JP2019013736A - 画像処理装置及び超音波診断装置 - Google Patents

画像処理装置及び超音波診断装置 Download PDF

Info

Publication number
JP2019013736A
JP2019013736A JP2018089822A JP2018089822A JP2019013736A JP 2019013736 A JP2019013736 A JP 2019013736A JP 2018089822 A JP2018089822 A JP 2018089822A JP 2018089822 A JP2018089822 A JP 2018089822A JP 2019013736 A JP2019013736 A JP 2019013736A
Authority
JP
Japan
Prior art keywords
image processing
image
images
value
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089822A
Other languages
English (en)
Other versions
JP7109986B2 (ja
Inventor
泰徳 本庄
Yasunori Honjo
泰徳 本庄
正毅 渡辺
Masaki Watanabe
正毅 渡辺
哲也 川岸
Tetsuya Kawagishi
哲也 川岸
康一郎 栗田
Koichiro Kurita
康一郎 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to US15/989,865 priority Critical patent/US11730444B2/en
Publication of JP2019013736A publication Critical patent/JP2019013736A/ja
Application granted granted Critical
Publication of JP7109986B2 publication Critical patent/JP7109986B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】画像中のゆらぎを定量的に評価することである。【解決手段】実施形態に係る画像処理装置は、画像処理部と、算出部とを備える。画像処理部は、超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す。算出部は、前記スペックルノイズ低減処理後の前記複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。【選択図】図1

Description

本発明の実施形態は、画像処理装置及び超音波診断装置に関する。
従来、悪性腫瘍と良性腫瘍の鑑別は、穿刺により採取した組織の生検や、造影剤の取り込み量を評価する画像診断により行われている。穿刺や造影剤の投与にはいずれも手間がかかるので、これらの手技を行わずに簡便に鑑別する手法の開発が望まれている。
例えば、良性腫瘍の一つである血管腫は、人口の5%は有していると言われている。このため、腫瘍の疑いのある部位が血管腫であるか否かを簡便に判断できれば、他の腫瘍との判別に有用であると考えられる。しかしながら、血管腫は、血流に乏しい腫瘍であるので、ドプラモードなどの非造影撮像では検出が難しい。
ここで、血管腫は、超音波診断装置により得られるBモード画像中において「ゆらぎ」として現れることが知られている。ゆらぎの原因には諸説あり、完全には解明されていないものの、ゆらぎは血管腫の特徴的な所見の一つであると言える。しかしながら、熟練の医師であっても、Bモード画像中にゆらぎが観察されるからと言って血管腫と断定することは難しい。
特許第4744833号明細書
本発明が解決しようとする課題は、画像中のゆらぎを定量的に評価することができる画像処理装置及び超音波診断装置を提供することである。
実施形態に係る画像処理装置は、画像処理部と、算出部とを備える。画像処理部は、超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す。算出部は、前記スペックルノイズ低減処理後の前記複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。
図1は、第1の実施形態に係る超音波診断装置の構成例を示すブロック図である。 図2は、血管腫のゆらぎについて説明するための図である。 図3は、第1の実施形態に係る超音波診断装置の処理手順を示すフローチャートである。 図4は、第1の実施形態に係る指標値算出処理の処理手順を示すフローチャートである。 図5は、第1の実施形態に係る画像処理回路による差分処理を説明するための図である。 図6は、第1の実施形態に係る算出機能による処理を説明するための図である。 図7は、第1の実施形態に係る指標画像生成機能による処理を説明するための図である。 図8は、第1の実施形態の変形例に係る画像処理回路による差分処理を説明するための図である。 図9は、第1の実施形態の変形例に係る画像処理回路による差分処理を説明するための図である。 図10は、第2の実施形態に係る指標値算出処理の処理手順を示すフローチャートである。 図11は、その他の実施形態に係る画像処理装置の構成例を示すブロック図である。 図12は、その他の実施形態に係るフィルタ処理について説明するための図である。 図13は、その他の実施形態に係るフィルタ処理について説明するための図である。 図14Aは、直交座標変換の概念図である。 図14Bは、直交座標変換の概念図である。 図15は、その他の実施形態に係る変換処理について説明するための図である。
以下、図面を参照して、実施形態に係る画像処理装置及び超音波診断装置を説明する。なお、以下の実施形態は、以下の説明に限定されるものではない。また、実施形態は、処理内容に矛盾が生じない範囲で他の実施形態や従来技術との組み合わせが可能である。
また、以下の実施形態では、開示の技術が超音波診断装置に適用される場合を説明するが、実施形態はこれに限定されるものではない。例えば、開示の技術は、超音波診断装置に限らず、画像を処理する機能を備えた画像処理装置や他の医用画像診断装置に対して適用可能である。画像処理装置としては、例えば、ワークステーションやPACS(Picture Archiving Communication System)ビューワ等が適用可能である。また、他の医用画像診断装置としては、例えば、光超音波診断装置(光音響イメージング装置)、X線診断装置、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、SPECT(Single Photon Emission Computed Tomography)装置、PET(Positron Emission computed Tomography)装置、SPECT装置とX線CT装置とが一体化されたSPECT−CT装置、PET装置とX線CT装置とが一体化されたPET−CT装置、又はこれらの装置群等が適用可能である。
(第1の実施形態)
図1は、第1の実施形態に係る超音波診断装置1の構成例を示すブロック図である。図1に示すように、第1の実施形態に係る超音波診断装置1は、装置本体100と、超音波プローブ101と、入力インタフェース102と、ディスプレイ103とを有する。超音波プローブ101、入力インタフェース102、及びディスプレイ103は、装置本体100に通信可能に接続される。なお、被検体Pは、超音波診断装置1の構成に含まれない。
超音波プローブ101は、複数の振動子(例えば、圧電振動子)を有し、これら複数の振動子は、後述する装置本体100が有する送受信回路110から供給される駆動信号に基づき超音波を発生する。また、超音波プローブ101が有する複数の振動子は、被検体Pからの反射波を受信して電気信号に変換する。また、超音波プローブ101は、振動子に設けられる整合層と、振動子から後方への超音波の伝播を防止するバッキング材等を有する。
超音波プローブ101から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波信号(エコー信号)として超音波プローブ101が有する複数の振動子にて受信される。受信される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁等の表面で反射された場合の反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
なお、第1の実施形態は、図1に示す超音波プローブ101が、複数の圧電振動子が一列で配置された1次元超音波プローブである場合や、一列に配置された複数の圧電振動子が機械的に揺動される1次元超音波プローブである場合、複数の圧電振動子が格子状に2次元で配置された2次元超音波プローブである場合のいずれであっても適用可能である。
入力インタフェース102は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、ジョイスティック等に対応する。例えば、入力インタフェース102は、超音波診断装置1の操作者からの各種設定要求を受け付け、受け付けた各種設定要求を装置本体100に対して転送する。
ディスプレイ103は、超音波診断装置1の操作者が入力インタフェース102を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体100において生成された超音波画像データ等を表示したりする。
装置本体100は、超音波プローブ101が受信した反射波信号に基づいて超音波画像データを生成する装置であり、図1に示すように、送受信回路110と、信号処理回路120と、画像処理回路130と、画像メモリ140と、記憶回路150と、処理回路160とを有する。送受信回路110、信号処理回路120、画像処理回路130、画像メモリ140、記憶回路150、及び処理回路160は、相互に通信可能に接続される。
送受信回路110は、パルス発生器、送信遅延部、パルサ等を有し、超音波プローブ101に駆動信号を供給する。パルス発生器は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、送信遅延部は、超音波プローブ101から発生される超音波をビーム状に集束し、かつ送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生器が発生する各レートパルスに対し与える。また、パルサは、レートパルスに基づくタイミングで、超音波プローブ101に駆動信号(駆動パルス)を印加する。すなわち、送信遅延部は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波の送信方向を任意に調整する。
なお、送受信回路110は、後述する処理回路160の指示に基づいて、所定のスキャンシーケンスを実行するために、送信周波数、送信駆動電圧等を瞬時に変更可能な機能を有している。特に、送信駆動電圧の変更は、瞬間にその値を切り替え可能なリニアアンプ型の発信回路、又は、複数の電源ユニットを電気的に切り替える機構によって実現される。
また、送受信回路110は、プリアンプ、A/D(Analog/Digital)変換器、受信遅延部、加算器等を有し、超音波プローブ101が受信した反射波信号に対して各種処理を行って反射波データを生成する。プリアンプは、反射波信号をチャネル毎に増幅する。A/D変換器は、増幅された反射波信号をA/D変換する。受信遅延部は、受信指向性を決定するために必要な遅延時間を与える。加算器は、受信遅延部によって処理された反射波信号の加算処理を行って反射波データを生成する。加算器の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調され、受信指向性と送信指向性とにより超音波送受信の総合的なビームが形成される。
送受信回路110は、被検体Pの2次元領域を走査する場合、超音波プローブ101から2次元方向に超音波ビームを送信させる。そして、送受信回路110は、超音波プローブ101が受信した反射波信号から2次元の反射波データを生成する。また、送受信回路110は、被検体Pの3次元領域を走査する場合、超音波プローブ101から3次元方向に超音波ビームを送信させる。そして、送受信回路110は、超音波プローブ101が受信した反射波信号から3次元の反射波データを生成する。
信号処理回路120は、例えば、送受信回路110から受信した反射波データに対して、対数増幅、包絡線検波処理等を行って、サンプル点ごとの信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。信号処理回路120により生成されたBモードデータは、画像処理回路130に出力される。
また、信号処理回路120は、例えば、送受信回路110から受信した反射波データより、移動体のドプラ効果に基づく運動情報を、走査領域内の各サンプル点で抽出したデータ(ドプラデータ)を生成する。具体的には、信号処理回路120は、反射波データから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワー等の移動体情報を多点について抽出したデータ(ドプラデータ)を生成する。ここで、移動体とは、例えば、血流や、心壁等の組織、造影剤である。信号処理回路120により得られた運動情報(血流情報)は、画像処理回路130に送られ、平均速度画像、分散画像、パワー画像、若しくはこれらの組み合わせ画像としてディスプレイ103にカラー表示される。
画像処理回路130は、信号処理回路120により生成されたデータから超音波画像データを生成する。画像処理回路130は、信号処理回路120が生成したBモードデータから反射波の強度を輝度で表したBモード画像データを生成する。また、画像処理回路130は、信号処理回路120が生成したドプラデータから移動体情報を表すドプラ画像データを生成する。ドプラ画像データは、速度画像データ、分散画像データ、パワー画像データ、又は、これらを組み合わせた画像データである。
ここで、画像処理回路130は、一般的には、超音波走査の走査線信号列を、テレビ等に代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示用の超音波画像データを生成する。具体的には、画像処理回路130は、超音波プローブ101による超音波の走査形態に応じて座標変換を行うことで、表示用の超音波画像データを生成する。また、画像処理回路130は、スキャンコンバート以外に種々の画像処理として、例えば、スキャンコンバート後の複数の画像フレームを用いて、輝度の平均値画像を再生成する画像処理(平滑化処理)や、画像内で微分フィルタを用いる画像処理(エッジ強調処理)等を行う。また、画像処理回路130は、超音波画像データに、付帯情報(種々のパラメータの文字情報、目盛り、ボディーマーク等)を合成する。
すなわち、Bモードデータ及びドプラデータは、スキャンコンバート処理前の超音波画像データであり、画像処理回路130が生成するデータは、スキャンコンバート処理後の表示用の超音波画像データである。なお、画像処理回路130は、信号処理回路120が3次元のデータ(3次元Bモードデータ及び3次元ドプラデータ)を生成した場合、超音波プローブ101による超音波の走査形態に応じて座標変換を行うことで、ボリュームデータを生成する。そして、画像処理回路130は、ボリュームデータに対して、各種レンダリング処理を行って、表示用の2次元画像データを生成する。
画像メモリ140は、画像処理回路130が生成した表示用の画像を記憶するメモリである。また、画像メモリ140は、信号処理回路120が生成したデータを記憶することも可能である。画像メモリ140が記憶するBモードデータやドプラデータは、例えば、診断の後に操作者が呼び出すことが可能となっており、画像処理回路130を経由して表示用の超音波画像データとなる。なお、本実施形態において単に「画像」と記載する場合、各画素に対してカラーが割り当てられた表示用の画像のみならず、各画素の座標と画素値(信号値)とが対応づけられたデータ列(「画像データ」とも称する)も含むものとする。
記憶回路150は、超音波送受信、画像処理及び表示処理を行うための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコルや各種ボディーマーク等の各種データを記憶する。また、記憶回路150は、必要に応じて、画像メモリ140が記憶する画像データの保管等にも使用される。また、記憶回路150が記憶するデータは、図示しない通信用インタフェースを介して、外部装置へ転送することができる。
処理回路160は、超音波診断装置1の処理全体を制御する。具体的には、処理回路160は、入力インタフェース102を介して操作者から入力された各種設定要求や、記憶回路150から読込んだ各種制御プログラム及び各種データに基づき、送受信回路110、信号処理回路120、及び画像処理回路130の処理を制御する。また、処理回路160は、画像メモリ140が記憶する表示用の超音波画像データをディスプレイ103にて表示するように制御する。
また、処理回路160は、図1に示すように、算出機能161と、指標画像生成機能162と、出力制御機能163とを実行する。ここで、算出機能161は、算出部の一例である。また、指標画像生成機能162は、画像生成部の一例である。また、出力制御機能163は、出力制御部の一例である。
ここで、例えば、図1に示す処理回路160の構成要素である算出機能161、指標画像生成機能162、及び出力制御機能163が実行する各処理機能は、コンピュータによって実行可能なプログラムの形態で超音波診断装置1の記憶装置(例えば、記憶回路150)に記録されている。処理回路160は、各プログラムを記憶装置から読み出し、実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路160は、図1の処理回路160内に示された各機能を有することとなる。なお、算出機能161、指標画像生成機能162、及び出力制御機能163が実行する各処理機能については、後述する。
ここで、良性腫瘍の一つである血管腫は、超音波診断装置1により得られるBモード画像中において「ゆらぎ」として現れることが知られている。ゆらぎの原因には諸説あり、完全には解明されていないものの、ゆらぎは血管腫の特徴的な所見の一つであると言える。
図2は、血管腫のゆらぎについて説明するための図である。図2には、被検体Pの肝臓が撮像されたBモード画像を例示する。図2に示すように、血管腫は、Bモード画像に設定された関心領域R0内の領域R1において陰影(他の組織とは異なる輝度で描出される領域)として描出される。この血管腫の陰影は、空間的かつ時間的なゆらぎとして現れるという特徴がある。つまり、血管腫の陰影は、領域R1内において高輝度部分と低輝度部分とが混在した「空間的なゆらぎ」として現れるとともに、同一位置における輝度が経時的に上昇若しくは低下する「時間的なゆらぎ」として現れる。
しかしながら、Bモード画像中にゆらぎが観察されるからと言って血管腫と断定することが難しい場合もある。そこで、第1の実施形態に係る超音波診断装置1は、画像中のゆらぎを定量的に評価、またはゆらぎの位置を強調させるために、以下の処理機能を実行する。
なお、以下の実施形態では、Bモード画像中に描出された血管腫のゆらぎを評価する場合を説明するが、これに限定されるものではない。例えば、開示の技術は、血管腫に限らず、画像中でゆらぎを呈する組織の変化であれば定量的に評価することが可能である。また、開示の技術は、Bモード画像に限らず、ドプラ画像等の他の超音波画像、或いは他の医用画像診断装置により撮像された医用画像におけるゆらぎについても評価することが可能である。
第1の実施形態に係る超音波診断装置1において、画像処理回路130は、超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す。算出機能161は、スペックルノイズ低減処理後の複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。これにより、超音波診断装置1は、画像中のゆらぎを定量的に評価することができる。
また、例えば、第1の実施形態に係る超音波診断装置1において、指標画像生成機能162は、関心領域内の各位置における指標値に基づいてパラメトリック画像を生成する。これにより、操作者は、ゆらぎの程度を画像上で閲覧することができる。
図3及び図4を用いて、第1の実施形態に係る超音波診断装置1の処理手順を説明する。図3は、第1の実施形態に係る超音波診断装置1の処理手順を示すフローチャートである。図4は、第1の実施形態に係る指標値算出処理の処理手順を示すフローチャートである。図3に示す処理手順は、例えば、パラメトリック画像を表示する旨の指示を操作者から受け付けた場合に開始される。なお、図4に示す処理手順は、図3に示すステップS104の処理内容に対応する。
また、以下の説明では、図5から図7を参照して説明する。図5は、第1の実施形態に係る画像処理回路130による差分処理を説明するための図である。図6は、第1の実施形態に係る算出機能161による処理を説明するための図である。図7は、第1の実施形態に係る指標画像生成機能162による処理を説明するための図である。
ステップS101において、処理回路160は、処理を開始するか否かを判定する。例えば、処理回路160は、パラメトリック画像を表示する旨の指示を操作者から受け付けた場合に、処理を開始すると判定し(ステップS101肯定)、ステップS102以降の処理を開始する。なお、処理を開始しない場合(ステップS101否定)、ステップS102以降の処理は開始されず、各処理機能は待機状態である。
ステップS101が肯定されると、ステップS102において、画像処理回路130は、時系列の複数の画像を読み出す。例えば、画像処理回路130は、時系列に並んだ複数時相のBモード画像データを画像メモリ140から読み出す。具体例を挙げると、画像処理回路130は、1フレーム目からNフレーム目までのN枚のBモード画像データを画像メモリ140から読み出す。なお、Nは、自然数である。また、以下の処理では、超音波走査が行われた走査範囲全体に対応するBモード画像データが処理対象となっても良いし、関心領域内の画像データのみが処理対象となっても良い。また、以下の処理では、連続するNフレーム分の複数の画像が処理対象となる場合を説明するが、これに限定されるものではない。例えば、1〜Nフレームの画像のうち、2フレーム毎に間引かれた画像であってもよい。
なお、ここでは、N枚のBモード画像データが撮像済みであり、予め画像メモリ140に記憶されている場合を説明するが、実施形態はこれに限定されるものではない。例えば、画像処理回路130は、リアルタイムに生成されるN枚のBモード画像データを取得してもよい。この場合、例えば、操作者は、ステップS101の後に超音波プローブ101を用いてNフレーム分の超音波走査を行う。そして、画像処理回路130は、この超音波走査により収集されるNフレーム分のBモードデータに基づいて、Nフレーム分のBモード画像データを生成することが可能である。
ステップS103において、画像処理回路130は、複数の画像に対して、画像間の動きを補正する動き補正処理を行う。例えば、読み出されたN枚のBモード画像データは、手ぶれや体動(心臓の拍動など)に起因する画像間の動き(位置ずれ)を含む。このため、画像処理回路130は、N枚のBモード画像データに対してトラッキング処理を行い、各画像の位置ずれを特定する。そして、画像処理回路130は、特定した各画像の位置ずれを補正することで、時間方向の位置ずれを含まない一連のBモード画像データを生成する。
ステップS104において、指標値算出処理が実行される。指標値算出処理は、画像処理回路130及び算出機能161により実行される。図4を用いて、指標値算出処理として実行されるステップS201〜ステップS208の処理を説明する。なお、ステップS201〜ステップS203の処理は、時間的なゆらぎ(画素値の変動)を強調させる処理に対応する。また、ステップS204〜ステップS208の処理は、指標値を算出するための処理に対応する。
ステップS201において、画像処理回路130は、複数の画像に対して、時間方向(フレーム方向)へのローパスフィルタ(Low-pass filter:LPF)処理を行う。例えば、画像処理回路130は、N枚のBモード画像の各画素においてフレーム方向に並ぶN個の画素値に対して、移動平均フィルタやメディアンフィルタ等のLPFを通す。これにより、画像処理回路130は、時間方向の画像信号強度から、時間方向のスパイクノイズ等の高周波ノイズを低減することができる。なお、画素値(輝度値)は、画像信号強度の一例である。
ステップS202において、画像処理回路130は、LPF処理後の複数の画像に対して、スペックルノイズ低減処理を行う。例えば、画像処理回路130は、N枚のBモード画像に対して空間方向にメディアンフィルタを通す。これにより、画像処理回路130は、空間方向のスパイクノイズやスペックルノイズを低減することができる。画像処理回路130は、スペックルノイズ低減処理を施したN枚のBモード画像を処理回路160へ送る。
ステップS203において、画像処理回路130は、予め設定されたフレーム間隔で各画像間の差分処理を行って、複数の差分画像を生成する。
ここで、時系列の複数のBモード画像における画像信号強度には、血管腫に由来するゆらぎの成分(以下、「血管腫成分」と称する)に加え、バックグラウンドとしてのゆらぎの成分(以下、「バックグラウンド成分」と称する)が混在していると考えられる。このバックグラウンドとしてのゆらぎは、例えば、肝臓組織に由来するゆらぎ、操作者による手技に起因するゆらぎ、装置性能に起因するゆらぎ、スペックルのゆらぎ等、様々な要因に由来するゆらぎを含む。そこで、画像処理回路130は、血管腫に由来するゆらぎの周波数とは異なる周波数のゆらぎの成分を、Bモード画像の画像信号強度から除去するために、差分処理を実行する。
図5を用いて、第1の実施形態に係る画像処理回路130による差分処理を説明する。図5には、差分処理によりBモード画像(上段)から差分画像(下段)が生成される処理を例示する。具体的には、図5の上段には、Bモード画像におけるある画素の画素値の経時的変化を例示する。また、図5の下段には、差分画像におけるある画素の画素値(差分値)の経時的変化を例示する。なお、図5において、Mは、自然数である。また、M−4、M−3、M−2、M−1、M、M+1、M+2は、いずれも1〜Nに含まれる数である。
図5に示すように、時系列の複数のBモード画像の画像信号強度は、血管腫成分(図5上段の実線)と、バックグラウンド成分(図5上段の破線)とを含む。ここで、バックグラウンド成分の1周期が4フレームに相当する場合、Mフレーム目のバックグラウンド成分とM−4フレーム目のバックグラウンド成分は、同程度である。そこで、画像処理回路130は、Mフレーム目の画素値からM−4フレーム目の画素値を差分することで、バックグラウンド成分を打ち消す。これにより、画像処理回路130は、Mフレーム目の血管腫成分を強調する。
同様に、画像処理回路130は、M+1フレーム目の画素値からM−3フレーム日の画素値を差分することで、M+1フレーム目の血管腫成分を強調する。また、画像処理回路130は、M+2フレーム目の画素値からM−2フレーム目の画素値を差分することで、M+2フレーム目の血管腫成分を強調する。
このように、画像処理回路130は、フレーム間隔「4」で各Bモード画像間の差分処理を行う。具体的には、画像処理回路130は、N枚のBモード画像の各画素について、4フレーム前の同一位置における画素値との差分値を算出する(図5下段)。そして、画像処理回路130は、算出した差分値を各画素に割り当てることで、N−4枚の差分画像を生成する。そして、画像処理回路130は、生成したN−4枚の差分画像を処理回路160へ送る。なお、フレーム間隔は、撮像部位や装置性能(超音波プローブ101の種類、スキャンシーケンス等)に応じて予め設定(プリセット)されている。
なお、図5に図示した内容はあくまで一例であり、図示の内容に限定されるものではない。例えば、図5では、フレーム間隔が「4」である場合を説明したが、これに限らず、任意の値が設定可能である。
また、図5では、フレーム間隔がプリセットされる場合を説明したが、これに限定されるものではない。例えば、フレーム間隔は、入力インタフェース102を介して操作者により変更されてもよい。この場合、操作者は、後述する処理により表示されるパラメトリック画像を閲覧しながらフレーム間隔を指定(変更)する。そして、画像処理回路130は、操作者により指定されたフレーム間隔で差分処理を行う。なお、フレーム間隔を操作者が変更する場合、例えば、図5の上段のグラフがディスプレイ103上に表示されてもよい。また、操作者が指定するパラメータは、フレーム間隔に限らず、周波数や周期等、フレーム間隔に変換可能なパラメータであれば如何なるパラメータであってもよい。
図4の説明に戻る。ステップS204において、算出機能161は、複数の差分画像それぞれについて、各画素の画素値の絶対値をとる。ここで、差分画像に含まれる各画素の差分値は、負の値を含む。このため、算出機能161は、各画素の差分値の絶対値をとる。これにより、差分画像に含まれる血管腫に由来するゆらぎを正の値で表すことができる。
ステップS205において、算出機能161は、複数の差分画像それぞれについて、各画素の絶対値と周辺画素の絶対値とが積算された積算値を算出する。例えば、算出機能161は、小領域(カーネル)を用いて、各画素の絶対値と周辺画素の絶対値とを積算する。
一例として、3×3の矩形形状の小領域を用いる場合を説明する。この場合、算出機能161は、小領域の中心が注目画素に一致するように、各差分画像上に小領域を設定する。このとき、小領域には、注目画素と、注目画素の周辺に位置する8個の周辺画素とが存在する。算出機能161は、注目画素の絶対値と、8個の周辺画素の絶対値との和を、注目画素の積算値として算出する。
このように、算出機能161は、複数の差分画像の各画素について、周辺画素との積算値を算出する。なお、ここでは小領域として、3×3の矩形形状の領域を用いる場合を説明したが、これに限らず、任意の形状及び大きさを有する領域であってもよい。
ステップS206において、算出機能161は、スペックルノイズ低減処理後の複数の画像それぞれについて、各画素の画素値と周辺画素の画素値との平均値を算出する。例えば、算出機能161は、小領域を用いて、各画素の画素値と周辺画素の画素値との平均値を算出する。
一例として、3×3の矩形形状の小領域を用いる場合を説明する。この場合、算出機能161は、小領域の中心が注目画素に一致するように、各Bモード画像上に小領域を設定する。このとき、小領域には、注目画素と、注目画素の周辺に位置する8個の周辺画素とが存在する。算出機能161は、注目画素の画素値と、8個の周辺画素の画素値との平均値を算出する。
このように、算出機能161は、複数のBモード画像の各画素について、周辺画素との平均値を算出する。なお、ここでは小領域として、3×3の矩形形状の領域を用いる場合を説明したが、これに限らず、任意の形状及び大きさを有する領域であってもよい。
ステップS207において、算出機能161は、画素ごとに、積算値を平均値で除算した除算値を算出する。例えば、算出機能161は、Mフレーム目の各画素の積算値を、Mフレーム目の各画素の平均値で除算する。ここで、積算値は、ステップS205の処理により算出された値であり、平均値は、ステップS206の処理により算出された値である。このように、算出機能161は、各フレーム(時相)について、各画素の除算値を算出する。
ステップS208において、算出機能161は、各画素の除算値を時間方向に積算することで、指標値を算出する。例えば、算出機能161は、複数のフレームそれぞれにおいて同一位置にある画素の除算値を積算することで、指標値を算出する。
図6を用いて、第1の実施形態に係る算出機能161による処理を説明する。図6において、「除算値(X1,Y1)」は、画素位置(X1,Y1)における除算値を示す。また、「指標値(X1,Y1)」は、画素位置(X1,Y1)における指標値を示す。図6では、図2に示した関心領域R0に含まれる各画素の指標値が算出される場合を説明する。
図6の上段に示すように、算出機能161は、同一位置にある1〜Nフレーム目の除算値(X1,Y1)を積算する。ここで積算された値は、各フレームにおける時間方向の変動がNフレーム分積算された値と言える。このため、算出機能161は、積算した値(総和)を、Nフレーム分のゆらぎを表す指標値(X1,Y1)として出力する(図6下段)。
このように、算出機能161は、各画素(位置)について、1〜NフレームのN枚のBモード画像に基づいて、Nフレーム目のゆらぎを表す指標値を算出する。この場合、この指標値は、過去Nフレーム分のゆらぎを表す。
なお、図6に図示した内容はあくまで一例であり、図示の内容に限定されるものではない。例えば、図6では、Bモード画像の一部の領域が関心領域R0として設定される場合を説明したが、実施形態はこれに限定されるものではない。例えば、Bモード画像の走査範囲全体が関心領域R0として設定される場合には、算出機能161は、走査範囲全体に含まれる各画素の指標値を算出可能である。
また、例えば、図6では、Nフレーム分の同一位置の除算値の総和を指標値として算出する場合を説明したが、実施形態はこれに限定されるものではない。例えば、算出機能161は、Nフレーム分の同一位置の除算値の統計値を指標値として算出してもよい。すなわち、算出機能161は、複数の画像それぞれにおける各画素の除算値の総和又は統計値を、指標値として算出する。なお、統計値としては、例えば、平均値、中央値、標準偏差、分散、平方和等が適用可能である。
図3の説明に戻る。ステップS105において、指標画像生成機能162は、パラメトリック画像を生成する。例えば、指標画像生成機能162は、算出機能161により出力された指標値の大きさに応じたカラーを各画素(位置)に割り当てることにより、パラメトリック画像を生成する。
図7を用いて、第1の実施形態に係る指標画像生成機能162による処理を説明する。図7には、指標画像生成機能162により生成されるパラメトリック画像の一例を例示する。なお、図7では、図2に示した関心領域R0に含まれる各画素の指標値が算出された場合を説明する。
図7に示すように、指標画像生成機能162は、図2に示した関心領域R0に対応する領域R2のパラメトリック画像を生成する。このパラメトリック画像は、関心領域R0に含まれる各画素の指標値の大きさに応じたカラー(色相、明度、彩度等)が、領域R2内の各位置に割り当てられたものである。つまり、領域R2内の領域R3に描出されるカラーの濃淡は、図2の領域R1のゆらぎの陰影が強調されたものである。
なお、図7に図示した内容はあくまで一例であり、図示の内容に限定されるものではない。例えば、図7では、Bモード画像の一部の領域が関心領域R0として設定される場合を説明したが、実施形態はこれに限定されるものではない。例えば、Bモード画像の走査範囲全体が関心領域R0として設定される場合には、指標画像生成機能162は、走査範囲全体に対応する領域のパラメトリック画像を生成可能である。
ステップS106において、出力制御機能163は、パラメトリック画像を表示する。例えば、出力制御機能163は、指標画像生成機能162により生成されたパラメトリック画像を、ディスプレイ103に表示させる。そして、処理回路160は、処理を終了する。
なお、図3及び図4に示した処理手順はあくまで一例であり、図示の処理手順に限定されるものではない。例えば、ステップS201のLPF処理及びステップS202のスペックルノイズ低減処理は、必ずしも実行されなくてもよい。また、例えば、ステップS201のLPF処理及びステップS202のスペックルノイズ低減処理は、互いの順序を入れ替えて実行されてもよい。
また、例えば、図3では、パラメトリック画像が単独で表示される場合を説明したが、実施形態はこれに限定されるものではない。例えば、出力制御機能163は、パラメトリック画像を他の医用画像と同時に表示してもよい。一例としては、出力制御機能163は、図7のパラメトリック画像を図2のBモード画像に重畳させて表示してもよいし、図2のBモード画像と並べて表示してもよい。
また、例えば、図3では、出力形態の一例として、パラメトリック画像が表示される場合を説明したが、実施形態はこれに限定されるものではない。例えば、出力制御機能163は、指標値の代表値を出力してもよい。この場合、算出機能161は、関心領域内の少なくとも一部に対応する計測領域内の各位置の指標値に基づいて、計測領域の代表値を算出する。例えば、操作者が図7の領域R3を計測領域として設定すると、算出機能161は、領域R3内の各画素の指標値を用いて、代表値を算出する。ここで、代表値とは、例えば、平均値、中央値、最大値、最小値等の統計値である。そして、出力制御機能163は、算出機能161により算出された領域R3の代表値をディスプレイ103に表示させる。
また、例えば、出力制御機能163は、指標値のヒストグラムを表示してもよい。このヒストグラムは、例えば、縦軸に頻度(ピクセル数)、横軸に指標値の大きさをとったグラフである。このヒストグラムでは、ゆらぎが検出された場合には、ゆらぎが検出されない場合と比較してグラフが全体的に横方向へシフトする。
つまり、出力制御機能163は、パラメトリック画像、代表値、ヒストグラム等の中から適宜選択された出力形態で出力可能である。また、出力制御機能163により出力される出力先はディスプレイ103に限定されるものではない。例えば、出力制御機能163は、出力対象の情報を記憶回路150に格納しても良いし、外部装置に送信しても良い。
また、例えば、図4では、各画素の除算値が時間方向に積算された積算値を指標値として算出する場合を説明したが、これに限定されるものではない。例えば、ステップS207にて算出される除算値も、各位置における画像信号強度のゆらぎを示す値であると言える。このため、算出機能161は、ステップS207にて算出される除算値を、指標値として出力してもよい。この場合、ステップS208は実行されなくてよい。
上述してきたように、第1の実施形態に係る超音波診断装置1において、画像処理回路130は、超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す。算出機能161は、スペックルノイズ低減処理後の複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。これにより、超音波診断装置1は、画像中のゆらぎを定量的に評価することができる。
また、例えば、操作者(医師)は、図2に示したように、Bモード画像内に陰影(領域R1)を発見する場合がある。このような場合、操作者は、第1の実施形態に係る超音波診断装置1を用いて、パラメトリック画像をディスプレイ103上に表示させる。ここで、図7の領域R3に示したように、所定以上のカラー(輝度値)で陰影が強調された場合には、操作者は、当該部位が時間方向のゆらぎを有することがわかる。この結果、操作者は、Bモード画像内の陰影が血管腫であると判別可能となる。これにより、穿刺や造影剤の投与を用いた鑑別を行うことなく、簡便に血管腫を判別することが可能となる。
また、例えば、Bモード画像においては、空間方向のみのゆらぎが描出される場合がある。例えば、スペックルにより空間的なゆらぎが見られる場合がある。このような場合には、画像中のゆらぎを見ただけで血管腫であるか否かを判別するのは困難である。しかしながら、第1の実施形態に係る超音波診断装置1は、空間方向のみのゆらぎを検出せずに、時間方向のゆらぎを検出するので、血管腫を正確に捉えることができる。
また、バックグラウンドとしてのゆらぎの成分(バックグラウンド成分)は、Bモード画像が高輝度であれば指標値への影響が小さいものの、低輝度であれば指標値への影響が大きくなる。したがって、肝臓等のように比較的低輝度の部位を観察する場合には、バックグラウンド成分の影響が懸念される。しかしながら、第1の実施形態に係る超音波診断装置1は、ゆらぎの周波数とは異なる周波数のゆらぎの成分を画像信号強度から除去した上で、指標値を算出する。したがって、超音波診断装置1は、比較的低輝度の部位であっても、時間方向のゆらぎを正確に評価することができる。
また、例えば、第1の実施形態に係る超音波診断装置1は、超音波を用いて収集された時系列の複数の画像それぞれに基づいて、複数の時相それぞれについて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。そして、超音波診断装置1は、関心領域内の各位置について、複数の時相それぞれにおける前記指標値の総和、又は統計値を算出する。これにより、超音波診断装置1は、画像中のゆらぎを定量的に評価することができる。
(第1の実施形態の変形例)
第1の実施形態では、差分処理に用いるフレーム間隔が予め設定される場合を説明したが、自動的に決定することも可能である。
例えば、画像処理回路130は、関心領域のうちの計測領域とは異なる領域に含まれる画像信号強度のゆらぎの周波数に応じてフレーム間隔を決定する。そして、画像処理回路130は、決定したフレーム間隔で、差分処理を行う。
図8及び図9を用いて、第1の実施形態の変形例に係る画像処理回路130による差分処理を説明する。図8及び図9は、第1の実施形態の変形例に係る画像処理回路130による差分処理を説明するための図である。図8には、被検体Pの肝臓が撮像されたBモード画像を例示する。図9には、Bモード画像におけるある画素の画素値の経時的変化を例示する。
図8に示す例では、操作者は、関心領域R0内に領域R4を設定する。この領域R4は、肝臓組織が描出される領域であって、陰影が映っている領域R3(計測領域)とは異なる領域である。つまり、この領域R4における画素値の経時的変化は、図9に示すように、バックグラウンド成分のみを含む。
したがって、画像処理回路130は、図9に示す画素値の経時的変化からバックグラウンド成分の周波数(若しくは周期)を算出する。そして、画像処理回路130は、算出した周波数に応じてフレーム間隔を決定する。図9に示す例では、画像処理回路130は、フレーム間隔「4」を決定する。そして、画像処理回路130は、決定したフレーム間隔「4」を用いて、差分処理を行う。なお、差分処理の内容は、図5にて説明した内容と同様であるので説明を省略する。
これにより、第1の実施形態の変形例に係る超音波診断装置1は、差分処理に用いるフレーム間隔を自動的に決定することができる。なお、図8に示した領域R4は、操作者により用手的に設定されても良いし、自動的に設定されても良い。また、フレーム間隔を操作者が変更する場合、例えば、図9のグラフがディスプレイ103上に表示されてもよい。
(第2の実施形態)
上述した第1の実施形態では、時間方向のゆらぎのバックグラウンド成分を除去した上で、時間方向のゆらぎの指標値を算出する場合を説明したが、実施形態はこれに限定されるものではない。例えば、バックグラウンド成分を除去するための処理は、必ずしも実行されなくてもよい。そこで、第2の実施形態では、超音波診断装置1が、バックグラウンド成分を除去するための処理を実行しない場合について説明する。
第2の実施形態に係る超音波診断装置1は、図1に例示した超音波診断装置1と同様の構成を備え、図3に示した指標値算出処理の一部が相違する。そこで、第2の実施形態では、第1の実施形態と相違する点を中心に説明することとし、第1の実施形態において説明した構成については説明を省略する。
図10を用いて、第2の実施形態に係る超音波診断装置1の処理手順を説明する。図10は、第2の実施形態に係る指標値算出処理の処理手順を示すフローチャートである。図10に示す処理手順は、図3に示すステップS104の処理内容に対応する。なお、図10に示すステップS301及びステップS302の処理は、図4に示したステップS201及びステップS202の処理と同様であるので説明を省略する。
ステップS303において、算出機能161は、画素(位置)ごとに、時間方向に画素値の標準偏差を算出する。例えば、算出機能161は、1〜Nフレーム目までの同一画素の画素値の標準偏差を、画素ごとに算出する。
ステップS304において、算出機能161は、画素ごとに、時間方向に画素値の平均値を算出する。例えば、算出機能161は、1〜Nフレーム目までの同一画素の画素値の平均値を、画素ごとに算出する。
ステップS305において、算出機能161は、画素ごとに、標準偏差を平均値で除算した除算値を算出する。例えば、算出機能161は、ステップS303の処理により算出された各画素の標準偏差を、ステップS304の処理により算出された各画素の平均値で除算する。そして、算出機能161は、除算した除算値を指標値として出力する。
すなわち、第2の実施形態に係る算出機能161は、複数の画像の各位置における時間方向の変動係数を、時間方向のゆらぎを表す指標値として算出する。これによれば、第2の実施形態に係る超音波診断装置1は、バックグラウンド成分を除去するための処理を実行せずに、時間方向のゆらぎを表す指標値を算出可能である。
(その他の実施形態)
上述した実施形態以外にも、種々の異なる形態にて実施されてもよい。
(画像処理装置)
例えば、上述した実施形態では、開示の技術が超音波診断装置1に適用される場合を説明したが、実施形態はこれに限定されるものではない。例えば、開示の技術は、画像処理装置200に適用されても良い。画像処理装置200は、例えば、ワークステーションやPACS(Picture Archiving Communication System)ビューワ等に対応する。
図11は、その他の実施形態に係る画像処理装置200の構成例を示すブロック図である。図11に示すように、画像処理装置200は、入力インタフェース201、ディスプレイ202、記憶回路210、及び処理回路220を備える。入力インタフェース201、ディスプレイ202、記憶回路210、及び処理回路220は、相互に通信可能に接続される。
入力インタフェース201は、マウス、キーボード、タッチパネル等、操作者からの各種の指示や設定要求を受け付けるための入力装置である。ディスプレイ202は、医用画像を表示したり、操作者が入力インタフェース201を用いて各種設定要求を入力するためのGUIを表示したりする表示装置である。
記憶回路210は、例えば、NAND(Not AND)型フラッシュメモリやHDD(Hard Disk Drive)であり、医用画像データやGUIを表示するための各種のプログラムや、当該プログラムによって用いられる情報を記憶する。
処理回路220は、画像処理装置200における処理全体を制御する電子機器(プロセッサ)である。処理回路220は、画像処理機能221、算出機能222、指標画像生成機能223、及び出力制御機能224を実行する。画像処理機能221、算出機能222、指標画像生成機能223、及び出力制御機能224は、例えば、コンピュータによって実行可能なプログラムの形態で記憶回路210内に記録されている。処理回路220は、各プログラムを読み出し、実行することで読み出した各プログラムに対応する機能(画像処理機能221、算出機能222、指標画像生成機能223、及び出力制御機能224)を実現する。
画像処理機能221は、図1に示した画像処理回路130と基本的に同様の処理を実行可能である。また、算出機能222は、図1に示した算出機能161と基本的に同様の処理を実行可能である。また、指標画像生成機能223は、図1に示した指標画像生成機能162と基本的に同様の処理を実行可能である。また、出力制御機能224は、図1に示した出力制御機能163と基本的に同様の処理を実行可能である。
これにより、例えば、画像処理装置200において、画像処理機能221は、超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す。算出機能222は、スペックルノイズ低減処理後の複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。これにより、画像処理装置200は、画像中のゆらぎを定量的に評価することができる。
(特定の周波数成分を抽出するフィルタ処理によるゆらぎの強調)
また、例えば、上記の実施形態では、ステップS201〜S203の処理(LPF処理、スペックルノイズ低減処理、及び差分処理)により時間的なゆらぎを強調させる場合を説明したが、ゆらぎを強調させる処理はこれらの処理に限定されるものではない。例えば、特定の周波数成分を抽出するフィルタ処理により時間的なゆらぎを強調させることも可能である。
すなわち、画像処理回路130は、複数の画像に対して、特定の周波数成分のみを抽出するフィルタ処理を施す。そして、算出機能161は、フィルタ処理後の複数の画像に基づいて、指標値を算出する。なお、特定の周波数成分を抽出するフィルタ処理の一例としては、特定の周波数のみをそのまま通過させる逆ノッチフィルタが知られているが、これに限定されるものではない。
図12及び図13を用いて、特定の周波数成分を抽出するフィルタ処理によるゆらぎの強調について説明する。図12及び図13は、その他の実施形態に係るフィルタ処理について説明するための図である。
図12に示すように、画像処理回路130は、複数の画像I0に対して、逆ノッチフィルタによるフィルタ処理を行うことで、複数の画像I1を生成する。ここで、フィルタ処理の処理対象となる複数の画像I0は、例えば、LPF処理(ステップS201)及びスペックルノイズ低減処理(ステップS202)が施されたN枚のBモード画像である。つまり、画像処理回路130は、LPF処理及びスペックルノイズ低減処理が施されたN枚のBモード画像に対して、逆ノッチフィルタによるフィルタ処理を行う。これにより、画像処理回路130は、LPF処理及びスペックルノイズ低減処理が施されたN枚のBモード画像から、特定の周波数成分が抽出された画像I1をN枚生成する。そして、画像処理回路130は、フィルタ処理後のN枚の画像I1に対して、差分処理(ステップS203)を行って、N−4枚の差分画像を生成する(フレーム間隔が「4」の場合)。
ここで、このフィルタ処理により抽出される周波数成分は、例えば、時間的なゆらぎに特有の周波数成分が設定されるのが好適である。一例としては、画像処理回路130は、画像I0の位置P1における画素値(信号強度)の経時的変化と、画像I0の位置P2における画素値の経時的変化とに基づいて、フィルタ処理により抽出する周波数を決定する。なお、位置P1は、ゆらぎの成分を有する領域に含まれる画素に対応する。また、位置P2は、ゆらぎの成分を有しない領域に含まれる画素に対応する。
図13には、逆ノッチフィルタによるフィルタ処理の一例を例示する。図13に示すように、逆ノッチフィルタは、周波数軸上で特定の周波数成分を抽出する処理を実行する。なお、図13の上段及び下段において、横軸は時間に対応し、縦軸は振幅に対応する。また、図13の中段において、横軸は周波数に対応し、縦軸は正規化された振幅に対応する。
図13の上段に示すように、位置P1における画素値及び位置P2における画素値は、それぞれことなる経時的変化を示す。ここで、それぞれの位置における画素値(振幅)の経時的変化に対してフーリエ変換を行うと、周波数ごとに正規化された振幅が得られる(図13の中段)。ここで、位置P1の値と位置P2の値との違いが顕著な周波数には、ゆらぎの成分が多く含まれると考えられる。例えば、0.34Hzにおいて、位置P1の値が位置P2の値より顕著に大きい場合には、画像処理回路130は、0.34Hzの成分を抽出する。そして、画像処理回路130は、0.34Hz以外の周波数成分を0にすることで、0.34Hzの周波数成分を得る。そして、画像処理回路130は、0.34Hzの周波数成分に対して逆フーリエ変換を行うことで、位置P1及び位置P2のそれぞれについて、0.34Hzの周波数成分を抽出した振幅の経時的変化を得る(図13の下段)。
このように、画像処理回路130は、複数の画像I0に基づいて、各画素位置における画素値の経時的変化を得る。そして、画像処理回路130は、各画素位置における画素値の経時的変化に対してフーリエ変換を行う。そして、画像処理回路130は、0.34Hzの周波数成分を残して逆フーリエ変換を行うことで、各画素位置について、0.34Hzの周波数成分を抽出した振幅の経時的変化を得る。そして、画像処理回路130は、逆フーリエ変換により出力された振幅を各時刻(時相)の各画素位置に割り当てることで、時系列に並ぶ複数の画像I1を生成する(図12右図)。
なお、図12及び図13はあくまで一例であり、図示の内容に限定されるものではない。例えば、図12では、図4におけるステップS202とステップS203との間において、特定の周波数成分を抽出するフィルタ処理を実行する場合を説明したが、実施形態はこれに限定されるものではない。特定の周波数成分を抽出するフィルタ処理は、例えば、ステップS205より前であれば任意のタイミングで実行可能である。ただし、ゆらぎの成分を効率良く抽出するためには、特定の周波数成分を抽出するフィルタ処理は、高周波ノイズやスペックルノイズが低減された後(つまり、ステップS202の後)に実行されるのが好適である。
また、図13では、0.34Hzの周波数成分を抽出する場合を説明したが、実施形態はこれに限定されるものではなく、任意の値の周波数成分を抽出してもよい。つまり、画像処理回路130は、予め設定された任意の値の周波数成分を抽出することができる。また、フィルタ処理により抽出される周波数の値は、検査ごと(パラメトリック画像の撮像ごと)に任意の値が入力されてもよい。この周波数の入力は、例えば、操作者により任意の数値を入力する方式であってもよいし、予め段階的に設定された周波数の中から選択する方式であってもよい。
(直交座標変換に基づく変換処理によるゆらぎの強調)
また、特定の周波数成分を抽出するフィルタ処理に限らず、直交座標変換によって、血管腫の時間的なゆらぎを強調させることも可能である。
すなわち、画像処理回路130は、複数の画像に対して、直交座標変換による変換処理を行うことで、変換処理後の複数の画像を生成する。つまり、変換処理後の複数の画像は、直交座標変換により得られる信号を、各画素位置に割り当てたものである。なお、図14A及び図14Bは、直交座標変換の概念図である。バックグラウンドおよび血管腫のゆらぎ成分に関する時間信号を直交座標変換し、クラッタ空間に変換する。図14A及び図14Bでは、クラッタ空間3が血管腫とバックグラウンドのゆらぎ成分を分離出来る最適な座標変換である。また、図15は、その他の実施形態に係る変換処理について説明するための図である。
具体的には、画像処理回路130は、LPF処理及びスペックルノイズ低減処理が施されたN枚のBモード画像に対して、直交座標変換による変換処理を行う。これにより、画像処理回路130は、LPF処理及びスペックルノイズ低減処理が施されたN枚のBモード画像から、主成分分析における寄与率が高い成分を残存させた画像をN枚生成する。そして、画像処理回路130は、変換処理後のN枚の画像に対して、差分処理(ステップS203)を行って、N−4枚の差分画像を生成する(フレーム間隔が「4」の場合)。
このように、画像処理回路130は、複数の画像に対して、直交座標変換において血管腫のゆらぎを特徴的に抽出する変換処理を施す。そして、算出機能161は、変換処理後の複数の画像に基づいて、指標値を算出する。
なお、上記の説明はあくまで一例であり、上記の説明に限定されるものではない。例えば、上記の説明では、図4におけるステップS202とステップS203との間において、直交座標変換による変換処理を実行する場合を説明したが、実施形態はこれに限定されるものではない。直交座標変換による変換処理は、例えば、ステップS205より前であれば任意のタイミングで実行可能である。ただし、ゆらぎの成分を効率良く抽出するためには、直交座標変換による変換処理は、高周波ノイズやスペックルノイズが低減された後(つまり、ステップS202の後)に実行されるのが好適である。
(3次元画像への適用)
また、例えば、上述した実施形態では、2次元画像を用いた場合の処理を説明したが、これに限らず、3次元画像(ボリュームデータ)を用いた場合にも適用可能である。
すなわち、画像処理回路130は、超音波を用いて収集された時系列の複数の3次元画像それぞれについて、スペックルノイズ低減処理を施す。算出機能161は、スペックルノイズ低減処理後の複数の3次元画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する。この場合、出力制御機能163は、3次元画像に対してMPR(Multi Planar Reconstruction)処理、或いは、ボリュームレンダリング処理を行うことにより2次元の画像を生成し、表示するのが好適である。
(動画表示)
また、例えば、上述した実施形態では、時系列に並んだN枚のBモード画像から1枚のパラメトリック画像を表示する場合を説明したが、実施形態はこれに限定されるものではない。例えば、超音波診断装置1は、パラメトリック画像を動画として表示することも可能である。
この場合、超音波診断装置1は、1〜Nフレーム目のBモード画像を用いて、Nフレーム目のパラメトリック画像を表示する。次に、超音波診断装置1は、2〜N+1フレーム目のBモード画像を用いて、N+1フレーム目のパラメトリック画像を表示する。続いて、超音波診断装置1は、3〜N+2フレーム目のBモード画像を用いて、N+2フレーム目のパラメトリック画像を表示する。このように、超音波診断装置1は、処理対象となる複数の画像を1枚ずつ(1フレームずつ)更新することで、パラメトリック画像を動画として表示することができる。
なお、上記説明において用いた「プロセッサ(回路)」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサは記憶回路150に保存されたプログラムを読み出し実行することで機能を実現する。なお、記憶回路150にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。なお、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つのプロセッサとして構成し、その機能を実現するようにしてもよい。更に、各図における複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。例えば、画像処理回路130の機能は、処理回路160に統合されても良い。更に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
また、上述した実施形態において説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部又は一部を手動的に行なうこともでき、或いは、手動的に行なわれるものとして説明した処理の全部又は一部を公知の方法で自動的に行なうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、上述した実施形態で説明した画像処理方法は、予め用意された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この画像処理プログラムは、インターネット等のネットワークを介して配布することができる。また、この画像処理プログラムは、ハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくともひとつの実施形態によれば、画像中のゆらぎを定量的に評価することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 超音波診断装置
130 画像処理回路
160 処理回路
161 算出機能

Claims (17)

  1. 超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す画像処理部と、
    前記スペックルノイズ低減処理後の前記複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する算出部と、
    を備えた画像処理装置。
  2. 前記関心領域内の各位置における前記指標値に基づいてパラメトリック画像を生成する画像生成部を更に備えた、
    請求項1に記載の画像処理装置。
  3. 前記算出部は、前記関心領域内の少なくとも一部に対応する計測領域内の各位置の前記指標値に基づいて、前記計測領域の代表値を算出する、
    請求項1又は2に記載の画像処理装置。
  4. 前記画像処理部は、前記スペックルノイズ低減処理の前に、前記複数の画像に対して、時間方向へのローパスフィルタ処理を施す、
    請求項1乃至3のうちいずれか1つに記載の画像処理装置。
  5. 前記画像処理部は、前記スペックルノイズ低減処理の前に、前記複数の画像に対して、画像間の動きを補正する動き補正処理を施す、
    請求項1乃至4のうちいずれか1つに記載の画像処理装置。
  6. 前記画像処理部は、前記複数の画像に対して、特定の周波数成分のみを抽出するフィルタ処理を施し、
    前記算出部は、前記フィルタ処理後の前記複数の画像に基づいて、前記指標値を算出する、
    請求項1乃至5のうちいずれか1つに記載の画像処理装置。
  7. 前記画像処理部は、前記複数の画像に対して、直交座標変換において血管腫のゆらぎを特徴的に抽出する変換処理を施し、
    前記算出部は、前記変換処理後の前記複数の画像に基づいて、前記指標値を算出する、
    請求項1乃至5のうちいずれか1つに記載の画像処理装置。
  8. 前記算出部は、前記ゆらぎの周波数とは異なる周波数のゆらぎの成分を前記画像信号強度から除去した上で、前記指標値を算出する、
    請求項1乃至7のうちいずれか1つに記載の画像処理装置。
  9. 前記画像処理部は、前記複数の画像のうち、予め設定されたフレーム間隔で各画像間の差分処理を行って、複数の差分画像を生成し、
    前記算出部は、前記複数の差分画像を用いて、前記指標値を算出する、
    請求項8に記載の画像処理装置。
  10. 前記算出部は、
    前記複数の差分画像それぞれについて、各画素の画素値の絶対値と周辺画素の画素値の絶対値とが積算された積算値を算出し、
    前記複数の画像それぞれについて、各画素の画素値と周辺画素の画素値との平均値を算出し、
    前記積算値を前記平均値で除算した除算値を用いて、前記指標値を算出する、
    請求項9に記載の画像処理装置。
  11. 前記算出部は、前記複数の画像それぞれにおける各画素の前記除算値の総和又は統計値を、前記指標値として算出する、
    請求項10に記載の画像処理装置。
  12. 前記画像処理部は、操作者により指定された前記フレーム間隔で、前記差分処理を行う、
    請求項9乃至11のうちいずれか1つに記載の画像処理装置。
  13. 前記画像処理部は、前記関心領域のうちの計測領域とは異なる領域に含まれる画像信号強度のゆらぎの周波数に応じて前記フレーム間隔を決定し、決定した前記フレーム間隔で、前記差分処理を行う、
    請求項9乃至11のうちいずれか1つに記載の画像処理装置。
  14. 前記算出部は、前記複数の画像の各位置における時間方向の変動係数を、前記指標値として算出する、
    請求項1乃至7のうちいずれか1つに記載の画像処理装置。
  15. 超音波を用いて収集された時系列の複数の画像それぞれに基づいて、複数の時相それぞれについて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出し、前記関心領域内の各位置について、前記複数の時相それぞれにおける前記指標値の総和、又は統計値を算出する算出部
    を備えた画像処理装置。
  16. 超音波を用いて収集された時系列の複数の画像に基づいて、関心領域内の各位置における画像信号強度の時間方向のゆらぎを示す指標値を、前記ゆらぎの周波数とは異なる周波数のゆらぎの成分を前記画像信号強度から除去した上で算出する算出部
    を備えた画像処理装置。
  17. 超音波を用いて収集された時系列の複数の画像それぞれについて、スペックルノイズ低減処理を施す画像処理部と、
    前記スペックルノイズ低減処理後の前記複数の画像に基づいて、関心領域内の各位置における画像信号強度のゆらぎを示す指標値を算出する算出部と、
    を備えた超音波診断装置。
JP2018089822A 2017-06-30 2018-05-08 画像処理装置及び超音波診断装置 Active JP7109986B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/989,865 US11730444B2 (en) 2017-06-30 2018-05-25 Image processing apparatus and ultrasound diagnosis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129714 2017-06-30
JP2017129714 2017-06-30

Publications (2)

Publication Number Publication Date
JP2019013736A true JP2019013736A (ja) 2019-01-31
JP7109986B2 JP7109986B2 (ja) 2022-08-01

Family

ID=65356347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089822A Active JP7109986B2 (ja) 2017-06-30 2018-05-08 画像処理装置及び超音波診断装置

Country Status (1)

Country Link
JP (1) JP7109986B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136823A (ja) * 2019-02-15 2020-08-31 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、撮像装置の制御方法、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313506A (ja) * 1994-05-24 1995-12-05 Ge Yokogawa Medical Syst Ltd 実時間画像表示方法および実時間画像診断装置
JP2009115765A (ja) * 2007-11-09 2009-05-28 Mitsubishi Electric Corp 目標撮像探知装置
JP2009153573A (ja) * 2007-12-25 2009-07-16 Panasonic Corp 超音波診断装置および断層画像処理方法
JP4744833B2 (ja) * 2004-09-24 2011-08-10 株式会社東芝 超音波診断装置
JP2012176232A (ja) * 2011-02-04 2012-09-13 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US20150342560A1 (en) * 2013-01-25 2015-12-03 Ultrasafe Ultrasound Llc Novel Algorithms for Feature Detection and Hiding from Ultrasound Images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313506A (ja) * 1994-05-24 1995-12-05 Ge Yokogawa Medical Syst Ltd 実時間画像表示方法および実時間画像診断装置
JP4744833B2 (ja) * 2004-09-24 2011-08-10 株式会社東芝 超音波診断装置
JP2009115765A (ja) * 2007-11-09 2009-05-28 Mitsubishi Electric Corp 目標撮像探知装置
JP2009153573A (ja) * 2007-12-25 2009-07-16 Panasonic Corp 超音波診断装置および断層画像処理方法
JP2012176232A (ja) * 2011-02-04 2012-09-13 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US20150342560A1 (en) * 2013-01-25 2015-12-03 Ultrasafe Ultrasound Llc Novel Algorithms for Feature Detection and Hiding from Ultrasound Images

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
磯野洋, 平田慎之介, 蜂屋弘之: "エコー信号振幅分布モデルを組み合わせたテクスチャ解析による肝組織性状定量化の試み", 日本超音波医学, vol. 42, JPN6022013561, 15 April 2015 (2015-04-15), JP, pages 494, ISSN: 0004747658 *
飯島尋子 ET AL.: "フレーム間層間検出法による肝血管腫内スペックルのゆらぎ検討", 日本超音波医学, vol. 29, no. 4, JPN6022013560, 15 May 2002 (2002-05-15), JP, pages 376, ISSN: 0004747657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136823A (ja) * 2019-02-15 2020-08-31 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、撮像装置の制御方法、及びプログラム
JP7278092B2 (ja) 2019-02-15 2023-05-19 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、撮像装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
JP7109986B2 (ja) 2022-08-01

Similar Documents

Publication Publication Date Title
JP7230255B2 (ja) 解析装置及び解析プログラム
JP6608232B2 (ja) 医用画像診断装置、医用画像処理装置および医用情報の表示制御方法
JP5049773B2 (ja) 超音波診断装置、超音波画像処理装置、超音波画像処理プログラム
JP4921826B2 (ja) 超音波診断装置及びその制御方法
JP5002181B2 (ja) 超音波診断装置及び超音波診断装置制御方法
JP5106091B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US10101450B2 (en) Medical image processing apparatus, a medical image processing method and a medical diagnosis apparatus
JP7043193B2 (ja) 解析装置、超音波診断装置、及び解析プログラム
JP5259175B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP2023158119A (ja) 解析装置及び解析プログラム
WO2020149191A1 (ja) 画像解析装置
JP7109986B2 (ja) 画像処理装置及び超音波診断装置
JP5196994B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US20220273266A1 (en) Ultrasound diagnosis apparatus and image processing apparatus
CN113729762B (zh) 医用图像诊断装置、医用图像处理装置及医用图像处理方法
JP7346212B2 (ja) 解析装置及び解析プログラム
JP2019181183A (ja) 医用診断装置、医用画像処理装置、及び画像処理プログラム
US11730444B2 (en) Image processing apparatus and ultrasound diagnosis apparatus
JP5797514B2 (ja) 超音波診断装置、画像処理装置及びプログラム
JP2016214868A (ja) 超音波診断装置及び画像診断装置
JP2021186676A (ja) 超音波診断装置及び画像処理装置
JP5570927B2 (ja) 超音波診断装置、超音波画像処置装置、医用画像処理装置及び超音波画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7109986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150