JP2019014931A - Heat treatment method for steel material component - Google Patents

Heat treatment method for steel material component Download PDF

Info

Publication number
JP2019014931A
JP2019014931A JP2017132044A JP2017132044A JP2019014931A JP 2019014931 A JP2019014931 A JP 2019014931A JP 2017132044 A JP2017132044 A JP 2017132044A JP 2017132044 A JP2017132044 A JP 2017132044A JP 2019014931 A JP2019014931 A JP 2019014931A
Authority
JP
Japan
Prior art keywords
carburizing
steel
temperature
time
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017132044A
Other languages
Japanese (ja)
Inventor
剛 杉本
Takeshi Sugimoto
剛 杉本
田中 圭
Kei Tanaka
圭 田中
幸彦 ▲高▼井
幸彦 ▲高▼井
Yukihiko Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017132044A priority Critical patent/JP2019014931A/en
Publication of JP2019014931A publication Critical patent/JP2019014931A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To provide a heat treatment method for a steel material component capable of suppressing the generation of the creep deformation of a steel material component while suppressing the increasing carburization time.SOLUTION: A steel material component 1 is subjected to carburization treatment at a carburization temperature of 900 to 980°C, and the steel material component is subjected to nitriding treatment at a nitriding temperature of 820 to 900°C and is successively subjected to hardening treatment.SELECTED DRAWING: Figure 2

Description

本発明は、鋼材部品の熱処理方法に関するものである。   The present invention relates to a heat treatment method for steel parts.

鋼材部品の浸炭焼入熱処理は、鋼材部品の表面に炭素を浸透させ、急冷することで表面に硬く緻密な炭素マルテンサイト組織を形成、鋼材部品の表面の耐摩耗性と衝撃強度を向上させる技術である。鋼材部品の浸炭処理の炭素拡散速度は、拡散方程式∂c/∂t=D(∂c/∂x)に依り、金属材料の場合の拡散係数Dは、D=Dexp(−Ea/kT)により決定される。Dは材料振動数因子、Eaは拡散の活性エネルギ、kは気体定数、Tは温度であり、拡散係数Dは温度Tが高くなるほど大きくなるので、浸炭時間を短縮するには浸炭温度を高くすることが有効となる。しかしながら、ある温度以上の高温で金属を保持するとクリープ変形が発生し、保持時間に応じて重力による変形が発生する。クリープ変形の規模は、処理温度T,材料定数C,処理時間trとしたときに、ラーソンミラーパラメータP=T(C+logtr)に依り、温度が高くまた時間が長くなるほど、浸炭焼入熱処理時のクリープ変形量が増加する。このため、浸炭熱処理時のクリープ変形を抑制するために、800〜1200℃の浸炭温度で鋼材の表面を浸炭処理する方法が知られている(特許文献1)。 Carburizing and quenching heat treatment of steel parts is a technology that improves the wear resistance and impact strength of the surface of steel parts by infiltrating carbon into the surface of steel parts and forming a hard and dense carbon martensite structure on the surface by rapid cooling. It is. Carbon diffusion rate of carburizing steel parts, depending on the diffusion equation ∂c / ∂t = D (∂ 2 c / ∂x 2), the diffusion coefficient D in the case of a metal material, D = D 0 exp (-Ea / KT). D 0 is the material frequency factor, Ea is the diffusion activation energy, k is the gas constant, T is the temperature, and the diffusion coefficient D increases as the temperature T increases, so the carburizing temperature is increased to shorten the carburizing time. It is effective to do. However, when the metal is held at a temperature higher than a certain temperature, creep deformation occurs, and deformation due to gravity occurs according to the holding time. The scale of creep deformation depends on the Larson Miller parameter P = T (C + logtr) when the processing temperature is T, the material constant C, and the processing time tr. The amount of deformation increases. For this reason, in order to suppress the creep deformation at the time of carburizing heat treatment, a method of carburizing the surface of the steel material at a carburizing temperature of 800 to 1200 ° C. is known (Patent Document 1).

特開2008−121064号公報JP 2008-121064 A

しかしながら、上述した従来方法では、1200℃以下の温度で浸炭処理するので、鋼材部品の融点以下の最高浸炭温度1400℃に比べると、上記拡散係数の関係式D=D0exp(−Ea/kT)に依れば、浸炭時間が約3倍になるという問題がある。   However, since the carburizing process is performed at a temperature of 1200 ° C. or lower in the conventional method described above, the relational expression D = D0exp (−Ea / kT) of the diffusion coefficient is compared with the maximum carburizing temperature of 1400 ° C. below the melting point of the steel material part. Accordingly, there is a problem that the carburizing time is about three times longer.

本発明が解決しようとする課題は、浸炭時間の増加を抑制しつつ鋼材部品のクリープ変形の発生を抑制できる鋼材部品の熱処理方法を提供することである。   The problem to be solved by the present invention is to provide a heat treatment method for steel parts that can suppress the occurrence of creep deformation of the steel parts while suppressing an increase in carburizing time.

本発明は、鋼材部品を通常の浸炭温度より低い温度で浸炭処理したのち、鋼材部品を浸炭温度以下の窒化温度で窒化処理することによって上記課題を解決する。   The present invention solves the above-mentioned problems by subjecting a steel part to a carburizing treatment at a temperature lower than a normal carburizing temperature and then nitriding the steel part at a nitriding temperature equal to or lower than the carburizing temperature.

本発明によれば、通常の浸炭温度より低温で浸炭処理することによりクリープ変形の発生を抑制できるが、これに加えて浸炭処理後に窒化処理することにより鋼材部品の表面の硬度を高めることができ、これによってもクリープ変形の発生が抑制できる。したがって、上記低温での浸炭処理時間を短くしても窒化処理により高硬度の表面となるため、熱処理工程トータルで、浸炭時間の増加を抑制しつつ鋼材部品のクリープ変形の発生を抑制することができる。   According to the present invention, the occurrence of creep deformation can be suppressed by carburizing at a temperature lower than the normal carburizing temperature. In addition, the surface hardness of steel parts can be increased by nitriding after carburizing. This also suppresses the occurrence of creep deformation. Therefore, even if the carburizing time at low temperature is shortened, the surface is hardened by nitriding, so that the total heat treatment process can suppress the occurrence of creep deformation of steel parts while suppressing the increase in carburizing time. it can.

本発明に係る鋼材部品の熱処理方法に適用される鋼材部品の一例を示す斜視図である。It is a perspective view which shows an example of the steel material component applied to the heat processing method of the steel material component which concerns on this invention. 本発明に係る鋼材部品の熱処理の一実施の形態の温度と時間の関係を示すグラフである。It is a graph which shows the relationship between temperature and time of one Embodiment of the heat processing of the steel material parts which concern on this invention. 図2の浸炭処理による硬度と窒化処理による硬度を示すグラフである。It is a graph which shows the hardness by the carburizing process of FIG. 2, and the hardness by a nitriding process. 本発明に係る鋼材部品の熱処理の他の実施の形態の温度と時間の関係を示すグラフである。It is a graph which shows the relationship between temperature and time of other embodiment of the heat processing of the steel material parts based on this invention. 本発明の実施例1と比較例1のクリープ変形量を測定した結果を示すグラフである。It is a graph which shows the result of having measured the amount of creep deformation of Example 1 and comparative example 1 of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る鋼材部品の熱処理方法に適用される鋼材部品の一例を示す斜視図である。図示する鋼材部品1は、可変圧縮比エンジンのマルチリンクを構成する部品である。このマルチリンクは、たとえば特開2017−088922の図6及び図7に記載されたように、一対の鋼材部品1が相互に対称に組み合わされてネジで結合された構成であり、クランクシャフトを回転軸として圧縮比を変更する分だけ回転する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a steel part applied to a heat treatment method for a steel part according to the present invention. The steel material part 1 to show in figure is a part which comprises the multilink of a variable compression ratio engine. For example, as described in FIGS. 6 and 7 of Japanese Patent Application Laid-Open No. 2017-088922, this multi-link is a configuration in which a pair of steel parts 1 are symmetrically combined with each other and coupled with screws, and the crankshaft is rotated. The shaft rotates as much as the compression ratio is changed.

本実施形態の鋼材部品1は、半円形状の軸受部11と、一対のピン圧入部12と、ネジ部13とを備える。一対のピン圧入部12とネジ部13との間に軸受部11が設けられている。軸受部11は、クランクシャフトの軸受を構成する。一対のピン圧入部12は、アッパーリンク又はコントロールリンクを連結するためのピンを圧入する孔を有する。ネジ部13は、ネジを螺合させるネジ孔13Aを有する。図示は省略するが、一対のピン圧入部12の間にはネジが挿通されるネジ孔が形成されており、このネジ孔に挿通されたネジが、他方の鋼材部品1のネジ孔13Aに螺合する。   The steel part 1 of this embodiment includes a semicircular bearing portion 11, a pair of pin press-fit portions 12, and a screw portion 13. A bearing portion 11 is provided between the pair of pin press-fit portions 12 and the screw portion 13. The bearing 11 constitutes a crankshaft bearing. The pair of pin press-fitting portions 12 have holes for press-fitting pins for connecting the upper link or the control link. The screw portion 13 has a screw hole 13A for screwing the screw. Although illustration is omitted, a screw hole through which a screw is inserted is formed between the pair of pin press-fit portions 12, and the screw inserted into the screw hole is screwed into the screw hole 13 </ b> A of the other steel material part 1. Match.

本実施形態の鋼材部品1は、まず原材料を鍛造加工してリンク形状の外形を有する鋼材部品1を形成する。この鍛造加工では、鋼材部品1のネジ部13に、ネジ溝の無い孔13Bを形成する。次に、面削加工を実施し、鋼材部品1の表面の黒皮を除去する。この後に、焼入れなどの表面硬化処理を実施し、鋼材部品1の表面全体を熱処理により硬化させる。表面硬化処理としては、焼入れ、浸炭焼入れ、窒化焼入れ又は浸炭窒化焼入れ等の熱処理が挙げられる。以下、鋼材部品1の材料が、クロム鋼鋼材SCr420Hからなり、鋼材部品1の表面全体に対して浸炭窒化焼入れを行うものとして、本発明に係る熱処理方法を説明する。なお、クロム鋼鋼材SCr420Hとは、鉄以外の成分として、Cを0.17〜0.23重量%,Crを0.85〜1.20重量%,Siを0.15〜0.35重量%,Mnを0.60〜1.00重量%,Pを0.03重量%以下,Sを0.03重量%以下,Niを0.25重量%以下、Cuを0.3重量%以下含む鋼材である。ただし、本発明に係る鋼材部品はクロム鋼鋼材にのみ限定されず他の鋼材をも用いることができる。また、クロム鋼鋼材からなる場合であっても、例示する温度には何ら限定されるものではない。   The steel part 1 of this embodiment first forms a steel part 1 having a link-shaped outer shape by forging a raw material. In this forging process, a hole 13 </ b> B having no screw groove is formed in the screw portion 13 of the steel material part 1. Next, chamfering is performed to remove the black skin on the surface of the steel part 1. Thereafter, a surface hardening treatment such as quenching is performed, and the entire surface of the steel material part 1 is hardened by heat treatment. Examples of the surface hardening treatment include heat treatment such as quenching, carburizing and quenching, nitriding and quenching, or carbonitriding and quenching. Hereinafter, the heat treatment method according to the present invention will be described on the assumption that the material of the steel part 1 is made of the chromium steel steel SCr420H and the entire surface of the steel part 1 is subjected to carbonitriding and quenching. The chromium steel steel SCr420H is composed of 0.17 to 0.23% by weight of C, 0.85 to 1.20% by weight of Cr, and 0.15 to 0.35% by weight of Si as components other than iron. , Mn 0.60-1.00% by weight, P 0.03% by weight or less, S 0.03% by weight or less, Ni 0.25% by weight or less, and Cu 0.3% by weight or less It is. However, the steel part according to the present invention is not limited to the chrome steel material, and other steel materials can be used. Moreover, even if it is a case where it consists of chromium steel materials, it is not limited at all to the illustrated temperature.

上述したとおり、高浸炭温度で生じるクリープ変形を抑制するために浸炭温度を低くすると浸炭時間が長くなるというトレードオフの関係を踏まえ、本実施形態では、浸炭温度を通常の温度より低くすることに加え、浸炭処理後に窒化処理することで鋼材部品1の表面硬度を高め、これにより浸炭時間を短縮する。すなわち、浸炭時間の問題は窒化処理により補う。   As described above, in view of the trade-off relationship that the carburizing time becomes long if the carburizing temperature is lowered in order to suppress the creep deformation that occurs at the high carburizing temperature, in this embodiment, the carburizing temperature is made lower than the normal temperature. In addition, the surface hardness of the steel material part 1 is increased by nitriding after the carburizing treatment, thereby shortening the carburizing time. That is, the problem of carburizing time is compensated by nitriding treatment.

図2は、本発明に係る鋼材部品の熱処理の一実施の形態の温度と時間の関係を示すグラフである。本実施形態の鋼材部品1の熱処理方法では、まず時間t0〜t1において鋼材部品1を熱処理炉に投入して浸炭温度まで昇温する。この浸炭温度は、たとえば900〜980℃であり、浸炭時間は鋼材部品1に要求される硬度によって適宜に定められる。時間t1〜t2において、900〜980℃の低温で浸炭処理を行うことで、鋼材部品1の、特に一対のピン圧入部12のような構造的に低強度で寸法精度(一対のピン圧入部12間の距離L)が求められる部位にクリープ変形が生じるのを抑制する。   FIG. 2 is a graph showing the relationship between temperature and time in one embodiment of the heat treatment of steel parts according to the present invention. In the heat treatment method for the steel material part 1 according to the present embodiment, first, the steel material part 1 is put into a heat treatment furnace at time t0 to t1, and the temperature is raised to the carburizing temperature. The carburizing temperature is, for example, 900 to 980 ° C., and the carburizing time is appropriately determined depending on the hardness required for the steel material part 1. By performing the carburizing process at a low temperature of 900 to 980 ° C. at time t1 to t2, structurally low strength and dimensional accuracy (particularly, the pair of pin press-in portions 12) of the steel part 1, such as the pair of pin press-in portions 12. Creep deformation is prevented from occurring in a portion where the distance L) is required.

時間t2において浸炭処理を終了したら、これに続けて時間t2〜t3で熱処理炉内の雰囲気温度を820〜900℃に降温し、熱処理炉内に窒素ガスを導入することで時間t3〜t4において窒化処理を行う。これにより、図2の下の断面図に示すように、鋼材部品1の表面に形成された浸炭層の表面域に窒化層が形成されることになる。なお、断面図に示す酸化クロム層は、浸炭処理により鋼材部品1の表面に生じる薄く緻密なCr−C−O膜であり、窒素の拡散を阻害するため、窒化処理の時間t3〜t4は、鋼材部品1の表面が十分な硬度になる時間に設定する。   When the carburizing process is completed at time t2, the ambient temperature in the heat treatment furnace is subsequently lowered to 820 to 900 ° C. at time t2 to t3, and nitrogen gas is introduced into the heat treatment furnace to perform nitriding at time t3 to t4. Process. As a result, a nitrided layer is formed in the surface area of the carburized layer formed on the surface of the steel part 1 as shown in the lower cross-sectional view of FIG. Note that the chromium oxide layer shown in the cross-sectional view is a thin and dense Cr—C—O film formed on the surface of the steel part 1 by carburizing treatment, and in order to inhibit the diffusion of nitrogen, the nitriding treatment times t3 to t4 are: The time is set so that the surface of the steel part 1 has sufficient hardness.

図3の点線は、時間t1〜t2の浸炭処理による鋼材部品1の表面からの深さに対する硬度を示し、図3の実線は、時間t1〜t2の浸炭処理と時間t2〜t3の窒化処理による鋼材部品1の表面からの深さに対する硬度を示すグラフである。同図に示すように、浸炭処理によって表面硬度は高くなるが、窒化処理によりさらに表面硬度が高くなる。このように、鋼材部品1の表面に窒素を含浸させる窒化処理では、浸炭処理に加えて更なる強度向上ができるという利点があるが,低い温度でしか窒化処理はできず、また拡散速度が遅いため、強度を担保する窒化深さを深くできないという欠点がある。しかしながら、本実施形態では、浸炭処理の後で焼入保持温度まで温度を下げ、熱処理炉の雰囲気に窒化ガスを噴射させることにより、表面付近に窒化による硬化層を作ることができる。これにより、鋼材部品1の表面近傍の硬さを窒化にて担保させることで、通常より低温での浸炭処理時間を短縮することができ、トータルでの浸炭処理時間を低減でき、工程全体でのクリープ変形量を削減できる。   The dotted line in FIG. 3 shows the hardness with respect to the depth from the surface of the steel part 1 by the carburizing process at time t1 to t2, and the solid line in FIG. 3 is by the carburizing process at time t1 to t2 and the nitriding process at time t2 to t3. It is a graph which shows the hardness with respect to the depth from the surface of the steel material component 1. FIG. As shown in the figure, the surface hardness is increased by the carburizing process, but the surface hardness is further increased by the nitriding process. As described above, the nitriding treatment in which the surface of the steel part 1 is impregnated with nitrogen has an advantage that the strength can be further improved in addition to the carburizing treatment, but the nitriding treatment can be performed only at a low temperature and the diffusion rate is slow. For this reason, there is a drawback that the nitriding depth for ensuring the strength cannot be increased. However, in the present embodiment, after the carburizing treatment, the temperature is lowered to the quenching holding temperature, and a nitriding hard layer can be formed near the surface by injecting a nitriding gas into the atmosphere of the heat treatment furnace. Thereby, by ensuring the hardness in the vicinity of the surface of the steel material part 1 by nitriding, the carburizing time at a lower temperature than usual can be shortened, and the total carburizing time can be reduced. The amount of creep deformation can be reduced.

時間t4にて窒化処理が終了したら、時間t4〜t5において鋼材部品1を急冷することで焼入れ処理する。以上の熱処理工程により、クリープ変形の発生を抑制しつつ鋼材部品1の表面の耐摩耗性と衝撃強度を向上させることができる。   When the nitriding process is finished at time t4, the steel material part 1 is quenched at time t4 to t5. By the above heat treatment process, it is possible to improve the wear resistance and impact strength of the surface of the steel part 1 while suppressing the occurrence of creep deformation.

図4は、本発明に係る鋼材部品の熱処理の他の実施の形態の温度と時間の関係を示すグラフである。本実施形態の鋼材部品1の熱処理方法では、まず時間t0〜t1において鋼材部品1を熱処理炉に投入して浸炭温度まで昇温する。この浸炭温度は、たとえば1050℃であり、浸炭時間は鋼材部品1に要求される硬度によって適宜に定められる。時間t1〜t2において、1050℃の低温で浸炭処理を行うことで、鋼材部品1の、特に一対のピン圧入部12のような構造的に低強度で寸法精度(一対のピン圧入部12間の距離L)が求められる部位にクリープ変形が生じるのを抑制する。また、上述した図3に示す実施形態に比べて浸炭温度が高温であるため、浸炭時間を短縮することができる。   FIG. 4 is a graph showing the relationship between temperature and time in another embodiment of the heat treatment of steel parts according to the present invention. In the heat treatment method for the steel material part 1 according to the present embodiment, first, the steel material part 1 is put into a heat treatment furnace at time t0 to t1, and the temperature is raised to the carburizing temperature. The carburizing temperature is, for example, 1050 ° C., and the carburizing time is appropriately determined depending on the hardness required for the steel material part 1. By performing the carburizing process at a low temperature of 1050 ° C. at the time t1 to t2, the dimensional accuracy of the steel part 1, particularly the pair of pin press-fit portions 12, such as the pair of pin press-fit portions 12 (between the pair of pin press-fit portions 12). Creep deformation is suppressed from occurring at the site where the distance L) is required. Moreover, since the carburizing temperature is higher than that in the embodiment shown in FIG. 3 described above, the carburizing time can be shortened.

図4の時間t2の断面図に示すように、浸炭処理により鋼材部品1の表面に薄く緻密なCr−C−O膜(酸化クロム層)が生じ、この酸化クロム層は、その後の窒化処理時において窒素の拡散を阻害する。このため、上述した図3に示す実施形態の熱処理においては、窒化処理時間を十分に確保する必要がある。   As shown in the sectional view at time t2 in FIG. 4, a carburizing process produces a thin and dense Cr—C—O film (chromium oxide layer) on the surface of the steel part 1, and this chromium oxide layer is formed during the subsequent nitriding process. Inhibits the diffusion of nitrogen. For this reason, in the heat treatment of the embodiment shown in FIG. 3 described above, it is necessary to ensure a sufficient nitriding time.

これに対して、本実施形態では、時間t2の浸炭処理を終了した鋼材部品1を、時間t2〜t3において、650℃以下、好ましくは600℃以下に冷却し、鋼材部品1と酸化クロム層の熱膨張率の差を利用して、当該酸化クロム層に熱応力を加えることで酸化クロム層を破壊して除去する。この冷却処理時間は、酸化クロム層の破壊状況に応じて適宜の時間に設定すればよい。なお、その後、再び熱処理炉を窒化処理温度820〜900℃まで昇温するが、この時間t2〜t4の冷却処理は、上述した図3の実施形態に比べて追加された処理であるが、酸化クロム層を除去することで、次の窒化処理時間が短縮されることと相殺される。また、浸炭温度を低温のうちでも比較的高い1050℃に設定することによっても、トータルの熱処理時間を短縮することができる。   On the other hand, in this embodiment, the steel material part 1 which finished the carburizing process at time t2 is cooled to 650 ° C. or lower, preferably 600 ° C. or lower at time t2 to t3, and the steel material part 1 and the chromium oxide layer are The chromium oxide layer is destroyed and removed by applying thermal stress to the chromium oxide layer using the difference in thermal expansion coefficient. This cooling treatment time may be set to an appropriate time according to the state of destruction of the chromium oxide layer. After that, the temperature of the heat treatment furnace is raised again to a nitriding temperature of 820 to 900 ° C. The cooling treatment at this time t2 to t4 is an additional treatment compared to the embodiment of FIG. The removal of the chromium layer offsets the shortening of the next nitriding time. Also, the total heat treatment time can be shortened by setting the carburizing temperature to a relatively high 1050 ° C. even at a low temperature.

時間t3〜t4で熱処理炉内の雰囲気温度を820〜900℃に降温し、熱処理炉内に窒素ガスを導入することで時間t4〜t5において窒化処理を行う。これにより、図4の下図の断面図に示すように、酸化クロム層が除去された、鋼材部品1の表面に形成された浸炭層の表面域に窒化層が形成されることになる。時間t5にて窒化処理が終了したら、時間t5〜t6において鋼材部品1を急冷することで焼入れ処理する。以上の熱処理工程により、クリープ変形の発生を抑制しつつ鋼材部品1の表面の耐摩耗性と衝撃強度を向上させることができる。   At time t3 to t4, the atmospheric temperature in the heat treatment furnace is lowered to 820 to 900 ° C., and nitrogen gas is introduced into the heat treatment furnace to perform nitriding treatment at time t4 to t5. As a result, as shown in the cross-sectional view in the lower diagram of FIG. 4, a nitride layer is formed in the surface area of the carburized layer formed on the surface of the steel part 1 from which the chromium oxide layer has been removed. When the nitriding process is completed at time t5, the steel material part 1 is quenched at times t5 to t6. By the above heat treatment process, it is possible to improve the wear resistance and impact strength of the surface of the steel part 1 while suppressing the occurrence of creep deformation.

図1に示すクロム鋼鋼材SCr420Hからなる鋼材部品1に対し、有効硬化層深さ(ECD)が1.1±0.3mmとなるように、図2に示す熱処理(実施例1)と、図4に示す熱処理(実施例2)を実施した。また比較例1として、同じ鋼材部品1に対し、浸炭処理のみ(浸炭処理後の窒化処理を実施しない)を実施した。これら熱処理後における各鋼材部品1の表面のロックウェル硬度(HRC)、図1に示す一対のピン圧入部12間の距離Lのクリープ変形量、トータルの熱処理時間を表1に示す。   FIG. 2 shows the heat treatment (Example 1) shown in FIG. 2 so that the effective hardened layer depth (ECD) is 1.1 ± 0.3 mm for the steel part 1 made of the chromium steel steel SCr420H shown in FIG. The heat treatment shown in 4 (Example 2) was performed. Further, as Comparative Example 1, only the carburizing process (the nitriding process after the carburizing process was not performed) was performed on the same steel material part 1. Table 1 shows the Rockwell hardness (HRC) of the surface of each steel part 1 after these heat treatments, the creep deformation amount of the distance L between the pair of pin press-fit portions 12 shown in FIG. 1, and the total heat treatment time.

Figure 2019014931
Figure 2019014931

上記実施例1及び2と比較例1とを比べると、実施例1及び2はともに、表面硬度が硬くなり、クリープ変形量が小さく、処理時間が短くなっている。特に実施例2のクリープ変形量の低下と処理時間の短縮の効果が著しい。   Comparing Examples 1 and 2 with Comparative Example 1, both Examples 1 and 2 have a high surface hardness, a small amount of creep deformation, and a short processing time. In particular, the effect of reducing the amount of creep deformation and shortening the processing time of Example 2 is remarkable.

図1に示すクロム鋼鋼材SCr420Hからなる鋼材部品1に対し、有効硬化層深さ(ECD)が1.3となるように、サンプル数を増やし、図2に示す熱処理(実施例1)を実施して、図1に示す一対のピン圧入部12間の距離Lのクリープ変形量を測定した。また比較例1として、同じ鋼材部品1に対し、浸炭処理のみ(浸炭処理後の窒化処理を実施しない)を実施して、図1に示す一対のピン圧入部12間の距離Lのクリープ変形量を測定した。この結果を図5に示す。実施例1は、比較例1に比べ、クリープ変形量が小さくなっている。   For the steel part 1 made of the chromium steel steel SCr420H shown in FIG. 1, the number of samples is increased so that the effective hardened layer depth (ECD) is 1.3, and the heat treatment (Example 1) shown in FIG. 2 is performed. Then, the creep deformation amount of the distance L between the pair of pin press-fitting portions 12 shown in FIG. 1 was measured. Further, as Comparative Example 1, only the carburizing process (the nitriding process after the carburizing process is not performed) is performed on the same steel material part 1, and the creep deformation amount of the distance L between the pair of pin press-fit portions 12 illustrated in FIG. Was measured. The result is shown in FIG. The creep deformation amount of Example 1 is smaller than that of Comparative Example 1.

以上のとおり、本実施形態の鋼材部品の熱処理方法によれば、通常の浸炭温度より低温である900〜1200℃で浸炭処理することによりクリープ変形の発生を抑制できる。またこれに加えて、浸炭処理後に窒化処理することにより鋼材部品1の表面の硬度を高めることができ、これによってもクリープ変形の発生が抑制できる。したがって、上記低温での浸炭処理時間を短くしても窒化処理により高硬度の表面となるため、熱処理工程トータルで、浸炭時間の増加を抑制しつつ鋼材部品のクリープ変形の発生を抑制することができる。   As described above, according to the heat treatment method for steel parts of the present embodiment, the occurrence of creep deformation can be suppressed by performing the carburizing process at 900 to 1200 ° C., which is lower than the normal carburizing temperature. In addition to this, the surface hardness of the steel part 1 can be increased by performing nitriding after the carburizing treatment, and the occurrence of creep deformation can also be suppressed. Therefore, even if the carburizing time at low temperature is shortened, the surface is hardened by nitriding, so that the total heat treatment process can suppress the occurrence of creep deformation of steel parts while suppressing the increase in carburizing time. it can.

また、本実施形態の鋼材部品の熱処理方法によれば、浸炭処理を終了した鋼材部品1を650℃以下、好ましくは600℃以下に冷却するので、浸炭処理によって鋼材部品1の表面に形成される酸化クロム層を破壊して除去することができる。その結果、その後の窒化処理においては、窒素の拡散を阻害する酸化クロム層が除去されていることから、短時間で窒化処理を終了することができる。   Further, according to the heat treatment method for steel parts of this embodiment, the steel part 1 that has been carburized is cooled to 650 ° C. or lower, preferably 600 ° C. or lower, and thus formed on the surface of the steel part 1 by carburizing. The chromium oxide layer can be destroyed and removed. As a result, in the subsequent nitriding treatment, the chromium oxide layer that inhibits the diffusion of nitrogen is removed, so that the nitriding treatment can be completed in a short time.

1…鋼材部品
11…軸受部
12ピン圧入部
13…ネジ部
13A…ネジ孔
DESCRIPTION OF SYMBOLS 1 ... Steel material part 11 ... Bearing part 12 pin press-fit part 13 ... Screw part 13A ... Screw hole

Claims (4)

鋼材部品を900〜1200℃の浸炭温度で浸炭処理したのち、
前記鋼材部品を前記浸炭温度以下の窒化温度で窒化処理する鋼材部品の熱処理方法。
After carburizing steel parts at a carburizing temperature of 900-1200 ° C,
A heat treatment method for a steel part, wherein the steel part is nitrided at a nitriding temperature lower than the carburizing temperature.
鋼材部品を900〜980℃の浸炭温度で浸炭処理したのち、
続けて、前記鋼材部品を820〜900℃の窒化温度で窒化処理する鋼材部品の熱処理方法。
After carburizing steel parts at a carburizing temperature of 900-980 ° C,
Then, the heat processing method of the steel material components which carries out the nitriding process of the said steel material components at the nitriding temperature of 820-900 degreeC.
鋼材部品を1020〜1200℃の浸炭温度で浸炭処理したのち、
前記鋼材部品を650℃以下に冷却し、
その後、前記鋼材部品を820〜900℃の窒化温度で窒化処理する鋼材部品の熱処理方法。
After carburizing steel parts at a carburizing temperature of 1020 to 1200 ° C,
The steel part is cooled to 650 ° C. or lower,
Then, the heat processing method of the steel material components which nitrides the said steel material components at the nitriding temperature of 820-900 degreeC.
前記窒化処理に続けて焼入れ処理を行う請求項1〜3のいずれか一項に記載の鋼材部品の熱処理方法。   The heat treatment method for steel parts according to any one of claims 1 to 3, wherein a quenching process is performed following the nitriding process.
JP2017132044A 2017-07-05 2017-07-05 Heat treatment method for steel material component Pending JP2019014931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017132044A JP2019014931A (en) 2017-07-05 2017-07-05 Heat treatment method for steel material component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132044A JP2019014931A (en) 2017-07-05 2017-07-05 Heat treatment method for steel material component

Publications (1)

Publication Number Publication Date
JP2019014931A true JP2019014931A (en) 2019-01-31

Family

ID=65357345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132044A Pending JP2019014931A (en) 2017-07-05 2017-07-05 Heat treatment method for steel material component

Country Status (1)

Country Link
JP (1) JP2019014931A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163246A (en) * 1985-01-09 1986-07-23 Kobe Steel Ltd Steel for carbonitriding
JPS6233756A (en) * 1985-08-07 1987-02-13 Mazda Motor Corp Carburizing and nitriding method
JPS6233755A (en) * 1985-08-07 1987-02-13 Mazda Motor Corp Method for carburizing and nitriding steel member containing chromium
WO2003050321A1 (en) * 2001-12-13 2003-06-19 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
JP2007262506A (en) * 2006-03-29 2007-10-11 Komatsu Ltd Method for producing machine parts
WO2008126939A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel
WO2016178334A1 (en) * 2015-05-01 2016-11-10 株式会社Ihi Heat treating device
JP2016194156A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Carbonitrided component and method of manufacturing carbonitrided component
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163246A (en) * 1985-01-09 1986-07-23 Kobe Steel Ltd Steel for carbonitriding
JPS6233756A (en) * 1985-08-07 1987-02-13 Mazda Motor Corp Carburizing and nitriding method
JPS6233755A (en) * 1985-08-07 1987-02-13 Mazda Motor Corp Method for carburizing and nitriding steel member containing chromium
WO2003050321A1 (en) * 2001-12-13 2003-06-19 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
JP2007262506A (en) * 2006-03-29 2007-10-11 Komatsu Ltd Method for producing machine parts
WO2008126939A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel
JP2016194156A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Carbonitrided component and method of manufacturing carbonitrided component
WO2016178334A1 (en) * 2015-05-01 2016-11-10 株式会社Ihi Heat treating device
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part

Similar Documents

Publication Publication Date Title
RU2366746C2 (en) Method of heat treatment of structural component out of hardened heat resistant steel and structural component out of hardened heat resistant steel
JP5700322B2 (en) Workpiece made of steel hardened to the core zone formed for rolling loads and method for heat treatment
JP5045491B2 (en) Large rolling bearing
JP2006200003A (en) Heat-treated article and heat treatment method
JP6191357B2 (en) Steel heat treatment method
JP2019014931A (en) Heat treatment method for steel material component
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP3193320B2 (en) Heat treatment method for machine parts
JPH1136060A (en) Quenching method for preventing heat treating strain in case hardening steel
KR101823890B1 (en) Method for gas nitriding of steel
JPH1180923A (en) Rolling bearing and its production
KR100550588B1 (en) heat-treatment method for thin wall ring
JP2724456B2 (en) Carbonitriding method for steel members
JP2008523250A (en) Method and process for thermochemical treatment of high strength and toughness alloys
JPS62253723A (en) Production of gear
JPH07109005B2 (en) Method for manufacturing heat-treated steel parts
US11905602B2 (en) Method for reinforcing a steel component by carbonitriding
WO2023162515A1 (en) Method for producing steel member
JP7264319B1 (en) rolling bearing
JPH1136016A (en) Quenching method for case hardening steel capable of preventing heat treatment strain
JP6977339B2 (en) Heat treatment method for steel parts
JP3448608B2 (en) Nitriding method
JPH0356305B2 (en)
JPH0324257A (en) Production of bearing parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210810