JP2019009968A - Polyphase motor drive device - Google Patents

Polyphase motor drive device Download PDF

Info

Publication number
JP2019009968A
JP2019009968A JP2017126446A JP2017126446A JP2019009968A JP 2019009968 A JP2019009968 A JP 2019009968A JP 2017126446 A JP2017126446 A JP 2017126446A JP 2017126446 A JP2017126446 A JP 2017126446A JP 2019009968 A JP2019009968 A JP 2019009968A
Authority
JP
Japan
Prior art keywords
current
phase
command
axis
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017126446A
Other languages
Japanese (ja)
Other versions
JP6719162B2 (en
Inventor
亮 飯田
Akira Iida
亮 飯田
雅徳 宮崎
Masanori Miyazaki
雅徳 宮崎
智秋 茂田
Tomoaki Shigeta
智秋 茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2017126446A priority Critical patent/JP6719162B2/en
Publication of JP2019009968A publication Critical patent/JP2019009968A/en
Application granted granted Critical
Publication of JP6719162B2 publication Critical patent/JP6719162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

To provide a polyphase motor drive device in which 2n+1 order harmonic wave can be suppressed.SOLUTION: The polyphase motor drive device is comprised of: a polyphase motor 1; single-phase inverters 21 through 2N; and a control device 3. The single-phase inverter 21 comprises a current detector 51 and a control device 6. The control device 6 includes: current command calculation means 61; virtual cosine wave generation means; first orthogonal rotating coordinate conversion means applying two-axis conversion to an actual current and a virtual cosine wave; main current control means outputting a main voltage command by performing a current control so that a current component of the two axis obtained as a feed back is tracked to the two axis current command of the output of the current command calculation means; 2n+1 order harmonic component detection means detecting a 2n+1 order harmonic component of the actual current; and high harmonic current control means performing the current control so that each detection value becomes the minimum value, converting the output by orthogonal coordinate inverse conversion means and outputting an assistance voltage command. An output voltage of the single-phase inverter is controlled so as to be a value obtained by adding the assistance voltage command to the main voltage command.SELECTED DRAWING: Figure 1

Description

本発明は、複数台の単相インバータで多相電動機を可変速駆動する多相電動機駆動装置に関する。   The present invention relates to a multi-phase motor drive device that drives a multi-phase motor at a variable speed by a plurality of single-phase inverters.

多相電動機は、各巻線の相互間が電気的に絶縁されており、単相インバータを各巻線に接続して可変電圧可変周波数の交流電力を供給することで可変速駆動する。各々の単相インバータに用いる電流制御手法は、電動機の各巻線に流れる実電流をフィードバックし、交流の電流指令と実電流との偏差を電流制御器にて比例積分制御等の電流制御を行ない、電圧指令を得ることで実現する。   The multiphase motor is electrically insulated from each other between the windings, and is driven at a variable speed by connecting a single-phase inverter to each winding and supplying AC power with a variable voltage and variable frequency. The current control method used for each single-phase inverter feeds back the actual current flowing through each winding of the motor, and performs current control such as proportional-integral control with the current controller for the deviation between the AC current command and the actual current. Realized by obtaining a voltage command.

しかしながら、電流指令が交流であるため定常的に電流指令と実電流の間に位相誤差と振幅誤差が発生する。このため、実電流の振幅と等しい振幅を持ち、実電流と直交する位相を持つ仮想余弦波と実電流を直交座標変換し、得られた2軸の電流指令を用いて電流制御を行うことにより、位相誤差と振幅誤差を抑制でき、安定して電流制御を行うことが可能な多相電動機駆動装置が提案されている(例えば特許文献1参照。)。   However, since the current command is an alternating current, a phase error and an amplitude error are constantly generated between the current command and the actual current. For this reason, a virtual cosine wave having an amplitude equal to the amplitude of the actual current and a phase orthogonal to the actual current is orthogonally transformed with the actual current, and current control is performed using the obtained two-axis current command. There has been proposed a multi-phase motor drive device that can suppress phase error and amplitude error and can stably control current (see, for example, Patent Document 1).

特開2015−126585号公報(全体)Japanese Patent Laying-Open No. 2015-126585 (Overall)

特許文献1に示された手法によれば、位相誤差と振幅誤差を抑制でき、安定して電流制御を行うことが可能な多相電動機駆動装置が実現可能である。しかしながら、多相電動機駆動装置は単相インバータを複数台用いているので、使用するスイッチング素子のデッドタイムにバラツキがあり、最大のデッドタイムを有するスイッチング素子を使用したインバータにおいては、インバータの出力電流に少なからず奇数次の高調波が重畳される。そして、低次の高調波を含む波形で多相電動機を駆動すると、振動や騒音が大きくなる問題がある。   According to the technique disclosed in Patent Document 1, it is possible to realize a multiphase motor drive device that can suppress phase error and amplitude error and can stably control current. However, since the multi-phase motor drive device uses a plurality of single-phase inverters, there is a variation in the dead time of the switching element to be used, and in the inverter using the switching element having the maximum dead time, the output current of the inverter At least odd harmonics are superimposed. When a multiphase motor is driven with a waveform including low-order harmonics, there is a problem that vibration and noise increase.

本発明は、上記問題点を解決するためになされたもので、位相誤差と振幅誤差を抑制可能で、かつ低次の高調波を抑制することができる多相電動機駆動装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a multiphase motor drive device that can suppress phase errors and amplitude errors and can suppress low-order harmonics. And

上記目的を達成するために、本発明の多相電動機駆動装置は、互いに絶縁された複数相の巻線を有する多相電動機と、前記各巻線に各々接続され、交流電力を出力する複数台の単相インバータと、前記単相インバータに電流振幅指令を与える速度制御装置から構成され、前記単相インバータは、前記巻線に流れる実電流を検出する電流検出器と、前記電流振幅指令に基づいて巻線に流す電流を制御する制御装置を具備し、前記制御装置は、前記電流振幅指令を制御D軸及び制御Q軸の2軸の電流指令に展開する電流指令演算手段と、前記電流振幅指令または前記実電流の振幅と等しく、且つ前記電流振幅指令または前記実電流と直交する位相を持つ仮想余弦波を生成する仮想余弦波生成手段と、前記実電流と前記仮想余弦波を用いて直交回転座標変換する第1の直交回転座標変換手段と、前記電流指令演算手段によって得られた前記2軸の電流指令に、前記第1の直交回転座標変換手段によって得られた前記2軸の電流成分が夫々追従するように電流制御を行って主電圧指令を出力する主電流制御手段と、nを任意の整数と定義したとき、前記実電流に含まれる2n+1次高調波成分を基本波の2n+1倍の周波数で回転する直交回転座標に投影した2軸の直交成分として検出する2n+1次高調波検出手段と、この2n+1次高調波検出手段で検出された2軸の検出値の各々が最小となるように電流制御を行い、その出力を第1の直交座標逆変換手段で変換して2n+1次高調波抑制補助電圧指令を出力する高調波電流制御手段とを有し、前記第1の直交回転座標変換手段及び前記第1の直交座標逆変換手段の基準位相は、前記多相電動機の各巻線の位相差に応じて、各々の前記単相インバータで個別にシフトした位相角を用いると共に、前記単相インバータの出力電圧が、前記主電圧指令に前記2n+1次高調波抑制補助電圧指令を加算した値となるよう制御することを特徴としている。   In order to achieve the above object, a multi-phase motor driving device of the present invention includes a multi-phase motor having a plurality of windings insulated from each other, and a plurality of units connected to each of the windings and outputting AC power. A single-phase inverter, and a speed control device that gives a current amplitude command to the single-phase inverter. The single-phase inverter is based on a current detector that detects an actual current flowing in the winding, and the current amplitude command. A control device for controlling a current flowing through the winding, wherein the control device develops the current amplitude command into a current command of two axes of a control D axis and a control Q axis; and the current amplitude command Or virtual cosine wave generating means for generating a virtual cosine wave having a phase equal to the amplitude of the real current and having a phase orthogonal to the current amplitude command or the real current, and orthogonal rotation using the real current and the virtual cosine wave The biaxial current component obtained by the first orthogonal rotational coordinate conversion means is added to the first orthogonal rotational coordinate conversion means for converting the standard and the biaxial current command obtained by the current instruction calculation means. Main current control means for performing current control so as to follow each and outputting a main voltage command, and when n is defined as an arbitrary integer, 2n + 1 harmonic components included in the actual current are 2n + 1 times the fundamental wave The 2n + 1-order harmonic detection means for detecting the two-axis orthogonal component projected on the orthogonal rotation coordinates rotating at the frequency, and the two-axis detection values detected by the 2n + 1-order harmonic detection means are minimized. Harmonic current control means for performing current control and converting the output by a first orthogonal coordinate inverse transform means to output a 2n + 1-order harmonic suppression auxiliary voltage command, the first orthogonal rotation coordinate transform means And before The reference phase of the first orthogonal coordinate inverse transform means uses the phase angle individually shifted by each single-phase inverter according to the phase difference of each winding of the multiphase motor, and the output of the single-phase inverter The voltage is controlled to be a value obtained by adding the 2n + 1st harmonic suppression auxiliary voltage command to the main voltage command.

本発明によれば、位相誤差と振幅誤差を抑制でき、安定して電流制御を行うことが可能な多相電動機駆動装置を提供できる。   According to the present invention, it is possible to provide a multiphase motor drive device that can suppress phase error and amplitude error and can stably control current.

本発明の実施例1に係る多相電動機駆動装置のブロック構成図。1 is a block configuration diagram of a multiphase motor drive device according to Embodiment 1 of the present invention. FIG. 多相電動機の誘起電圧と電流の位相関係を説明する図。The figure explaining the phase relationship of the induced voltage and electric current of a multiphase motor. 実施例1における電流ベクトルの位相関係を示す図。FIG. 3 is a diagram illustrating a phase relationship of current vectors in the first embodiment. 制御D軸、制御Q軸で回転座標変換した場合の電流ベクトルの位相関係を示す図。The figure which shows the phase relationship of the electric current vector at the time of carrying out rotational coordinate conversion by the control D axis and the control Q axis. 本発明の実施例2に係る多相電動機駆動装置のブロック構成図。The block block diagram of the multiphase motor drive device which concerns on Example 2 of this invention. 本発明の実施例3に係る多相電動機駆動装置の高調波抑制補助電圧指令発生回路のブロック構成図。The block block diagram of the harmonic suppression auxiliary voltage command generation circuit of the polyphase motor drive device concerning Example 3 of the present invention. 本発明の実施例4に係る多相電動機駆動装置の高調波抑制補助電圧指令発生回路のブロック構成図。The block block diagram of the harmonic suppression auxiliary | assistant voltage command generation circuit of the multiphase motor drive device which concerns on Example 4 of this invention.

以下、この発明の実施例を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は実施例1に係る多相電動機駆動装置の全体を示すブロック構成図である。多相電動機1は、各相を構成する複数個の巻線を備えており、各巻線の相互間が電気的に絶縁されている。これらの、各々の巻線に単相インバータ21、22、・・・2Nの出力を接続して交流電力を供給することによって多相電動機1が駆動される。本実施例では、多相電動機1の界磁を永久磁石型として説明しているが、電磁石型であっても励磁の磁極方向を永久磁石型の磁石方向に置き換えれば実現可能である。   FIG. 1 is a block configuration diagram illustrating an entire multiphase motor driving apparatus according to the first embodiment. The multiphase motor 1 includes a plurality of windings constituting each phase, and the windings are electrically insulated from each other. The multiphase motor 1 is driven by connecting the outputs of the single-phase inverters 21, 22,..., 2N to these windings and supplying AC power. In the present embodiment, the field of the multiphase motor 1 is described as a permanent magnet type. However, even in the case of an electromagnet type, it can be realized by replacing the magnetic pole direction of excitation with a permanent magnet type magnet direction.

共通に設けられた速度制御装置3は、多相電動機1が、図示されない上位制御装置から送信され、時間的に変化する速度指令に応じた回転速度となるように電流振幅指令を各単相インバータ21、22、・・・2Nに送る。そして各単相インバータ21、22、・・・2Nは、電流振幅指令に応じた交流電流を多相電動機1の巻線に流す。多相電動機1の軸に取り付けた回転角度検出器4によって機械角を検出し、速度制御装置3に入力する。この機械角を速度検出回路31で微分することによって実速度を演算する。そして減算器32によって、速度指令と実速度との速度偏差を求め、速度制御器33に入力する。速度制御器においては、速度偏差が最小となるように比例積分制御などを行なって、電流振幅指令を出力する。電気角演算回路34では、多相電動機1の極数に応じて機械角から電気角を演算し、この電気角を各単相インバータ21、22、・・・2Nに出力する。また、電流位相演算回路35は、電流振幅指令またはそのトルク成分に応じて最適な多相電動機1の巻線電流の電流進み角を演算し、この電流進み角を各単相インバータ21、22、・・・2Nに出力する。多相電動機1の端子電圧と巻線電流と力率を所望の値とするため、誘起電圧位相に対して電流進み角を変化させることができる。   The speed control device 3 provided in common supplies the current amplitude command to each single-phase inverter so that the multiphase motor 1 is transmitted from a host control device (not shown) and has a rotational speed corresponding to a speed command that changes with time. 21, 22, ... 2N. Each of the single-phase inverters 21, 22,... 2N passes an alternating current corresponding to the current amplitude command through the windings of the multiphase motor 1. A mechanical angle is detected by a rotation angle detector 4 attached to the shaft of the multiphase motor 1 and input to the speed control device 3. The actual speed is calculated by differentiating the mechanical angle by the speed detection circuit 31. Then, the subtracter 32 obtains a speed deviation between the speed command and the actual speed and inputs it to the speed controller 33. In the speed controller, proportional-integral control is performed so that the speed deviation is minimized, and a current amplitude command is output. The electrical angle calculation circuit 34 calculates an electrical angle from the mechanical angle according to the number of poles of the multiphase motor 1, and outputs this electrical angle to each single-phase inverter 21, 22,... 2N. Further, the current phase calculation circuit 35 calculates a current advance angle of the winding current of the multiphase motor 1 which is optimum according to the current amplitude command or its torque component, and the current advance angle is calculated for each single-phase inverter 21, 22, ... Output to 2N. Since the terminal voltage, winding current, and power factor of the multiphase motor 1 are set to desired values, the current advance angle can be changed with respect to the induced voltage phase.

次に各単相インバータ21、22、・・・2Nの内部構成について説明する。複数台の単相インバータは基本的に同一構成であるので、単相インバータ21についての説明を行う。単相インバータ21はインバータ主回路5と制御装置6とで構成される。インバータ主回路5は直流電圧をスイッチング素子のブリッジ回路で交流に変換して出力し、多相電動機1の対応する巻線を駆動する。インバータ主回路5の出力には電流検出器51が設けられ、この検出電流は制御装置6に与えられる。   Next, the internal configuration of each single-phase inverter 21, 22, ... 2N will be described. Since the plurality of single-phase inverters have basically the same configuration, the single-phase inverter 21 will be described. The single-phase inverter 21 includes an inverter main circuit 5 and a control device 6. The inverter main circuit 5 converts the direct current voltage into alternating current by the bridge circuit of the switching element and outputs the alternating current, and drives the corresponding winding of the multiphase motor 1. A current detector 51 is provided at the output of the inverter main circuit 5, and this detected current is supplied to the control device 6.

以下、制御装置6の内部構成について説明する。制御装置6は後述する高調波抑制補助電圧指令発生回路91を備えている。速度制御装置3から与えられた電流振幅指令は電流指令演算器61に入力される。電流指令演算器61では、この電流振幅指令を、電流進み角を基準位相として真D軸方向のD軸電流指令と、これとは直交する成分である真Q軸方向のQ軸電流指令に直交回転座標上に展開する。すなわち、この電流振幅指令を真Q軸から電流進み角分位相の進んだ電流指令ベクトルと見做し、その電流指令ベクトルを真D軸と真Q軸に投影する。ここでは、多相電動機1の界磁極である永久磁石の磁束ベクトルの方向を真D軸、それと直交する界磁極による誘起電圧ベクトルの方向を真Q軸としている。すなわち、多相電動機1の巻線に流す電流のベクトル方向は真Q軸より電流進み角だけ位相を進めた方向となる。この位相関係を図2及び図3に示す。図2は、(a)に誘起電圧波形を、(b)にその位相を、(c)に電流波形を、そして(D)に電流位相を示している。これにより、誘起電圧位相に対し、電流位相は電流進み角分だけ進んだ位相となっていることが分かる。これをDQ直交回転座標で表わすと図3が得られる。すなわち、Q軸電流と同相の誘起電圧に対し、電流指令ベクトルは電流進み角分だけ位相が進んでいる。尚、図3に示すベクトル図は、以下に説明するように指令通りに制御された実運転状態も示しているので、この場合電流指令ベクトルは、実電流も示す意味で単に電流ベクトルと呼称する。   Hereinafter, the internal configuration of the control device 6 will be described. The control device 6 includes a harmonic suppression auxiliary voltage command generation circuit 91 described later. The current amplitude command given from the speed control device 3 is input to the current command calculator 61. In the current command calculator 61, the current amplitude command is orthogonal to the D-axis current command in the true D-axis direction with the current lead angle as a reference phase, and the Q-axis current command in the true Q-axis direction, which is a component orthogonal thereto. Expand on rotating coordinates. That is, the current amplitude command is regarded as a current command vector whose phase is advanced by a current advance angle from the true Q axis, and the current command vector is projected onto the true D axis and the true Q axis. Here, the direction of the magnetic flux vector of the permanent magnet that is the field pole of the multiphase motor 1 is the true D axis, and the direction of the induced voltage vector by the field pole perpendicular to the true D axis is the true Q axis. That is, the vector direction of the current flowing through the windings of the multiphase motor 1 is the direction in which the phase is advanced by the current advance angle from the true Q axis. This phase relationship is shown in FIGS. FIG. 2 shows the induced voltage waveform in (a), the phase in (b), the current waveform in (c), and the current phase in (D). Thus, it can be seen that the current phase is advanced by the current advance angle with respect to the induced voltage phase. When this is expressed by the DQ orthogonal rotation coordinates, FIG. 3 is obtained. That is, the phase of the current command vector is advanced by the current advance angle with respect to the induced voltage in phase with the Q-axis current. The vector diagram shown in FIG. 3 also shows the actual operating state controlled as commanded as described below. In this case, the current command vector is simply referred to as a current vector in the sense of indicating the actual current. .

電流指令演算器61の出力であるD軸電流指令とQ軸電流指令は、夫々減算器62Aと減算器62Bに与えられる。減算器62Aと減算器62Bにおいて、直交座標変換器67から夫々低域通過フィルタ68A、68Bを介して与えられるD軸電流及びQ軸電流とが、D軸電流指令とQ軸電流指令から夫々減算され、その各々の偏差がD軸電流制御器63A及びQ軸電流制御器63Bに夫々与えられる。D軸電流制御器63A及びQ軸電流制御器63Bにおいては、夫々の入力偏差が最小となるように個別に比例積分制御等を行い、D軸電圧指令及びQ軸電圧指令を夫々出力し直交座標逆変換器64に与える。直交座標逆変換器64においては、与えられたD軸電圧指令及びQ軸電圧指令を、DQ位相θを基準位相として直交座標逆変換を行い、得られた主電圧指令を、加算器65を介してPWM回路66に入力する。この場合、以下に説明するように直交座標変換器67のA軸に入力した実電流を同一のDQ位相θを用いて逆変換を行っているので、この電圧指令は実電流と同位相のA軸分のみとなる。PWM回路66では、例えば電圧指令と三角波キャリアとの比較によるパルス幅変調を行ない、ゲートパルス信号を生成してインバータ主回路5に送り、単相インバータ21の出力電圧を制御する。加算器65の他方の入力には高調波抑制補助電圧指令発生回路91内の直交座標逆変換器80の出力が、(2n+1)次高調波抑制補正指令として与えられているが、この詳細は後述する。ここで、nは任意の整数である。尚、以降(2n+1)は括弧を省略して2n+1と記載する。   The D-axis current command and the Q-axis current command, which are the outputs of the current command calculator 61, are given to the subtracter 62A and the subtractor 62B, respectively. In the subtractor 62A and the subtractor 62B, the D-axis current and the Q-axis current given from the Cartesian coordinate converter 67 via the low-pass filters 68A and 68B are subtracted from the D-axis current command and the Q-axis current command, respectively. Each deviation is applied to the D-axis current controller 63A and the Q-axis current controller 63B, respectively. In the D-axis current controller 63A and the Q-axis current controller 63B, proportional-integral control and the like are individually performed so that the respective input deviations are minimized, and the D-axis voltage command and the Q-axis voltage command are output, respectively. This is given to the inverse converter 64. In the orthogonal coordinate inverse converter 64, the given D-axis voltage command and Q-axis voltage command are subjected to orthogonal coordinate inverse conversion using the DQ phase θ as a reference phase, and the obtained main voltage command is sent via the adder 65. To the PWM circuit 66. In this case, as will be described below, the actual current input to the A axis of the Cartesian coordinate converter 67 is inversely converted using the same DQ phase θ, so that this voltage command is A with the same phase as the actual current. It is only the axis. In the PWM circuit 66, for example, pulse width modulation is performed by comparing a voltage command with a triangular wave carrier, a gate pulse signal is generated and sent to the inverter main circuit 5, and the output voltage of the single-phase inverter 21 is controlled. The output of the orthogonal coordinate inverse converter 80 in the harmonic suppression auxiliary voltage command generation circuit 91 is given to the other input of the adder 65 as a (2n + 1) -order harmonic suppression correction command, which will be described in detail later. To do. Here, n is an arbitrary integer. In the following, (2n + 1) is described as 2n + 1 without parentheses.

ここで、直交座標変換について簡単に説明する。直交座標変換器67は、入力端子としてA及びB、出力端子としてDとQを有し、DQ位相θを基準位相として、以下の(1)及び(2)式によって直交固定座標から直交回転座標への座標変換(DQ変換)を行なう。   Here, the orthogonal coordinate transformation will be briefly described. The orthogonal coordinate converter 67 has A and B as input terminals, D and Q as output terminals, and a DQ phase θ as a reference phase, and from the orthogonal fixed coordinates to the orthogonal rotation coordinates according to the following equations (1) and (2): Coordinate conversion to (DQ conversion) is performed.

D=Acosθ+Bsinθ (1)
Q=−Asinθ+Bcosθ (2)
そして、直交座標逆変換器64は同じDQ位相θを基準位相として、以下の(3)及び(4)式によって直交回転座標から直交固定座標への座標変換(逆DQ変換)を行なう。
D = Acosθ + Bsinθ (1)
Q = -Asinθ + Bcosθ (2)
Then, the orthogonal coordinate inverse converter 64 performs coordinate conversion (inverse DQ conversion) from the orthogonal rotation coordinate to the orthogonal fixed coordinate by the following equations (3) and (4) using the same DQ phase θ as a reference phase.

A=Dcosθ−Qsinθ (3)
B=Dsinθ+Qcosθ (4)
また、DQ位相θは以下のように決める。
A = Dcosθ-Qsinθ (3)
B = Dsinθ + Qcosθ (4)
The DQ phase θ is determined as follows.

まず、多相電動機1の各巻線の電気的な位相は、多相電動機1の設計に応じて一定の位相差を有しているため、各巻線すなわち各相に通電すべき電流の位相は、相毎にこの位相差分だけずれた波形となる。例えば相数が20の典型的な多相電動機の場合、位相差=360/20=18度となり、18度ずつ位相をずらした電流を各相に通電すればよいことになる。従って、速度制御装置3の電気角演算回路34から与えられた電気角に対して、相間位相差補正回路70で定められた単相インバータ21特有の補正位相を加算器69によって加算することにより誘起電圧位相を求め、これを基準のDQ位相とする。ただし、この実施例1の場合、加算器71によって誘起電圧位相をπだけ進めて基準のDQ位相θとしている。これは一般的な3相インバータのDQ変換に用いる演算手法と符号を合わせるためである。   First, since the electrical phase of each winding of the multiphase motor 1 has a certain phase difference according to the design of the multiphase motor 1, the phase of the current to be passed through each winding, that is, each phase is The waveform is shifted by this phase difference for each phase. For example, in the case of a typical multi-phase motor having 20 phases, the phase difference = 360/20 = 18 degrees, and it is only necessary to apply a current whose phase is shifted by 18 degrees to each phase. Therefore, it is induced by adding the correction phase peculiar to the single phase inverter 21 determined by the interphase phase difference correction circuit 70 to the electrical angle given from the electrical angle calculation circuit 34 of the speed control device 3 by the adder 69. A voltage phase is obtained and used as a reference DQ phase. However, in the case of the first embodiment, the induced voltage phase is advanced by π by the adder 71 to obtain the reference DQ phase θ. This is to match the sign with the calculation method used for DQ conversion of a general three-phase inverter.

次に、直交座標変換器67の入力について説明する。直交座標変換器67のA端子には電流検出器51で検出された交流量である実電流が与えられる。そして直交座標変換器67のB端子には、この実電流の指令値である電流指令ベクトルと大きさが等しく直交する位相を有する電流を与える。このため、加算器71の出力であるDQ位相θに対し、加算器72によって電流進み角を加算し、その余弦(cos)を余弦演算器73でとり、その出力を、電流指令演算器61の出力であるD軸電流指令及びQ軸電流指令から振幅演算器74によって得られる電流指令振幅と乗算器75によって掛け合わせることによって仮想余弦波を生成する。仮想余弦波は、電流指令ベクトルの振幅と等しく、且つ電流指令ベクトルの位相と直交するように求めるようにすれば、上位装置から入力される電流振幅指令を用いるなど他の演算手法でも良い。また、実電流の振幅と位相の情報を用いて仮想余弦波を生成しても構わない。理想的には実電流の振幅と位相を用いる方がよいが、単相交流電流値から振幅と位相の情報を抽出するには、相応の複雑な演算処理が必要になる。良好に制御できている定常状態においては、電流指令ベクトルの振幅と位相で十分代用できるため、電流指令ベクトルを用いる構成とした方が現実的であると言える。このようにして生成された仮想余弦波は直交座標変換器67のB端子に入力される。   Next, input of the orthogonal coordinate converter 67 will be described. An actual current that is an AC amount detected by the current detector 51 is applied to the A terminal of the orthogonal coordinate converter 67. A current having a phase that is equal and orthogonal to the current command vector, which is the command value of the actual current, is applied to the B terminal of the orthogonal coordinate converter 67. For this reason, the current advance angle is added by the adder 72 to the DQ phase θ which is the output of the adder 71, the cosine (cos) thereof is taken by the cosine calculator 73, and the output is taken as the current command calculator 61. A virtual cosine wave is generated by multiplying the current command amplitude obtained by the amplitude calculator 74 from the output D-axis current command and Q-axis current command by the multiplier 75. As long as the virtual cosine wave is obtained so as to be equal to the amplitude of the current command vector and to be orthogonal to the phase of the current command vector, another calculation method such as using a current amplitude command input from a host device may be used. Also, a virtual cosine wave may be generated using information on the amplitude and phase of the actual current. Ideally, it is better to use the amplitude and phase of the actual current. However, in order to extract the amplitude and phase information from the single-phase alternating current value, a correspondingly complicated calculation process is required. In a steady state where the control is good, the amplitude and phase of the current command vector can be sufficiently substituted, so it can be said that the configuration using the current command vector is more realistic. The virtual cosine wave generated in this way is input to the B terminal of the orthogonal coordinate converter 67.

次に2n+1次高調波抑制制御について説明する。直交座標変換器67の出力であるD軸電流とQ軸電流は高調波抑制補助電圧指令発生回路91に入力される。低域通過フィルタ68A、68Bの出力も高調波抑制補助電圧指令発生回路91に入力される。また加算器71の出力であるDQ位相θも高調波抑制補助電圧指令発生回路91に入力される。直交座標変換器67の出力であるD軸電流とQ軸電流は、実電流を直交変換しているので、2n+1次高調波等による変動分を含んでいる。この変動分は高調波抑制補助電圧指令発生回路91内で夫々低域通過フィルタ68A、68Bの入出力間の差分を夫々減算器76A、76Bによって演算することによって求められる。そしてこの夫々の変動分を直交座標変換器77の入力端子A及びBに与える。そして直交座標変換器77は、DQ位相θを入力とする2次DQ位相演算器81の出力で直交座標系へDQ変換を行う。ここで2次DQ位相演算器81は入力されたDQ位相θを2n倍にして基準位相として直交座標変換器77に出力している。以上の構成によって、直交座標変換器77の出力は実電流に含まれる2n+1次高調波電流を2n+1倍の周波数で回転する直交回転座標に投影したD軸成分及びQ軸成分となる。ここで、2次DQ位相演算器81の出力が2n+1倍でなく2n倍となっている理由は、(1)式及び(2)式のDQ変換によって、基本波成分は直流分となるように、各周波数成分の次数は1次下がり、実電流に含まれる2n+1次高調波成分は、直交座標変換器67による変換後は基本波の2n倍の周波数成分となっているからである。   Next, 2n + 1 harmonic suppression control will be described. The D-axis current and the Q-axis current that are the outputs of the orthogonal coordinate converter 67 are input to the harmonic suppression auxiliary voltage command generation circuit 91. The outputs of the low-pass filters 68A and 68B are also input to the harmonic suppression auxiliary voltage command generation circuit 91. The DQ phase θ output from the adder 71 is also input to the harmonic suppression auxiliary voltage command generation circuit 91. The D-axis current and the Q-axis current, which are the outputs of the orthogonal coordinate converter 67, include a variation due to 2n + 1 order harmonics and the like because the actual current is orthogonally transformed. This variation is obtained by calculating the difference between the inputs and outputs of the low-pass filters 68A and 68B in the harmonic suppression auxiliary voltage command generation circuit 91 by the subtractors 76A and 76B, respectively. The respective fluctuations are given to the input terminals A and B of the orthogonal coordinate converter 77. Then, the rectangular coordinate converter 77 performs DQ conversion to the rectangular coordinate system using the output of the secondary DQ phase calculator 81 that receives the DQ phase θ. Here, the secondary DQ phase calculator 81 multiplies the input DQ phase θ by 2n and outputs it to the orthogonal coordinate converter 77 as a reference phase. With the above configuration, the output of the orthogonal coordinate converter 77 becomes a D-axis component and a Q-axis component obtained by projecting the 2n + 1 order harmonic current included in the actual current onto the orthogonal rotation coordinates rotating at a frequency 2n + 1 times. Here, the reason why the output of the secondary DQ phase calculator 81 is 2n times instead of 2n + 1 times is that the fundamental wave component becomes a direct current component by the DQ conversion of the equations (1) and (2). This is because the order of each frequency component decreases by the first order, and the 2n + 1-order harmonic component included in the actual current becomes a frequency component 2n times the fundamental wave after conversion by the orthogonal coordinate converter 67.

直交座標変換器77の出力である2n+1次高調波電流のD軸成分及びQ軸成分各々と0との差分を夫々減算器78A、78Bで求め、これらの差分が最小となるように夫々高調波電流制御器79A及び79Bで比例積分制御等を行い、D軸電圧補正指令及びQ軸電圧補正指令を夫々出力し直交座標逆変換器80に与える。そして直交座標逆変換器80は、DQ位相θを入力とする2n+1次DQ位相演算器82の出力で固定座標系へDQ逆変換を行う。ここで2n+1次DQ位相演算器82は入力されたDQ位相θを2n+1倍にして基準位相として直交座標変換器80に出力している。そして、直交座標逆変換器80の出力を高調波抑制補正指令として加算器65に与える。このように構成すれば、実電流に含まれる2n+1次高調波成分を抑制制御することが可能となる。   The difference between each of the D-axis component and the Q-axis component of the 2n + 1-order harmonic current, which is the output of the orthogonal coordinate converter 77, and 0 is obtained by subtractors 78A and 78B, respectively, and the harmonics are set so that these differences are minimized. Proportional integral control and the like are performed by the current controllers 79A and 79B, and a D-axis voltage correction command and a Q-axis voltage correction command are output to the orthogonal coordinate inverse converter 80, respectively. The orthogonal coordinate inverse transformer 80 performs DQ inverse transformation to the fixed coordinate system using the output of the 2n + 1-order DQ phase calculator 82 that receives the DQ phase θ. Here, the 2n + 1-order DQ phase calculator 82 multiplies the input DQ phase θ by 2n + 1 and outputs it to the orthogonal coordinate converter 80 as a reference phase. Then, the output of the orthogonal coordinate inverse converter 80 is given to the adder 65 as a harmonic suppression correction command. If comprised in this way, it will become possible to carry out suppression control of the 2n + 1st order harmonic component contained in an actual current.

以上述べた実施例1の構成において、多相電動機1が同期電動機の場合は、定常状態においては多相電動機1の回転位相と同期した実電流が各巻線に流れる。多相電動機1が誘導電動機であっても、電動機の回転周波数にすべり周波数を加算して得られる一次側周波数を積分して回転角度を得ることにより、この角度が通電すべき電流の位相角となるため、本実施例と同様の構成により制御することが可能である。また本実施例の電流位相は電流指令ベクトルの位相を用いているが、実電流の位相誤差や変動を補正して求めた位相であっても良い。   In the configuration of the first embodiment described above, when the multiphase motor 1 is a synchronous motor, an actual current synchronized with the rotational phase of the multiphase motor 1 flows in each winding in a steady state. Even if the multiphase motor 1 is an induction motor, by integrating the primary side frequency obtained by adding the slip frequency to the rotation frequency of the motor to obtain the rotation angle, this angle is the current phase angle to be energized and Therefore, it is possible to control with the same configuration as in this embodiment. The current phase of this embodiment uses the phase of the current command vector, but it may be a phase obtained by correcting the phase error or fluctuation of the actual current.

また。この実施例1においては、電流指令演算器61に与える基準位相を電流進み角とした。そして、この場合直交座標変換器67及び直交座標逆変換器64の基準位相であるDQ位相を誘起電圧位相とすることによって、図3に示したように電流指令ベクトルを真D軸と真Q軸に展開し、これらの2軸に対して所謂フィードバック電流制御を行うことが可能となった。   Also. In the first embodiment, the reference phase applied to the current command calculator 61 is the current advance angle. In this case, the DQ phase, which is the reference phase of the Cartesian coordinate converter 67 and the Cartesian coordinate inverse converter 64, is used as the induced voltage phase, so that the current command vector is converted into the true D axis and the true Q axis as shown in FIG. It has become possible to perform so-called feedback current control for these two axes.

図4は、一般化された制御D軸と制御Q軸の概念を導入し、この制御DQ軸が真のDQ軸に対して回転位相補正角分進んだ位相となっている場合の電流ベクトルの位相関係を示したものである。電流進み角は真Q軸からの電流ベクトルの進み角であるので、この場合電流指令演算器61に与える基準位相は電流進み角から回転位相補正角を減算した位相角となる。そしてこの位相角で電流指令ベクトルを制御D軸と制御Q軸上に展開してD軸電流指令とQ軸電流指令を求める。フィードバック側の電流位相をこれらと合わせる為、直交座標変換器68及び直交座標逆変換器66に与える基準位相であるDQ位相を、与えられた共通の電気角に対して、相間位相差補正回路70で定められた個別にシフトした位相角を加算した誘起電圧位相に、更に回転位相補正角を加算した値とする。このようにして、真D軸と真Q軸とは回転位相補正角分ずれたDQ軸による制御が可能となる。実施例1は、制御DQ軸と真のDQ軸が一致した場合である。   FIG. 4 introduces the generalized concept of the control D axis and the control Q axis, and the current vector in the case where the control DQ axis has a phase advanced by the rotational phase correction angle with respect to the true DQ axis. This shows the phase relationship. Since the current advance angle is the advance angle of the current vector from the true Q axis, in this case, the reference phase given to the current command calculator 61 is a phase angle obtained by subtracting the rotational phase correction angle from the current advance angle. At this phase angle, the current command vector is developed on the control D axis and the control Q axis to obtain the D axis current command and the Q axis current command. In order to match the current phase on the feedback side with these, the DQ phase which is the reference phase given to the orthogonal coordinate converter 68 and the orthogonal coordinate inverse converter 66 is set to the interphase phase difference correction circuit 70 with respect to the given common electrical angle. A value obtained by further adding the rotational phase correction angle to the induced voltage phase obtained by adding the individually shifted phase angles determined in (1). In this manner, the true D axis and the true Q axis can be controlled by the DQ axis shifted by the rotational phase correction angle. In the first embodiment, the control DQ axis and the true DQ axis coincide.

この実施例1によれば、直交座標変換器77の出力である2n+1次高調波電流のD軸成分及びQ軸成分は直流量であるため、電流指令ベクトルに対する実電流の位相誤差と振幅誤差は発生しない。位相誤差を抑制できると電流指令ベクトルどおりの実電流を流すことができるため、2n+1次高調波電流を低減し電流波形を改善できる。また、各単相インバータで個別にDQ変換するため、全単相インバータの内、何台か停止しても残りの単相インバータで安定した電流制御を行うことにより、運転を継続できる。また、電流制御を各単相インバータ個別で行うため、装置を簡略化できる。   According to the first embodiment, since the D-axis component and the Q-axis component of the 2n + 1-order harmonic current that is the output of the orthogonal coordinate converter 77 are direct current amounts, the phase error and amplitude error of the actual current with respect to the current command vector are Does not occur. If the phase error can be suppressed, an actual current can be passed according to the current command vector, so that the 2n + 1st order harmonic current can be reduced and the current waveform can be improved. Moreover, since each single-phase inverter performs DQ conversion individually, even if several of the single-phase inverters are stopped, the operation can be continued by performing stable current control with the remaining single-phase inverters. Moreover, since current control is performed individually for each single-phase inverter, the apparatus can be simplified.

図1の回路はn=1とすれば、3次高調波電流を低減し出力電流波形を改善することができる。また、図1の回路はn=2とすれば、5次高調波電流を低減し出力電流波形を改善することができる。   In the circuit of FIG. 1, if n = 1, the third harmonic current can be reduced and the output current waveform can be improved. In the circuit of FIG. 1, if n = 2, the fifth harmonic current can be reduced and the output current waveform can be improved.

図5は本発明の実施例2に係る多相電動機駆動装置のブロック構成図である。この実施例2の各部について、図1の本発明の実施例1に係る多相電動機駆動装置のブロック構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、2n+1次高調波電流のD軸成分及びQ軸成分を求めるのに、基本波のD軸電流及びQ軸電流から求めることはせず、実電流と仮想正弦波の差分から求めるようにした点である。   FIG. 5 is a block diagram of a multiphase motor driving apparatus according to Embodiment 2 of the present invention. In the second embodiment, the same parts as those in the block configuration diagram of the multiphase motor driving device according to the first embodiment of the present invention shown in FIG. The difference between the second embodiment and the first embodiment is that the D-axis component and the Q-axis component of the 2n + 1 order harmonic current are not obtained from the fundamental D-axis current and Q-axis current, but the actual current And the difference between the virtual sine wave.

図5において、電流検出器51により検出された実電流と実電流と同相の乗算器85の出力である仮想正弦波は高調波抑制補助電圧指令発生回路92に入力される。また加算器71の出力であるDQ位相θも高調波抑制補助電圧指令発生回路92に入力される。   In FIG. 5, the virtual current sine wave which is the output of the multiplier 85 in phase with the real current detected by the current detector 51 is input to the harmonic suppression auxiliary voltage command generation circuit 92. The DQ phase θ, which is the output of the adder 71, is also input to the harmonic suppression auxiliary voltage command generation circuit 92.

高調波抑制補助電圧指令発生回路92内で、減算器86は電流検出器51により検出された実電流から、実電流と同相の乗算器85の出力である仮想正弦波を減算して差分を求めている。仮想正弦波は、加算器72の出力の正弦(sin)を正弦演算器84でとり、その出力を振幅演算器74によって得られる電流指令振幅と乗算器85によって掛け合わせることによって得ている。そしてその差分を直交座標変換器87の入力端子Aに与える。   In the harmonic suppression auxiliary voltage command generation circuit 92, the subtractor 86 subtracts the virtual sine wave, which is the output of the multiplier 85 in phase with the actual current, from the actual current detected by the current detector 51 to obtain the difference. ing. The virtual sine wave is obtained by taking the sine (sin) of the output of the adder 72 by the sine calculator 84 and multiplying the output by the current command amplitude obtained by the amplitude calculator 74 and the multiplier 85. Then, the difference is given to the input terminal A of the orthogonal coordinate converter 87.

直交座標変換器87の入力端子B端子は0を与える。そして直交座標変換器87は、DQ位相θを入力とする2n+1次DQ位相演算器82の出力で直交座標系へDQ変換を行う。ここで2n+1次DQ位相演算器82は入力されたDQ位相θを2n+1倍にして基準位相として直交座標変換器80に出力している。そして得られたD軸及びQ軸出力を夫々低域通過フィルタ88A及び88Bを介して直流成分のみを得るようにすれば、低域通過フィルタ88A及び88Bの出力は実施例1の場合と同様、実電流に含まれる2n+1次高調波電流を2n+1倍の周波数で回転する直交回転座標に投影したD軸成分及びQ軸成分となる。以降の制御は実施例1と同一であるので説明は省略する。尚、仮想正弦波を作成するには、図5の構成に限らず、例えば乗算器75の出力である仮想余弦波を演算によって位相シフトするようにしても良い。 The input terminal B terminal of the rectangular coordinate converter 87 gives 0. The orthogonal coordinate converter 87 performs DQ conversion to an orthogonal coordinate system using the output of the 2n + 1-order DQ phase calculator 82 that receives the DQ phase θ. Here, the 2n + 1-order DQ phase calculator 82 multiplies the input DQ phase θ by 2n + 1 and outputs it to the orthogonal coordinate converter 80 as a reference phase. Then, if only the DC component is obtained from the obtained D-axis and Q-axis outputs via the low-pass filters 88A and 88B, the outputs of the low-pass filters 88A and 88B are the same as in the first embodiment. The D-axis component and the Q-axis component are obtained by projecting the 2n + 1-order harmonic current included in the actual current onto orthogonal rotation coordinates that rotate at a frequency 2n + 1 times. Since the subsequent control is the same as that of the first embodiment, the description thereof is omitted. Note that the creation of the virtual sine wave is not limited to the configuration shown in FIG. 5, and for example, the virtual cosine wave that is the output of the multiplier 75 may be phase-shifted by calculation.

図5の回路はn=1とすれば、3次高調波電流を低減し出力電流波形を改善することができる。また、図5の回路はn=2とすれば、5次高調波電流を低減し出力電流波形を改善することができる。   In the circuit of FIG. 5, if n = 1, the third harmonic current can be reduced and the output current waveform can be improved. In the circuit of FIG. 5, if n = 2, the fifth harmonic current can be reduced and the output current waveform can be improved.

以下本発明の実施例3に係る電力変換装置を、図6及び図1を参照して説明する。図6は本発明の実施例3に係る電力変換装置の高調波抑制補助電圧指令発生回路の回路構成図である。この実施例3は、図1において、高調波抑制補助電圧指令発生回路91を高調波抑制補助電圧指令発生回路91Aに置き換え、複数の2n+1次高調波を同時に抑制する実施例である。   Hereinafter, a power converter according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a circuit configuration diagram of a harmonic suppression auxiliary voltage command generation circuit of the power conversion apparatus according to the third embodiment of the present invention. The third embodiment is an embodiment in which the harmonic suppression auxiliary voltage command generation circuit 91 in FIG. 1 is replaced with a harmonic suppression auxiliary voltage command generation circuit 91A to simultaneously suppress a plurality of 2n + 1-order harmonics.

直交座標変換器67の出力であるD軸電流は低域通過フィルタ68Aの出力と、またQ軸電流は低域通過フィルタ68Bの出力との差分が夫々減算器76A、76Bで演算され、高調波抑制制御回路931、932、・・・、93Nの各々に設けられた直交座標変換器77に並列に与えられる。また、加算器71の出力であるDQ位相θも高調波抑制制御回路931、932、・・・、93Nに並列に与えられる。ここで、高調波抑制制御回路931、932、・・・、93Nは、図1の高調波抑制補助電圧指令発生回路91から減算器76A及び減算器76Bを除いた回路と基本的に同一であるのでその詳細な説明は省略する。高調波抑制制御回路931はDQ位相θを2次DQ位相演算器811及び3次DQ位相演算器821に与え、その各々の出力を夫々直交座標変換器77、直交座標逆変換器80に与える。高調波抑制制御回路932はDQ位相θを4次DQ位相演算器812及び5次DQ位相演算器822に与え、その各々の出力を夫々直交座標変換器77、直交座標逆変換器80に与える。そして、高調波抑制制御回路93NはDQ位相θを2n次DQ位相演算器81N及び(2n+1)次DQ位相演算器82Nに与え、その出力を夫々直交座標変換器77、直交座標逆変換器80に与える。ここで高調波抑制制御回路93Nにおけるnは、本実施例では3以上を想定している。   The D-axis current, which is the output of the Cartesian coordinate converter 67, is calculated by the subtractors 76A, 76B, respectively, as the difference between the output of the low-pass filter 68A and the Q-axis current, the output of the low-pass filter 68B. .., 93N are provided in parallel to the orthogonal coordinate converter 77 provided in each of the suppression control circuits 931, 932,. Further, the DQ phase θ output from the adder 71 is also provided in parallel to the harmonic suppression control circuits 931, 932,. Here, the harmonic suppression control circuits 931, 932,..., 93N are basically the same as the circuit obtained by removing the subtractor 76A and the subtractor 76B from the harmonic suppression auxiliary voltage command generation circuit 91 of FIG. Therefore, the detailed description is abbreviate | omitted. The harmonic suppression control circuit 931 supplies the DQ phase θ to the secondary DQ phase calculator 811 and the tertiary DQ phase calculator 821 and outputs the respective outputs to the orthogonal coordinate converter 77 and the orthogonal coordinate inverse converter 80, respectively. The harmonic suppression control circuit 932 provides the DQ phase θ to the fourth-order DQ phase calculator 812 and the fifth-order DQ phase calculator 822, and outputs the respective outputs to the orthogonal coordinate converter 77 and the orthogonal coordinate inverse converter 80, respectively. Then, the harmonic suppression control circuit 93N gives the DQ phase θ to the 2n-th order DQ phase calculator 81N and the (2n + 1) -th order DQ phase calculator 82N, and outputs the signals to the orthogonal coordinate converter 77 and the orthogonal coordinate inverse converter 80, respectively. give. Here, n in the harmonic suppression control circuit 93N is assumed to be 3 or more in this embodiment.

高調波抑制制御回路931、932、・・・、93Nの各々の出力は加算器94で加算され、加算器65に高調波抑制補助電圧指令として与えられる。このように高調波抑制補助電圧指令発生回路91Aを構成すれば、高調波抑制制御回路931で3次の高調波を抑制し、高調波抑制制御回路932で5次の高調波を抑制し、高調波抑制制御回路93Nで(2n+1)次の高調波を抑制することができる。このことから、高調波抑制制御回路を複数並列に用いて、その合成出力を高調波抑制補助電圧指令とすれば、任意の複数の(2n+1)次の高調波を抑制することが可能となる。   The outputs of the harmonic suppression control circuits 931, 932,..., 93N are added by an adder 94 and given to the adder 65 as a harmonic suppression auxiliary voltage command. If the harmonic suppression auxiliary voltage command generation circuit 91A is configured in this way, the harmonic suppression control circuit 931 suppresses the third harmonic, the harmonic suppression control circuit 932 suppresses the fifth harmonic, The (2n + 1) -order harmonic can be suppressed by the wave suppression control circuit 93N. For this reason, if a plurality of harmonic suppression control circuits are used in parallel and the combined output is used as a harmonic suppression auxiliary voltage command, an arbitrary plurality of (2n + 1) -order harmonics can be suppressed.

以下本発明の実施例4に係る電力変換装置を、図7及び図5を参照して説明する。図7は本発明の実施例4に係る電力変換装置の高調波抑制補助電圧指令発生回路の回路構成図である。この実施例4は、図5において、高調波抑制補助電圧指令発生回路92を高調波抑制補助電圧指令発生回路92Aに置き換え、複数の(2n+1)次の高調波を同時に抑制する実施例である。   Hereinafter, the power converter concerning Example 4 of the present invention is explained with reference to FIG.7 and FIG.5. FIG. 7 is a circuit configuration diagram of a harmonic suppression auxiliary voltage command generation circuit of the power conversion apparatus according to the fourth embodiment of the present invention. The fourth embodiment is an embodiment in which the harmonic suppression auxiliary voltage command generation circuit 92 is replaced with a harmonic suppression auxiliary voltage command generation circuit 92A in FIG. 5 to simultaneously suppress a plurality of (2n + 1) -order harmonics.

電流検出器51の出力である実電流帰還と乗算器85の出力である理想正弦波の差分が減算器86で演算され、高調波抑制制御回路951、952、・・・、95Nの各々に設けられた直交座標変換器87に並列に与えられる。また、加算器71の出力であるDQ位相θも高調波抑制制御回路951、952、・・・、95Nに並列に与えられる。ここで、高調波抑制制御回路951、952、・・・、95Nは、図5の高調波抑制補助電圧指令発生回路92から減算器86を除いた回路と基本的に同一であるのでその詳細な説明は省略する。高調波抑制制御回路951はDQ位相θを3次DQ位相演算器831に与え、その出力を直交座標変換器87及び直交座標逆変換器80に与える。高調波抑制制御回路952はDQ位相θを5次DQ位相演算器832に与え、その出力を直交座標変換器87及び直交座標逆変換器80に与える。そして、高調波抑制制御回路95NはDQ位相θを2n次DQ位相演算器83Nに与え、その出力を直交座標変換器87及び直交座標逆変換器80に与える。ここで高調波抑制制御回路93Nにおけるnは、本実施例では3以上を想定している。   The difference between the actual current feedback that is the output of the current detector 51 and the ideal sine wave that is the output of the multiplier 85 is calculated by the subtractor 86, and is provided in each of the harmonic suppression control circuits 951, 952,. The orthogonal coordinate converter 87 is provided in parallel. Further, the DQ phase θ which is the output of the adder 71 is also provided in parallel to the harmonic suppression control circuits 951, 952,. Here, the harmonic suppression control circuits 951, 952,..., 95N are basically the same as the circuit obtained by removing the subtractor 86 from the harmonic suppression auxiliary voltage command generation circuit 92 of FIG. Description is omitted. The harmonic suppression control circuit 951 gives the DQ phase θ to the third-order DQ phase calculator 831, and gives the output to the orthogonal coordinate converter 87 and the orthogonal coordinate inverse converter 80. The harmonic suppression control circuit 952 gives the DQ phase θ to the fifth-order DQ phase calculator 832, and gives the output to the orthogonal coordinate converter 87 and the orthogonal coordinate inverse converter 80. Then, the harmonic suppression control circuit 95N gives the DQ phase θ to the 2n-th order DQ phase calculator 83N, and gives the output to the orthogonal coordinate converter 87 and the orthogonal coordinate inverse converter 80. Here, n in the harmonic suppression control circuit 93N is assumed to be 3 or more in this embodiment.

高調波抑制制御回路951、952、・・・、95Nの各々の出力は加算器94で加算され、加算器65に高調波抑制補助電圧指令として与えられる。このように高調波抑制補助電圧指令発生回路92Aを構成すれば、実施例3の場合と同様、高調波抑制制御回路951で3次の高調波を抑制し、高調波抑制制御回路952で5次の高調波を抑制し、高調波抑制制御回路95Nで(2n+1)次の高調波を抑制することができる。   The outputs of the harmonic suppression control circuits 951, 952,..., 95N are added by an adder 94 and given to the adder 65 as a harmonic suppression auxiliary voltage command. If the harmonic suppression auxiliary voltage command generation circuit 92A is configured in this way, the third harmonic is suppressed by the harmonic suppression control circuit 951 and the fifth order by the harmonic suppression control circuit 952, as in the third embodiment. The (2n + 1) th order harmonic can be suppressed by the harmonic suppression control circuit 95N.

以上、実施例1乃至実施例4について説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although Example 1 thru | or Example 4 was demonstrated, these Examples are shown as an example and are not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、図1及び図5において、直交座標逆変換器64の出力である電圧指令には(3)式に示したA軸成分を使用し、これに呼応して直交座標変換器67には、実電流をA軸成分として入力し、仮想余弦波をB軸成分として入力しているが、電圧指令に(4)式に示すB軸成分を使用し、直交座標変換器67のB軸成分に実電流を、A軸成分に仮想余弦波を入力する構成も可能である。要は、実電流を制御する軸に直交する軸の成分として仮想余弦波を電流応答として入力すればよい。なお、「仮想余弦波」と記載したが、余弦波/正弦波の違いは、単に位相関係の違いであり上記位相関係に整合する位相で仮想波を作れるのであれば、その演算に余弦(cos演算)/正弦(sin演算)のどちらを用いるかは任意である。   For example, in FIG. 1 and FIG. 5, the A-axis component shown in the equation (3) is used for the voltage command that is the output of the orthogonal coordinate inverse converter 64, and in response to this, the orthogonal coordinate converter 67 Although the actual current is input as the A-axis component and the virtual cosine wave is input as the B-axis component, the B-axis component shown in the equation (4) is used as the voltage command, and the B-axis component of the orthogonal coordinate converter 67 is used. A configuration in which a virtual current cosine wave is input to the A-axis component is also possible. In short, a virtual cosine wave may be input as a current response as a component of an axis orthogonal to the axis that controls the actual current. Although described as “virtual cosine wave”, the difference between the cosine wave and sine wave is simply the difference in phase relationship. If a virtual wave can be created with a phase that matches the above phase relationship, cosine (cos) It is optional to use either (operation) / sine (sin operation).

また電流進み角、回転位相補正角は何れも正の値として説明したが、何れかが負であっても両者が負であっても良い。   Further, although both the current advance angle and the rotational phase correction angle have been described as positive values, either one may be negative or both may be negative.

また、実施例2及び実施例4において、実電流と同相、同振幅の仮想正弦波を用いて2n+1次DQ変換して2n+1次高調波のDQ成分を導出したが、実電流そのものをフィルタリングすることによって2n+1次高調波を導出することも可能である。また、実施例1及び実施例3において、直交座標変換器67の出力から高域通過フィルタで2n+1次高調波を抽出することも可能である。しかし、この何れの場合も交流量をフィルタリングすることになるので、位相ズレによる誤差が発生し、検出精度が低下するので注意が必要である。   In the second and fourth embodiments, the 2n + 1 order DQ conversion is performed by using the virtual sine wave having the same phase and the same amplitude as the actual current, and the DQ component of the 2n + 1 order harmonic is derived. However, the actual current itself is filtered. It is also possible to derive 2n + 1 order harmonics by In the first and third embodiments, it is also possible to extract 2n + 1 order harmonics from the output of the orthogonal coordinate converter 67 with a high-pass filter. However, in either case, since the AC amount is filtered, an error due to a phase shift occurs, and the detection accuracy is lowered, so care must be taken.

本願の実施例1乃至実施例4においては、全て直流量と交流量を分離抽出するフィルタリングを行っているので、基本波の周波数(運転速度に対応)が変化しても誤差は生じ難い。しかしながら、運転速度が低い領域では、2n+1次高調波の周波数も低周波となる。このため、実施例1、2において、運転速度の低下に応じて低域通過フィルタのカットオフ周波数を低下させるようにしても良い。   In the first to fourth embodiments of the present application, since filtering is performed to separate and extract the direct current amount and the alternating current amount, an error hardly occurs even if the fundamental wave frequency (corresponding to the operation speed) changes. However, in the region where the operation speed is low, the frequency of the 2n + 1 order harmonic is also low. For this reason, in Embodiments 1 and 2, the cut-off frequency of the low-pass filter may be reduced in accordance with the decrease in the operating speed.

更に、図1における電流指令演算器61は制御装置6の内部に設ける構成としたが、共通に設けられた速度制御装置3の内部に設け、D軸電流指令及びQ軸電流指令を単相インバータ21に与える構成としても良い。   Further, although the current command calculator 61 in FIG. 1 is configured to be provided inside the control device 6, it is provided inside the speed control device 3 provided in common, and the D-axis current command and the Q-axis current command are sent to the single-phase inverter. 21 may be used.

1 多相電動機
21、22、・・・2N 単相インバータ
3 速度制御装置
4 回転角度検出器
5 インバータ主回路
6 制御装置
31 速度検出回路
32 減算器
33 速度制御器
34 電気角演算回路
35 電流位相演算回路
51 電流検出器
61 電流指令演算器
62A、62B 減算器
63A D軸電流制御器
63B Q軸電流制御器
64 直交座標逆変換器
65 加算器
66 PWM回路
67 直交座標変換器
68A、68B 低域通過フィルタ
69 加算器
70 相間位相差補正回路
71 加算器
72 加算器
73 余弦演算器
74 振幅演算器
75 乗算器
76A、76B 減算器
77 直交座標変換器
78A、78B 減算器
79A、79B 高調波電流制御器
80 直交座標逆変換器
81、81N 2n次DQ位相演算器
811 2次DQ位相演算器
812 4次DQ位相演算器
82、83、82N、83N 2n+1次DQ位相演算器
821、831 3次DQ位相演算器
822、832 5次DQ位相演算器
84 正弦演算器
85 乗算器
86 減算器
87 直交座標変換器
88A、88B 低域通過フィルタ
91、91A 高調波抑制補助電圧指令発生回路
92、92A 高調波抑制補助電圧指令発生回路
931、932、93N 高調波抑制制御回路
951、952、95N 高調波抑制制御回路
DESCRIPTION OF SYMBOLS 1 Multiphase motor 21, 22, ... 2N Single phase inverter 3 Speed control apparatus 4 Rotation angle detector 5 Inverter main circuit 6 Control apparatus 31 Speed detection circuit 32 Subtractor 33 Speed controller 34 Electrical angle calculation circuit 35 Current phase Arithmetic circuit 51 Current detector 61 Current command calculator 62A, 62B Subtractor 63A D-axis current controller 63B Q-axis current controller 64 Orthogonal coordinate inverse converter 65 Adder 66 PWM circuit 67 Orthogonal coordinate converter 68A, 68B Low frequency range Pass filter 69 Adder 70 Interphase phase difference correction circuit 71 Adder 72 Adder 73 Cosine calculator 74 Amplitude calculator 75 Multipliers 76A, 76B Subtractor 77 Cartesian coordinate converters 78A, 78B Subtractors 79A, 79B Harmonic current control Unit 80 Cartesian coordinate inverse converter 81, 81N 2n-order DQ phase calculator 811 Secondary DQ phase calculator 812 Fourth-order DQ phase calculator Units 82, 83, 82N, 83N 2n + 1-order DQ phase calculators 821, 831 Third-order DQ phase calculators 822, 832 Fifth-order DQ phase calculator 84 Sine calculator 85 Multiplier 86 Subtractor 87 Orthogonal coordinate converters 88A, 88B Low-pass filter 91, 91A Harmonic suppression auxiliary voltage command generation circuit 92, 92A Harmonic suppression auxiliary voltage command generation circuit 931, 932, 93N Harmonic suppression control circuit 951, 952, 95N Harmonic suppression control circuit

Claims (7)

互いに絶縁された複数相の巻線を有する多相電動機と、
前記各巻線に各々接続され、交流電力を出力する複数台の単相インバータと、
前記単相インバータに電流振幅指令を与える速度制御装置から構成され、
前記単相インバータは、
前記巻線に流れる実電流を検出する電流検出器と、
前記電流振幅指令に基づいて巻線に流す電流を制御する制御装置を具備し、
前記制御装置は、
前記電流振幅指令を制御D軸及び制御Q軸の2軸の電流指令に展開する電流指令演算手段と、
前記電流振幅指令または前記実電流の振幅と等しく、且つ前記電流振幅指令または前記実電流と直交する位相を持つ仮想余弦波を生成する仮想余弦波生成手段と、
前記実電流と前記仮想余弦波を用いて直交回転座標変換する第1の直交回転座標変換手段と、
前記電流指令演算手段によって得られた前記2軸の電流指令に、前記第1の直交回転座標変換手段によって得られた前記2軸の電流成分が夫々追従するように電流制御を行って主電圧指令を出力する主電流制御手段と、
nを任意の整数と定義したとき、前記実電流に含まれる2n+1次高調波成分を基本波の2n+1倍の周波数で回転する直交回転座標に投影した2軸の直交成分として検出する2n+1次高調波検出手段と、
この2n+1次高調波検出手段で検出された2軸の検出値の各々が最小となるように電流制御を行い、その出力を第1の直交座標逆変換手段で変換して2n+1次高調波抑制補助電圧指令を出力する高調波電流制御手段と
を有し、
前記第1の直交回転座標変換手段及び前記第1の直交座標逆変換手段の基準位相は、
前記多相電動機の各巻線の位相差に応じて、各々の前記単相インバータで個別にシフトした位相角を用いると共に、
前記単相インバータの出力電圧が、前記主電圧指令に前記2n+1次高調波抑制補助電圧指令を加算した値となるよう制御することを特徴とする多相電動機駆動装置。
A multiphase motor having a plurality of phase windings insulated from each other;
A plurality of single-phase inverters connected to each of the windings and outputting AC power; and
It is composed of a speed control device that gives a current amplitude command to the single-phase inverter,
The single-phase inverter is
A current detector for detecting an actual current flowing through the winding;
Comprising a control device for controlling the current flowing through the winding based on the current amplitude command;
The control device includes:
Current command calculation means for expanding the current amplitude command into two-axis current commands of control D axis and control Q axis;
Virtual cosine wave generating means for generating a virtual cosine wave having a phase equal to the current amplitude command or the amplitude of the real current and having a phase orthogonal to the current amplitude command or the real current;
First orthogonal rotation coordinate conversion means for performing orthogonal rotation coordinate conversion using the real current and the virtual cosine wave;
The main voltage command is obtained by performing current control so that the two-axis current component obtained by the first orthogonal rotation coordinate conversion unit follows the two-axis current command obtained by the current command calculation unit. Main current control means for outputting
When n is defined as an arbitrary integer, 2n + 1 order harmonics are detected as 2-axis orthogonal components projected on orthogonal rotation coordinates rotating at a frequency 2n + 1 times that of the fundamental wave. Detection means;
Current control is performed so that each of the detected values of the two axes detected by the 2n + 1st order harmonic detection means is minimized, and the output is converted by the first orthogonal coordinate inverse conversion means to assist 2n + 1st order harmonic suppression. Harmonic current control means for outputting a voltage command,
The reference phase of the first orthogonal rotation coordinate transformation means and the first orthogonal coordinate inverse transformation means is:
According to the phase difference of each winding of the multiphase motor, using the phase angle individually shifted in each single-phase inverter,
The multi-phase motor drive device according to claim 1, wherein the output voltage of the single-phase inverter is controlled to be a value obtained by adding the 2n + 1st harmonic suppression auxiliary voltage command to the main voltage command.
前記直交回転座標変換手段によって得られた前記2軸の電流成分の各々を、低域通過フィルタを介して前記電流指令演算手段によって得られた前記2軸の電流指令と比較するようにし、
前記2n+1次高調波検出手段は、
前記各々の低域通過フィルタの入力と出力の差分を第2の直交回転座標変換手段に与え、その出力を検出するようにし、前記第2の直交回転座標変換手段は、前記第1直交回転座標変換手段と同一の基準位相で且つ基本波の2n倍の周波数で直交回転座標変換を行うことを特徴とする請求項1に記載の多相電動機駆動装置。
Each of the two-axis current components obtained by the orthogonal rotation coordinate conversion means is compared with the two-axis current command obtained by the current command calculation means via a low-pass filter,
The 2n + 1 order harmonic detection means includes:
The difference between the input and output of each low-pass filter is given to a second orthogonal rotation coordinate conversion means, and the output is detected, and the second orthogonal rotation coordinate conversion means is configured to detect the first orthogonal rotation coordinate conversion means. The multi-phase motor drive device according to claim 1, wherein orthogonal rotation coordinate transformation is performed at the same reference phase as that of the transformation means and at a frequency 2n times the fundamental wave.
前記電流振幅指令または前記実電流の振幅と等しく、且つ前記電流振幅指令または前記実電流と同相の仮想正弦波を生成する仮想正弦波生成手段を更に有し、
前記2n+1次高調波検出手段は、
前記実電流と前記仮想正弦波の差分を第3の直交回転座標変換手段に与え、その2軸の出力の各々に第2の低域通過フィルタを介して検出するようにし、
前記第3直交回転座標変換手段は、前記第1の直交回転座標変換手段と同一の基準位相で且つ基本波の2n+1倍の周波数で直交回転座標変換を行うことを特徴とする請求項1に記載の多相電動機駆動装置。
Virtual sine wave generating means for generating a virtual sine wave equal to the amplitude of the current amplitude command or the real current and in phase with the current amplitude command or the real current;
The 2n + 1 order harmonic detection means includes:
The difference between the real current and the virtual sine wave is given to a third orthogonal rotation coordinate conversion means, and each of the two axis outputs is detected via a second low-pass filter,
The said 3rd orthogonal rotation coordinate transformation means performs orthogonal rotation coordinate transformation with the same reference phase as the said 1st orthogonal rotation coordinate transformation means, and a frequency 2n + 1 times the fundamental wave. Multiphase motor drive device.
互いにnの値が異なる前記2n+1次高調波検出手段を複数個設けると共に、これらの複数個の2n+1次高調波検出手段の各々に対応して2n+1次高調波抑制補助電圧指令を出力する前記高調波電流制御手段を複数個設け、前記単相インバータの出力電圧が、前記主電圧指令に前記複数個の2n+1次高調波抑制補助電圧指令の合成値を加算した値となるよう制御することを特徴とする請求項1乃至請求項3の何れか1項に記載の多相電動機駆動装置。   A plurality of 2n + 1st order harmonic detection means having different values of n from each other, and a harmonic that outputs a 2n + 1st order harmonic suppression auxiliary voltage command corresponding to each of the plurality of 2n + 1st order harmonic detection means A plurality of current control means are provided, and the output voltage of the single-phase inverter is controlled to be a value obtained by adding a composite value of the plurality of 2n + 1-order harmonic suppression auxiliary voltage commands to the main voltage command. The multiphase motor drive device according to any one of claims 1 to 3. 多相電動機と回転同期した界磁極の方向を真D軸、それと直交し界磁極による誘起電圧の方向を真Q軸とし、前記真Q軸からの電流ベクトルの進み角を電流進み角としたとき、
前記直交回転座標変換手段の基準位相は、
前記多相電動機に設けられた回転角度検出器によって検出された回転角度を電気角に換算した値に前記個別にシフトした位相角を加算し、更に回転位相補正角を加算して得るようにし、
前記電流指令演算手段の基準位相は、前記電流進み角から前記回転位相補正角を減算して得ることを特徴とする請求項1乃至4の何れか1項に記載の多相電動機駆動装置。
When the direction of the field pole that is rotationally synchronized with the multiphase motor is the true D axis, the direction of the induced voltage by the field pole perpendicular to the true Q axis is the true Q axis, and the advance angle of the current vector from the true Q axis is the current advance angle ,
The reference phase of the orthogonal rotation coordinate conversion means is:
Adding the individually shifted phase angle to the value obtained by converting the rotation angle detected by the rotation angle detector provided in the polyphase motor into an electrical angle, and further adding the rotation phase correction angle;
5. The multiphase motor drive device according to claim 1, wherein the reference phase of the current command calculation unit is obtained by subtracting the rotational phase correction angle from the current advance angle. 6.
前記仮想余弦波生成手段は、
前記多相電動機に設けられた回転角度検出器によって検出された回転角度を電気角に換算した値に前記個別にシフトした位相角を加算し、更に前記電流進み角を加算した位相を有し、前記実電流または前記電流振幅指令の振幅を有する余弦波を生成することを特徴とする請求項1乃至請求項5の何れか1項に記載の多相電動機駆動装置。
The virtual cosine wave generating means includes
Adding the individually shifted phase angle to the value obtained by converting the rotation angle detected by the rotation angle detector provided in the polyphase motor into an electrical angle, and further adding the current advance angle; 6. The multiphase motor drive device according to claim 1, wherein a cosine wave having an amplitude of the actual current or the current amplitude command is generated. 7.
前記多相電動機の速度を検出する速度検出手段を有し、
前記上位制御装置は、
与えられた速度指令と前記速度検出手段によって得られた速度の偏差が最小となるように前記電流振幅指令を出力するようにしたことを特徴とする請求項1乃至請求項6の何れか1項に記載の多相電動機駆動装置。
Having speed detecting means for detecting the speed of the multiphase motor;
The host controller is
7. The current amplitude command is output so that a deviation between a given speed command and the speed obtained by the speed detection means is minimized. The multiphase motor drive device described in 1.
JP2017126446A 2017-06-28 2017-06-28 Multi-phase motor drive Active JP6719162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017126446A JP6719162B2 (en) 2017-06-28 2017-06-28 Multi-phase motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126446A JP6719162B2 (en) 2017-06-28 2017-06-28 Multi-phase motor drive

Publications (2)

Publication Number Publication Date
JP2019009968A true JP2019009968A (en) 2019-01-17
JP6719162B2 JP6719162B2 (en) 2020-07-08

Family

ID=65026954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126446A Active JP6719162B2 (en) 2017-06-28 2017-06-28 Multi-phase motor drive

Country Status (1)

Country Link
JP (1) JP6719162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890441A (en) * 2021-10-09 2022-01-04 合肥巨一动力系统有限公司 Permanent magnet synchronous motor current harmonic suppression method based on improved harmonic voltage compensation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034265A (en) * 2000-07-13 2002-01-31 Yaskawa Electric Corp Method for compensating voltage error with dead-band of pwm voltage type inverter and the same inverter
JP2009268277A (en) * 2008-04-25 2009-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Polyphase motor driving device
JP2010068662A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Drive unit of motor, and refrigerating airconditioner
WO2015001612A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Motor control device
JP2015126585A (en) * 2013-12-26 2015-07-06 東芝三菱電機産業システム株式会社 Multi-phase motor drive apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034265A (en) * 2000-07-13 2002-01-31 Yaskawa Electric Corp Method for compensating voltage error with dead-band of pwm voltage type inverter and the same inverter
JP2009268277A (en) * 2008-04-25 2009-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Polyphase motor driving device
JP2010068662A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Drive unit of motor, and refrigerating airconditioner
WO2015001612A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Motor control device
JP2015126585A (en) * 2013-12-26 2015-07-06 東芝三菱電機産業システム株式会社 Multi-phase motor drive apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890441A (en) * 2021-10-09 2022-01-04 合肥巨一动力系统有限公司 Permanent magnet synchronous motor current harmonic suppression method based on improved harmonic voltage compensation
CN113890441B (en) * 2021-10-09 2023-09-12 合肥巨一动力系统有限公司 Permanent magnet synchronous motor current harmonic suppression method based on improved harmonic voltage compensation

Also Published As

Publication number Publication date
JP6719162B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP7013342B2 (en) Multi-phase motor drive
WO2016121237A1 (en) Inverter control device and motor drive system
JP2017184361A (en) Motor controller and motor control method
WO2018043499A1 (en) Inverter control device and motor drive system
KR101485989B1 (en) Motor control device
CN112204869B (en) Power conversion device
JP2011151916A (en) Control device for alternating current rotary machine
JP6113651B2 (en) Multi-phase motor drive
RU2486658C1 (en) Electric motor control device
JP6519149B2 (en) Motor controller
JP5621103B2 (en) Single-phase signal input device and grid interconnection device
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP6719162B2 (en) Multi-phase motor drive
JP2011217575A (en) Power conversion apparatus
KR101878090B1 (en) Method and system for controlling motor
JP7218700B2 (en) motor controller
JP2008167557A (en) Motor control method
JP2013258855A (en) Drive controller of ac motor
JP2017118601A (en) Rotary electric machine drive device
JP5807832B1 (en) Phase generator for induction motor
Hiware et al. Indirect field oriented control for induction motor drive using space vector modulation technique
JP7385776B2 (en) Electric motor control device
JP2005168212A (en) Motor control device
WO2020145068A1 (en) Motor control device
JP2023115975A (en) Control device and control method of inverter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6719162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250