JP2019015848A - Wavelength conversion member and method for manufacturing the same - Google Patents

Wavelength conversion member and method for manufacturing the same Download PDF

Info

Publication number
JP2019015848A
JP2019015848A JP2017132882A JP2017132882A JP2019015848A JP 2019015848 A JP2019015848 A JP 2019015848A JP 2017132882 A JP2017132882 A JP 2017132882A JP 2017132882 A JP2017132882 A JP 2017132882A JP 2019015848 A JP2019015848 A JP 2019015848A
Authority
JP
Japan
Prior art keywords
wavelength conversion
layer
conversion layer
glass
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017132882A
Other languages
Japanese (ja)
Inventor
祐輔 新井
Yusuke Arai
祐輔 新井
伊藤 彰
Akira Ito
彰 伊藤
飯塚 和幸
Kazuyuki Iizuka
和幸 飯塚
猪股 大介
Daisuke Inomata
大介 猪股
佳弘 山下
Yoshihiro Yamashita
佳弘 山下
清太郎 吉田
Seitaro Yoshida
清太郎 吉田
理紀也 鈴木
Rikiya Suzuki
理紀也 鈴木
博之 澤野
Hiroyuki Sawano
博之 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2017132882A priority Critical patent/JP2019015848A/en
Priority to PCT/JP2018/024477 priority patent/WO2019009165A1/en
Publication of JP2019015848A publication Critical patent/JP2019015848A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Abstract

To provide a wavelength conversion member including a wavelength conversion layer where a phosphor is sealed to glass and having excellent optical characteristics and light extraction efficiency without depending on phosphor concentrations in the wavelength conversion layer, and a method for manufacturing the same.SOLUTION: A wavelength conversion member 1 is provided that includes: a first wavelength conversion layer 10 having a tabular glass 10a and a phosphor 10b contained in the glass 10a; a glass layer 11 formed on one surface of the first wavelength conversion layer 10; and a reflective layer 12 formed on a surface opposite to the first wavelength conversion layer 10 of the glass layer 11.SELECTED DRAWING: Figure 1

Description

本発明は、波長変換部材及びその製造方法に関する。   The present invention relates to a wavelength conversion member and a manufacturing method thereof.

従来、セラミックス基材の表面に、ガラス粉末及び無機蛍光体粉末を含む無機粉末焼結体層が形成されてなる蛍光体複合部材であって、励起光が照射されたときに、セラミックス基材及び無機粉末焼結体層が互いに異なる波長の蛍光を発する蛍光体複合部材が知られている(例えば、特許文献1参照)。   Conventionally, it is a phosphor composite member in which an inorganic powder sintered body layer containing glass powder and inorganic phosphor powder is formed on the surface of a ceramic substrate, and when the excitation light is irradiated, the ceramic substrate and A phosphor composite member in which an inorganic powder sintered body layer emits fluorescence having different wavelengths is known (see, for example, Patent Document 1).

特許文献1に記載の蛍光体複合部材は、透過型の波長変換部材であり、セラミックス基材から発せられる黄色の蛍光と、無機粉末焼結体層から発せられる赤色及び/又は緑色の蛍光が、蛍光体複合部材中を透過する青色の励起光と合成されて白色光が得られる。   The phosphor composite member described in Patent Document 1 is a transmission-type wavelength conversion member, and yellow fluorescence emitted from a ceramic substrate and red and / or green fluorescence emitted from an inorganic powder sintered body layer, White light is obtained by synthesizing with blue excitation light transmitted through the phosphor composite member.

特開2012−52061号公報JP 2012-52061 A

特許文献1に記載の蛍光体複合部材は透過型の波長変換部材であるが、反射型の波長変換部材においては、通常、光を反射するための反射層が含まれ、また、ガラスに蛍光体が封止された波長変換層により効率的に光を散乱させるため、その波長変換層における蛍光体の濃度を高めることが求められる。   The phosphor composite member described in Patent Document 1 is a transmission-type wavelength conversion member. However, a reflection-type wavelength conversion member usually includes a reflection layer for reflecting light, and the phosphor is contained in glass. In order to efficiently scatter light by the wavelength conversion layer in which is sealed, it is required to increase the concentration of the phosphor in the wavelength conversion layer.

しかしながら、本発明者らは、ガラスに蛍光体が封止された波長変換層における赤色蛍光体の濃度が高くなると、波長変換層中に空隙が発生することを発見した。そしてさらに、反射層の形成前には、下地となる層の表面に研磨処理を施して鏡面化させる必要があるが、空隙の生じた波長変換層の上に反射層を直接形成しようとすると、波長変換層の空隙に研磨剤が侵入して波長変換層の光学特性に悪影響を与えること、また、空隙が多いと研磨しても鏡面化することができず、高品質の反射層を形成することができないことを発見した。   However, the present inventors have found that voids are generated in the wavelength conversion layer when the concentration of the red phosphor in the wavelength conversion layer in which the phosphor is sealed in glass is increased. In addition, before the reflective layer is formed, it is necessary to polish the surface of the underlying layer to be mirror-finished, but when trying to directly form the reflective layer on the wavelength conversion layer in which the void is generated, An abrasive enters the gap in the wavelength conversion layer and adversely affects the optical properties of the wavelength conversion layer. If there are too many gaps, it cannot be mirror-finished even when polished, forming a high-quality reflective layer. I found it impossible.

本発明の目的は、ガラスに蛍光体が封止された波長変換層を備え、その波長変換層における蛍光体の濃度に依らず、優れた光学特性及び光取出効率を有する波長変換部材、及びその製造方法を提供することにある。   An object of the present invention is to provide a wavelength conversion member having a wavelength conversion layer in which a phosphor is sealed in glass, and having excellent optical characteristics and light extraction efficiency, regardless of the concentration of the phosphor in the wavelength conversion layer, and its It is to provide a manufacturing method.

本発明の一態様は、上記目的を達成するために、以下の[1]〜[7]の波長変換部材、及び[8]、[9]の波長変換部材の製造方法を提供する。   In order to achieve the above object, an aspect of the present invention provides the following wavelength conversion members [1] to [7] and methods for producing the wavelength conversion members [8] and [9].

[1]平板状のガラス及び前記ガラスに含まれる蛍光体を有する第1の波長変換層と、前記第1の波長変換層の一方の面上に形成されたガラス層と、前記ガラス層の前記第1の波長変換層と反対側の面上に形成された反射層と、を備えた、波長変換部材。 [1] A first wavelength conversion layer having a flat glass and a phosphor contained in the glass, a glass layer formed on one surface of the first wavelength conversion layer, and the glass layer A wavelength conversion member comprising: a reflection layer formed on a surface opposite to the first wavelength conversion layer.

[2]前記蛍光体が赤色蛍光体である、上記[1]に記載の波長変換部材。 [2] The wavelength conversion member according to [1], wherein the phosphor is a red phosphor.

[3]前記第1の波長変換層の任意の断面における前記赤色蛍光体の断面積比率が54%以上である、上記[1]又は[2]に記載の波長変換部材。 [3] The wavelength conversion member according to [1] or [2], in which a cross-sectional area ratio of the red phosphor in an arbitrary cross section of the first wavelength conversion layer is 54% or more.

[4]前記ガラス層の厚さが5μm以上である、上記[1]〜[3]のいずれか1項に記載の波長変換部材。 [4] The wavelength conversion member according to any one of [1] to [3], wherein the glass layer has a thickness of 5 μm or more.

[5]前記第1の波長変換層の前記ガラス層と反対側の面上に形成された、黄色蛍光体を含む第2の波長変換層を備えた、上記[1]〜[4]のいずれか1項に記載の波長変換部材。 [5] Any of [1] to [4] above, comprising a second wavelength conversion layer containing a yellow phosphor formed on the surface of the first wavelength conversion layer opposite to the glass layer. The wavelength conversion member of Claim 1.

[6]前記第2の波長変換層がYAG系蛍光体の単結晶からなり、前記第1の波長変換層の厚さと前記ガラス層の厚さの合計が300μm以下である、上記[5]に記載の波長変換部材。 [6] In the above [5], the second wavelength conversion layer is made of a single crystal of a YAG phosphor, and the total thickness of the first wavelength conversion layer and the thickness of the glass layer is 300 μm or less. The wavelength conversion member as described.

[7]前記第2の波長変換層と前記第1の波長変換層との界面が凹凸形状である、上記[5]又は[6]に記載の波長変換部材。 [7] The wavelength conversion member according to [5] or [6] above, wherein an interface between the second wavelength conversion layer and the first wavelength conversion layer has an uneven shape.

[8]赤色蛍光体を含むガラスからなる第1の波長変換層を形成する工程と、前記第1の波長変換層の一方の面上にガラス層を形成する工程と、前記ガラス層の表面に研磨処理を施す工程と、前記研磨処理が施された前記ガラス層の表面上に、反射層を形成する工程と、を含む、波長変換部材の製造方法。 [8] A step of forming a first wavelength conversion layer made of glass containing a red phosphor, a step of forming a glass layer on one surface of the first wavelength conversion layer, and a surface of the glass layer The manufacturing method of the wavelength conversion member including the process of performing a grinding | polishing process, and the process of forming a reflection layer on the surface of the said glass layer in which the said grinding | polishing process was performed.

[9]前記第1の波長変換層の任意の断面における前記赤色蛍光体の断面積比率が54%以上である、上記[8]に記載の波長変換部材の製造方法。 [9] The method for manufacturing a wavelength conversion member according to [8], wherein a cross-sectional area ratio of the red phosphor in an arbitrary cross section of the first wavelength conversion layer is 54% or more.

本発明によれば、ガラスに蛍光体が封止された波長変換層を備え、その波長変換層における蛍光体の濃度に依らず、優れた光学特性及び光取出効率を有する波長変換部材、及びその製造方法を提供することができる。   According to the present invention, a wavelength conversion layer having a wavelength conversion layer in which a phosphor is sealed in glass, having excellent optical characteristics and light extraction efficiency regardless of the concentration of the phosphor in the wavelength conversion layer, and the A manufacturing method can be provided.

図1は、実施の形態に係る波長変換部材の垂直断面図である。FIG. 1 is a vertical sectional view of a wavelength conversion member according to an embodiment. 図2(a)〜(d)は、実施の形態に係る波長変換部材の製造工程を示す垂直断面図である。2A to 2D are vertical cross-sectional views illustrating the manufacturing steps of the wavelength conversion member according to the embodiment. 図3(a)は、第1の波長変換層における赤色蛍光体の断面積比率が46%であるときの第1の波長変換層の断面のSEM(Scanning Electron Microscope)観察像であり、図3(b)は、第1の波長変換層における赤色蛍光体の断面積比率が54%であるときの第1の波長変換層の断面のSEM観察像である。FIG. 3A is an SEM (Scanning Electron Microscope) observation image of the cross section of the first wavelength conversion layer when the cross-sectional area ratio of the red phosphor in the first wavelength conversion layer is 46%. (B) is a SEM observation image of the cross section of the first wavelength conversion layer when the cross-sectional area ratio of the red phosphor in the first wavelength conversion layer is 54%. 図4は、研磨された空隙を含む第1の波長変換層の表面の光学顕微鏡による観察像である。FIG. 4 is an image observed by an optical microscope of the surface of the first wavelength conversion layer including the polished void. 図5は、積層された第1の波長変換層、ガラス層、及び第2の波長変換層の厚さ方向の断面のSEM観察像である。FIG. 5 is an SEM observation image of a cross section in the thickness direction of the laminated first wavelength conversion layer, glass layer, and second wavelength conversion layer.

(波長変換部材の構成)
図1は、実施の形態に係る波長変換部材1の垂直断面図である。波長変換部材1は、平板状のガラス10a及びガラス10aに含まれる赤色蛍光体10bを有する第1の波長変換層10と、第1の波長変換層10の一方の面上に形成されたガラス層11と、ガラス層11の第1の波長変換層10と反対側の面上に形成された反射層12と、第1の波長変換層10のガラス層11と反対側の面上に形成された、黄色蛍光体を含む第2の波長変換層13と、反射層12のガラス層11と反対側の面上に接合層15により接合された放熱部材14とを備える。
(Configuration of wavelength conversion member)
FIG. 1 is a vertical sectional view of a wavelength conversion member 1 according to an embodiment. The wavelength conversion member 1 includes a flat glass 10a and a first wavelength conversion layer 10 having a red phosphor 10b included in the glass 10a, and a glass layer formed on one surface of the first wavelength conversion layer 10. 11, the reflection layer 12 formed on the surface of the glass layer 11 opposite to the first wavelength conversion layer 10, and the surface of the first wavelength conversion layer 10 opposite to the glass layer 11. And a second wavelength conversion layer 13 containing a yellow phosphor, and a heat dissipation member 14 bonded by a bonding layer 15 on the surface of the reflective layer 12 opposite to the glass layer 11.

波長変換部材1は、第2の波長変換層13側から励起光を入射させて、励起光と蛍光の混合光を励起光の入射側から取り出す反射型の波長変換部材である。第1の波長変換層10と第2の波長変換層13のうち、第2の波長変換層13が光取り出し側にあるのは、放熱性を高めるためである。蛍光体から発せられた熱は、主に光取出し面の逆側の面(反射膜面)から放熱されるため、黄色蛍光体よりも発熱し易い赤色蛍光体を放熱側(反射膜側)に設けることによって、赤色蛍光体で発生した熱が放熱され易くなり、蛍光体全体での発熱量が抑えられる。   The wavelength conversion member 1 is a reflective wavelength conversion member that allows excitation light to enter from the second wavelength conversion layer 13 side and extracts mixed light of excitation light and fluorescence from the incident side of the excitation light. The reason why the second wavelength conversion layer 13 is on the light extraction side among the first wavelength conversion layer 10 and the second wavelength conversion layer 13 is to improve heat dissipation. The heat emitted from the phosphor is mainly dissipated from the surface opposite to the light extraction surface (reflective film surface), so the red phosphor that generates heat more easily than the yellow phosphor is on the heat dissipating side (reflective film side). By providing, it becomes easy to radiate the heat | fever which generate | occur | produced with red fluorescent substance, and the emitted-heat amount in the whole fluorescent substance is suppressed.

反射型の波長変換部材1においては、第1の波長変換層10において効率的に光を散乱させるため、第1の波長変換層10における赤色蛍光体10bの濃度を高めることが求められる。しかしながら、第1の波長変換層10における赤色蛍光体10bの濃度が高くなると、第1の波長変換層10に空隙が生じる。   In the reflective wavelength conversion member 1, it is required to increase the concentration of the red phosphor 10 b in the first wavelength conversion layer 10 in order to efficiently scatter light in the first wavelength conversion layer 10. However, when the concentration of the red phosphor 10b in the first wavelength conversion layer 10 is increased, voids are generated in the first wavelength conversion layer 10.

一方で、反射層12の形成前には、下地となる層の表面に研磨処理を施して鏡面化させる必要があるが、空隙の生じた第1の波長変換層10の上に反射層12を直接形成しようとすると、第1の波長変換層10の空隙に研磨剤が侵入して第1の波長変換層10の光学特性に悪影響を与える。また、空隙が多いと研磨しても鏡面化することができず、高品質の反射層12を形成することができないという問題も生じ得る。   On the other hand, before the reflective layer 12 is formed, the surface of the underlying layer needs to be polished to be mirror-finished. However, the reflective layer 12 is formed on the first wavelength conversion layer 10 in which the gap is generated. If it is directly formed, the abrasive enters the voids of the first wavelength conversion layer 10 and adversely affects the optical characteristics of the first wavelength conversion layer 10. In addition, when there are many voids, even if polishing is performed, the mirror surface cannot be mirrored, and a problem that the high-quality reflective layer 12 cannot be formed may occur.

そこで、実施の形態に係る波長変換部材1の製造においては、第1の波長変換層10の上に蛍光体を含まないガラス層11を形成し、そのガラス層11を研磨して鏡面化させ、その上に反射層12を形成している。   Therefore, in the manufacture of the wavelength conversion member 1 according to the embodiment, a glass layer 11 that does not contain a phosphor is formed on the first wavelength conversion layer 10, and the glass layer 11 is polished to be mirror-finished. A reflective layer 12 is formed thereon.

このため、第1の波長変換層10が空隙を含む場合であっても、空隙に研磨剤が侵入することや、反射層12の下地の鏡面化が妨げられることがなく、第1の波長変換層10が空隙による第1の波長変換層10の光学特性の劣化や反射層12の品質の低下を防ぐことができる。   For this reason, even if the first wavelength conversion layer 10 includes a gap, the first wavelength conversion does not interfere with the entry of the abrasive into the gap or the mirroring of the base of the reflective layer 12. The layer 10 can prevent the deterioration of the optical characteristics of the first wavelength conversion layer 10 and the deterioration of the quality of the reflection layer 12 due to the gap.

したがって、第1の波長変換層10における赤色蛍光体10bの濃度が空隙を発生させるほど高い場合に、特に波長変換部材1の構成は効果的であるといえる。   Therefore, when the density | concentration of the red fluorescent substance 10b in the 1st wavelength conversion layer 10 is so high that a space | gap is generated, it can be said that the structure of the wavelength conversion member 1 is especially effective.

例えば、第1の波長変換層10が赤色蛍光体10bをガラス10a中に含み、第1の波長変換層10の任意の断面における赤色蛍光体10bの断面積比率(ある断面における第1の波長変換層10全体の面積に対する赤色蛍光体10bの面積の比の値)が54%以上である場合に空隙が発生しやすい。   For example, the first wavelength conversion layer 10 includes the red phosphor 10b in the glass 10a, and the cross-sectional area ratio of the red phosphor 10b in an arbitrary cross section of the first wavelength conversion layer 10 (the first wavelength conversion in a certain cross section). When the ratio of the area of the red phosphor 10b to the entire area of the layer 10) is 54% or more, voids are likely to occur.

ここで、第1の波長変換層10における赤色蛍光体10bの濃度がおよそ50質量%以上である場合に、第1の波長変換層10の任意の断面における赤色蛍光体10bの断面積比率が54%以上になる。   Here, when the concentration of the red phosphor 10b in the first wavelength conversion layer 10 is approximately 50% by mass or more, the cross-sectional area ratio of the red phosphor 10b in an arbitrary cross section of the first wavelength conversion layer 10 is 54. % Or more.

また、第1の波長変換層10が赤色蛍光体10b以外の無機材、例えば他の蛍光体や散乱材、をガラス10a中に含む場合は、第1の波長変換層10の任意の断面における赤色蛍光体10bの断面積比率が54%未満(第1の波長変換層10における赤色蛍光体10bの濃度が50質量%未満)であっても空隙が発生する場合がある。   Further, when the first wavelength conversion layer 10 contains an inorganic material other than the red phosphor 10b, for example, another phosphor or a scattering material, in the glass 10a, the red color in an arbitrary cross section of the first wavelength conversion layer 10 Even if the cross-sectional area ratio of the phosphor 10b is less than 54% (the concentration of the red phosphor 10b in the first wavelength conversion layer 10 is less than 50% by mass), voids may occur.

第1の波長変換層10のガラス10aは、低融点ガラスからなり、特に、Bi−ZnO−B等の融点が500℃以下の低融点ガラスからなることが好ましい。ガラス10aの材料として低融点ガラスを用いることにより、第1の波長変換層10の形成時における、ガラス10aを溶融させるための熱による赤色蛍光体10bの劣化を抑えることができる。 The glass 10a of the first wavelength conversion layer 10 is made of low-melting glass, and in particular, it is preferably made of low-melting glass having a melting point of 500 ° C. or lower such as Bi 2 O 3 —ZnO—B 2 O 3 . By using the low melting point glass as the material of the glass 10a, it is possible to suppress deterioration of the red phosphor 10b due to heat for melting the glass 10a when the first wavelength conversion layer 10 is formed.

第1の波長変換層10の赤色蛍光体10bは、波長590〜780nmに中心波長を有する蛍光を発する蛍光体であり、例えば、(Sr,Ca)AlSi(N,O):Euを赤色蛍光体10bとして用いることができる。 The red phosphor 10b of the first wavelength conversion layer 10 is a phosphor that emits fluorescence having a central wavelength at a wavelength of 590 to 780 nm. For example, (Sr, Ca) AlSi (N, O) 3 : Eu is red fluorescent. It can be used as the body 10b.

ガラス層11は、第1の波長変換層10のガラス10aと同様に、第1の波長変換層10の赤色蛍光体10bの熱による劣化を抑えるために、低融点ガラスからなる。また、ガラス層11を構成する低融点ガラスとして、第1の波長変換層10のガラス10aを構成する低融点ガラスと同じものを用いてもよい。   Similarly to the glass 10a of the first wavelength conversion layer 10, the glass layer 11 is made of low-melting glass in order to suppress deterioration due to heat of the red phosphor 10b of the first wavelength conversion layer 10. Further, as the low melting point glass constituting the glass layer 11, the same glass as the low melting point glass constituting the glass 10a of the first wavelength conversion layer 10 may be used.

ガラス層11の下の第1の波長変換層10が露出して波長変換部材1の光学的特性に悪影響を及ぼすことを考慮して、研磨後の厚さが5μm以上となるような設計値でガラス層11を形成することが好ましい。すなわち、完成した波長変換部材1におけるガラス層11の厚さは5μm以上であることが好ましい。   Considering that the first wavelength conversion layer 10 under the glass layer 11 is exposed and adversely affects the optical characteristics of the wavelength conversion member 1, the design value is such that the thickness after polishing is 5 μm or more. It is preferable to form the glass layer 11. That is, it is preferable that the thickness of the glass layer 11 in the completed wavelength conversion member 1 is 5 μm or more.

ガラス層11はスクリーン印刷等により形成されるが、形成後、10μm程度の厚さのばらつきが存在することが多い。このため、鏡面化に十分な研磨厚さで研磨し、かつ研磨後の厚さを5μm以上とするために、ガラス層11の研磨前の厚さは15μm以上であることが好ましい。また、ガラス層11の形成後のCMP(Chemical Mechanical Polishing)による研磨処理の研磨厚さが最大で10μm程度ばらつくことがあるため、ガラス層11の下の第1の波長変換層10が露出することをより確実に防ぐために、ガラス層11の研磨前の厚さは25μm以上であることがより好ましく、30μm以上であることがさらに好ましい。   Although the glass layer 11 is formed by screen printing or the like, there is often a thickness variation of about 10 μm after the formation. For this reason, it is preferable that the thickness of the glass layer 11 before polishing is 15 μm or more in order to polish with a polishing thickness sufficient for mirror finishing and to make the thickness after polishing 5 μm or more. In addition, since the polishing thickness of the polishing process by CMP (Chemical Mechanical Polishing) after the formation of the glass layer 11 may vary by about 10 μm at maximum, the first wavelength conversion layer 10 under the glass layer 11 is exposed. In order to prevent this more reliably, the thickness of the glass layer 11 before polishing is more preferably 25 μm or more, and further preferably 30 μm or more.

反射層12は、例えば、Al、Ag、Ag合金等の金属や、二酸化ケイ素と酸化チタン等からなる多層膜誘電体からなる。   The reflection layer 12 is made of, for example, a metal such as Al, Ag, or an Ag alloy, or a multilayer dielectric made of silicon dioxide and titanium oxide.

第2の波長変換層13は、第1の波長変換層10の赤色蛍光体10bとは中心波長が異なる蛍光を発する蛍光体、例えば、波長535〜590nmに中心波長を有する蛍光を発する黄色蛍光体を含む、平板状の蛍光体含有部材である。また、第2の波長変換層13は、例えば、赤色蛍光体10bとは中心波長が異なる蛍光を発する蛍光体の単結晶や、赤色蛍光体10bとは中心波長が異なる蛍光を発する蛍光体を含むセラミックスからなる。   The second wavelength conversion layer 13 is a phosphor that emits fluorescence having a center wavelength different from that of the red phosphor 10b of the first wavelength conversion layer 10, for example, a yellow phosphor that emits fluorescence having a center wavelength at a wavelength of 535 to 590 nm. Is a flat phosphor-containing member. Further, the second wavelength conversion layer 13 includes, for example, a single crystal of a phosphor that emits fluorescence having a central wavelength different from that of the red phosphor 10b, or a phosphor that emits fluorescence having a central wavelength different from that of the red phosphor 10b. Made of ceramics.

第2の波長変換層13に含まれる黄色蛍光体としては、(Lu,Gd,Y)Al12:Ce(YAG系蛍光体)等を用いることができる。 As the yellow phosphor contained in the second wavelength conversion layer 13, (Lu, Gd, Y) 3 Al 5 O 12 : Ce (YAG phosphor) can be used.

第2の波長変換層13が黄色蛍光体を含む場合、例えば、波長430〜470nmに中心波長を有する青色光を励起光として波長変換部材1に照射することにより、第1の波長変換層10及び第2の波長変換層13から発せられる蛍光と波長変換部材1に吸収されずに反射される励起光との混合光として白色光を取り出すことができる。   When the second wavelength conversion layer 13 includes a yellow phosphor, for example, by irradiating the wavelength conversion member 1 with blue light having a center wavelength at a wavelength of 430 to 470 nm as excitation light, the first wavelength conversion layer 10 and White light can be extracted as a mixed light of the fluorescence emitted from the second wavelength conversion layer 13 and the excitation light reflected without being absorbed by the wavelength conversion member 1.

なお、波長変換部材1においては、第1の波長変換層10の赤色蛍光体10bの濃度を高くすることができ、また、第2の波長変換層13を単結晶やセラミックスから形成することができるため、波長変換部材1は優れた放熱特性を有する。このため、波長変換部材1に励起光を照射する光源として、レーザー光源等の光出力の光源を用いることができる。   In the wavelength conversion member 1, the concentration of the red phosphor 10 b of the first wavelength conversion layer 10 can be increased, and the second wavelength conversion layer 13 can be formed from a single crystal or ceramics. Therefore, the wavelength conversion member 1 has excellent heat dissipation characteristics. For this reason, a light output light source such as a laser light source can be used as a light source for irradiating the wavelength conversion member 1 with excitation light.

第1の波長変換層10と第2の波長変換層13が厚いと、熱膨張係数差により第1の波長変換層10と第2の波長変換層13との剥がれが発生しやすくなる。このため、例えば、第2の波長変換層13がYAG系蛍光体の単結晶からなる場合は、第1の波長変換層とガラス層の厚さの合計を100μm以下とすることが好ましい。また、第2の波長変換層13の第1の波長変換層10との接合面に粗面化処理を施して密着性を高める場合は、第1の波長変換層とガラス層の厚さの合計が300μm以下であればよい。   When the first wavelength conversion layer 10 and the second wavelength conversion layer 13 are thick, peeling between the first wavelength conversion layer 10 and the second wavelength conversion layer 13 is likely to occur due to a difference in thermal expansion coefficient. For this reason, for example, when the second wavelength conversion layer 13 is made of a single crystal of a YAG phosphor, the total thickness of the first wavelength conversion layer and the glass layer is preferably 100 μm or less. In addition, when the surface of the second wavelength conversion layer 13 and the first wavelength conversion layer 10 is subjected to a roughening treatment to improve adhesion, the total thickness of the first wavelength conversion layer and the glass layer is increased. May be 300 μm or less.

第2の波長変換層13と第1の波長変換層10との密着性を向上させて剥がれを防ぐため、第2の波長変換層13と第1の波長変換層10との界面が凹凸形状であることが好ましい。   In order to improve the adhesion between the second wavelength conversion layer 13 and the first wavelength conversion layer 10 to prevent peeling, the interface between the second wavelength conversion layer 13 and the first wavelength conversion layer 10 has an uneven shape. Preferably there is.

また、第2の波長変換層13と第1の波長変換層10を剥がれ難くするために、第1の波長変換層10のガラス10aと第2の波長変換層13の線膨張係数差が第1の波長変換層10を基準として1ppm以下であることが好ましい。   Further, in order to make it difficult for the second wavelength conversion layer 13 and the first wavelength conversion layer 10 to peel off, the difference in linear expansion coefficient between the glass 10a of the first wavelength conversion layer 10 and the second wavelength conversion layer 13 is first. It is preferable that it is 1 ppm or less on the basis of the wavelength conversion layer 10 of this.

また、第1の波長変換層10のガラス10aと第2の波長変換層13の屈折率差が±0.2以下であることが好ましい。励起光がレーザー光で第2の波長変換層13が単結晶のように透過性が高い材料からなる場合に、第1の波長変換層10と第2の波長変換層13の屈折率差が大きいと、第1の波長変換層10と第2の波長変換層13の界面でレーザー光が正反射して、レーザー光が散乱されなくなる場合があるためである。   The refractive index difference between the glass 10a of the first wavelength conversion layer 10 and the second wavelength conversion layer 13 is preferably ± 0.2 or less. When the excitation light is laser light and the second wavelength conversion layer 13 is made of a highly transparent material such as a single crystal, the refractive index difference between the first wavelength conversion layer 10 and the second wavelength conversion layer 13 is large. This is because the laser light may be regularly reflected at the interface between the first wavelength conversion layer 10 and the second wavelength conversion layer 13 and the laser light may not be scattered.

放熱部材14は、例えば、Cu、CuW、Al等の金属や、AlN、SiC、Al等のセラミックスからなる。また、接合層15は、AuSnはんだ、SuAgCuはんだ、銀ペースト等からなる。 The heat radiating member 14 is made of, for example, a metal such as Cu, CuW, or Al, or a ceramic such as AlN, SiC, or Al 2 O 3 . The bonding layer 15 is made of AuSn solder, SuAgCu solder, silver paste, or the like.

(波長変換部材の製造方法)
以下に、実施の形態に係る波長変換部材1の製造工程の一例について説明する。
(Manufacturing method of wavelength conversion member)
Below, an example of the manufacturing process of the wavelength conversion member 1 which concerns on embodiment is demonstrated.

図2(a)〜(d)は、実施の形態に係る波長変換部材1の製造工程を示す垂直断面図である。   2A to 2D are vertical cross-sectional views illustrating manufacturing steps of the wavelength conversion member 1 according to the embodiment.

初めに、図2(a)に示されるように、第2の波長変換層13上に第1の波長変換層10を形成する。   First, as shown in FIG. 2A, the first wavelength conversion layer 10 is formed on the second wavelength conversion layer 13.

まず、第1の波長変換層10の原料である赤色蛍光体10b、ガラス10aを含む混合液と、第2の波長変換層13を準備する。   First, a red phosphor 10b that is a raw material of the first wavelength conversion layer 10, a mixed solution containing glass 10a, and a second wavelength conversion layer 13 are prepared.

第1の波長変換層10の原料である混合液は、ガラス10aとしての低融点フリットガラスと、赤色蛍光体10bと、希釈剤ビヒクルとをガラス容器上で混合した後、0.1kPaの圧力下で2分間の真空脱気を施すことにより得られる。   The mixed liquid that is a raw material of the first wavelength conversion layer 10 is obtained by mixing a low melting point frit glass as the glass 10a, a red phosphor 10b, and a diluent vehicle on a glass container, and then under a pressure of 0.1 kPa. For 2 minutes by vacuum degassing.

第2の波長変換層13は、平板状の蛍光体含有部材としての平板状のYAG系単結晶の表面を有機洗浄し、さらに表面の汚れを焼き飛ばすための1000℃での熱処理を施すことにより得られる。   The second wavelength conversion layer 13 is obtained by subjecting the surface of a flat plate-like YAG-based single crystal as a flat plate-like phosphor-containing member to organic cleaning, and further performing a heat treatment at 1000 ° C. to burn off the dirt on the surface. can get.

そして、第1の波長変換層10の原料である混合液をスクリーン印刷により第2の波長変換層13上に塗布する。その後、塗布された混合液に0.1kPaの圧力下で2分間の真空脱気を施す。最後に、大気雰囲気で480℃の温度下で20分間の焼成を行い、第1の波長変換層10を得る。   And the liquid mixture which is the raw material of the 1st wavelength conversion layer 10 is apply | coated on the 2nd wavelength conversion layer 13 by screen printing. Thereafter, the applied mixed solution is subjected to vacuum deaeration for 2 minutes under a pressure of 0.1 kPa. Finally, baking is performed for 20 minutes at a temperature of 480 ° C. in an air atmosphere to obtain the first wavelength conversion layer 10.

第2の波長変換層13と第1の波長変換層10との界面を凹凸形状にする場合は、凹凸加工を施した第2の波長変換層13の面上に第1の波長変換層10を形成すればよい。   In the case where the interface between the second wavelength conversion layer 13 and the first wavelength conversion layer 10 has an uneven shape, the first wavelength conversion layer 10 is provided on the surface of the second wavelength conversion layer 13 subjected to the uneven processing. What is necessary is just to form.

次に、図2(b)に示されるように、第1の波長変換層10の第2の波長変換層13と反対側の面上にガラス層11を形成する。   Next, as shown in FIG. 2B, the glass layer 11 is formed on the surface of the first wavelength conversion layer 10 opposite to the second wavelength conversion layer 13.

まず、ガラス層11の原料である混合液を準備する。この混合液は、低融点フリットガラスと、希釈剤ビヒクルとをガラス容器上で混合した後、0.1kPaの圧力下で2分間の真空脱気を施すことにより得られる。   First, a mixed liquid that is a raw material of the glass layer 11 is prepared. This mixed solution can be obtained by mixing a low melting point frit glass and a diluent vehicle in a glass container, followed by vacuum degassing for 2 minutes under a pressure of 0.1 kPa.

そして、ガラス層11の原料である混合液をスクリーン印刷により第1の波長変換層10上に塗布する。その後、塗布された混合液に0.1kPaの圧力下で2分間の真空脱気を施す。そして最後に、大気雰囲気で480℃の温度下で20分間の焼成を行い、ガラス層11を得る。   And the liquid mixture which is the raw material of the glass layer 11 is apply | coated on the 1st wavelength conversion layer 10 by screen printing. Thereafter, the applied mixed solution is subjected to vacuum deaeration for 2 minutes under a pressure of 0.1 kPa. Finally, baking is performed in an air atmosphere at a temperature of 480 ° C. for 20 minutes to obtain the glass layer 11.

ここで、上述のように、ガラス層11は、15μm以上の厚さに形成されることが好ましく、25μm以上の厚さに形成されることがより好ましく、30μm以上の厚さに形成されることがさらに好ましい。   Here, as described above, the glass layer 11 is preferably formed to a thickness of 15 μm or more, more preferably a thickness of 25 μm or more, and a thickness of 30 μm or more. Is more preferable.

次に、図2(c)に示されるように、ガラス層11の第1の波長変換層10と反対側の面にCMPによる研磨処理を施し、鏡面化させる。このとき、第1の波長変換層10が露出しないように、研磨厚さをガラス層11の厚さ未満にする。   Next, as shown in FIG. 2C, the surface of the glass layer 11 opposite to the first wavelength conversion layer 10 is subjected to a polishing process by CMP to be mirror-finished. At this time, the polishing thickness is set to be less than the thickness of the glass layer 11 so that the first wavelength conversion layer 10 is not exposed.

また、上述のように、ガラス層11には10μm程度の厚さのばらつきが存在することが多いため、より確実に鏡面化を行うため、10μm以上の研磨厚さで研磨を行うことが好ましい。   Further, as described above, since the glass layer 11 often has a thickness variation of about 10 μm, it is preferable to perform polishing with a polishing thickness of 10 μm or more in order to more surely make a mirror surface.

次に、図2(d)に示されるように、蒸着法やスパッタリング法により、鏡面化したガラス層11の第1の波長変換層10と反対側の面上に反射層12を形成する。   Next, as shown in FIG. 2D, the reflective layer 12 is formed on the surface of the mirror-finished glass layer 11 opposite to the first wavelength conversion layer 10 by vapor deposition or sputtering.

その後、反射層12のガラス層11と反対側の面上に接合層15を用いて放熱部材14を接合し、波長変換部材1を得る。   Then, the heat radiating member 14 is joined using the joining layer 15 on the surface on the opposite side to the glass layer 11 of the reflection layer 12, and the wavelength conversion member 1 is obtained.

(実施の形態の効果)
上記実施の形態によれば、ガラスに蛍光体が封止された波長変換層を備え、その波長変換層における蛍光体の濃度に依らず、優れた光学特性及び光取出効率を有する波長変換部材、及びその製造方法を提供することができる。
(Effect of embodiment)
According to the embodiment, the wavelength conversion member having a wavelength conversion layer in which a phosphor is sealed in glass and having excellent optical characteristics and light extraction efficiency regardless of the concentration of the phosphor in the wavelength conversion layer, And a manufacturing method thereof.

図3(a)は、赤色蛍光体10bの断面積比率が46%である第1の波長変換層10の断面のSEM(Scanning Electron Microscope)観察像であり、図3(b)は、赤色蛍光体10bの断面積比率が54%である第1の波長変換層10の断面のSEM観察像である。   FIG. 3A is an SEM (Scanning Electron Microscope) observation image of the cross section of the first wavelength conversion layer 10 in which the cross-sectional area ratio of the red phosphor 10b is 46%, and FIG. It is a SEM observation image of the cross section of the 1st wavelength conversion layer 10 whose cross-sectional area ratio of the body 10b is 54%.

図3(a)、(b)に示される第1の波長変換層10においては、赤色蛍光体10bのみがガラス10aに含まれ、他の無機材は含まれない。また、ガラス10a、赤色蛍光体10bとして、それぞれBi−ZnO−B、(Sr,Ca)AlSi(N,O):Euが用いられている。 In the first wavelength conversion layer 10 shown in FIGS. 3A and 3B, only the red phosphor 10b is included in the glass 10a, and other inorganic materials are not included. Further, Bi 2 O 3 —ZnO—B 2 O 3 and (Sr, Ca) AlSi (N, O) 3 : Eu are used as the glass 10a and the red phosphor 10b, respectively.

図3(a)、(b)によれば、赤色蛍光体10bの断面積比率が46%である第1の波長変換層10の断面には空隙はほとんど含まれず、赤色蛍光体10bの断面積比率が54%である第1の波長変換層10の断面には多くの空隙20が含まれる。   According to FIGS. 3A and 3B, the cross section of the first wavelength conversion layer 10 in which the cross-sectional area ratio of the red phosphor 10b is 46% hardly includes voids, and the cross-sectional area of the red phosphor 10b. A lot of voids 20 are included in the cross section of the first wavelength conversion layer 10 whose ratio is 54%.

なお、図3(a)に示される第1の波長変換層10における赤色蛍光体10bの濃度はおよそ25質量%であり、図3(b)に示される第1の波長変換層10における赤色蛍光体10bの濃度はおよそ50質量%である。   In addition, the density | concentration of the red fluorescent substance 10b in the 1st wavelength conversion layer 10 shown by Fig.3 (a) is about 25 mass%, and the red fluorescence in the 1st wavelength conversion layer 10 shown by FIG.3 (b). The concentration of the body 10b is approximately 50% by mass.

図4は、研磨された空隙を含む第1の波長変換層10の表面の光学顕微鏡による観察像である。図4の観察像において観察される黒い点の集合は、第1の波長変換層10の空隙内に侵入した研磨剤である。   FIG. 4 is an image observed by an optical microscope of the surface of the first wavelength conversion layer 10 including the polished voids. A set of black dots observed in the observation image of FIG. 4 is an abrasive that has entered the voids of the first wavelength conversion layer 10.

図4は、空隙を含む第1の波長変換層10に研磨を施すと、空隙に研磨剤が侵入することを示している。第1の波長変換層10中に侵入した研磨剤は、第1の波長変換層10の光学特性を劣化させる。   FIG. 4 shows that when the first wavelength conversion layer 10 including the gap is polished, the abrasive enters the gap. The abrasive that has entered the first wavelength conversion layer 10 degrades the optical characteristics of the first wavelength conversion layer 10.

図5は、積層された第1の波長変換層10、研磨前のガラス層11、及び第2の波長変換層13の厚さ方向の断面のSEM観察像である。   FIG. 5 is an SEM observation image of a cross section in the thickness direction of the laminated first wavelength conversion layer 10, the glass layer 11 before polishing, and the second wavelength conversion layer 13.

図5に示される第1の波長変換層10においては、赤色蛍光体10bのみがガラス10aに含まれ、他の無機材は含まれない。また、ガラス10a、赤色蛍光体10bとして、それぞれBi−ZnO−B、(Sr,Ca)AlSi(N,O):Euが用いられている。また、ガラス層11としてBi−ZnO−Bが用いられ、第2の波長変換層13としてYAG系蛍光体が用いられている。 In the first wavelength conversion layer 10 shown in FIG. 5, only the red phosphor 10b is included in the glass 10a, and other inorganic materials are not included. Further, Bi 2 O 3 —ZnO—B 2 O 3 and (Sr, Ca) AlSi (N, O) 3 : Eu are used as the glass 10a and the red phosphor 10b, respectively. Further, Bi 2 O 3 —ZnO—B 2 O 3 is used as the glass layer 11, and a YAG-based phosphor is used as the second wavelength conversion layer 13.

図5に示される第1の波長変換層10、ガラス層11、及び第2の波長変換層13は、上記実施の形態に示される方法により形成されたものである。   The first wavelength conversion layer 10, the glass layer 11, and the second wavelength conversion layer 13 shown in FIG. 5 are formed by the method shown in the above embodiment.

以上、本発明の実施の形態及び実施例を説明したが、本発明は、上記実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the invention.

また、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   The embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

1…波長変換部材、 10…第1の波長変換層、 10a…ガラス、 10b…赤色蛍光体10b、 11…ガラス層、 12…反射層、 13…第2の波長変換層、 14…放熱部材、 20…空隙 DESCRIPTION OF SYMBOLS 1 ... Wavelength conversion member, 10 ... 1st wavelength conversion layer, 10a ... Glass, 10b ... Red fluorescent substance 10b, 11 ... Glass layer, 12 ... Reflection layer, 13 ... 2nd wavelength conversion layer, 14 ... Heat dissipation member, 20 ... void

Claims (9)

平板状のガラス及び前記ガラスに含まれる蛍光体を有する第1の波長変換層と、
前記第1の波長変換層の一方の面上に形成されたガラス層と、
前記ガラス層の前記第1の波長変換層と反対側の面上に形成された反射層と、
を備えた、波長変換部材。
A first wavelength conversion layer having a flat glass and a phosphor contained in the glass;
A glass layer formed on one surface of the first wavelength conversion layer;
A reflective layer formed on a surface of the glass layer opposite to the first wavelength conversion layer;
A wavelength conversion member comprising:
前記蛍光体が赤色蛍光体である、
請求項1に記載の波長変換部材。
The phosphor is a red phosphor,
The wavelength conversion member according to claim 1.
前記第1の波長変換層の任意の断面における前記赤色蛍光体の断面積比率が54%以上である、
請求項1又は2に記載の波長変換部材。
The cross-sectional area ratio of the red phosphor in an arbitrary cross section of the first wavelength conversion layer is 54% or more;
The wavelength conversion member according to claim 1 or 2.
前記ガラス層の厚さが5μm以上である、
請求項1〜3のいずれか1項に記載の波長変換部材。
The glass layer has a thickness of 5 μm or more.
The wavelength conversion member of any one of Claims 1-3.
前記第1の波長変換層の前記ガラス層と反対側の面上に形成された、黄色蛍光体を含む第2の波長変換層を備えた、
請求項1〜4のいずれか1項に記載の波長変換部材。
A second wavelength conversion layer including a yellow phosphor formed on a surface of the first wavelength conversion layer opposite to the glass layer;
The wavelength conversion member of any one of Claims 1-4.
前記第2の波長変換層がYAG系蛍光体の単結晶からなり、
前記第1の波長変換層の厚さと前記ガラス層の厚さの合計が300μm以下である、
請求項5に記載の波長変換部材。
The second wavelength conversion layer is made of a single crystal of a YAG phosphor,
The sum of the thickness of the first wavelength conversion layer and the thickness of the glass layer is 300 μm or less,
The wavelength conversion member according to claim 5.
前記第2の波長変換層と前記第1の波長変換層との界面が凹凸形状である、
請求項5又は6に記載の波長変換部材。
The interface between the second wavelength conversion layer and the first wavelength conversion layer is uneven.
The wavelength conversion member according to claim 5 or 6.
赤色蛍光体を含むガラスからなる第1の波長変換層を形成する工程と、
前記第1の波長変換層の一方の面上にガラス層を形成する工程と、
前記ガラス層の表面に研磨処理を施す工程と、
前記研磨処理が施された前記ガラス層の表面上に、反射層を形成する工程と、
を含む、波長変換部材の製造方法。
Forming a first wavelength conversion layer made of glass containing a red phosphor;
Forming a glass layer on one surface of the first wavelength conversion layer;
A step of polishing the surface of the glass layer;
Forming a reflective layer on the surface of the glass layer subjected to the polishing treatment;
The manufacturing method of the wavelength conversion member containing this.
前記第1の波長変換層の任意の断面における前記赤色蛍光体の断面積比率が54%以上である、
請求項8に記載の波長変換部材の製造方法。
The cross-sectional area ratio of the red phosphor in an arbitrary cross section of the first wavelength conversion layer is 54% or more;
The manufacturing method of the wavelength conversion member of Claim 8.
JP2017132882A 2017-07-06 2017-07-06 Wavelength conversion member and method for manufacturing the same Pending JP2019015848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017132882A JP2019015848A (en) 2017-07-06 2017-07-06 Wavelength conversion member and method for manufacturing the same
PCT/JP2018/024477 WO2019009165A1 (en) 2017-07-06 2018-06-28 Wavelength conversion member and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132882A JP2019015848A (en) 2017-07-06 2017-07-06 Wavelength conversion member and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2019015848A true JP2019015848A (en) 2019-01-31

Family

ID=64950988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132882A Pending JP2019015848A (en) 2017-07-06 2017-07-06 Wavelength conversion member and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2019015848A (en)
WO (1) WO2019009165A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054684A1 (en) 2018-09-11 2020-03-19 Canon Kabushiki Kaisha Lens apparatus, image pickup apparatus, processing apparatus, and camera apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802946A (en) * 2019-11-13 2021-05-14 深圳市绎立锐光科技开发有限公司 Red light emitting module and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759776B2 (en) * 2011-04-20 2015-08-05 スタンレー電気株式会社 Light source device and lighting device
WO2014104147A1 (en) * 2012-12-28 2014-07-03 信越化学工業株式会社 Wavelength conversion member and light-emitting device
JP2015050124A (en) * 2013-09-03 2015-03-16 スタンレー電気株式会社 Light emitting device
JP6476545B2 (en) * 2014-01-22 2019-03-06 日本電気硝子株式会社 Fluorescent wheel for projector and light emitting device for projector
JP6613583B2 (en) * 2015-03-13 2019-12-04 セイコーエプソン株式会社 Wavelength conversion element, light source device and projector
JP6550812B2 (en) * 2015-03-17 2019-07-31 セイコーエプソン株式会社 Fluorescent member, light source device and projector
JP6274240B2 (en) * 2016-03-28 2018-02-07 日亜化学工業株式会社 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054684A1 (en) 2018-09-11 2020-03-19 Canon Kabushiki Kaisha Lens apparatus, image pickup apparatus, processing apparatus, and camera apparatus

Also Published As

Publication number Publication date
WO2019009165A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6253392B2 (en) Light emitting device and light source for projector using the same
JP6499381B2 (en) Phosphor element and lighting device
KR20180086303A (en) Light-emitting device and process for production thereof
US20210184425A1 (en) Phosphor element and illumination device
WO2018124082A1 (en) Fluorescent light source apparatus and method for manufacturing same
US10442987B2 (en) Fluorescent member, optical component, and light emitting device
JP2016157905A (en) Optical component
JP2019045844A (en) Fluorescent member, optical component, and light-emitting device
JP2019015848A (en) Wavelength conversion member and method for manufacturing the same
JP6826691B2 (en) Optical components and lighting equipment
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
WO2019021846A1 (en) Wavelength conversion member and light emitting device
WO2021193773A1 (en) Optical device and method for manufacturing optical device
JP2018113117A (en) Fluorescent light source device and manufacturing method thereof
JP2018163816A (en) Phosphor element and illumination device
JP2018107064A (en) Fluorescent light source device and manufacturing method of the same
US20220278506A1 (en) Phosphor element, phosphor device, and illumination apparatus
JP2018163828A (en) Phosphor element and illumination device
JP7305791B2 (en) Phosphor Element, Phosphor Device and Lighting Apparatus
US11016233B2 (en) Optical waveguide structure, phosphor element, and method for manufacturing optical waveguide structure
US11635189B2 (en) Phosphor element and lighting device
JP7143523B2 (en) Methods for manufacturing conversion elements, conversion elements and radioactive components
WO2023166638A1 (en) Composite ceramic, phosphor element, laser illumination device, and method for manufacturing composite element
JP6660484B2 (en) Phosphor element and lighting device
JP2017098095A (en) Light emitting device, vehicular lighting fixture, display device and wavelength conversion device