JP2019011688A - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
JP2019011688A
JP2019011688A JP2017127457A JP2017127457A JP2019011688A JP 2019011688 A JP2019011688 A JP 2019011688A JP 2017127457 A JP2017127457 A JP 2017127457A JP 2017127457 A JP2017127457 A JP 2017127457A JP 2019011688 A JP2019011688 A JP 2019011688A
Authority
JP
Japan
Prior art keywords
flow rate
impeller
fluid machine
fluid
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017127457A
Other languages
English (en)
Other versions
JP7022523B2 (ja
Inventor
祥平 周藤
Shohei Shudo
祥平 周藤
泰 新川
Yasushi Shinkawa
泰 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017127457A priority Critical patent/JP7022523B2/ja
Publication of JP2019011688A publication Critical patent/JP2019011688A/ja
Application granted granted Critical
Publication of JP7022523B2 publication Critical patent/JP7022523B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports

Abstract

【課題】広い作動範囲を確保しつつ、部分負荷効率を向上させることが可能な流体機械を提供する。【解決手段】流体機械100は、ケーシング1と、ケーシング1内に配置されており、回転することで流体にエネルギを付与する羽根車2と、羽根車2が取り付けられている回転軸3とを備える。また、流体機械100は、回転軸3を回転駆動させる駆動装置4と、ケーシング1内を流れる流体の流量が所定の目標流量となるように、回転軸3の回転速度を制御する制御装置とを備える。ケーシング1内には、羽根車2の周囲から上流側の吸入流路13へ接続するシュラウド壁面12が形成されている。流体機械100には、シュラウド壁面12における羽根車2と対向する部位と羽根車2の設置位置よりも上流側の部位とを繋ぐ循環流路部8が設けられている。【選択図】図1

Description

本発明は、流体機械に関する。
流体を圧送するターボ型のブロワ、圧縮機などの流体機械が存在する。遠心式や斜流式などの流体機械は、駆動装置により回転する羽根車によって、ガスや液体などの作動流体にエネルギを与える。近年の環境負荷低減要求の高まりを受けて、これらの流体機械には、従来以上の高効率化と、広い作動範囲(流量制御範囲)とが求められている。
流体機械の一種である、下水処理場で曝気用に用いられる単段のブロワは、他のプラントで運用される流体機械と比較して、高い段圧力上昇と広い作動範囲の両立が要求される。そのため、下水処理場で用いられるブロワとして、主に遠心式の羽根車を備える遠心式の流体機械(遠心ブロワ)が用いられている。
従来の遠心式の流体機械では、羽根車の上流に設けられたインレットガイドベーンによって流量制御が行われてきた(例えば特許文献1参照)。インレットガイドベーンによる流量制御は、羽根車が取り付けられている回転軸の回転速度が一定の条件において、インレットガイドベーンの設置角度(開度)を調整することによって行われる。
特開2015−151991号公報
しかしながら、特許文献1に記載の技術においては、インレットガイドベーンそのものが抵抗となる構造物であるため、損失の発生は避けられない。特に、低流量で運転するときにはインレットガイドベーンによって流路断面積が大幅に絞られるため、部分負荷効率が低下してしまう。
本発明は、前記した事情に鑑みなされたものであり、広い作動範囲を確保しつつ、部分負荷効率を向上させることが可能な流体機械を提供することを課題とする。
上記課題を解決するために、本発明に係る流体機械は、ケーシングと、前記ケーシング内に配置されており、回転することで流体にエネルギを付与する羽根車と、前記羽根車が取り付けられている回転軸とを備える。また、流体機械は、前記回転軸を回転駆動させる駆動装置と、前記ケーシング内を流れる流体の流量が所定の目標流量となるように、前記回転軸の回転速度を制御する制御装置とを備える。前記ケーシング内には、前記羽根車の周囲から上流側の吸入流路へ接続するシュラウド壁面が形成されている。流体機械には、前記シュラウド壁面における前記羽根車と対向する部位と前記羽根車の設置位置よりも上流側の部位とを繋ぐ循環流路部が設けられている。
本発明によれば、広い作動範囲を確保しつつ、部分負荷効率を向上させることが可能な流体機械を提供することができる。
本発明の一実施形態に係る流体機械の、回転軸の軸線を含む平面で切断した場合の上半分を示す縦断面図である。 図1に示される循環流路部付近の拡大断面図である。 図2に示される流路形成構造体と羽根車とを上流側から見た斜視図である。 本実施形態に係る流体機械の制御装置の構成を模式的に示すブロック図である。 比較例に係る従来の流体機械の、回転軸の軸線を含む平面で切断した場合の上半分を示す縦断面図である。 比較例に係る流体機械における流量制御の運転曲線を示す図である。 比較例に係る流体機械からインレットガイドベーンを除去した構成において回転軸の回転速度のみを変化させて行う流量制御の運転曲線を示す図である。 本実施形態に係る流体機械における流量制御の運転曲線を示す図である。 本実施形態に係る流体機械における流量制御の内容を示すフローチャートである。
本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
なお、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を適宜省略する。
図1は、本発明の一実施形態に係る流体機械100の、回転軸3の軸線CLを含む平面で切断した場合の上半分を示す縦断面図である。図1中の白抜き矢印は、作動流体(以下、単に「流体」ともいう)の流れを示す(図2、図4、図5でも同様)。
ここでは、流体機械の一例として、遠心式の羽根車2を備え、段が単段(1段)の遠心式の流体機械100を取り上げて説明する。ただし、本発明は、単段、多段の流体機械全てに適用できるものであり、特に単段の流体機械に限るものではない。
本実施形態では、流体機械100は、例えば下水処理場の曝気設備などに使用される曝気用ブロワである。
図1に示すように、流体機械100は、ケーシング1と、羽根車2と、回転軸3と、駆動装置4とを備えている。羽根車2は、ケーシング1内に配置されており、回転することで流体にエネルギを付与する。回転軸3には、羽根車2が取り付けられている。駆動装置4は、ここでは電動機であり、回転軸3を回転駆動させる。駆動装置4による回転軸3の回転速度は、インバータ等を用いて制御され得る。
また、流体機械100は、吸込口配管15と、ディフューザ6と、スクロール7とを備えている。吸込口配管15は、羽根車2の空気導入部分の上流側に設けられている。ディフューザ6は、羽根車2の下流側、すなわち半径方向外側に配置されており、羽根車2の出口から流入する流体の動圧を静圧へと変換する。スクロール7は、ディフューザ6の下流側に配置されている。
羽根車2は、円管形状をなすハブ板21、およびハブ板21の外周面に周方向に間隔をあけて配置されている複数の翼22を有しており、いわゆるシュラウド板を有していない。すなわち、羽根車2はオープン型の羽根車である。
本実施形態において説明する曝気用に用いられる遠心式の流体機械100は、設計点から低流量側のみを使用して運転されることが多い。そのため、チョーク側の性能を考慮する必要がない。したがって、ターボチャージャーで用いられる遠心式の羽根車が採用する、長翼と短翼との組合せによる羽根車ではなく、全て長翼で構成された羽根車2を使用することが一般的である。すなわち、曝気用に用いられる流体機械100の羽根車2は、該羽根車2の入口側から出口側まで連続した翼22を有している。また、設計点からより低流量側の作動範囲が要求されるような条件においては、長翼の枚数を増やして翼の前縁に作用する負荷を分散してあげることで、翼の失速を抑えることができる。翼の失速を抑制できる構造は、作動範囲の拡大が可能なため、低流量側で広い作動範囲が求められる曝気用ブロワにおいて有効な手段である。
ディフューザ6は、ここでは、翼(ベーン)を有さないベーンレスディフューザである。ベーンレスディフューザであるディフューザ6は、径方向に広がるハブ壁面11およびシュラウド壁面12のみから構成されている。ディフューザ6は、ハブ壁面11とシュラウド壁面12とで構成される流路の断面積が径方向外向きに拡大することで、静圧回収を行っている。ここで、ハブ壁面11は、羽根車2のハブ板21側を通った流体が主に流れる側の壁面である。また、シュラウド壁面12は、羽根車2のハブ板21と反対側を通った流体が主に流れる側の壁面である。
なお、ディフューザ6として、周方向に複数枚の翼を持つ、羽根付きディフューザの採用も可能である。
羽根車2とディフューザ6とはケーシング1によって覆われており、これにより、羽根車2とディフューザ6とを流体が通過する流路がケーシング1内に形成されている。ケーシング1には、羽根車2の上流側に、吸入流路13が形成されている。シュラウド壁面12は、ケーシング1内に形成されており、羽根車2の周囲から上流側の吸入流路13へ接続している。オープン型の羽根車2では、構造上、ケーシング1の内側壁面であるシュラウド壁面12と翼22との間に間隙を有する。ケーシング1は中空形状をなしており、中央部に回転軸3が図示しない軸受により支持され、この回転軸3の端部に駆動装置4が連結されている。
吸入流路13は、吸込口配管15からケーシング1内に吸入される流体を羽根車2へ、軸方向に沿って導く流路である。流体は、吸入流路13を介して羽根車2の前縁23から取り込まれる。また、ケーシング1には、羽根車2の外周側に、羽根車2で圧縮された流体を、羽根車2の軸方向に交差する径方向にそって排出するための排出流路14が形成されている。
このような流体機械100では、駆動装置4の作動によって回転軸3が回転すると、羽根車2が回転し、流体が吸込口配管15を通してケーシング1内に吸い込まれる。吸い込まれた流体は、吸入流路13を経て羽根車2へ導かれ、回転する羽根車2を通過する過程で昇圧される。羽根車2によって昇圧された流体は、ディフューザ6、スクロール7を経る際に動圧が静圧に変換され、吐出口16から外部へと吐出される。
本実施形態の流体機械100には、羽根車2の前縁23付近に、循環流路部8が設けられている。循環流路部8は、シュラウド壁面12における羽根車2と対向する部位と、羽根車2の設置位置よりも上流側の部位とを繋ぐ流路である。
流体機械100の吐出側に固定抵抗が設けられたような条件では、吐出圧力を一定に維持したまま、広い作動範囲が要求される。ここで、固定抵抗とは、流体機械100の吐出側に常に一定の水深をもつ水槽(例えば下水処理場の曝気用の水槽)が接続されているような条件のことを指す。吐出側の圧力は、水槽の大きさと水深とによって決まるため、水深が常時一定であれば、吐出側には常に一定の圧力(=固定抵抗)がかかり続けることとなる。本実施形態は、このような吐出側に固定抵抗が設けられた条件下において、回転軸3の回転速度のみを変化させることで、流量制御を行うことを特徴としている。
図2は、図1に示される循環流路部8付近の拡大断面図である。図3は、図2に示される流路形成構造体84と羽根車2とを上流側から見た斜視図である。
図2に示すように、循環流路部8は、第1の開口部81、第2の開口部82、および第1の開口部81と第2の開口部82とを連通させる連通流路83とを有している。第1の開口部81は、羽根車2と対向するシュラウド壁面12に設けられたスリット状の開口である。第2の開口部82は、羽根車2の設置位置よりも上流側のシュラウド壁面12、すなわち吸入流路13の外周面(内面)に設けられたスリット状の開口である。
循環流路部8は、シュラウド壁面12に形成された環状溝87に、流路形成構造体84が設置されることによって形成されている。
図2および図3に示すように、流路形成構造体84は、シュラウド壁面12に沿って略面一な内周面を有する筒状のリング85と、リング85を環状溝87内で保持するリブ86とを有している。リブ86は、リング85の外周面に周方向に間隔をあけて複数設けられている。連通流路83は、リブ86の側面と、リング85の外周面と、環状溝87の外周面(溝底面)とに囲まれることによって形成されている。
なお、循環流路部8は、前記した構成に限定されるものではない。循環流路部8は、シュラウド壁面12における羽根車2と対向する部位と、羽根車2の設置位置よりも上流側の部位とを繋ぐ流路を提供する構造であれば任意に変更可能である。
図2に示すように、羽根車2の前縁23から羽根車2に流入した流れの一部は、第1の開口部81から循環流路部8へ流入し、連通流路83を通過した後、第2の開口部82から循環流路部8外へ流出する。循環流路部8から流出した流れは、吸入流路13において吸込口配管15から吸い込んだ流体と混合され、再度、羽根車2の前縁23から羽根車2へと流入する。
循環流路部8へと流入する流れ88は、羽根車2が部分負荷流量点で運転する際に、羽根車2の翼22の負圧面側に蓄積される低エネルギ流体を吸い出す効果がある。ここで、部分負荷流量は、設計点の流量である仕様流量(100%流量)よりも低い流量である。また、負圧面は、羽根車2の回転方向R(図3参照)に対して背面側になる翼面である。蓄積された低エネルギ流体は、翼22の負圧面での翼失速を引き起こす原因となる。したがって、本実施形態は、循環流路部8を流れる循環流によって翼失速の発生を抑制することで、作動範囲の拡大を実現している。
図4は、本実施形態に係る流体機械100の制御装置5の構成を模式的に示すブロック図である。図4に示すように、流体機械100は、流体機械100全体の動作を制御する制御装置5を備えている。制御装置5は、ケーシング1内に吸い込まれる流体の流量が所定の目標流量となるように、回転軸3の回転速度を制御する制御部51を備えている。制御部51は、CPU(Central Processing Unit)とメモリ等の記憶部とを有している。また、制御装置5は、流体機械100のケーシング1内に吸い込まれる流体の流量である吸込流量を計測する流量計52と、流体機械100における回転軸3の回転速度を計測する回転速度計53とを備えている。
流量計52は、流体機械100の吸入流路13に設けられている。羽根車2は、回転軸3を介して駆動装置4に接続されている。回転速度計53は、例えば回転軸3の近傍に設置されており、回転軸3の回転速度を計測する。
流量計52および回転速度計53は、それぞれ回線を介して制御部51に接続されており、これらの計測機器からの信号が制御部51に入力される。制御部51は、回線を介して駆動装置4と接続されており、制御部51からの信号が駆動装置4に入力される。制御部51は、駆動装置4を介して、回転軸3の回転速度を制御する。
図5は、比較例に係る従来の流体機械200の、回転軸3の軸線CLを含む平面で切断した場合の上半分を示す縦断面図である。比較例に係る流体機械200について、前記した本実施形態に係る流体機械100と相違する点を中心に説明し、共通する点の説明を省略する。
図5に示すように、比較例に係る流体機械200は、吸込口配管15の下流側であって羽根車2の上流側に設けられたインレットガイドベーン9を備えている。インレットガイドベーン9は、羽根車2への流入流れに任意の旋回速度を付与するための、円形に並んで配置された翼列である。一方、比較例に係る流体機械200には、図1に示す循環流路部8は設けられていない。
図6は、比較例に係る流体機械200における流量制御の運転曲線を示す図である。
図6において、流体機械200における流量Qと吐出圧力Pdとの相関で示される性能曲線Cが、インレットガイドベーン9の開度IGV(%)ごとに示されている。図6中に示す破線は、流れが失速してサージングが生じる低流量側の限界点をインレットガイドベーン9の開度IGVごとに描いて各限界点を結んだ線であるサージングラインLである。また、図6には、各性能曲線Cに対応した効率ηを示す効率曲線Eが描かれている。
図6におけるサージングラインLよりも左側(低流量側)の領域は、サージングが生じる領域であり、大きな圧力変動や流量変動が生じるために運転が不可能な領域となる。したがって、流体機械200において実際に制御可能な作動範囲Qは、一定の吐出圧力Pを示す線とサージングラインLとの交点の流量を下限とし、仕様流量である100%流量を上限とする範囲になる。一方、流体機械200での流量制御において保証すべき仕様の作動範囲Qは、ここでは、仕様流量である100%流量から仕様流量の45%流量までの範囲とされている。ここで、実際に制御可能な作動範囲Qは、保証すべき仕様の作動範囲Qを含んでいる必要がある。
図6に示すように、比較例に係る流体機械200は、一定の吐出圧力P(=固定抵抗)がかかる条件下で、回転軸3の回転速度を一定にし、インレットガイドベーン9の開度IGVを変化させることで流量制御を行う。
しかしながら、比較例に係る流体機械200においては、インレットガイドベーン9そのものが流路に設置されて抵抗となる構造物であるため、損失の発生は避けられないことが実情である。特に、図6の効率曲線Eを見ればわかるように、低流量運転時にはインレットガイドベーン9によって流路断面積が大幅に絞られるため、部分負荷効率(部分負荷流量での効率)が低下してしまうという課題がある。
図7は、比較例に係る流体機械200からインレットガイドベーン9を除去した構成において回転軸3の回転速度のみを変化させて行う流量制御の運転曲線を示す図である。図7において、流体機械における流量Qと吐出圧力Pdとの相関で示される性能曲線Cが、回転軸3の回転速度N(%)ごとに示されている。
この場合、図7に示すように、実際に制御可能な作動範囲Qは、狭くなってしまい、保証すべき仕様の作動範囲Q(仕様流量である100%流量から仕様流量の45%流量までの範囲)を満足することができない。
図8は、本実施形態に係る流体機械100における流量制御の運転曲線を示す図である。図8において、流体機械100における流量Qと吐出圧力Pdとの相関で示される性能曲線Cが、回転軸3の回転速度N(%)ごとに示されている。図8に示す流体機械100における流量制御の運転曲線のデータは、制御部51の記憶部に記憶される。また、一定の吐出圧力P(=固定抵抗)の値も制御部51の記憶部に記憶される。
本実施形態に係る流体機械100では、図2を用いて既に説明したように、循環流路部8へと流入する流れ88が、羽根車2の翼22の負圧面側に蓄積されて翼失速を引き起こす原因となる低エネルギ流体を吸い出す。こうして、循環流路部8を流れる循環流によって翼失速の発生を抑制することで、図8に示すように、実際に制御可能な作動範囲Qが拡大する。これにより、本実施形態は、保証すべき仕様の作動範囲Q(仕様流量である100%流量から仕様流量の45%流量までの範囲)を満足することができる。
しかも、本実施形態は、流路に設置されて抵抗となる従来のインレットガイドベーン9を備えていないため、低流量運転時でも羽根車2の上流側で流路断面積が絞られることがなく、部分負荷効率は殆ど低下しない。つまり、回転軸3の回転速度を変化させた場合でも、図8において各性能曲線Cに対応した効率ηを示す効率曲線Eは、最大効率値を保ちながら、概ね真横に移動する。したがって、本実施形態では、低流量運転時を含め、常に、ばらつきが少なく高い効率範囲Aでの運用が可能となる。
次に、本実施形態に係る流体機械100における流量制御の方法について説明する。
図9は、本実施形態に係る流体機械100における流量制御の内容を示すフローチャートである。
図9に示すように、ステップS1では、制御部51は、流体機械100に要求される吸込流量である目標流量Qiの入力を受け付ける。これにより、制御部51は、目標流量Qiを設定する。
ステップS2では、制御部51は、流量計52を用いることによって、流体機械100における現在の流量Qを計測する。
ステップS3では、制御部51は、現在の流量Q=目標流量Qiであるか否かを判定する。具体的には、現在の流量Qと目標流量Qiとの差が予め決められた所定の閾値よりも小さいか否かが判定される。現在の流量Qと目標流量Qiとの差が所定の閾値よりも小さい、すなわち現在の流量Qと目標流量Qiとの間に実質的な差がないと判定された場合(ステップS3でYes)、制御部51の処理がステップS1に戻る。一方、現在の流量Qと目標流量Qiとの間に実質的な差があると判定された場合(ステップS3でNo)、制御部51の処理がステップS4へ進む。
ステップS4では、制御部51は、目標流量Qiが現在の流量Qよりも大きいか否かを判定する。そして、目標流量Qiが現在の流量Qよりも大きいと判定された場合(ステップS4でYes)、制御部51の処理がステップS5へ進む。一方、目標流量Qiが現在の流量Qよりも小さいと判定された場合(ステップS4でNo)、制御部51の処理がステップS6へ進む。
ステップS5では、制御部51は、回転軸3の回転速度Nを上げる(高くする)ように調整して流量変更を行う。具体的には、制御部51は、駆動装置4に回転速度の上昇指令を送信する。ここで、回転軸3の回転速度Nが、例えば予め決められた所定量だけ上げられた後、制御部51の処理がステップS2に戻る。
ステップS6では、制御部51は、回転軸3の回転速度Nを下げる(低くする)ように調整して流量変更を行う。具体的には、制御部51は、駆動装置4に回転速度の下降指令を送信する。ここで、回転軸3の回転速度Nが、例えば予め決められた所定量だけ下げられた後、制御部51の処理がステップS2に戻る。
このような制御ループ(ステップS1〜S6)を繰り返すことにより、最終的に現在の流量Qを目標流量Qiにすることができる(ステップS3でYes)。
図9に示す制御を実施する際における回転軸3の回転速度Nの調整幅(変化幅)は、制御すべき流体機械100の特性によって異なるため、どのような調整幅でも構わない。例えば、調整幅は、予め決められた一定値であってもよいし、あるいは現在の流量Qと目標流量Qiとの差に応じて変化させられてもよい。あるいは、制御部51は、図8に示す運転曲線のデータに基づいて目標流量Qiが得られる回転速度を算出し、回転軸3の回転速度Nを、算出された回転速度に変化させるように制御してもよい。
本実施形態に係る流体機械100は、基本的に以上のように構成されるものであり、次に、流体機械100の作用効果について説明する。
図1に示すように、流体機械100は、ケーシング1と、ケーシング1内に配置されており、回転することで流体にエネルギを付与する羽根車2と、羽根車2が取り付けられている回転軸3とを備える。また、流体機械100は、回転軸3を回転駆動させる駆動装置4と、ケーシング1内を流れる流体の流量が所定の目標流量となるように、回転軸3の回転速度を制御する制御装置5(図4参照)とを備える。ケーシング1内には、羽根車2の周囲から上流側の吸入流路13へ接続するシュラウド壁面12が形成されている。流体機械100には、シュラウド壁面12における羽根車2と対向する部位と羽根車2の設置位置よりも上流側の部位とを繋ぐ循環流路部8が設けられている。
この構成では、従来用いられてきたインレットガイドベーン9(図5参照)を廃し、羽根車2が取り付けられている回転軸3の回転速度の制御のみで流量制御を行うことができる。ここで、循環流路部8へと流入する流れは、羽根車2の翼22の負圧面側に蓄積される低エネルギ流体を吸い出す。蓄積された低エネルギ流体は、翼22の負圧面での翼失速を引き起こす原因となるため、循環流路部8を流れる循環流によって翼失速の発生を抑制することができる。これにより、広い作動範囲を確保することができる。また、羽根車2の上流側に設けられる従来のインレットガイドベーン9が不要となるため、流路損失を低減することができ、部分負荷効率が向上する。
すなわち、本実施形態によれば、広い作動範囲を確保しつつ、部分負荷効率を向上させることが可能な流体機械100を提供することができる。
さらに、可動機構が複雑で高価なインレットガイドベーン9を用いることなく流量制御が可能となるため、流体機械100のコストの低減が図られる。
また、本実施形態では、図2に示すように、循環流路部8は、第1の開口部81、第2の開口部82、および第1の開口部81と第2の開口部82とを連通させる連通流路83とを有している。第1の開口部81は、羽根車2と対向するシュラウド壁面12に設けられている。第2の開口部82は、羽根車2の設置位置よりも上流側のシュラウド壁面12に設けられている。この構成では、循環流路部8をケーシング1内におけるシュラウド壁面12の近傍にコンパクトに設けることができる。
また、本実施形態では、図1に示すように、羽根車2の下流側に、ベーンレスディフューザであるディフューザ6が配置されている。この構成では、サージングが起こり易くなる翼(ベーン)がディフューザ6に存在しないため、作動範囲が低流量側で伸びる。これにより、より広い作動範囲を確保することができる。
また、本実施形態では、図8に示すように、制御装置5(図4参照)は、予め設定された一定の吐出圧力Pの下で、流量Qが仕様流量である100%流量から仕様流量の45%流量までである範囲内において制御を行う。この構成では、主に下水処理場で用いられるような、吐出側に固定抵抗を有し、広い作動範囲が要求される曝気用の流体機械に対して適用することが好ましい構成とすることができる。
また、本実施形態では、図1に示すように、羽根車2は、該羽根車2の入口側から出口側まで連続した翼22を有している。この構成では、主に下水処理場で用いられるような、設計点から低流量側のみで運転することが多いためチョーク側の性能を考慮する必要がない曝気用の流体機械に対して適用することが好ましい構成とすることができる。つまり、この場合、チョーク側の性能を向上させるために例えばターボチャージャーのような長翼と短翼との組合せによる羽根車を採用する必要がない。
また、本実施形態では、図4に示すように、制御装置5は、ケーシング1内を流れる流体の流量を検出する流量計52を有している。そして、図9に示すように、制御装置5は、目標流量Qiが流量計52によって検出された流量Qよりも大きい場合には回転軸3の回転速度Nを上げるように制御する。一方、制御装置5は、目標流量Qiが流量計52によって検出された流量Qよりも小さい場合には回転軸3の回転速度Nを下げるように制御する。この構成では、目標流量Qiと流量計52の検出値である流量Qとの比較結果に基づく回転軸3の回転速度Nの制御によって、ケーシング1内を流れる流体の流量Qを所定の目標流量Qiにすることができる。
以上、本発明について実施形態に基づいて説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。前記した実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、前記した実施形態では、遠心式の羽根車2を備えた遠心式の流体機械100について説明したが、本発明はこれに限定されるものではない。本発明は、例えば斜流式の羽根車を備えた斜流式の流体機械などの他の流体機械にも適用可能である。
1 ケーシング
12 シュラウド壁面
13 吸入流路
2 羽根車
22 翼
3 回転軸
4 駆動装置
5 制御装置
51 制御部
52 流量計
6 ディフューザ
8 循環流路部
81 第1の開口部
82 第2の開口部
83 連通流路
100 流体機械
N 回転速度
一定の吐出圧力
Q 流量
Qi 目標流量

Claims (6)

  1. ケーシングと、
    前記ケーシング内に配置されており、回転することで流体にエネルギを付与する羽根車と、
    前記羽根車が取り付けられている回転軸と、
    前記回転軸を回転駆動させる駆動装置と、
    前記ケーシング内を流れる流体の流量が所定の目標流量となるように、前記回転軸の回転速度を制御する制御装置と、を備え、
    前記ケーシング内には、前記羽根車の周囲から上流側の吸入流路へ接続するシュラウド壁面が形成されており、
    前記シュラウド壁面における前記羽根車と対向する部位と前記羽根車の設置位置よりも上流側の部位とを繋ぐ循環流路部が設けられていることを特徴とする流体機械。
  2. 前記循環流路部は、前記羽根車と対向する前記シュラウド壁面に設けられた第1の開口部と、前記羽根車の設置位置よりも上流側の前記シュラウド壁面に設けられた第2の開口部と、前記第1の開口部と前記第2の開口部とを連通させる連通流路と、を有することを特徴とする請求項1に記載の流体機械。
  3. 前記羽根車の下流側に、ベーンレスディフューザが配置されていることを特徴とする請求項1に記載の流体機械。
  4. 前記制御装置は、予め設定された一定の吐出圧力の下で、前記流量が仕様流量である100%流量から仕様流量の45%流量までである範囲内において制御を行うことを特徴とする請求項1に記載の流体機械。
  5. 前記羽根車は、該羽根車の入口側から出口側まで連続した翼を有していることを特徴とする請求項1に記載の流体機械。
  6. 前記制御装置は、前記ケーシング内を流れる流体の流量を検出する流量計を有し、前記目標流量が前記流量計によって検出された流量よりも大きい場合には前記回転軸の回転速度を上げ、前記目標流量が前記流量計によって検出された流量よりも小さい場合には前記回転軸の回転速度を下げるように制御することを特徴とする請求項1に記載の流体機械。
JP2017127457A 2017-06-29 2017-06-29 流体機械 Active JP7022523B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127457A JP7022523B2 (ja) 2017-06-29 2017-06-29 流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127457A JP7022523B2 (ja) 2017-06-29 2017-06-29 流体機械

Publications (2)

Publication Number Publication Date
JP2019011688A true JP2019011688A (ja) 2019-01-24
JP7022523B2 JP7022523B2 (ja) 2022-02-18

Family

ID=65226894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127457A Active JP7022523B2 (ja) 2017-06-29 2017-06-29 流体機械

Country Status (1)

Country Link
JP (1) JP7022523B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656998A (en) * 1979-10-16 1981-05-19 Borg Warner Surge controlling system
JPH0560097A (ja) * 1991-09-02 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JP2011085095A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656998A (en) * 1979-10-16 1981-05-19 Borg Warner Surge controlling system
JPH0560097A (ja) * 1991-09-02 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JP2011085095A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ

Also Published As

Publication number Publication date
JP7022523B2 (ja) 2022-02-18

Similar Documents

Publication Publication Date Title
EP1404975B1 (en) Flow stabilizing device
JP5233436B2 (ja) 羽根無しディフューザを備えた遠心圧縮機および羽根無しディフューザ
US10197064B2 (en) Centrifugal compressor with fluid injector diffuser
KR101743376B1 (ko) 원심 압축기
JP2003013898A (ja) 軸流形流体機械
US20160238019A1 (en) Gas pipeline centrifugal compressor and gas pipeline
JP2006342682A (ja) 遠心圧縮機の作動域拡大方法及び装置
JP2008175124A (ja) 遠心圧縮機
JP4844414B2 (ja) チューブラポンプ
WO2019176426A1 (ja) 遠心ポンプ
JP2010031777A (ja) 多段遠心圧縮機
US9638211B2 (en) Scroll tongue part and rotary machine including the same
KR101393054B1 (ko) 캐비테이션 방지를 위한 어댑터 및 이를 구비한 원심펌프
KR20150113580A (ko) 2단 원심 블로워
CN109885886B (zh) 一种减小多级泵扬程曲线驼峰的水力设计方法
JP7022523B2 (ja) 流体機械
JP2010236401A (ja) 遠心形流体機械
JP2015212551A (ja) 遠心式流体機械
KR101593648B1 (ko) 축류 펌프 또는 사류 펌프의 가변 안내 깃 제어 장치 및 방법
JP6839040B2 (ja) 遠心式流体機械
US11913476B2 (en) Compressor system
JP4146371B2 (ja) 遠心圧縮機
WO2016147473A1 (ja) 圧縮機システム
KR101858644B1 (ko) 압력 조절 장치를 구비한 압축 장치와, 이를 이용한 압력 조절 방법
JP2018080653A (ja) 流体機械

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150