む。推論器106は、データ融合が使用される場合、データ融合器105を介してデータ調整器104から、調整されたデータを受信し、他の場合、推論器106は、データ調整器104から直接、調整されたデータを受信し得る。推論器106は、航空機の機体とエンジンの両方に関する着氷脅威の重大度を決定するために、暗黙的又は明示的知識ベースとともに着信データを使用する。一実施形態では、推論器106は、データ調整器104からのリアルタイムデータ特徴を、着氷脅威の重大度及びロケーション(エンジン、機体、エアデータプローブ)を表す2次元空間の領域に割り当てるための分類器をトレーニングすることによって実装される。
[0020]着氷脅威の管理を向上させるために、分類メトリック(重大度及びロケーション)が、推論器106によってコックピットアラートパネル108に与えられることになる。たとえば、コックピットアラートパネルは、図示のように航空機の機体、エンジン、及びエアデータプローブの各々について高い及び低い脅威の視覚インジケータを与え得る。さらに、コックピットアラートパネルはまた、機体、エンジン及びエアデータプローブについて検出された各条件についての可聴指示を含み得る。本明細書で説明される実施形態は、氷防止システムの自動化と、低減されたパイロット作業負荷及び改善された安全性に役立つ自動アラーティングの両方を提供する。推論器106はまた、検出された脅威に関するデータを、1つ又は複数のコントローラ、たとえば、ブリードエアコントローラ110及びエアデータプローブヒーターコントローラ103に与える。コントローラは、検出された着氷脅威に対する適切な応答を作成するために、推論器106の出力を使用する。
[0021]一実施形態では、コントローラはブリードエアコントローラ110を含む。ブリードエアコントローラ110は、航空機のいくつかの特徴、たとえば、エンジン、及び機体、への検出された脅威に対する航空機の除氷機器の応答を管理するために、推論器106からのデータを使用する。ブリードエアコントローラ110は、一実施形態では、従来の航空機において使用される既存の除氷手法を補完するように設計される。この実施形態では、ブリードエアコントローラ110は、コックピット防氷制御スイッチ112に応答する。スイッチ112は、一実施形態では、3つの設定、すなわち、オフ、自動及びオーバーライドを有する。オフ位置では、スイッチ112は、ブリードエアコントローラ110が、航空機の任意の部分、たとえば、エンジン又は機体にブリードエアを与えるための何らかのアクションをとることを防ぐ。自動位置では、スイッチ112は、推論器106の出力に基づいて、ブリードエアバルブ114を介してブリードエア供給116から機体着氷ロケーション118及び/又はエンジン着氷ロケーション120にブリードエアを与えるように、ブリードエアコントローラに命令する。このようにして、推論器106は、任意の検出された着氷脅威の重大度に基づいて、機体着氷ロケーション118、エンジン着氷ロケーション120、又はその両方のいずれかに適切な量のブリードエアを与えるように、ブリードエアコントローラ110に指示する。これは、ブリードエアレベルが、条件の重大度に基づいて低減され、それらが最も必要とされる航空機の領域に送出されることを可能にする。オーバーライド位置では、スイッチ112は、任意の自動的に制御される機能をバイパスするようにブリードエアコントローラ110に命令し、システムは、それの現在の調節されていない又はロケーション非弁別の構成において氷防止システムを動作させることになる。この条件(オーバーライド)は、推論器106の出力をオーバーライドすることによって従来のブリードエアシステムをオンにすることに対応する。
[0022]別の実施形態では、コントローラは、エアデータプローブヒーターコントローラ103を含む。エアデータプローブヒーターコントローラ103は、航空機のエアデータプローブのための除氷応答を制御するために、推論器106からのデータに基づいてエアデータプローブヒーター107に与えられた電力の量を制御する。他の実施形態では、電気ヒーターが、航空機の他の部分上の着氷脅威に応答するために使用される。ブリードエアコントローラ110の場合と同様に、エアデータプローブヒーターコントローラ103はスイッチ112に応答する。上記で説明されたように、スイッチ112は、3つの設定、すなわち、オフ、自動及びオーバーライドを有する。オフ位置では、スイッチ112は、エアデータプローブヒーターコントローラ103が、航空機の任意の部分、たとえば、エアデータプローブヒーター107に電力を与えるための何らかのアクションをとることを防ぐ。自動位置では、スイッチ112は、推論器106の出力に基づいてエアデータプローブヒーター107に電力を与えるようにエアデータプローブヒーターコントローラ103に命令する。このようにして、推論器106は、エアデータプローブへの任意の検出された着氷脅威の重大度に基づいて、適切な電力の量をエアデータプローブヒーター107に与えるように、エアデータプローブヒーターコントローラ103に指示する。これは、電力レベルが、条件の重大度に基づいて低減され、適切なヒーターに送出されることを可能にする。オーバーライド位置では、スイッチ112は、任意の自動制御された機能をバイパスするようにエアデータプローブヒーターコントローラ103に命令し、システムは、それの現在の調節されていない又はロケーション非弁別の構成において氷防止システムを動作させることになる。この条件(オーバーライド)は、推論器106の出力をオーバーライドすることと、エアデータプローブヒーター107にフル電力を与えることとによって、従来のエアデータプローブ制御システムをオンにすることに対応する。
[0023]他の実施形態では、ブリードエア及び出力制御の様々な組合せが、推論器106によって検出された着氷脅威に対する応答を制御するために使用される。
[0024]上記で説明されたように、システム100の実施形態は、パイロット作業負荷の低減を可能にし、航空機を動作させることにおける安全性を改善する。さらに、本発明の実施形態はまた、航空機の動作効率の著しい改善を提供し得る。ブリードエア構成は、プラットフォームによって変動するが、離陸、上昇及び巡航中に、キャビンブリード需要は、約1パーセントのエンジンコアフロー、1パーセントのナセル、約5〜7パーセントの翼前縁除氷用途である。より低い出力設定では、ブリードエア割合は、所与の(一定の)ブリードエア需要を満たすように上がる。ブリードエアが使用されるとき、エンジン効率が低減し、タービン温度が押し上げられる。したがって、補償するために、エンジンは、カットバックされ、より低い出力において動作することを強制される。ブリードエアの使用はまた、エンジン燃料消費を増加させる。防氷システムは、スラスト及び燃料消費に対する悪影響のために、必要とされるときのみオンにされる。いくつかの防氷バルブ設計は、オン又はオフのいずれかであり、段階的ではない。したがって、それらがオンにされると、バルブは、保守的ワーストケース需要プロファイルのためにブリードエアを供給する。この供給されたブリードエア供給が真の必要性よりも大きい場合、エンジンスラスト及び効率が不必要に低減される。本発明の実施形態は、ブリードフローの量を低減し、したがって、調節され得るバルブを必要とし、それは、不要な負荷(過剰なブリードエア)が除去されるのでエンジン効率を改善する。
[0025]図2は、たとえば、図1のシステム100を使用して、航空機への着氷脅威に対する応答を管理するための方法の一実施形態を示すフローチャートである。方法は、ブロック202において開始し、航空機の近傍にある浮遊粒子を示すデータを生成する。たとえば、このデータは、複数のセンサー、たとえば、たとえばBCPDセンサーを含む、図1のセンサー102−1〜102−Nを用いて生成される。ブロック204において、方法は、浮遊粒子に関するデータを調整する。たとえば、方法は、データの特徴セットに対するトレンディング、平滑化、データ誤り検出及び他の信号処理向上など、調整を行う。さらに、いくつかの実施形態では、方法はまた、ブロック204において、複数のセンサーからのデータを融合させる。
[0026]ブロック206において、方法は、着氷脅威に対する応答を管理するために、調整されたデータ(及び存在するときは融合されたデータ)を使用する。方法は、航空機のための着氷脅威のロケーション及び重大度を決定する。脅威がエンジンへのものである場合、方法は、ブロック208において、ブリードエアをエンジンに適用する。脅威が機体へのものである場合、方法は、ブロック210において、ブリードエアを機体に適用する。しかしながら、方法が、着氷脅威がエンジンと機体の両方へのものであると決定した場合、ブロック212において、ブリードエアは機体とエンジンの両方に適用される。ブロック208、210、及び212の各々において、一実施形態では、エンジン及び/又は機体に与えられるブリードエアの量は、ブロック206において決定された着氷脅威の重大度に依存する。
[0027]さらに、ブロック206において、方法が、着氷脅威がエアデータプローブへのものであると決定した場合、方法は、ブロック214において、電力をエアデータプローブヒーターに適用する。ブリードエアの適用の場合と同様に、エアデータプローブヒーターに適用される電力の量は、ブロック206において決定された着氷脅威の重大度に依存する。
[0028]図1は、航空機上の着氷脅威を管理するためのシステム100の一般的高レベル機能図を示す。特定の実装形態は、プラットフォーム固有設計考慮事項を考慮する必要があるであろう。また、考慮されるべき規制上の問題がある。エンジン出力設定は、エンジンがエンジン限界内で動作していることを保証するために、エンジン制御ユニット(ECU:engine control unit)113によって調節される。エンジン制御ユニット113は、限定はしないが、対気速度、高度、エンジンスロットル位置、及び周囲温度を含む、ブリード構成を定義する航空機信号を受信する。提示された、キャビンブリード、ナセル防氷、及び翼防氷構成の組合せに基づいて、エンジン制御ユニット113は、あらかじめ定義された量によってエンジン出力設定を調節する。報告されたブリードフローに連続的に応答することになる出力設定を有するように設計されたエンジンは、著しい規制認定課題に直面することになる可能性がある。しかしながら、2つ(オン/オフ)よりも多い離散的な状態を用いた報告されたブリード負荷構成が利益を提供し得る、いくつかの動作環境がある。
[0029]図3は、図1のブリードエアコントローラ110のためのインデックス付き設定点を実装するプロセスフローの一実施形態を示す。この実施形態では、システム100は、3つの設定点を使用する。パイロットがオーバーライドし得る中間設定点は、より良い性能において動作しながら依然としてブリードエアを動作させることを可能にするであろう。この中間設定点は、エンジン、機体又はその両方への低レベル着氷脅威を緩和し得、完全オン設定点は、最高脅威レベルのために使用されることになる。他の実施形態では、追加のインデックス付き設定点が、エンジン出力設定のさらなる細分を可能にする。
[0030]図3の方法は、ブロック302において開始し、着氷脅威のロケーションを決定する。ブロック304において、方法は、着氷脅威の重大度を決定する。決定されたロケーション及び脅威レベルに基づいて、プロセスは、ブロック305において、適切な出力レベルを決定する。一実施形態では、部分ブリード負荷設定点(たとえば、3つの設定点の中間設定点)が、エンジン及び/又は機体への低い脅威レベルのために使用される。しかしながら、この部分ブリード負荷設定点は、たとえば、図1のスイッチ112を使用して、パイロットによってオーバーライドされ得る。
[0031]ブロック306において、方法は、ブロック305において部分ブリード負荷設定点が決定されたかどうかを決定する。部分ブリード負荷設定点が決定されない場合、方法は、ブロック308において、決定されたロケーション及び脅威レベルに基づいてブリードエア制御を設定し、ブロック310において、ブリードエアはそのレベルにおいて適用される。しかしながら、ブロック306において部分ブリード負荷設定点が決定された場合、方法は、パイロットが、たとえば、スイッチ112を介して部分ブリード負荷設定点をオーバーライドするように指示したかどうかを決定する。パイロットが、部分ブリード負荷設定点をオーバーライドすることを選択した場合、方法は、ブロック308に進み、上記で説明されたように設定を適用する。しかしながら、パイロットが、部分ブリード負荷設定点をオーバーライドすることを選定しなかった場合、方法は、ブロック314に進み、決定されたロケーション及び決定された脅威レベルに基づいて、部分ブリード負荷設定点においてブリードエア制御を設定し、ブロック310において、ブリードエアを適用する。
[0032]有利なことに、本発明の実施形態は、航空機への着氷脅威に対する応答を管理することにおいて、従来のシステムよりも効果的であり拡張的である。本発明の実施形態は、着氷脅威の重大度を考慮し、最も必要とされるロケーションにブリードエアを向ける。例示的な実施形態
[0033]例1は、航空機のための防氷システムであって、防氷システムが、単独で又は組み合わせて、航空機の近傍にある浮遊粒子のサイズ、形状、密度及びタイプのうちの1つ又は複数を示すデータを生成するように構成された1つ又は複数のセンサーと、1つ又は複数のセンサーに結合されたデータ調整器であって、処理のためにデータを準備するように構成された、データ調整器と、データ調整器に結合された推論器であって、データ調整器からのデータから、機体、少なくとも1つのエンジン及び少なくとも1つのエアデータプローブへの着氷脅威の重大度を決定するように構成された、推論器と、推論器に応答する1つ又は複数のコントローラであって、推論器によって決定された着氷脅威に応じて、少なくとも1つのエンジン、機体、及び少なくとも1つのエアデータプローブのうちの少なくとも1つのための防氷機構を自動的に動作させる、1つ又は複数のコントローラとを含む、防氷システムを含む。
[0034]例2は、1つ又は複数のセンサーが、複数のセンサーを含み、データ調整器が、1つ又は複数のセンサーからのデータを融合させるように構成されたデータ融合器に結合された、例1の防氷システムを含む。
[0035]例3は、例1〜例2のうちのいずれかの防氷システムを含み、機体への着氷脅威、少なくとも1つのエンジンへの着氷脅威、及び少なくとも1つのエアデータプローブへの着氷脅威を示すための、推論器に結合されたコックピットアラートパネルをさらに含む。
[0036]例4は、1つ又は複数のコントローラが、推論器に応答するブリードエアコントローラとバルブとを含み、ブリードエアコントローラが、推論器によって決定された着氷脅威に応じて、少なくとも1つのエンジン、機体又はその両方にブリードエアを選択的に適用するように、バルブを自動的に動作させる、例1〜例3のうちのいずれかの防氷システムを含む。
[0037]例5は、1つ又は複数のコントローラが、推論器に応答するエアデータプローブヒーターコントローラをさらに含み、エアデータプローブヒーターコントローラが、1つ又は複数のエアデータプローブヒーターに適用される電力の量を制御するように構成された、例4の防氷システムを含む。
[0038]例6は、例4〜例5のうちのいずれかの防氷システムを含み、ユーザが1つ又は複数のコントローラの自動動作をオーバーライドすることを可能にするように構成されたコックピット防氷制御スイッチをさらに含む。
[0039]例7は、1つ又は複数のセンサーが、偏光検出を伴う後方散乱雲プローブ(BCPD)プローブを含む、例1〜例6のうちのいずれかの防氷システムを含む。
[0040]例8は、1つ又は複数のセンサーが、全空気温度、高度及び/又は速度をキャプチャするセンサーをさらに含む、例7の防氷システムを含む。
[0041]例9は、データ調整器が、データが推論器に送出される前に、1つ又は複数のセンサーからのデータに対するトレンディング、平滑化、データ誤り検出及び他の信号処理向上を与えるように構成された、例1〜例8のうちのいずれかの防氷システムを含む。
[0042]例10は、ブリードエアコントローラが、3つのブリード負荷設定点、すなわち、0ブリードエア設定点、最大ブリードエア設定点及び中間ブリードエア設定点のうちの1つにおいて動作し、中間ブリードエア設定点は、中間設定点が、コックピット防氷制御スイッチによってオーバーライドされない限り、推論器が少なくとも1つのエンジン、機体又はその両方への低レベル脅威を決定したとき、ブリードエアコントローラによって選択される、例6〜例9のうちのいずれかの防氷システムを含む。
[0043]例11は、データ融合器が、精度、及びデータの単一のソースのみから取得され得るよりもより具体的な推測を改善するための、1つ又は複数のセンサーからのデータの統合及びアグリゲーションを行うように構成された、例2〜例10のうちのいずれかの防氷システムを含む。
[0044]例12は、航空機への着氷脅威に対する応答を管理するための方法であって、方法が、航空機の近傍にある浮遊粒子のサイズ、形状及びタイプを示すデータを生成することと、処理のためにデータを調整することと、調整されたデータから着氷脅威の重大度及びロケーションを決定することと、重大度レベルに基づいて決定された量における防氷応答を決定されたロケーションに適用することとを含む、方法を含む。
[0045]例13は、データを生成することが、偏光検出を伴う後方散乱雲プローブ(BCPD)プローブを用いてデータを生成することを含む、例12の方法を含む。
[0046]例14は、防氷応答を適用することが、エンジン着氷ロケーション又は機体着氷ロケーションにブリードエアを適用することあるいはエアデータプローブヒーターに電力を適用することのいずれかを含む、例12及び例13のうちのいずれかの方法を含む。
[0047]例15は、航空機への着氷脅威に対する応答を管理するための方法であって、方法は、航空機についての着氷脅威のロケーションを決定することと、決定された着氷脅威の重大度を決定することと、決定された重大度に対する応答が部分ブリード負荷設定点であるかどうかを決定することと、応答が部分ブリード負荷設定点であるとき、手動オーバーライドがアクティブ化されたかどうかを決定することと、手動オーバーライドがアクティブ化されたとき又は応答が部分ブリード負荷設定点でないとき、決定されたロケーション及び最大脅威レベルに基づいて、ブリードエア制御を設定することと、手動オーバーライドがアクティブ化されなかったとき、決定されたロケーション及び決定された脅威レベルに基づいて、ブリードエア制御を設定することとを含む、方法を含む。
[0048]例16は、着氷脅威のロケーションを決定することが、航空機の機体についての着氷脅威があるのか航空機の少なくとも1つのエンジンについての着氷脅威があるのかを決定することを含む、例15の方法を含む。
[0049]例17は、決定された着氷脅威の重大度を決定することが、低い脅威レベルを高い脅威レベルと区別することを含む、例15〜例16のうちのいずれかの方法を含む。
[0050]例18は、応答が部分ブリード負荷設定点であるかどうかを決定することが、重大度レベルが低い脅威レベルにあるかどうかを決定することを含む、例17の方法を含む。
[0051]例19は、ロケーションを決定することと、着氷脅威の重大度を決定することとが、航空機の近傍にある浮遊粒子のサイズ、形状及びタイプを決定する1つ又は複数のセンサーによって集められたデータに基づく、例15〜例18のうちのいずれかの方法を含む。
[0052]例20は、応答が部分ブリード負荷設定点であるかどうかを決定することが、応答が3つの潜在的設定点のうちの中間設定点であるかどうかを決定することを含む、例15〜例19のうちのいずれかの方法を含む。
[0053]例21は、エアデータプローブへの着氷脅威に対する応答を管理するための方法であって、方法は、決定された着氷脅威の重大度を決定することと、決定された重大度に対する応答が部分ヒーター電力であるかどうかを決定することと、応答が部分ヒーター電力であるとき、手動オーバーライドがアクティブ化されたかどうかを決定することと、手動オーバーライドがアクティブ化されたか又は応答が部分ヒーター電力でないとき、最大脅威レベルに基づいて電力を設定することと、手動オーバーライドがアクティブ化されなかったとき、決定された脅威レベルに基づいてヒーター電力レベルを設定することとを含む、方法を含む。
[0054]本明細書では特定の実施形態が例示され、説明されたが、同じ目的を達成するために計算される任意の構成が、特定の図示の実施形態の代わりに使用され得ることが、当業者によって諒解されよう。本出願は、本発明の任意の適応形態又は変形形態を包含するものとする。したがって、本発明は、特許請求の範囲及びそれの等価物のみによって制限されることが明白に意図される。
100 システム
100 防氷システム
102−1〜102−N センサー
103 エアデータプローブヒーターコントローラ
104 データ調整器
105 データ融合器
106 推論器
107 エアデータプローブヒーター
108 コックピットアラートパネル
110 ブリードエアコントローラ
112 コックピット防氷制御スイッチ
112 スイッチ
113 エンジン制御ユニット
114 ブリードエアバルブ
116 ブリードエア供給
118 機体着氷ロケーション
120 エンジン着氷ロケーション

Claims (3)

  1. 航空機のための防氷システム(100)であって、
    単独で又は組み合わせて、前記航空機の近傍にある浮遊粒子のサイズ、形状、密度及びタイプのうちの1つ又は複数を示すデータを生成するように構成された1つ又は複数のセンサー(102−1〜102−N)と、
    前記1つ又は複数のセンサーに結合されたデータ調整器(104)であって、処理のために前記データを準備するように構成された、データ調整器(104)と、
    前記データ調整器に結合された推論器(106)であって、前記データ調整器からの前記データから、機体(118)、少なくとも1つのエンジン(120)及び少なくとも1つのエアデータプローブへの着氷脅威の重大度を決定するように構成された、推論器(106)と、
    前記推論器に応答する1つ又は複数のコントローラ(110、103)であって、前記推論器によって決定された前記着氷脅威に応じて、前記少なくとも1つのエンジン、前記機体、及び前記少なくとも1つのエアデータプローブのうちの少なくとも1つのための防氷機構を自動的に動作させる、1つ又は複数のコントローラ(110、103)と
    を含む、防氷システム(100)。
  2. 前記1つ又は複数のコントローラが、前記推論器に応答するブリードエアコントローラ(110)とバルブ(114)とを含み、前記ブリードエアコントローラが、前記推論器によって決定された前記着氷脅威に応じて、前記少なくとも1つのエンジン、前記機体又はその両方にブリードエア(116)を選択的に適用するように、前記バルブを自動的に動作させる、請求項1に記載の防氷システム。
  3. 前記1つ又は複数のコントローラが、前記推論器に応答するエアデータプローブヒーターコントローラ(103)をさらに含み、前記エアデータプローブヒーターコントローラが、1つ又は複数のエアデータプローブヒーター(107)に適用される電力の量を制御するように構成された、請求項2に記載の防氷システム。
JP2018093669A 2017-08-01 2018-05-15 着氷脅威に対する応答の管理 Active JP7131959B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022133034A JP2022167958A (ja) 2017-08-01 2022-08-24 着氷脅威に対する応答の管理

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/666,519 US20190039742A1 (en) 2017-08-01 2017-08-01 Managing response to icing threat
US15/666,519 2017-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022133034A Division JP2022167958A (ja) 2017-08-01 2022-08-24 着氷脅威に対する応答の管理

Publications (2)

Publication Number Publication Date
JP2019026245A true JP2019026245A (ja) 2019-02-21
JP7131959B2 JP7131959B2 (ja) 2022-09-06

Family

ID=63012835

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018093669A Active JP7131959B2 (ja) 2017-08-01 2018-05-15 着氷脅威に対する応答の管理
JP2022133034A Withdrawn JP2022167958A (ja) 2017-08-01 2022-08-24 着氷脅威に対する応答の管理

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022133034A Withdrawn JP2022167958A (ja) 2017-08-01 2022-08-24 着氷脅威に対する応答の管理

Country Status (4)

Country Link
US (1) US20190039742A1 (ja)
EP (1) EP3437998B1 (ja)
JP (2) JP7131959B2 (ja)
CN (1) CN109319126A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046761B (zh) * 2020-08-04 2021-10-15 中国空气动力研究与发展中心计算空气动力研究所 一种基于统计检验和滤波的飞机结冰在线探测方法
US11754484B2 (en) 2020-09-22 2023-09-12 Honeywell International Inc. Optical air data system fusion with remote atmospheric sensing
CN112373697B (zh) * 2020-10-30 2022-11-18 哈尔滨飞机工业集团有限责任公司 一种飞机结冰失速警告系统及方法
US11912419B2 (en) 2022-01-21 2024-02-27 Honeywell International Inc. Ice protection modulation with atmospheric conditions
US11975847B2 (en) * 2022-03-16 2024-05-07 General Electric Company Ice protection systems for aircraft
US11912420B2 (en) * 2022-04-11 2024-02-27 The Boeing Company Deicing systems and methods for an aircraft
CN115560700B (zh) * 2022-12-05 2023-02-03 中国空气动力研究与发展中心低速空气动力研究所 一种基于彩色偏振成像的结冰三维外形在线测量方法
CN117490969B (zh) * 2023-12-27 2024-03-19 中国空气动力研究与发展中心低速空气动力研究所 一种结冰风洞完整冰形在线测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831819A (en) * 1987-07-02 1989-05-23 Avco Corporation Anti-icing valve
JPH0415199A (ja) * 1990-05-01 1992-01-20 Mitsubishi Heavy Ind Ltd 航空機の防除氷装置
JPH072189A (ja) * 1993-06-18 1995-01-06 Mitsubishi Heavy Ind Ltd ブレードディアイス装置
US20080257033A1 (en) * 2007-04-20 2008-10-23 Shadin, L.P. Ice detection
JP2014131906A (ja) * 2013-01-02 2014-07-17 Boeing Co 自動水滴測定及び氷検出システム
GB2511344A (en) * 2013-02-28 2014-09-03 Gkn Aerospace Services Ltd Ice detection
JP2016172461A (ja) * 2015-03-16 2016-09-29 三菱航空機株式会社 風防装置、航空機、および風防ヒータの電力制御方法
US20160304210A1 (en) * 2014-10-15 2016-10-20 Rosemount Aerospace Inc. One-piece air data probe

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710408A (en) * 1996-08-15 1998-01-20 Msx, Inc. Automatic controlled for an ice and snow melting system with ground fault circuit interruption
DK1483939T3 (da) * 2002-02-11 2008-12-08 Dartmouth College Systemer og metoder til modifikation af en is-til-objekt grænseflade
EP2117926B1 (en) * 2007-01-10 2018-12-26 Sikorsky Aircraft Corporation Ice rate meter with virtual aspiration
US9013332B2 (en) * 2012-01-05 2015-04-21 The Boeing Company Laser-based supercooled large drop icing condition detection system
US8907798B2 (en) * 2012-01-05 2014-12-09 The Boeing Company Supercooled large drop icing condition detection system
EP2657133A3 (en) * 2012-04-27 2016-08-03 Goodrich Corporation Aircraft ice protection system with operation optimization based on ice-detection input
US9359081B2 (en) * 2012-06-12 2016-06-07 The Boeing Company Icing condition detection system
US10513340B2 (en) * 2012-08-02 2019-12-24 Rosemount Aerospace Inc. Rotor ice protection systems and methods
US8843253B1 (en) * 2013-04-02 2014-09-23 Honeywell International Inc. Aircraft ice protection control system and method for mitigating engine over-bleed
JP6193691B2 (ja) * 2013-09-11 2017-09-06 三菱航空機株式会社 防氷システム、及び、航空機
US10144521B2 (en) * 2015-08-04 2018-12-04 Hamilton Sundstrand Corporation Electric compressor for use with a wing anti-ice system
CN105691620B (zh) * 2016-01-20 2018-04-24 南京师范大学 利用飞机发动机余热的热管超声波联合防冰除冰装置及方法
US10392117B2 (en) * 2016-09-23 2019-08-27 General Electric Company Icing condition detection using instantaneous humidity sensing
US11237299B2 (en) * 2017-05-01 2022-02-01 I.M. Systems Group, Inc. Self-learning nowcast system for modeling, recording, and predicting convective weather

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831819A (en) * 1987-07-02 1989-05-23 Avco Corporation Anti-icing valve
JPH0415199A (ja) * 1990-05-01 1992-01-20 Mitsubishi Heavy Ind Ltd 航空機の防除氷装置
JPH072189A (ja) * 1993-06-18 1995-01-06 Mitsubishi Heavy Ind Ltd ブレードディアイス装置
US20080257033A1 (en) * 2007-04-20 2008-10-23 Shadin, L.P. Ice detection
JP2014131906A (ja) * 2013-01-02 2014-07-17 Boeing Co 自動水滴測定及び氷検出システム
GB2511344A (en) * 2013-02-28 2014-09-03 Gkn Aerospace Services Ltd Ice detection
US20160304210A1 (en) * 2014-10-15 2016-10-20 Rosemount Aerospace Inc. One-piece air data probe
JP2016172461A (ja) * 2015-03-16 2016-09-29 三菱航空機株式会社 風防装置、航空機、および風防ヒータの電力制御方法

Also Published As

Publication number Publication date
CN109319126A (zh) 2019-02-12
EP3437998B1 (en) 2023-03-08
JP7131959B2 (ja) 2022-09-06
EP3437998A1 (en) 2019-02-06
US20190039742A1 (en) 2019-02-07
JP2022167958A (ja) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7131959B2 (ja) 着氷脅威に対する応答の管理
Bragg et al. Effect of ice accretion on aircraft flight dynamics
EP3480117B1 (en) Aircraft stall warning/protection with time - varying maximum angle of attack settings for icing conditions
CA3052014C (en) Ice detection systems for aircraft and related methods
US9352841B2 (en) Virtual ice accretion meter display
Bragg et al. An interdisciplinary approach to inflight aircraft icing safety
US8684312B2 (en) Method and system for checking the formation of ice on an aircraft in flight
US10071808B1 (en) Aircraft icing conditions detection systems and methods
Deiler et al. Design and Testing of an Indirect Ice Detection Methodology
Deters et al. Icing encounter flight simulator
Jackson et al. Certification and integration aspects of a primary ice detection system
NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON DC Safety recommendation
Pereira et al. Status of NTSB aircraft icing certification-related safety recommendations issued as a result of the 1994 ATR-72 accident at Roselawn, IN
Jackson Primary ice detection certification under the new FAA and EASA regulations
EP3614226B1 (en) Enhanced pitot tube power management system and method
Wu et al. Effect of and protection from ice accretion on aircraft
Perkins et al. Aircraft icing problems-After 50 years
US20180155063A1 (en) Systems and methods for diagnosing turboshaft engine bleed valves
Dimock et al. Icing scenarios with the icing encounter flight simulator
Render et al. Investigation into ice detection parameters for turboprop aircraft
Benard et al. Take-Off performance incidents: do we need to accept them or can we avoid them?
Parkins Developing critical ice shapes for use in aircraft development and certification
Xu et al. Numerical study on visual cue technology of SLD based on CRM aircraft
Leader et al. Frosty Weather: The Regulatory History of Aircraft Operations in Freezing Conditions
Niemann et al. Artificial Icing Test CH-47C Helicopter with Fiberglass Rotor Blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7131959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150