JP2019011975A - 水道使用状態判定装置 - Google Patents

水道使用状態判定装置 Download PDF

Info

Publication number
JP2019011975A
JP2019011975A JP2017127414A JP2017127414A JP2019011975A JP 2019011975 A JP2019011975 A JP 2019011975A JP 2017127414 A JP2017127414 A JP 2017127414A JP 2017127414 A JP2017127414 A JP 2017127414A JP 2019011975 A JP2019011975 A JP 2019011975A
Authority
JP
Japan
Prior art keywords
water
pressure
moving average
average value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017127414A
Other languages
English (en)
Other versions
JP6844450B2 (ja
Inventor
功浩 松波
Isahiro Matsunami
功浩 松波
浩展 安藤
Hironobu Ando
浩展 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2017127414A priority Critical patent/JP6844450B2/ja
Publication of JP2019011975A publication Critical patent/JP2019011975A/ja
Application granted granted Critical
Publication of JP6844450B2 publication Critical patent/JP6844450B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

【課題】水道の使用が終了したことをより確実に判定できる水道使用状態判定装置を提供する。【解決手段】コントローラは、水道の使用が開始されたと判定すると、圧力センサからのセンサ信号を一定時間毎にサンプリングし(S21)、センサ信号の移動平均値を求めると共に(S22)、センサ信号の分散を求める(S23)。そして、移動平均値と水道の使用が開始される直前の圧力値との差が一定範囲内であり(S24;NO)、且つ、分散が閾値未満になると(S25;NO)水道の使用が終了したと判定する(S28)。【選択図】図2

Description

本発明は、水道の使用状態を判定する装置に関する。
水道管の水漏れは、放置しておくと家財道具等の財産に大きな損害をもたらすため、早期に検出する必要がある。水漏れを検出する方法として、水漏れが発生する可能性が高いと思われる水道管の近くに水漏れ検出センサを配置することが考えられるが、検出率を向上させるには、センサをより多くの場所に配置する必要がある。
特許第3725693号公報 国際公開第2007/024894パンフレット
また、家庭への水道引き込み口近くにおいて水の流れを監視し、水が長時間使用されていた場合には、通常の水使用ではなく水漏れと判定することが考えられる。すなわち、水道管内に水流が発生すると管内の圧力が低下する。そこで、水道引き込み口近くに水圧センサを取り付け、その圧力変化を見ることで水道の使用状態を検出する。
水道の使用が開始されると管内の水圧が低下するので、使用開始については比較的容易に判定できる。一方、水道の使用中や使用終了時については様々なケースが想定されるため、使用終了の判定は難しい。特に、水の使用量が少なく圧力低下が少ない状況では、供給水圧の変動によって圧力が上昇すると、使用開始前と同じ圧力になり「使用終了」と誤判断するおそれがある。また、水道の使用を終了した際に水圧が元に戻らない場合や、水道の使用中の圧力変動が少ないため、「使用終了」と誤判断するおそれもある。
本発明は上記事情に鑑みてなされたものであり、その目的は、水道の使用が終了したことをより確実に判定できる水道使用状態判定装置を提供することにある。
請求項1記載の水道使用状態判定装置によれば、判定部は、水道の使用が開始されたと判定すると、圧力センサからのセンサ信号を一定時間毎にサンプリングし、サンプリングしたセンサ信号の移動平均値を求めると共に、前記センサ信号の分散を求める。そして、移動平均値と水道の使用が開始される直前の圧力値との差が一定範囲内であり、且つ、分散が閾値未満になった状態が一定時間継続すると、水道の使用が終了したと判定する。水道の使用中と、仕様終了時における水道管内の圧力の状態には、以下のような特徴がある。
(1)水の使用量が少ない場合は、水圧の低下が小さいため、供給圧の変動に伴う圧力変動が大きくなる。これにより、水の使用開始前の圧力を一時的に超えることもある。すなわち、圧力の分散が大きくなる傾向を示す。
(2)水の使用終了時には、圧力が使用開始前の値に戻らなくても、使用開始前の値を基準とする一定の範囲内に戻る。そして、水圧の変動が非常に小さくなる。すなわち、圧力の移動平均値を求めると、その移動平均値と水使用開始前の圧力との差が一定範囲内であり、且つ圧力の分散が小さくなる。
(3)水の使用量が多い場合は、水の使用開始前との圧力差が大きくなるが、圧力変動が少ない。すなわち、圧力の移動平均値と水使用開始前の圧力との差は(2)の場合よりも大きくなる。
(4)水の使用中においても、比較的長い時間に亘って圧力変動が小さくなる場合はあるが、小刻みに変動が生じている。これを分散で評価すると、水の使用終了時よりも分散が大きくなる。
以上の各状態に応じた傾向から、
(A)圧力の移動平均値と、水の使用開始前の圧力との差が一定範囲内である。
(B)圧力の分散が一定値より小さい。
これらの2つの条件が一定時間以上成立した際には上記(2)のケースに該当することで、水の使用が終了したと判定できる。したがって、圧力センサが出力する信号について移動平均値と分散とを評価することで、水道の使用が終了した時点を確実に判定できる。
請求項2記載の水道使用状態判定装置によれば、判定部は、水道の使用が終了したと判定すると、現時点より2α秒前からα秒前までの期間に求めた第1移動平均値と、現時点よりα秒前から現時点までの期間に求めた第2移動平均値とを比較する。そして、分散が閾値を上回り、且つ、第2移動平均値と第1移動平均値との差が閾値を上回ると、水道の使用が開始されたと判定する。
水道が使用されていない状態から、使用を開始した際の圧力の変化は、以下のようになる。
(1)水が使用されてない状態では、供給圧力の変動に応じた圧力の変化があるが、その変化は小さい。すなわち、移動平均の値は殆ど変化せず、圧力の分散もゼロに近い値を示す。
(2)水の使用が開始されると、圧力が急激に低下する。その変化に伴い、移動平均値は時間の経過と共に徐々に低下する。また、圧力の分散は、使用を開始した直後から変化する。
そこで、判定部は、現時点から過去に遡る圧力値に基づいて得られている第1,第2移動平均値を比較し、分散が約ゼロから変化したことを起点として、一定の監視時間に亘って分散が閾値を超えており、且つ2つの移動平均値との差が閾値を上回ると水道の使用が開始されたと判定する。これにより、水道の使用が開始された時点を確実に判定できる。
一実施形態であり、漏水検知処理を示すフローチャート 水使用終了判定処理を示すフローチャート 水使用開始判定処理を示すフローチャート 漏水検出システムの構成を示す機能ブロック図 コントローラの内部構成を中心に示す機能ブロック図 漏水の発生状態に応じて圧力センサにより検出される圧力の変化を示す図 図6に示す圧力の変化に応じた圧力の微分和の変化を示す図 漏水が無い場合に圧力センサが出力する電圧値を示す図 漏水が有る場合に圧力センサが出力する電圧値を示す図 水の使用量が少ない場合の水道管内の圧力と水量の変化を示す図 図10に示す圧力の変化を200秒まで示すと共に、圧力の分散を示す図 図11の一部を拡大して示す図 水の使用状態に応じて、条件1),2)の判定の真偽がどのようになるかを示す図 現在を起点として求められる「移動平均値1」,「移動平均値2」の関係を示す図 水の使用が開始された場合の「移動平均値2」の変化を示す図
以下、一実施形態について図面を参照して説明する。図4は、漏水検出システムの構成を示す機能ブロック図である。水道管1は、例えば一般家庭に給水するために配管されているもので、その途中部位に電磁弁2及び圧力センサ3が配置されている。ここで、電磁弁2よりも上流側,つまり水源側の水道管を1u,電磁弁2よりも下流側,つまり家庭側の水道管を1dとする。水道管1dの末端には、蛇口4が配置されている。
圧力センサ3が出力するセンサ信号は、水道管1d内の水圧に応じた電圧信号として出力されるもので、当該信号はコントローラ5に入力されている。コントローラ5は、例えばモータであるバルブコントロールアクチュエータ6を介して、電磁弁2の開閉を制御する。電磁弁2は、水道管1を全開状態,全閉状態にする。コントローラ5には、商用交流電源7より電源が供給され、内部の図示しない電源回路により直流の動作用電源が生成される。生成された電源は、アクチュエータ6にも供給される。尚、電源は、バッテリより供給されるものでも良い。
図5は、コントローラ5の内部構成を中心に示す機能ブロック図である。コントローラ5は、マイクロコンピュータ11を中心に構成されている。マイコン11は、メモリ12に記憶されている制御プログラム及びデータに従い、各種制御を行う。圧力センサ3のセンサ信号は、アンプ13,バッファ14を介して、A/D変換器15,16によりそれぞれA/D変換されて、マイコン11に入力される。
ここで、アンプ13を経由する方は、微小な水漏れを検知するため電圧信号を増幅する。一方、バッファ14を経由する方は、水の使用開始を検出する場合のように、水圧の変化が比較的大きい場合に使用する。尚、1つのA/D変換器の入力チャネルを切替えることで、アンプ13,バッファ14を経由して入力される電圧をA/D変換しても良い。また、A/D変換器は、マイコン11に内蔵されていても良い。
マイコン11は、通信インターフェイス17を介して表示機18と通信を行う。表示機18は、例えば家屋内の壁面などに設置されており、コントローラ5が把握した水道管1の状態情報等が、シンボルや文字メッセージ等で表示される。図5に示す通信インターフェイス17は有線通信用のインターフェイスであるが、例えばWi−Fi(登録商標)等の無線通信用のインターフェイスであっても良い。また、表示機は、ユーザが携帯しているスマートフォン等でも良い。コントローラ5は、検知部及び判定部に相当する。以上の構成において、圧力センサ3,コントローラ5及び表示機18が漏水検出装置20を構成している。
次に、本実施形態の作用について図1から図3,図4から図16を参照して説明する。コントローラ5は、図1に示す漏水検知処理,図2に示す水使用終了判定処理,及び図3に示す水使用開始判定処理を行う。
<漏水検知処理>
コントローラ5は、先ず「水道使用判定」を行う(S1)。この「水道使用判定」は、上記「水使用開始判定処理」である。そして、水道が使用中であれば(S2;YES)「水道使用時間判定」を行う(S13)。「水道使用時間判定」は、水道の継続的な使用時間を判定する処理である。その上限時間は、漏水検出装置20が適用される給水系の実態に応じて、例えばユーザが設定する。継続的な使用時間が上限を超えると(S14;NO)、「漏水あり」と判定し表示機18により水漏れをユーザに通知する(S12)。
一方、水道が使用中でなければ(S2;NO)「水道使用スケジューリング時間判定」を行う(S3)。ここでは、コントローラ5が、過去の水道の使用パターンを記憶しておき、ユーザが水道を使用すると予測される時間帯か否かを判定する。そして、前記時間帯でなければ(S4;NO)、図中に「シャットオフバルブ」と示す電磁弁2を閉じる(S5)。また、前記時間帯であれば(S4;YES)ステップS1に移行する。
電磁弁2が完全に閉じると(S6;NO)、圧力センサ3のセンサ信号をA/D変換して読み込む(S7)。このセンサ信号の読み込み,サンプリングは、例えば0.2秒間隔で行われる。それから、0.2秒間隔で読み込んだセンサ信号について微分値を求めると、その微分値を順次累積加算して「微分和」を求める(S8)。そして、判定時間が経過するまで(S9;NO)ステップS7,S8を繰り返し実行する。
ここで、図6は、漏水が無い場合、1.0ml/分〜4.0ml/分で漏水が発生している各場合の、時間経過に伴う圧力センサ3のセンサ信号が示す圧力の変化を示している。圧力の初期値は、各測定を行った状況下でそれぞれ異なっている。また、漏水が無い場合でも、圧力が略一定の場合と、微小に変動している場合とがある。
ここでの漏水は4.0ml/分以下の微小な量であるため、圧力が低下する度合いは非常に緩慢である。例えば3.0ml/分の場合、120秒が経過した時点で初期値より低下した圧力は、凡そ30Kpa程度である。水道管の供給圧は常時変動する可能性が有るため、漏水の発生した際には、図6に示すように単調に減少するとは限らない。したがって、圧力の即値で漏水に相当する低下を判定しようとすると圧力値が十分に低下するまで待つ必要があり、判定に時間を要してしまう。例えば、5分〜10分程度の時間が必要となる。
図8に示すように、水漏れが無い場合に圧力センサ3が出力する信号の電圧は、例えば2.055V程度を中心として殆どばらつきが無い。一方、図8に示すように、水漏れがある場合に圧力センサ3が出力する信号の電圧はばらつきが大きく、0.06V程度の範囲で変動している。
これに対して、図7に示すように、圧力値の微分値を累積した微分和を求めると、漏水が発生したことによる変化の傾向がより顕著に表れる。漏水が無い場合の微分和はやはり略ゼロである。しかし、漏水量が最小である1.0ml/分の場合でも、20秒〜30秒程度の時間が経過した時点で微分和は0.2程度に達しており、有意な差が表れている。したがって、圧力の微分和を評価すれば、微小な漏水でも短時間で検知できる。
再び、図1を参照する。例えば、サンプル数が50程度になる判定時間に達すると(S9;YES)、「水漏れ判定」を行う(S10)。「水漏れ判定」は、ステップS8で求めた微分和を判定値と比較することで行う。微分和が判定値未満であれば(S11;NO)、漏水は発生していないと判断し、電磁弁2を開放して(S15)ステップS1に戻る。一方、微分和が判定値以上であれば(S11;YES)漏水発生と判断し、ステップS12に移行する。
ここで、水道管内の圧力が低下する割合は、水道管から水が漏れ出す速度と配管の長さ,つまり配管内の水の体積に依存する。したがって、水漏れの有無を判断する閾値を、漏水検出装置20が設置される配管システムに合わせて調整すれば、判定を精確に行うことができる。配管内の水量が多い場合は、判定時間を長くする,若しくは判定値を低下させる、又はそれらの両方を行う。これにより、例えば一般家庭のように、水道管1d内の水量が比較的少なく且つ水の使用量が一定していない状況下では漏水判定を短時間で終了させて、水道が使用できない時間を極力削減できる。また、例えば工場等のように、水道管内の水量は多いが水を使用しない時間が決まっている状況下では、漏水判定に時間をかけて誤判定を減らすことができる。
また、以下のように判定時間及び/又は判定値を決定しても良い。漏水検出装置20を最初に設置した際に、コントローラ5を閾値決定モードに設定する。そして、電磁弁2を閉じた状態で、その下流側で一定の水量を排出される。その際に低下した圧力に基づいて判定時間及び/又は判定値を決定する。このようにすれば、漏水検出装置20が設置された水道管の実際の水量に合せて判定時間及び/又は判定値を決定できる。
<水使用終了判定処理>
次に、水使用終了判定処理について説明する。先ず、使用終了判定の原理について、図10から図13を参照して説明する。
図10は、水の使用量が少ない場合の水道管内の圧力と水量の変化を示している。また、双方についての移動平均値も太線で示している。このケースでは、水圧の低下は小さいので、供給圧の変動に伴って圧力センサ3により検知される圧力の変化が相対的に大きくなる。そのため、圧力の瞬時値としては、使用開始前の圧力を超えることもある。したがって、圧力の分散を評価すると、その値は大きくなる。
図11は、図10に示す圧力の変化を200秒まで示すと共に、圧力の分散も示している。水の使用が終了した時には、圧力が図中に破線で示す使用開始前の値に戻らないこともあるが、使用開始前の値を基準とする一定の範囲内には戻る。そして、水圧の変動が非常に小さくなる。すなわち、圧力の移動平均値を求めると、その移動平均値と水使用開始前の圧力との差が一定範囲内であり、且つ圧力の分散が小さくなる。
一方、水の使用量が多い場合は、水の使用開始前との圧力差が大きくなるが、圧力の変動は比較的小さい。すなわち、圧力の移動平均値と水使用開始前の圧力との差は、水の使用が終了した場合よりも大きくなる。
また、水の使用中においても、比較的長い時間に亘って圧力変動が小さくなる場合はあるが、小刻みに変動が生じている。図12に示すように、これを分散で評価すると、水の使用終了時よりも分散が大きくなる。
以上の各状態に応じた傾向から、
1)圧力の移動平均値と、水の使用開始前の圧力との差を評価する。使用開始により圧力は低下するので、上記の差は負の値を示す。そこで、負の値の閾値1を設定し、
(移動平均値)−(使用開始前圧力)≧(閾値1)
が成立すれば、移動平均値は使用開始前圧力を基準とする一定の範囲内にある。そして、
2)圧力の分散が一定値より小さい。
これらの2つの条件が一定時間成立した際には、水の使用が終了したと判定できる。したがって、圧力センサ3が出力する信号について移動平均値と分散とを評価することで、水道の使用が終了した時点を確実に判定できる。尚、図13は、各ケースに応じて、上記の条件1),2)の判定の真偽がどのようになるかを示している。
次に、水使用終了判定処理について図2を参照して説明する。先ず、圧力センサ3のセンサ信号を読み込んで(S21)移動平均値を算出し(S22)、圧力の分散値を算出する(S23)。そして、移動平均値より水使用開始前の圧力を減じた差を、「閾値1」と比較する(S24)。「水使用開始前圧力」の特定については、後述する水使用開始判定処理で説明する。前記差が「閾値1」未満であれば(YES)水を使用中であると判定し、終了判定用のカウンタ1をクリアして、一定時間,つまりサンプリング間隔である例えば0.2秒待機してから(S29)ステップS21に移行する。
一方、前記差が「閾値1」を超えると(NO)、圧力の分散を「閾値2」と比較する(S25)。分散が「閾値2」を超えていると(YES)やはり水を使用中であると判定し、ステップS29に移行する。分散が「閾値2」以下になれば(NO)上記の条件1),2)が何れも「真」となるが、誤判定を防止するため終了判定用のカウンタ1をインクリメントする(S26)。そして、カウンタ1のカウント値を「カウンタ閾値1」と比較する(S27)。前記カウント値が「カウンタ閾値1」以下であれば(NO)一定時間待機してから(S30)ステップS21に移行する。一方、前記カウント値が「カウンタ閾値1」を超えると(YES)、水の使用が終了したと判定する(S28)。
<水使用開始判定処理>
次に、水使用開始判定処理について説明する。先ず、使用開始判定の原理について、図14及び図15を参照して説明する。
水が使用されてない状態では、供給圧力の変動に応じた管内の圧力変化はあるが、その変化は小さく、圧力の分散は非常にゼロに近い。ここで、図14に示すように、現在を起点として過去2α秒からα秒までの移動平均値を「移動平均値1」,現在を起点として過去α秒までの移動平均値を「移動平均値2」とする。そして、前記「移動平均値1」と前記「移動平均値2」との差は小さい。
そして、水の使用が開始されると圧力が急激に低下し、その圧力変化によって移動平均値が時間経過と共に徐々に低下する。したがって、図15に示すように「移動平均値2」は使用開始直後から低下するが、「移動平均値1」は使用開始から所定時間が経過した後から低下する。これにより、「移動平均値2」と「移動平均値1」との差は、一定時間の間一定値以上を示す。また、圧力の分散は、使用開始直後から変化する。
以上から、分散が変化したことを起点として、一定時間
1)分散が閾値を超えている。
2)「移動平均値2」と「移動平均値1」の差が一定値を超えている。
これら2つの条件が成立した際に、水の使用が開始されたと判定する。
次に、水使用開始判定処理について図3を参照して説明する。先ず、圧力センサ3のセンサ信号を読み込んで(S31)「移動平均値1」を算出する(S32)。この「移動平均値1」をベースライン,前述の「水使用開始前圧力」とする。続いて、「移動平均値2」を算出し(S33)、圧力の分散を算出する(S34)。そして、求めた分散を「閾値1」と比較する(S35)。分散が「閾値1」以下であれば(NO)水は未使用の状態であると判定し、使用開始判定用の「カウンタ1及び2」をクリアする(S41)。そして、一定時間例えば0.2秒待機してから(S42)ステップS31に移行する。
分散が「閾値1」を超えると(S35;YES)「カウンタ1」をインクリメントする(S36)。そして、「移動平均値2」と「移動平均値1」との差を負の「閾値2」と比較する(S37)。前記差が「閾値2」以上であれば(NO)水は未使用の状態であると判定し、一定時間待機してから(S45)ステップS31に移行する。前記差が「閾値2」未満になると(YES)、「カウンタ2」をインクリメントする(S38)。そして、「カウンタ2」のカウント値を「カウンタ閾値2」と比較する(S39)。前記カウント値が「カウンタ閾値2」未満であれば(NO)、「カウンタ1」のカウント値を「カウンタ閾値1」と比較する(S43)。前記カウント値が「カウンタ閾値1」未満であれば(NO)ステップS45に移行する。
ステップS39において、カウント値が「カウンタ閾値2」に達すると(YES)、上記1)及び2)の条件が一定時間の間成立した状態となるので、水の使用が開始されたと判断し、水使用終了判定処理に移行する(S40)。一方、ステップS43において、カウント値が「カウンタ閾値1」に達すると(YES)、ステップS41と同様に「カウンタ1及び2」をクリアしてから(S44)ステップS45に移行する。このケースは、圧力の分散は「閾値1」を超えているが、途中で2つの移動平均値の差が「閾値2」以上となった状態が発生した場合であり、1)及び2)の条件が継続的に成立していないことを意味する。したがって、「カウンタ1及び2」をクリアする。
以上のように本実施形態によれば、漏水検出装置20のコントローラ5は、水道管1を電磁弁2により閉塞させた状態で、圧力センサ3が出力するセンサ信号を一定時間毎にサンプリングし、センサ信号の微分値を順次累積して微分和を求める。そして、所定の判定時間が経過した時点で微分和が判定値を超えると漏水を検出する漏水判定を実施する。微小な漏水が発生している場合、センサ信号が示す圧力の低下は緩やかに進行するが、センサ信号の微分値を累積した値は、センサ信号が示す圧力の即値よりも大きな変化を示す。したがって、センサ信号が示す圧力を即値で評価する場合に比較して、微小な漏水を短時間で検出できる。そして、本実施形態の漏水検出装置20は、水道管1を特殊な構造にすることなく、また精密な流量センサを用いることなく、圧力センサ3を用いて微小な漏水を検出できる。
また、コントローラ5は、判定時間及び/又は判定値を、電磁弁2が配置されている位置よりも下流側の水道管1d内の水量に応じて設定する。これにより、判定時間及び/又は判定値を、漏水検出装置20が配置されている配管システムに合せて設定し、判定を正確に行うことができると共に、判定時間を最適化して漏水判定を効率的に実施できる。
具体的には、コントローラ5は、水道管1d内の水量が多くなるのに応じて、判定時間を長く設定する,及び/又は判定値を低く設定する。圧力の低下度合いは水量に比例し、例えば水量が多ければ圧力の低下度合いは小さい。したがって、例えば判定値が一定であれば判定時間をより長く設定してサンプル数を多くして判定を確実に行ったり、判定時間が一定であれば判定値をより低く設定して、同じサンプル数に対する判定タイミングを早めることもできる。これにより、例えば水道管1d内の水量が比較的少なく、且つ水の使用量が一定していない状況下では漏水判定を短時間で終了させて、水道が使用できない時間を極力削減できる。また、水道管1d内の水量は多いが水を使用しない時間が決まっている状況下では、漏水判定に時間をかけて誤判定を減らすこともできる。
また、漏水検出装置20を最初に設置した際に、コントローラ5を閾値決定モードに設定し、電磁弁2を閉じた状態で一定の水量が排出された際に低下した圧力に基づいて判定時間及び/又は判定値を決定すれば、漏水検出装置20が設置された水道管の実際の水量に合せて判定時間及び/又は判定値を決定できる。
また、コントローラ5は、過去の水道の使用パターンを記憶しておき、水道が使用されない可能性が高い時間帯に漏水判定を実施する。これにより、ユーザが水道を使用する時間に漏水判定を行うことを回避できる。更に、コントローラ5は、漏水判定を実施する前に水道の使用の有無を判定し、水道が使用されていると判定すると漏水判定を実施せず、水道の使用が終了したと判定した後に漏水判定を実施するので、ユーザが水道を使用している時間を避けて漏水判定を行うことができる。
また、本実施形態によれば、コントローラ5は、水道の使用が開始されたと判定すると、圧力センサ3からのセンサ信号を一定時間毎にサンプリングし、センサ信号の移動平均値を求めると共に、センサ信号の分散を求める。そして、移動平均値と水道の使用が開始される直前の圧力値との差が一定範囲内であり、且つ分散が閾値未満になった状態が一定時間継続すると、水道の使用が終了したと判定する。これにより、水道の使用が終了した時点を確実に判定できる。
また、コントローラ5は、水道の使用が終了したと判定すると、現時点より2α秒前からα秒前までの期間に求めた「移動平均値1」と、現時点よりα秒前から現時点までの期間に求めた「移動平均値2」とを比較する。そして、分散が閾値を上回り、且つ、2つの移動平均値の差が閾値を上回ると、水道の使用が開始されたと判定する。これにより、水道の使用が開始された時点を確実に判定できる。
本発明は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
センサ信号のサンプリング間隔は、適宜変更して良い。
判定を行うためのサンプル数についても、適宜変更して良い。
図面中、1は水道管、2は電磁弁、3は圧力センサ、5はコントローラ、20は漏水検出装置を示す。

Claims (2)

  1. 水道管に配置される圧力センサと、
    この圧力センサからのセンサ信号に基づいて水道の使用状態を判定する判定部とを備え、
    前記判定部は、水道の使用が開始されたと判定すると、前記センサ信号を一定時間毎にサンプリングし、サンプリングしたセンサ信号の移動平均値を求めると共に、前記センサ信号の分散を求め、
    前記移動平均値と水道の使用が開始される直前の圧力値との差が一定範囲内であり、且つ、前記分散が閾値未満になった状態が一定時間継続すると、水道の使用が終了したと判定する水道使用状態判定装置。
  2. 前記判定部は、水道の使用が終了したと判定すると、前記センサ信号を一定時間毎にサンプリングし、サンプリングしたセンサ信号の移動平均値を求めると共に、前記センサ信号の分散を求め、
    現時点より2α秒前からα秒前までの期間に求めた第1移動平均値と、現時点よりα秒前から現時点までの期間に求めた第2移動平均値とを比較し、
    前記分散が閾値を上回り、且つ、前記第2移動平均値と前記第1移動平均値との差が閾値を上回ると、水道の使用が開始されたと判定する請求項1記載の水道使用状態判定装置。
JP2017127414A 2017-06-29 2017-06-29 水道使用状態判定装置 Active JP6844450B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127414A JP6844450B2 (ja) 2017-06-29 2017-06-29 水道使用状態判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127414A JP6844450B2 (ja) 2017-06-29 2017-06-29 水道使用状態判定装置

Publications (2)

Publication Number Publication Date
JP2019011975A true JP2019011975A (ja) 2019-01-24
JP6844450B2 JP6844450B2 (ja) 2021-03-17

Family

ID=65227367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127414A Active JP6844450B2 (ja) 2017-06-29 2017-06-29 水道使用状態判定装置

Country Status (1)

Country Link
JP (1) JP6844450B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721477A (zh) * 2019-03-20 2020-09-29 青岛海尔电冰箱有限公司 水路的异常检测方法与计算机存储介质
CN114087996A (zh) * 2021-10-19 2022-02-25 广东芬蓝环境科技有限公司 一种污泥的动态均料方法、装置、电子设备及存储介质
CN114804245A (zh) * 2022-04-25 2022-07-29 广东纯米电器科技有限公司 制水速度的调节方法、系统、电子装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315201A (ja) * 2002-04-25 2003-11-06 Toto Ltd 漏水検査器
JP2008190832A (ja) * 2007-02-07 2008-08-21 Toshiba Corp ガス器具判別装置と判別方法
JP2012141266A (ja) * 2011-01-06 2012-07-26 Yazaki Corp ガス状況判断装置及びトリガ信号発生装置
JP2012529653A (ja) * 2009-06-11 2012-11-22 ユニヴァーシティ オブ ワシントン 液体分配システム内の液体の流れに影響する事象の感知
JP2015099125A (ja) * 2013-11-20 2015-05-28 大和ハウス工業株式会社 漏水判定装置及び漏水判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315201A (ja) * 2002-04-25 2003-11-06 Toto Ltd 漏水検査器
JP2008190832A (ja) * 2007-02-07 2008-08-21 Toshiba Corp ガス器具判別装置と判別方法
JP2012529653A (ja) * 2009-06-11 2012-11-22 ユニヴァーシティ オブ ワシントン 液体分配システム内の液体の流れに影響する事象の感知
JP2012141266A (ja) * 2011-01-06 2012-07-26 Yazaki Corp ガス状況判断装置及びトリガ信号発生装置
JP2015099125A (ja) * 2013-11-20 2015-05-28 大和ハウス工業株式会社 漏水判定装置及び漏水判定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721477A (zh) * 2019-03-20 2020-09-29 青岛海尔电冰箱有限公司 水路的异常检测方法与计算机存储介质
CN111721477B (zh) * 2019-03-20 2022-12-20 青岛海尔电冰箱有限公司 水路的异常检测方法与计算机存储介质
CN114087996A (zh) * 2021-10-19 2022-02-25 广东芬蓝环境科技有限公司 一种污泥的动态均料方法、装置、电子设备及存储介质
CN114087996B (zh) * 2021-10-19 2024-04-19 广东芬蓝环境科技有限公司 一种污泥的动态均料方法、装置、电子设备及存储介质
CN114804245A (zh) * 2022-04-25 2022-07-29 广东纯米电器科技有限公司 制水速度的调节方法、系统、电子装置及存储介质

Also Published As

Publication number Publication date
JP6844450B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6879081B2 (ja) 漏水検出装置
US20190063689A1 (en) Leak detection device and method
JP2019011975A (ja) 水道使用状態判定装置
US9303817B2 (en) Method for the automated discharge of condensate from a pressurized gas system
KR101323065B1 (ko) 가압된 파이핑 및 라인 시스템을 영구적으로 모니터링하기 위한 방법
AU2009317030B2 (en) Method and device for detecting the flow of a liquid
EP2122312A1 (en) Valve leakby diagnostics
EP2574884A2 (en) Mass flow controller monitoring
JP2020076573A (ja) ガスメータ
JP6131217B2 (ja) 配管容量推定装置、ガス漏れ検査装置、配管容量推定方法、及び配管容量推定プログラム
JP6926986B2 (ja) 流速推定装置及び流速推定方法
JP7426600B2 (ja) ガス保安装置
WO2022036812A1 (zh) 洗涤设备及其进水控制方法和滚筒洗衣机
JPH08313322A (ja) ガス漏洩検出装置
JP4665642B2 (ja) ガスメータ装置
JP5195566B2 (ja) 流量計測装置及びこれを用いた流体供給システム及びプログラム
JP2008177386A (ja) 洗浄装置
JP3737861B2 (ja) ガス遮断装置
JP2008128701A (ja) ガスメータ装置
JP2019011974A (ja) 水道使用時間計測装置
JP2677133B2 (ja) ガス圧力異常監視装置
JP7425146B1 (ja) 差動式分布型感知器
JP4669062B2 (ja) 復帰安全確認方法および電子式ガスメータ
JP3378129B2 (ja) ガスメータ
JPH0727660A (ja) ガス漏れ検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150