JP2019016627A - Vacuum suction member - Google Patents

Vacuum suction member Download PDF

Info

Publication number
JP2019016627A
JP2019016627A JP2017130673A JP2017130673A JP2019016627A JP 2019016627 A JP2019016627 A JP 2019016627A JP 2017130673 A JP2017130673 A JP 2017130673A JP 2017130673 A JP2017130673 A JP 2017130673A JP 2019016627 A JP2019016627 A JP 2019016627A
Authority
JP
Japan
Prior art keywords
porous member
vacuum
vacuum suction
path
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017130673A
Other languages
Japanese (ja)
Other versions
JP6934335B2 (en
Inventor
大樹 赤間
Daiki Akama
大樹 赤間
阿部 敏彦
Toshihiko Abe
敏彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017130673A priority Critical patent/JP6934335B2/en
Publication of JP2019016627A publication Critical patent/JP2019016627A/en
Application granted granted Critical
Publication of JP6934335B2 publication Critical patent/JP6934335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a vacuum suction member capable of controlling a distribution pattern of a timing at which vacuum suction force is applied to a substrate.SOLUTION: A porous member 2 is formed such that the thickness of the porous member 2 changes continuously, intermittently, or locally such that a distribution pattern of the resistance of a vacuum path on the upper surface of the porous member 2 is in a desired distribution manner with reference to a through hole 11 communicating with a recessed portion 12 of a dense member 1.SELECTED DRAWING: Figure 2

Description

本発明は、半導体基板または液晶用ガラス基板など基板を吸着保持するために用いられる真空吸着部材に関する。   The present invention relates to a vacuum suction member used for sucking and holding a substrate such as a semiconductor substrate or a glass substrate for liquid crystal.

露光機などの半導体製造装置において、ウエハの均一な吸着のため、例えば多孔質部材からなる載置部が、樹脂またはガラスなどの接着剤により緻密質部材からなる支持部に接合されることで構成された真空吸着部材が提案されている(例えば、特許文献1参照)。当該真空吸着部材によれば、支持部に形成された吸気孔および載置部を通じて、当該載置部に載置されたウエハに対して真空吸着力を作用させる。   In a semiconductor manufacturing apparatus such as an exposure machine, in order to uniformly adsorb a wafer, for example, a mounting part made of a porous member is joined to a support part made of a dense member with an adhesive such as resin or glass. A vacuum suction member has been proposed (see, for example, Patent Document 1). According to the vacuum suction member, a vacuum suction force is applied to the wafer placed on the mounting portion through the suction hole and the mounting portion formed in the support portion.

特開2005−205507号公報JP 2005-205507 A

しかし、一般的にウエハに対して真空吸着力が作用するタイミングが載置面の場所ごとに相違し、しかも当該タイミングの分布が不規則的であるため、吸着保持されたウエハにしわが寄ったり撓みが残ったままであったりなど、ウエハの平坦性が損なわれる可能性がある。特に、載置面から貫通孔までの距離の長短に応じて、真空吸着力が作用するタイミングが異なるため、ウエハの平坦性が損なわれる場合がある。   However, the timing at which the vacuum suction force acts on the wafer is generally different for each place on the mounting surface, and the distribution of the timing is irregular, so that the wafer held by suction is wrinkled or bent. There is a possibility that the flatness of the wafer may be impaired. In particular, depending on the distance from the mounting surface to the through-hole, the timing at which the vacuum suction force acts differs, so the flatness of the wafer may be impaired.

そこで、本発明は、基板に対する真空吸着力を作用させるタイミングの分布態様を制御し得る真空吸着部材を提供することにある。   Therefore, the present invention is to provide a vacuum suction member that can control the distribution mode of the timing at which the vacuum suction force is applied to the substrate.

本発明は、周囲よりも下方に窪んでいる凹部と、前記凹部に連通する貫通孔と、が形成されている緻密質部材と、前記緻密質部材の前記凹部に収容された状態で少なくとも側面が全周にわたり前記緻密質部材に対して接合されている多孔質部材と、を備え、前記多孔質部材の平坦な上面に載置された基板に対して、前記貫通孔と、前記緻密質部材の前記凹部の底面および前記多孔質部材の下面の間隙により上下が画定されている1次真空経路と、前記多孔質部材の気孔の連通により構成される2次真空経路と、を通じて真空吸引力を作用させて、当該基板を吸着保持するための真空吸着部材に関する。   The present invention provides a dense member in which a recessed portion that is recessed below the periphery and a through hole communicating with the recessed portion are formed, and at least a side surface in a state of being accommodated in the recessed portion of the dense member. A porous member bonded to the dense member over the entire circumference, and the through-hole and the dense member of the substrate placed on the flat upper surface of the porous member A vacuum suction force acts through a primary vacuum path whose upper and lower sides are defined by a gap between the bottom surface of the recess and the lower surface of the porous member, and a secondary vacuum path configured by communication of pores of the porous member. The present invention relates to a vacuum suction member for sucking and holding the substrate.

本発明の真空吸着部材は、前記貫通孔を基準とした前記多孔質部材の上面における真空経路の抵抗の分布態様が所望の分布態様になるように、前記多孔質部材の厚さが連続的もしくは断続的または局所的に変化するように前記多孔質部材が形成されていることを特徴とする。   In the vacuum suction member of the present invention, the thickness of the porous member is continuous or the thickness distribution of the resistance of the vacuum path on the upper surface of the porous member with respect to the through hole becomes a desired distribution mode. The porous member is formed so as to change intermittently or locally.

本発明の真空吸着部材によれば、貫通孔→1次真空経路→2次真空経路の順に負圧が発現し、多孔質部材の上面に載置されている基板に対して真空吸着力が作用する。多孔質部材の厚さが連続的もしくは断続的または局所的に変化するように、多孔質部材が形成されている。これにより、貫通孔を基準とした多孔質部材の上面までの真空経路の抵抗の当該上面における分布態様が所望の分布態様に設計されている。多孔質部材の上面、すなわち載置面において当該抵抗が低い場所であるほど、当該上面に載置された基板に対して早く真空吸着力を作用させることができる。よって、多孔質部材の上面に載置された基板に対する真空吸着力を作用させるタイミングの分布態様が制御され得る。   According to the vacuum suction member of the present invention, a negative pressure is generated in the order of the through hole → the primary vacuum path → the secondary vacuum path, and the vacuum suction force acts on the substrate placed on the upper surface of the porous member. To do. The porous member is formed such that the thickness of the porous member changes continuously, intermittently or locally. Thereby, the distribution mode on the upper surface of the resistance of the vacuum path to the upper surface of the porous member with respect to the through hole is designed to be a desired distribution mode. The lower the resistance is on the upper surface of the porous member, that is, the mounting surface, the faster the vacuum adsorption force can be applied to the substrate mounted on the upper surface. Therefore, the distribution mode of the timing at which the vacuum suction force is applied to the substrate placed on the upper surface of the porous member can be controlled.

本発明の真空吸着部材において、前記多孔質部材が、前記1次真空経路の少なくとも一部に接している領域において、基準箇所から連続的または断続的に厚さが変化するように形成されていることが好ましい。   In the vacuum suction member of the present invention, the porous member is formed so that the thickness thereof changes continuously or intermittently from a reference location in a region in contact with at least a part of the primary vacuum path. It is preferable.

当該構成の真空吸着部材によれば、多孔質部材のうち1次真空経路の少なくとも一部に接している領域において、多孔質部材の厚み方向について2次真空経路の抵抗が基準箇所から連続的または断続的に変化するように構成されている。このため、例えば、多孔質部材のうち当該領域において、基準箇所から他の箇所に向かってまたは他の箇所から基準箇所に向かってウエハの真空吸着力が時系列的にまたは徐々に作用するように、基板に対する真空吸着力を作用させるタイミングの分布態様が制御され得る。   According to the vacuum suction member of the said structure, in the area | region which contact | connects at least one part of the primary vacuum path | route among porous members, resistance of a secondary vacuum path | route is continuous from a reference | standard location about the thickness direction of a porous member, or It is configured to change intermittently. For this reason, for example, in the region of the porous member, the vacuum suction force of the wafer acts in time series or gradually from the reference location toward another location or from another location toward the reference location. The distribution mode of the timing for applying the vacuum suction force to the substrate can be controlled.

本発明の真空吸着部材において、前記1次真空経路が、前記緻密質部材の前記凹部の底面および前記凹部の底面から全体的に離間している前記多孔質部材の下面により上下が画定されることにより構成され、前記多孔質部材が、前記基準箇所としての中央箇所から外側に向かって連続的または断続的に厚さが減少または増加するように形成されていることが好ましい。   In the vacuum suction member of the present invention, the primary vacuum path is vertically defined by the bottom surface of the concave portion of the dense member and the bottom surface of the porous member that is entirely separated from the bottom surface of the concave portion. It is preferable that the porous member is formed such that the thickness decreases or increases continuously or intermittently from the central portion serving as the reference portion toward the outside.

当該構成の真空吸着部材によれば、多孔質部材において基準箇所である中央箇所から全方位について外側に向かって、または、外側から中央箇所に向かってウエハの真空吸着力が時系列的にまたは徐々に作用するように、基板に対する真空吸着力を作用させるタイミングの分布態様が制御され得る。   According to the vacuum suction member of the configuration, the vacuum suction force of the wafer is time-sequentially or gradually from the central location as the reference location in the porous member toward the outside in all directions or from the outside toward the central location. The distribution mode of the timing at which the vacuum suction force is applied to the substrate can be controlled so as to act.

本発明の真空吸着部材において、前記多孔質部材の下面が、前記1次真空経路に面している領域と、前記凹部の底面に接している領域と、に区分され、前記多孔質部材が、前記1次真空経路に面している領域と、前記凹部の底面に接している領域と、において厚さが相違するように形成されていることが好ましい。   In the vacuum adsorption member of the present invention, the lower surface of the porous member is divided into a region facing the primary vacuum path and a region in contact with the bottom surface of the recess, and the porous member is It is preferable that the thickness is different between the region facing the primary vacuum path and the region contacting the bottom surface of the recess.

当該構成の真空吸着部材によれば、多孔質部材において、1次真空経路に面している領域と、凹部の底面に接している領域と、のそれぞれにおいて多孔質部材の連通孔により構成される2次真空経路の抵抗が制御され得る。これにより、当該2つの領域のそれぞれにおいて基板に真空吸着力を作用させるタイミングの分布態様が調節され得る。   According to the vacuum suction member of the said structure, in a porous member, it is comprised by the communicating hole of a porous member in each of the area | region which faces the primary vacuum path | route, and the area | region which contact | connects the bottom face of a recessed part. The resistance of the secondary vacuum path can be controlled. Thereby, the distribution mode of the timing for applying the vacuum suction force to the substrate in each of the two regions can be adjusted.

本発明の真空吸着部材において、前記緻密質部材の前記凹部の底面に溝部が形成され、前記1次真空経路が、前記溝部の底面および側面、ならびに、前記多孔質部材の下面により画定され、前記多孔質部材が、前記1次真空経路に面している領域において、前記溝部の上部に挿入されるように前記凹部の底面に接している領域よりも厚く形成されていることが好ましい。   In the vacuum suction member of the present invention, a groove is formed on a bottom surface of the concave portion of the dense member, and the primary vacuum path is defined by a bottom surface and a side surface of the groove portion, and a lower surface of the porous member, It is preferable that the porous member is formed thicker in the region facing the primary vacuum path than the region in contact with the bottom surface of the recess so as to be inserted into the upper portion of the groove.

当該構成の真空吸着部材によれば、1次真空経路に接している多孔質部材の領域における2次真空経路の抵抗と、それ以外の領域、特に、1次真空経路の周辺の領域における2次真空経路の抵抗と、の差の低減が図られる。   According to the vacuum suction member having the above configuration, the resistance of the secondary vacuum path in the region of the porous member that is in contact with the primary vacuum path and the secondary region in other areas, particularly in the area around the primary vacuum path. The difference between the resistance of the vacuum path and the resistance can be reduced.

本発明の第1実施形態としての真空吸着部材の上方斜視図。The upper perspective view of the vacuum suction member as a 1st embodiment of the present invention. 本発明の第1実施形態としての真空吸着部材の下方斜視図。The lower perspective view of the vacuum suction member as 1st Embodiment of this invention. 図1AのII平面における真空吸着部材の縦断面図。The longitudinal cross-sectional view of the vacuum suction member in the II plane of FIG. 1A. 1次および2次真空経路の抵抗の変化態様の第1例示図。The 1st illustration figure of the change aspect of the resistance of a primary and secondary vacuum path | route. 1次および2次真空経路の抵抗の変化態様の第2例示図。The 2nd illustration figure of the change aspect of the resistance of a primary and secondary vacuum path | route. 多孔質部材の上面における真空吸着力の発現態様に関する説明図。Explanatory drawing regarding the expression aspect of the vacuum adsorption force in the upper surface of a porous member. 第1経路要素に関する説明図。Explanatory drawing regarding a 1st path | route element. 第2経路要素に関する説明図。Explanatory drawing regarding a 2nd path | route element. 本発明の第2実施形態としての真空吸着部材の構成に関する説明図。Explanatory drawing regarding the structure of the vacuum suction member as 2nd Embodiment of this invention. 本発明の第3実施形態としての真空吸着部材の構成に関する説明図。Explanatory drawing regarding the structure of the vacuum suction member as 3rd Embodiment of this invention. 1次および2次真空経路を通じた真空吸引抵抗の変化態様の第1例示図。The 1st illustration figure of the change aspect of the vacuum suction resistance through a primary and secondary vacuum path | route.

(第1実施形態)
(構成)
図1Aに上方斜視図が示され、かつ、図1Bに下方斜視図が示されている本発明の第1実施形態としての真空吸着部材は、緻密質部材1と、多孔質部材2と、を備えている。
(First embodiment)
(Constitution)
A vacuum suction member according to a first embodiment of the present invention, in which a top perspective view is shown in FIG. 1A and a bottom perspective view is shown in FIG. 1B, includes a dense member 1 and a porous member 2. I have.

緻密質部材1は、略平板形状(例えば円盤形状)のアルミナ、窒化珪素、炭化珪素およびジルコニアから選ばれるセラミックス焼結体により構成されている。緻密質部材1には、中央部に円形の凹部12を備え、凹部12の直径は例えば約300mmである。凹部12の底面の中央部に開口部を有する貫通孔11が形成されている。凹部12の底面は、周縁部から中央部に向かって徐々に低くなるような凹曲面状に形成されている。   The dense member 1 is composed of a ceramic sintered body selected from alumina, silicon nitride, silicon carbide, and zirconia having a substantially flat plate shape (for example, a disk shape). The dense member 1 includes a circular recess 12 at the center, and the diameter of the recess 12 is, for example, about 300 mm. A through hole 11 having an opening is formed at the center of the bottom surface of the recess 12. The bottom surface of the concave portion 12 is formed in a concave curved surface shape that gradually decreases from the peripheral portion toward the central portion.

多孔質部材2は、構成する成分がアルミナ、アルミナおよびガラスの焼結体、または、炭化珪素およびガラスの焼結体からなり、複数の連通孔を備えた多孔質体により構成されている。多孔質部材2の連通孔が2次真空経路を構成し、例えば、平均気孔径が10〜150μmになり、気孔率が20〜40%である。多孔質部材2の平均気孔径および気孔率は、構成する成分の平均粒子径が選択されることで適宜調節されてもよい。   The porous member 2 is composed of a porous body having a plurality of communicating holes, and the constituent components are made of a sintered body of alumina, alumina and glass, or a sintered body of silicon carbide and glass. The communicating holes of the porous member 2 constitute a secondary vacuum path, and for example, the average pore diameter is 10 to 150 μm and the porosity is 20 to 40%. The average pore diameter and porosity of the porous member 2 may be appropriately adjusted by selecting the average particle diameter of the constituent components.

多孔質部材2は、表面(上面)、軸線方向(Z方向)について当該表面に対向する裏面(下面)、ならびに、表面および裏面のそれぞれの周縁と上端縁および下端縁を共通にする側面を有する略円盤状である。図2に模式的に示されているように、表面は平坦な載置面であり、裏面は中央部から周縁部にかけて連続的に厚さが増えるような略球面状または曲面状に形成され、載置面とは異なり平面ではなく、中央部が膨らんだ形状である。多孔質部材2は、緻密質部材1の凹部12に収容され、多孔質部材2の裏面が全体的に凹部12の底面から離間している状態で、側面が全周にわたり緻密質部材1に対して接合されている。   The porous member 2 has a front surface (upper surface), a rear surface (lower surface) that faces the surface in the axial direction (Z direction), and side surfaces that share the periphery, upper edge, and lower edge of each of the front surface and the rear surface. It is a substantially disk shape. As schematically shown in FIG. 2, the front surface is a flat mounting surface, and the back surface is formed in a substantially spherical shape or curved surface shape that continuously increases in thickness from the central portion to the peripheral portion, Unlike the mounting surface, it is not a flat surface but a shape in which the central portion is swollen. The porous member 2 is accommodated in the concave portion 12 of the dense member 1, and the side surface of the porous member 2 with respect to the dense member 1 over the entire circumference in a state where the back surface of the porous member 2 is entirely separated from the bottom surface of the concave portion 12. Are joined.

(真空吸着部材の製造方法)
多孔質部材2の原料粉末であるアルミナ粉末およびガラス粉末、または、炭化珪素粉末およびガラス粉末に、水またはアルコールを加えて混合して調整されたスラリーが、緻密質部材1の凹部12に充填される。貫通孔11および凹部12のうち1次真空経路を構成する部分には樹脂等の焼失部材により予め閉塞または充填されている。緻密質部材1の凹部12に充填されたスラリーが十分に乾燥された後、ガラスの軟化点以上の温度で焼成される。これにより、消失部材が焼失し、緻密質部材1の凹部12に収容され、多孔質部材2の裏面が全体的に凹部12の底面から離間している状態で、多孔質部材2の側面が全周にわたり緻密質部材1に対して接合されている多孔質部材2が形成される。
(Manufacturing method of vacuum suction member)
Slurries prepared by adding water or alcohol to alumina powder and glass powder, which are raw material powders of the porous member 2, or silicon carbide powder and glass powder and mixing them are filled in the concave portions 12 of the dense member 1. The Parts of the through hole 11 and the recess 12 that constitute the primary vacuum path are previously closed or filled with a burned-out member such as resin. After the slurry filled in the concave portion 12 of the dense member 1 is sufficiently dried, it is fired at a temperature equal to or higher than the softening point of the glass. As a result, the disappearing member is burned out and accommodated in the concave portion 12 of the dense member 1, and the side surface of the porous member 2 is entirely in a state where the back surface of the porous member 2 is entirely separated from the bottom surface of the concave portion 12. The porous member 2 joined to the dense member 1 over the circumference is formed.

なお、緻密質部材1および多孔質部材2のそれぞれが個別に焼成によって作製された後、ガラスまたはガラスおよびセラミックスに由来する接合剤を緻密質部材1の凹部12および多孔質部材2の間に介在させた状態で緻密質部材1の凹部12に多孔質部材2を嵌め込み、加熱処理を施すことにより当該接合剤由来の接合層によって緻密質部材1および多孔質部材2が接合されてもよい。   In addition, after each of the dense member 1 and the porous member 2 is individually manufactured by firing, a bonding agent derived from glass or glass and ceramics is interposed between the concave portion 12 of the dense member 1 and the porous member 2. In this state, the dense member 1 and the porous member 2 may be joined by the joining layer derived from the joining agent by fitting the porous member 2 into the concave portion 12 of the dense member 1 and applying heat treatment.

(作用・効果)
本発明の第1実施形態としての真空吸着部材によれば、多孔質部材2の平坦な載置面(表面)に載置されたウエハ等の基板Wに対して、貫通孔11と、緻密質部材1の凹部12の底面および側面ならびに多孔質部材2の裏面により画定されている1次真空経路と、多孔質部材2の連通孔により構成される2次真空経路と、を通じて真空吸引力を作用させて、当該基板Wを吸着保持する。
(Action / Effect)
According to the vacuum suction member as the first embodiment of the present invention, the through hole 11 and the dense material are formed on the substrate W such as a wafer placed on the flat placement surface (surface) of the porous member 2. The vacuum suction force acts through the primary vacuum path defined by the bottom and side surfaces of the recess 12 of the member 1 and the back surface of the porous member 2 and the secondary vacuum path constituted by the communicating holes of the porous member 2. Then, the substrate W is sucked and held.

多孔質部材2の厚さhが連続的に変化するように形成されていることにより、貫通孔11の凹部12の底面の開口部を基準とした多孔質部材2の上面までの真空経路の抵抗の当該載置面における分布態様が設計されている。具体的には、多孔質部材2の厚さhが、その中央部から周辺部に向かって連続的に減少するように形成されていることで、真空経路の抵抗の分布の均一化が図られている。   Since the thickness h of the porous member 2 is continuously changed, the resistance of the vacuum path to the upper surface of the porous member 2 with respect to the opening of the bottom surface of the concave portion 12 of the through hole 11. The distribution mode on the mounting surface is designed. Specifically, the thickness h of the porous member 2 is formed so as to continuously decrease from the central portion toward the peripheral portion, thereby achieving uniform distribution of resistance in the vacuum path. ing.

例えば、多孔質部材2の中心軸線をZ軸とする円柱座標系(r、θ、Z)(図2参照)において、多孔質部材2の厚さh(r)(0≦r≦R)が主変数rの連続的または断続的な減少関数として表現される場合、図3Aおよび図3Bに示されているように、貫通孔11の中心(r=0)からの距離rに応じて、1次真空経路の真空吸引抵抗R1(r)が徐々に増加し(一点鎖線参照)、多孔質部材2の厚さ方向の2次真空経路の真空吸引抵抗R2(r)が徐々に減少している(二点鎖線参照)。 For example, in a cylindrical coordinate system (r, θ, Z) (see FIG. 2) with the central axis of the porous member 2 as the Z axis, the thickness h (r) (0 ≦ r ≦ R) of the porous member 2 is When expressed as a continuous or intermittent decreasing function of the main variable r, as shown in FIG. 3A and FIG. 3B, the distance 1 from the center (r = 0) of the through hole 11 is 1 The vacuum suction resistance R 1 (r) of the secondary vacuum path gradually increases (see the alternate long and short dash line), and the vacuum suction resistance R 2 (r) of the secondary vacuum path in the thickness direction of the porous member 2 gradually decreases. (Refer to the two-dot chain line).

1次真空経路の真空吸引抵抗R1(r)が徐々に増加するのは、貫通孔11の凹部12の底面の開口部からの距離(経路の長さ)rが長くなるにつれ、当該真空吸引抵抗R1(r)が大きくなることを意味している。2次真空経路の真空吸引抵抗R2(r)が徐々に増加するのは、多孔質部材2の厚さh(r)が中央部から周辺部に向かって(rが大きくなるにつれて)、徐々に減少するように形成されていることを意味している。 The vacuum suction resistance R 1 (r) of the primary vacuum path gradually increases as the distance (path length) r from the opening of the bottom surface of the concave portion 12 of the through hole 11 increases. This means that the resistance R 1 (r) is increased. The vacuum suction resistance R 2 (r) of the secondary vacuum path gradually increases because the thickness h (r) of the porous member 2 gradually increases from the central portion toward the peripheral portion (as r increases). It means that it is formed to decrease.

このため、図3Aに示されているように、貫通孔11、1次真空経路および2次真空経路を通じた真空吸引抵抗R1(r)+R2(r)の均一化が図られる(実線参照)。よって、多孔質部材2の載置面に載置された基板Wに対する真空吸着力を作用させるタイミングの分布態様が略均一になるように制御され得る。 For this reason, as shown in FIG. 3A, the vacuum suction resistance R 1 (r) + R 2 (r) through the through-hole 11, the primary vacuum path, and the secondary vacuum path is made uniform (see the solid line). ). Therefore, the distribution mode of the timing at which the vacuum suction force is applied to the substrate W placed on the placement surface of the porous member 2 can be controlled to be substantially uniform.

あるいは、図3Bに示されているように、貫通孔11、1次真空経路および2次真空経路を通じた真空吸引抵抗R1(r)+R2(r)が載置面の中央部、すなわち多孔質部材2の中心軸線と当該載置面との交点から周辺部に向かって連続的に低下するよう設計される(実線参照)。 Alternatively, as shown in FIG. 3B, the vacuum suction resistance R 1 (r) + R 2 (r) through the through-hole 11, the primary vacuum path, and the secondary vacuum path is the center of the mounting surface, that is, porous. It is designed to continuously decrease from the intersection of the central axis of the mass member 2 and the mounting surface toward the periphery (see solid line).

よって、多孔質部材2の載置面に載置された基板Wに対する真空吸着力を作用させるタイミングの分布態様が、外側領域のほうが内側領域よりも早くなるように制御され得る。例えば、図4に示されているように、多孔質部材2の上面において、中央領域S0、およびこれを多重に取り囲む複数の円環状領域S1〜Sn(例えばn=4)が定義されている場合、白矢印で示されているように、最も外側の円環状領域Snから最も内側の円環状領域S1、さらには中央領域S0の順で基板Wに対して真空吸着力を作用させることができる。   Therefore, the distribution mode of the timing at which the vacuum suction force is applied to the substrate W placed on the placement surface of the porous member 2 can be controlled so that the outer region is earlier than the inner region. For example, as shown in FIG. 4, in the upper surface of the porous member 2, the central region S0 and a plurality of annular regions S1 to Sn (for example, n = 4) surrounding the multiple regions are defined. As indicated by white arrows, a vacuum suction force can be applied to the substrate W in the order of the outermost annular region Sn, the innermost annular region S1, and further the central region S0.

(第2実施形態)
(構成)
図6に示されている本発明の第2実施形態としての真空吸着部材によれば、緻密質部材1の凹部12の底面に溝部が形成され、当該溝部を除いて多孔質部材2の裏面と緻密質部材1の凹部12の底面とが接触している(図5Aおよび図5B参照)。
(Second Embodiment)
(Constitution)
According to the vacuum suction member as the second embodiment of the present invention shown in FIG. 6, a groove is formed on the bottom surface of the concave portion 12 of the dense member 1, and the back surface of the porous member 2 except for the groove The bottom surface of the concave portion 12 of the dense member 1 is in contact (see FIGS. 5A and 5B).

緻密質部材1の凹部12の底面および多孔質部材2の下面のそれぞれは略平面である。第1実施形態と同様に、緻密質部材1の凹部12の底面および多孔質部材2の下面のそれぞれは曲面状または球面状であってもよいが、多孔質部材2の裏面と緻密質部材1の凹部12の底面とが溝部を除いた領域において面接触している。当該溝部および多孔質部材2の底面により第1経路要素(1次真空経路)121が画定される。本実施形態では、図6に示されているように、1経路要素121が貫通孔11の開口部から異なる径方向または異なる方位に延在する複数(例えば「3」)の第1経路要素121(1211〜1213)と、第1経路要素121に連通し、かつ、貫通孔11を取り囲むように周方向または環状に延在する複数(例えば「3」)の第2経路要素(2次真空経路)122(1221〜1223)と、で構成されている。   Each of the bottom surface of the concave portion 12 of the dense member 1 and the lower surface of the porous member 2 is substantially flat. Similarly to the first embodiment, each of the bottom surface of the concave portion 12 of the dense member 1 and the bottom surface of the porous member 2 may be curved or spherical, but the back surface of the porous member 2 and the dense member 1 The bottom surface of the recess 12 is in surface contact with the region excluding the groove. A first path element (primary vacuum path) 121 is defined by the groove and the bottom surface of the porous member 2. In the present embodiment, as shown in FIG. 6, a plurality of (for example, “3”) first path elements 121 in which one path element 121 extends from the opening of the through hole 11 in different radial directions or different orientations. (1211 to 1213) and a plurality of (for example, “3”) second path elements (secondary vacuum paths) communicating with the first path element 121 and extending circumferentially or annularly so as to surround the through hole 11. ) 122 (1221-1223).

多孔質部材2の裏面のうち第2経路要素122に面している部分は、図5Bに示されているように、緻密質部材1の一部が溝部内に挿入され、第2経路要素122に対向する領域の多孔質部材2の厚さが他の部分に比べて厚くなるように多孔質部材2が形成されている。同様に、多孔質部材2の裏面のうち第1経路要素121に面している部分は、緻密質部材1の一部が溝部内に挿入され、第1経路要素121に対向する領域の多孔質部材2の厚さが他の部分に比べて厚くなるように多孔質部材2が形成されている(図5A参照)。   As shown in FIG. 5B, a part of the back surface of the porous member 2 facing the second path element 122 is inserted into the groove portion so that the second path element 122 is inserted. The porous member 2 is formed so that the thickness of the porous member 2 in the region opposite to is thicker than that of other portions. Similarly, a portion of the back surface of the porous member 2 facing the first path element 121 is a part of the dense member 1 that is inserted into the groove and is porous in a region facing the first path element 121. The porous member 2 is formed so that the thickness of the member 2 is thicker than other portions (see FIG. 5A).

すなわち、第1経路要素121および第2経路要素122のそれぞれに対向する領域は、その他の領域よりも厚くなるように、多孔質部材2が形成されている。   That is, the porous member 2 is formed so that the region facing each of the first route element 121 and the second route element 122 is thicker than the other regions.

(作用・効果)
多孔質部材2において、第1経路要素121および第2経路要素122に対向する部分の厚さが他の部分に比べて厚くなるように多孔質部材2が形成されている。これにより、多孔質部材2において、第1経路要素121および第2経路要素122の直上にあたる領域における2次真空経路の抵抗と、その他の領域における2次真空経路の抵抗と、の差の低減が図られている。このため、多孔質部材2の載置面において、第1経路要素121および第2経路要素122のそれぞれの直上の領域で基板Wに真空吸着力を作用させるタイミングの分布態様の均一化が図られる。
(Action / Effect)
In the porous member 2, the porous member 2 is formed so that the thickness of the portion facing the first path element 121 and the second path element 122 is thicker than the other parts. Thereby, in the porous member 2, the difference between the resistance of the secondary vacuum path in the region immediately above the first path element 121 and the second path element 122 and the resistance of the secondary vacuum path in the other region is reduced. It is illustrated. For this reason, on the mounting surface of the porous member 2, the distribution mode of the timing at which the vacuum adsorption force is applied to the substrate W in the regions immediately above the first path element 121 and the second path element 122 is made uniform. .

(第3実施形態)
(構成)
図7に示されている本発明の第3実施形態としての真空吸着部材によれば、緻密質部材1の凹部12の底面は、周縁部から中央部に向かって徐々に高くなるような球面状に形成されている。多孔質部材2は、中央部から周縁部にかけて徐々に厚くなるような曲面状に形成されている。
(Third embodiment)
(Constitution)
According to the vacuum suction member as the third embodiment of the present invention shown in FIG. 7, the bottom surface of the concave portion 12 of the dense member 1 has a spherical shape that gradually increases from the peripheral portion toward the central portion. Is formed. The porous member 2 is formed in a curved surface shape that gradually increases in thickness from the central part to the peripheral part.

その他の構成に関しては第1実施形態と同様であるため、同一符号を用いるとともに説明を省略する。   Since other configurations are the same as those of the first embodiment, the same reference numerals are used and description thereof is omitted.

(作用・効果)
多孔質部材2の平坦な載置面(表面)に載置されたウエハ等の基板Wに対して、貫通孔11と、緻密質部材1の凹部12の底面および側面、ならびに、多孔質部材2の裏面により画定されている1次真空経路と、多孔質部材2の連通孔により構成される2次真空経路と、を通じて真空吸引力を作用させて、当該基板Wを吸着保持する。
(Action / Effect)
With respect to the substrate W such as a wafer mounted on the flat mounting surface (front surface) of the porous member 2, the through hole 11, the bottom and side surfaces of the concave portion 12 of the dense member 1, and the porous member 2. The substrate W is adsorbed and held by applying a vacuum suction force through the primary vacuum path defined by the back surface of the substrate and the secondary vacuum path constituted by the communication holes of the porous member 2.

多孔質部材2の厚さhが連続的に変化するように形成されていることにより、図8に示されているように、貫通孔11の中心(r=0)からの距離rに応じて、1次真空経路の真空吸引抵抗R1(r)が連続的に減少し(一点鎖線参照)、多孔質部材2の厚さ方向の2次真空経路の真空吸引抵抗R2(r)が連続的に増加している(二点鎖線参照)。 Since the thickness h of the porous member 2 is formed so as to continuously change, as shown in FIG. 8, the thickness h depends on the distance r from the center (r = 0) of the through hole 11. The vacuum suction resistance R 1 (r) in the primary vacuum path continuously decreases (see the alternate long and short dash line), and the vacuum suction resistance R 2 (r) in the secondary vacuum path in the thickness direction of the porous member 2 continues. (See the two-dot chain line).

このため、図8に示されているように、貫通孔11、1次真空経路および2次真空経路を通じた真空吸引抵抗R1(r)+R2(r)が載置面の中央部、すなわち多孔質部材2の中心軸線と当該載置面との交点から周辺部に向かって連続的に増加するよう設計される中央箇所(基準箇所)から徐々に増加する(実線参照)。 Therefore, as shown in FIG. 8, the vacuum suction resistance R 1 (r) + R 2 (r) through the through-hole 11, the primary vacuum path, and the secondary vacuum path is the center of the mounting surface, that is, It gradually increases from a central location (reference location) designed to increase continuously from the intersection of the central axis of the porous member 2 and the mounting surface toward the periphery (see solid line).

よって、多孔質部材2の載置面に載置された基板Wに対する真空吸着力を作用させるタイミングの分布態様が、内側領域のほうが外側領域よりも早くなるように制御され得る。例えば、図4に黒矢印で示されているように、中央領域S0から始まり、最も内側の円環状領域S1から最も外側の円環状領域Snにかけて順で基板Wに対して真空吸着力を作用させることができる。   Therefore, the distribution mode of the timing at which the vacuum suction force is applied to the substrate W placed on the placement surface of the porous member 2 can be controlled so that the inner region is earlier than the outer region. For example, as indicated by a black arrow in FIG. 4, a vacuum suction force is applied to the substrate W in order from the central region S0 to the innermost annular region S1 to the outermost annular region Sn. be able to.

(本発明の他の実施形態)
前記実施形態では、貫通孔11、すなわち1次真空経路における負圧発現開始箇所が、凹部12の底面の中央領域に単一の開口部を有するように形成されていたが、他の実施形態として貫通孔11が、凹部12の底面の中央領域から外れた一または複数の開口部を有するように形成されていてもよい。当該複数の開口部は、凹部11の中心を基準として回転対称性を有するように配置されていてもよい。この場合、第1実施形態および第3実施形態において、多孔質部材2の最も厚い部分が貫通孔11に対向するように多孔質部材2が形成されていてもよい。
(Other embodiments of the present invention)
In the above embodiment, the through hole 11, that is, the negative pressure start point in the primary vacuum path is formed so as to have a single opening in the central region of the bottom surface of the recess 12. However, as another embodiment, The through hole 11 may be formed so as to have one or a plurality of openings that deviate from the central region of the bottom surface of the recess 12. The plurality of openings may be arranged so as to have rotational symmetry with respect to the center of the recess 11. In this case, in the first embodiment and the third embodiment, the porous member 2 may be formed so that the thickest portion of the porous member 2 faces the through hole 11.

前記実施形態では緻密質部材1の凹部11および多孔質部材2の形状は円形状であったが、他の実施形態として正十二角形、正六角形、正方形、台形、楕円形など他の形状であってもよい。多孔質部材2の下面の形状は、曲面(第1および第3実施形態)および略平面(第2実施形態)のほか、円錐台状、角錐台状、円錐状、角錐状、波面状など、多孔質部材2の厚さ方向について2次真空経路の抵抗の調整のために任意の形状に形成されてもよい。   In the above-described embodiment, the shape of the concave portion 11 and the porous member 2 of the dense member 1 is circular. However, as other embodiments, other shapes such as a regular dodecagon, a regular hexagon, a square, a trapezoid, and an ellipse may be used. There may be. The shape of the lower surface of the porous member 2 includes a curved surface (first and third embodiments) and a substantially flat surface (second embodiment), a truncated cone shape, a truncated pyramid shape, a conical shape, a truncated pyramid shape, a wavefront shape, and the like. In order to adjust the resistance of the secondary vacuum path in the thickness direction of the porous member 2, it may be formed in an arbitrary shape.

第1実施形態および第3実施形態において、緻密質部材1の凹部12の底面が平面である一方、多孔質部材2の下面が球面であってもよい。   In 1st Embodiment and 3rd Embodiment, while the bottom face of the recessed part 12 of the dense member 1 is a plane, the lower surface of the porous member 2 may be a spherical surface.

1‥緻密質部材、2‥多孔質部材、11‥貫通孔、12‥凹部、121‥第1経路要素、122‥第2経路要素。 DESCRIPTION OF SYMBOLS 1 ... Dense member, 2 ... Porous member, 11 ... Through-hole, 12 ... Recessed part, 121 ... 1st path | route element, 122 ... 2nd path | route element

Claims (5)

周囲よりも下方に窪んでいる凹部と、前記凹部に連通する貫通孔と、が形成されている緻密質部材と、
前記緻密質部材の前記凹部に収容された状態で少なくとも側面が全周にわたり前記緻密質部材に対して接合されている多孔質部材と、を備え、
前記多孔質部材の平坦な上面に載置された基板に対して、前記貫通孔と、前記緻密質部材の前記凹部の底面および前記多孔質部材の下面の間隙により上下が画定されている1次真空経路と、前記多孔質部材の気孔の連通により構成される2次真空経路と、を通じて真空吸引力を作用させて、当該基板を吸着保持するための真空吸着部材であって、
前記貫通孔を基準とした前記多孔質部材の上面における真空経路の抵抗の分布態様が所望の分布態様になるように、前記多孔質部材の厚さが連続的もしくは断続的または局所的に変化するように前記多孔質部材形成されていることを特徴とする真空吸着部材。
A dense member formed with a recess recessed below the periphery and a through hole communicating with the recess;
A porous member having at least a side surface joined to the dense member over the entire circumference in a state accommodated in the concave portion of the dense member,
A primary placed on the substrate placed on the flat upper surface of the porous member is vertically defined by a gap between the through hole, a bottom surface of the concave portion of the dense member, and a lower surface of the porous member. A vacuum suction member for adsorbing and holding the substrate by applying a vacuum suction force through a vacuum path and a secondary vacuum path configured by communication of pores of the porous member;
The thickness of the porous member changes continuously, intermittently or locally so that the distribution pattern of the resistance of the vacuum path on the upper surface of the porous member with respect to the through hole becomes a desired distribution pattern. The vacuum suction member is characterized in that the porous member is formed as described above.
請求項1記載の真空吸着部材において、
前記多孔質部材が、前記1次真空経路の少なくとも一部に接している領域において、基準箇所から連続的または断続的に厚さが変化するように形成されていることを特徴とする真空吸着部材。
The vacuum suction member according to claim 1,
The vacuum adsorbing member, wherein the porous member is formed so that the thickness thereof changes continuously or intermittently from a reference position in a region in contact with at least a part of the primary vacuum path. .
請求項2記載の真空吸着部材において、
前記1次真空経路が、前記緻密質部材の前記凹部の底面および前記凹部の底面から全体的に離間している前記多孔質部材の下面により上下が画定されることにより構成され、
前記多孔質部材が、前記基準箇所としての中央箇所から外側に向かって連続的または断続的に厚さが減少または増加するように形成されていることを特徴とする真空吸着部材。
The vacuum suction member according to claim 2,
The primary vacuum path is configured such that upper and lower sides are defined by a bottom surface of the concave portion of the dense member and a lower surface of the porous member that is entirely separated from the bottom surface of the concave portion,
The vacuum adsorbing member, wherein the porous member is formed so that the thickness thereof decreases continuously or intermittently outward from a central location as the reference location.
請求項1記載の真空吸着部材において、
前記多孔質部材の下面が、前記1次真空経路に面している領域と、前記凹部の底面に接している領域と、に区分され、
前記多孔質部材が、前記1次真空経路に面している領域と、前記凹部の底面に接している領域と、において厚さが相違するように形成されていることを特徴とする真空吸着部材。
The vacuum suction member according to claim 1,
A lower surface of the porous member is divided into a region facing the primary vacuum path and a region in contact with the bottom surface of the recess;
The vacuum adsorbing member, wherein the porous member is formed to have a different thickness between a region facing the primary vacuum path and a region contacting the bottom surface of the recess. .
請求項4記載の真空吸着部材において、
前記緻密質部材の前記凹部の底面に溝部が形成され、
前記1次真空経路が、前記溝部の底面および側面、ならびに、前記多孔質部材の下面により画定され、
前記多孔質部材が、前記1次真空経路に面している領域において、前記溝部の上部に挿入されるように前記凹部の底面に接している領域よりも厚く形成されていることを特徴とする真空吸着部材。
The vacuum suction member according to claim 4,
A groove is formed on the bottom surface of the concave portion of the dense member,
The primary vacuum path is defined by a bottom surface and a side surface of the groove and a bottom surface of the porous member;
The porous member is formed to be thicker in a region facing the primary vacuum path than a region in contact with the bottom surface of the recess so as to be inserted into the upper portion of the groove. Vacuum suction member.
JP2017130673A 2017-07-03 2017-07-03 Vacuum suction member Active JP6934335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130673A JP6934335B2 (en) 2017-07-03 2017-07-03 Vacuum suction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130673A JP6934335B2 (en) 2017-07-03 2017-07-03 Vacuum suction member

Publications (2)

Publication Number Publication Date
JP2019016627A true JP2019016627A (en) 2019-01-31
JP6934335B2 JP6934335B2 (en) 2021-09-15

Family

ID=65359083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130673A Active JP6934335B2 (en) 2017-07-03 2017-07-03 Vacuum suction member

Country Status (1)

Country Link
JP (1) JP6934335B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015300A (en) * 2010-06-30 2012-01-19 Taiheiyo Cement Corp Vacuum adsorption apparatus and method of manufacturing the same
JP2012076204A (en) * 2010-10-05 2012-04-19 Mitsuboshi Diamond Industrial Co Ltd Suction table
JP2013206975A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Wafer suction method, wafer suction stage, wafer suction system
JP2014013802A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor test jig and semiconductor test method using the same
JP2015136754A (en) * 2014-01-22 2015-07-30 日立金属株式会社 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015300A (en) * 2010-06-30 2012-01-19 Taiheiyo Cement Corp Vacuum adsorption apparatus and method of manufacturing the same
JP2012076204A (en) * 2010-10-05 2012-04-19 Mitsuboshi Diamond Industrial Co Ltd Suction table
JP2013206975A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Wafer suction method, wafer suction stage, wafer suction system
JP2014013802A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor test jig and semiconductor test method using the same
JP2015136754A (en) * 2014-01-22 2015-07-30 日立金属株式会社 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate

Also Published As

Publication number Publication date
JP6934335B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
TWI309993B (en)
JP4974873B2 (en) Electrostatic chuck and substrate temperature control fixing device
JP6546550B2 (en) Vacuum adsorption member and vacuum adsorption method
JP6010811B2 (en) Suction board
JPWO2019188681A1 (en) Electrostatic chuck heater
KR101282839B1 (en) A porous chuck of improved vacuum suction power
JP2019016627A (en) Vacuum suction member
JP4703590B2 (en) Vacuum adsorption apparatus and adsorption method using the same
JP7296869B2 (en) Electrostatic chuck, substrate fixing device
TWI636337B (en) Substrate holding device, substrate holding member, and substrate holding method
JP2009016584A (en) Carbon-made adsorbent and its manufacturing method
JP7125326B2 (en) Substrate holding member
WO2017104732A1 (en) Substrate holding device, substrate holding member, and substrate holding method
KR101425534B1 (en) Porous chuck having multiple porous plate
JP6711721B2 (en) Vacuum suction member
JP6199180B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2017199790A (en) Vacuum suction member
JP6989361B2 (en) Substrate adsorption member and its manufacturing method
JP6894772B2 (en) Vacuum chuck
JP6590675B2 (en) Vacuum adsorption device
JP2019062044A (en) Substrate holding member and substrate holding method
JP7190326B2 (en) Substrate holding member
JP2018101705A (en) Electrostatic chuck
JP6946134B2 (en) Board holding member and board holding method
JP6581495B2 (en) Substrate holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6934335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350