WO2020145068A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2020145068A1
WO2020145068A1 PCT/JP2019/049746 JP2019049746W WO2020145068A1 WO 2020145068 A1 WO2020145068 A1 WO 2020145068A1 JP 2019049746 W JP2019049746 W JP 2019049746W WO 2020145068 A1 WO2020145068 A1 WO 2020145068A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque ripple
torque
temperature
ripple amplitude
rotational position
Prior art date
Application number
PCT/JP2019/049746
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 片岡
明広 蘆田
崇文 原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020145068A1 publication Critical patent/WO2020145068A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the present invention relates to a motor control device.
  • Permanent magnet synchronous motors do not require mechanical current rectification mechanisms such as brushes and commutators, are easy to maintain, and are compact and lightweight with high efficiency and power factor. Widely used.
  • a permanent magnet synchronous motor is composed of a stator composed of an armature coil and the like, and a rotor composed of a permanent magnet and an iron core. Armature magnetic flux is generated by converting a DC voltage supplied from a DC power source such as a battery into an AC voltage by an inverter and supplying an AC current to an armature coil of a permanent magnet synchronous motor.
  • the permanent magnet synchronous motor Due to the magnet torque generated by the attractive force/repulsive force generated between the armature magnetic flux and the magnet magnetic flux of the permanent magnet, and the reluctance torque generated to minimize the magnetic resistance of the armature magnetic flux passing through the rotor, The permanent magnet synchronous motor is driven.
  • the torque generated by the permanent magnet synchronous motor includes torque fluctuations (torque ripples) due to the structure of the magnetic circuit of the motor, and is caused by torque ripples especially at low rotation speed when other vibration and noise factors are small. Vibration and noise become apparent.
  • the torque ripple can be decomposed into integral multiple frequency components with the electric angular frequency of the motor as the first order, and mainly the 6th, 12th, 18th, and 24th order components are large. Therefore, reduction of these torque ripple components has a great effect of suppressing torque ripple.
  • Patent Document 1 a sine wave generating element that generates a sine wave having the same frequency as the torque ripple component of the servo motor is inserted into the servo compensator, and the torque ripple component is offset by providing an amplitude of an inverted phase of the torque ripple component. Is disclosed.
  • Iron loss occurs when the permanent magnet synchronous motor is driven. This iron loss includes eddy current loss caused by the magnetic flux passing through the iron core and hysteresis loss caused by friction between magnetic molecules due to changes in the magnetic flux. Causes a rise in the temperature of the child's permanent magnet. Since the magnetic flux changes when the temperature of the permanent magnet changes, the torque ripple output changes with a different tendency for each order. However, since the technique of Patent Document 1 does not consider the output change of the torque ripple due to the change of the magnet temperature, the effect of reducing the torque ripple may be insufficient when the temperature condition changes.
  • the present invention has been made in view of the above problems, and an object thereof is to accurately reduce the torque ripple generated in a permanent magnet synchronous motor according to the magnet temperature of the motor.
  • a motor control device is for controlling the drive of a permanent magnet synchronous motor, and based on the temperature torque ripple amplitude calculation unit for calculating a temperature torque ripple amplitude based on the magnet temperature of the motor, based on the temperature torque ripple amplitude,
  • a target torque correction unit that corrects a first target torque input as a target value of the torque value of the motor to calculate a second target torque.
  • the torque ripple generated in the permanent magnet synchronous motor can be accurately reduced according to the magnet temperature of the motor.
  • FIG. 1 is an overall configuration diagram of a motor drive system including a motor control device according to an embodiment of the present invention.
  • a motor drive system 6 includes a motor control device 1, a permanent magnet synchronous motor (hereinafter simply referred to as “motor”) 2, an inverter 3, a rotational position detecting means 41, and a high voltage battery 5.
  • motor permanent magnet synchronous motor
  • the motor control device 1 generates a PWM control signal for controlling the drive of the motor 2 based on the first target torque T* required by the vehicle, and outputs the PWM control signal to the inverter 3. The details of the motor control device 1 will be described later with reference to FIGS. 2 to 5.
  • the inverter 3 has an inverter circuit 31, a PWM signal output means 32 and a smoothing capacitor 33.
  • the PWM signal output means 32 generates a PWM signal for controlling each switching element included in the inverter circuit 31 based on the PWM control signal input from the motor control device 1, and outputs the PWM signal to the inverter circuit 31.
  • the inverter circuit 31 includes switching elements Sup, Svp, and Swp corresponding to the upper arms of the U-phase, V-phase, and W-phase, and switching elements Sun, Svn, and the switching elements corresponding to the lower arms of the U-phase, V-phase, and W-phase, respectively. Swn and.
  • the DC power supplied from the high voltage battery 5 is converted into AC power and output to the motor 2.
  • the smoothing capacitor 33 smoothes the DC power supplied from the high voltage battery 5 to the inverter circuit 31.
  • the motor 2 has a stator 21 and a rotor 22.
  • the AC power input from the inverter 3 is applied to the armature coil of the stator 21, the three-phase AC currents Iu, Iv, Iw are conducted in the motor 2, and the armature magnetic flux is generated in the armature coil.
  • an attractive force and a repulsive force are generated between the armature magnetic flux of the armature coil and the magnet magnetic flux of the permanent magnet arranged in the rotor 22, torque is generated in the rotor 22 and the rotor 22 moves. It is driven to rotate.
  • the rotational position detection means 41 calculates the rotational position ⁇ of the rotor 22 in the motor 2 based on the signal from the rotational position sensor 4 such as a resolver attached to the motor 2.
  • the calculation result of the rotational position ⁇ by the rotational position detection means 41 is input to the motor control device 1 and used for generating the PWM control signal performed by the motor control device 1.
  • a current detecting means 7 for detecting the three-phase alternating currents Iu, Iv, Iw is arranged.
  • the current detecting means 7 is configured by using, for example, a Hall current sensor or the like.
  • the detection results of the three-phase alternating currents Iu, Iv, Iw by the current detection means 7 are input to the motor control device 1 and used for generating the PWM control signal performed by the motor control device 1.
  • FIG. 2 is a block diagram showing a functional configuration of the motor control device 1 according to the embodiment of the present invention.
  • the motor control device 1 includes a temperature torque ripple amplitude calculator 11, a rotational position torque ripple amplitude calculator 12, a target torque corrector 13, a current command generator 14, a three-phase/dq converter 15, a current controller 16, It has functional blocks of a dq/three-phase voltage conversion unit 17, a magnet temperature estimation unit 18, and a gate signal generation unit 19.
  • the motor control device 1 is composed of, for example, a microcomputer, and these functional blocks can be realized by executing a predetermined program in the microcomputer. Alternatively, some or all of these functional blocks may be realized by using a hardware circuit such as a logic IC or FPGA.
  • the temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple of each order according to the magnet temperature tmp based on the first target torque T* required by the vehicle and the magnet temperature tmp estimated by the magnet temperature estimation unit 18.
  • the amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 are calculated.
  • the temperature torque ripple amplitude Ttmp6 corresponds to the amplitude of the sixth-order component of the torque ripple according to the magnet temperature tmp generated in the motor 2.
  • the temperature torque ripple amplitude Ttmp12 is the amplitude of the twelfth component of the torque ripple according to the magnet temperature tmp
  • the temperature torque ripple amplitude Ttmp18 is the amplitude of the eighteenth component of the torque ripple corresponding to the magnet temperature tmp
  • the temperature torque ripple amplitude Ttmp24 is the magnet temperature. It corresponds to the amplitude of the 24th order component of the torque ripple according to tmp.
  • the details of the temperature torque ripple amplitude calculator 11 will be described later with reference to FIG.
  • the rotational position torque ripple amplitude calculation unit 12 is based on the rotational position ⁇ of the motor 2 input from the rotational position detection means 41 of FIG. 1 to the motor control device 1, the magnet temperature tmp, and the first target torque T*. Then, the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 of each order according to the rotational position ⁇ are calculated.
  • the rotational position torque ripple amplitude Tdeg6 corresponds to the amplitude of the sixth-order component of the torque ripple according to the rotational position ⁇ generated in the motor 2.
  • the rotational position torque ripple amplitude Tdeg12 is the amplitude of the twelfth component of the torque ripple according to the rotational position ⁇
  • the rotational position torque ripple amplitude Tdeg18 is the amplitude of the eighteenth component of the torque ripple according to the rotational position ⁇
  • the rotational position torque ripple amplitude Tdeg24 Corresponds to the amplitude of the 24th order component of the torque ripple according to the rotational position ⁇ .
  • the details of the rotational position torque ripple amplitude calculator 12 will be described later with reference to FIG.
  • the target torque correction unit 13 includes the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 of the respective orders calculated by the temperature torque ripple amplitude calculation unit 11, and the rotational position torque ripple amplitudes of the respective orders calculated by the rotational position torque ripple amplitude calculation unit 12.
  • a second target torque Tcor* obtained by correcting the first target torque T* is calculated based on Tdeg6, Tdeg12, Tdeg18, and Tdeg24. The details of the target torque correction unit 13 will be described later with reference to FIG.
  • the current command generator 14 calculates the current commands Id* and Iq* based on the second target torque Tcor* calculated by the target torque corrector 13 and the power supply voltage E.
  • the current commands Id* and Iq* corresponding to the second target torque Tcor* and the power supply voltage E are obtained by using, for example, a preset current command map or a mathematical formula.
  • the three-phase/dq converter 15 performs three-phase/two-phase conversion based on the rotational position ⁇ , and converts the three-phase AC current detection values Iu, Iv, Iw by the current detection means 7 into dq-axis current detection values Id, Iq. To do.
  • the current control unit 16 calculates the deviation between the dq-axis current commands Id* and Iq* calculated by the current command generation unit 14 and the dq-axis current detection values Id and Iq calculated by the three-phase/dq conversion unit 15. Then, the dq axis voltage commands Vd* and Vq* are calculated based on the calculated deviation.
  • the dq-axis voltage commands Vd*, Vq* corresponding to the deviation between the dq-axis current commands Id*, Iq* and the dq-axis current detection values Id, Iq are obtained by a control method such as PI control.
  • the dq/three-phase voltage conversion unit 17 performs two-phase/three-phase conversion based on the rotational position ⁇ , and converts the dq-axis voltage commands Vd* and Vq* calculated by the current control unit 16 into three-phase voltage commands Vu* and Vv. Convert to *, Vw*.
  • the magnet temperature estimation unit 18 estimates the temperature of the permanent magnet arranged in the rotor 22 of the motor 2 based on the three-phase alternating currents Iu, Iv, Iw flowing in the motor 2 detected by the current detection means 7, The estimation result is output as the magnet temperature tmp.
  • the magnet temperature tmp can be calculated from the three-phase AC currents Iu, Iv, and Iw by using a known calculation method, for example, the calculation method of the magnet temperature disclosed in Japanese Patent Laid-Open No. 2015-116021.
  • a temperature sensor may be arranged near the permanent magnet in the rotor 22, and the magnet temperature tmp may be obtained from the detection value of this temperature sensor.
  • the gate signal generation unit 19 uses the three-phase voltage commands Vu*, Vv*, and Vw* obtained by the dq/three-phase voltage conversion unit 17, based on the switching elements Sup and Sun that configure the inverter circuit 31 of FIG. 1. , Svp, Svn, Swp, Swn, PWM control signals Gup, Gun, Gvp, Gvn, Gwp, Gwn are generated.
  • the PWM control signals Gup, Gun, Gvp, Gvn, Gwp, Gwn corresponding to the three-phase voltage commands Vu*, Vv*, Vw* are generated by a known method such as comparison with a triangular carrier wave.
  • FIG. 3 is a block diagram of the temperature torque ripple amplitude calculator 11.
  • the temperature torque ripple amplitude calculator 11 has a sixth-order ripple amplitude map 110a, a twelfth-order ripple amplitude map 110b, an eighteenth-order ripple amplitude map 110c, and a twenty-fourth-order ripple amplitude map 110d.
  • the map information of the sixth-order ripple amplitude map 110a, the 12th-order ripple amplitude map 110b, the 18th-order ripple amplitude map 110c, and the 24th-order ripple amplitude map 110d correspond to various combinations of the first target torque T* and the magnet temperature tmp.
  • the amplitude of the torque ripple generated in the motor 2 is calculated for each order in advance by simulation or actual measurement, and is created.
  • the temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 of each order corresponding to the current values of the first target torque T* and the magnet temperature tmp by referring to these map information. can do.
  • the temperature torque ripple amplitude corresponding to the magnet temperature tmp with respect to the required first target torque T* It is possible to calculate Ttmp6, Ttmp12, Ttmp18, and Ttmp24.
  • FIG. 4 is a block diagram of the rotational position torque ripple amplitude calculator 12.
  • the rotational position torque ripple amplitude calculation unit 12 includes a pole pair number multiplication unit 120, order multiplication units 121a to 121d, a sixth order ⁇ map 122a, a twelfth order ⁇ map 122b, an eighteenth order ⁇ map 122c, a twenty-fourth order ⁇ map 122d, It has adders 123a to 123d and cosine calculators 124a to 124d.
  • the rotational position torque ripple amplitude calculator 12 calculates the torque ripple amplitude of each order in the rotating motor phase according to the following equation (1).
  • the pole pair number multiplication unit 120 calculates the electrical angle phase ⁇ by multiplying the rotational position ⁇ by the number of pole pairs of the motor 2.
  • the order multiplying units 121a to 121d multiply the electrical angle phase ⁇ by each of the 6th order, the 12th order, the 18th order, and the 24th order, and calculate the torque ripple phases ⁇ 6, ⁇ 12, ⁇ 18, and ⁇ 24 of each order before correction.
  • the map information of the sixth-order ripple ⁇ map 122a, the 12th-order ripple ⁇ map 122b, the 18th-order ripple ⁇ map 122c, and the 24th-order ripple ⁇ map 122d correspond to various combinations of the first target torque T* and the magnet temperature tmp.
  • the phase shift of the torque ripple generated in the motor 2 is calculated in advance by simulation or actual measurement for each order and created.
  • the rotational position torque ripple amplitude calculator 12 refers to these pieces of map information to calculate the torque ripple phase shifts ⁇ 6, ⁇ 12, ⁇ 18, ⁇ 24 of the respective orders corresponding to the current values of the first target torque T* and the magnet temperature tmp. It can be calculated.
  • the adding units 123a to 123d add the torque ripple phase shifts ⁇ 6, ⁇ 12, ⁇ 18, and ⁇ 24 of the respective orders to the torque ripple phases ⁇ 6, ⁇ 12, ⁇ 18, and ⁇ 24 of the respective orders before the correction, respectively, to thereby obtain the torque ripples of the respective orders after the correction.
  • the phase ⁇ X+ ⁇ X is calculated.
  • the cosine calculators 124a to 124d respectively calculate the cosines of the corrected torque ripple phases ⁇ X+ ⁇ X of the respective orders, so that the rotational position torque ripple amplitudes Tdeg6 and Tdeg12 of the respective orders corresponding to the rotational position ⁇ are calculated according to the above equation (1). , Tdeg18, and Tdeg24 are respectively calculated.
  • the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 of each order corresponding to the current values of the first target torque T*, the rotational position ⁇ and the magnet temperature tmp are set as described above. Can be calculated. That is, for each of the 6th order, the 12th order, the 18th order, and the 24th order that are preset as the orders to suppress torque ripple, the rotational position ⁇ and the magnet temperature tmp are determined according to the required first target torque T*.
  • the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 can be calculated.
  • FIG. 5 is a block diagram of the target torque correction unit 13.
  • the target torque correction unit 13 has multiplication units 130a to 130d, a summation unit 131, and a subtraction unit 132.
  • the multiplying units 130a to 130d include the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 of the respective orders calculated by the temperature torque ripple amplitude calculating unit 11, and the rotational position torque ripple amplitudes of the respective orders calculated by the rotational position torque ripple amplitude calculating unit 12.
  • the torque ripple component of each order is calculated by multiplying Tdeg6, Tdeg12, Tdeg18, and Tdeg24, respectively.
  • the summing unit 131 calculates the torque ripple component generated in the motor 2 by summing the torque ripple components of each order calculated by the multiplication units 130a to 130d.
  • the subtracting unit 132 subtracts the torque ripple component calculated by the summing unit 131 from the first target torque T*, thereby superimposing the reverse phase of the torque ripple component on the first target torque T*. As a result, the first target torque T* is corrected and the correction result is output as the second target torque Tcor*.
  • the motor control device 1 corrects the target torque by superimposing the opposite phase of the torque ripple as described above, and drives the motor 2 by controlling the inverter 3 according to the corrected target torque.
  • the torque ripple superimposed on the target torque and the torque ripple of the output torque are canceled according to the motor temperature, and the torque ripple can be accurately reduced.
  • the motor control device 1 controls the drive of the permanent magnet synchronous motor 2, and includes a temperature torque ripple amplitude calculation unit 11 and a target torque correction unit 13.
  • the temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 based on the magnet temperature tmp of the motor 2.
  • the target torque correction unit 13 corrects the first target torque T*, which is input as the target value of the torque value of the motor 2, based on the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 to correct the second target torque Tcor. Calculate *. Since it did in this way, the torque ripple generated in the permanent magnet synchronous motor 2 can be reduced accurately according to the magnet temperature of the motor 2.
  • the motor control device 1 includes a rotational position torque ripple amplitude calculation unit 12 that calculates rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 based on the rotational position ⁇ of the motor 2.
  • the target torque correction unit 13 includes temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 calculated by the temperature torque ripple amplitude calculation unit 11, and rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18 calculated by the rotation position torque ripple amplitude calculation unit 12.
  • the first target torque T* is corrected using Tdeg24. Since it did in this way, the torque ripple generated in the permanent magnet synchronous motor 2 can be reduced more accurately in consideration of the phase shift of the torque ripple.
  • the rotational position torque ripple amplitude calculator 12 calculates the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 based on the rotational position ⁇ of the motor 2 and the magnet temperature tmp of the motor 2. Since this is done, the phase shift of the torque ripple can be accurately calculated by considering not only the rotational position of the motor 2 but also the magnet temperature.
  • the target torque correction unit 13 calculates the torque ripple component by multiplying the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 by the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 (multiplying units 130a to 130d, totaling unit). 131), the first target torque T* is corrected by superimposing the calculated reverse phase of the torque ripple component on the first target torque T* (subtraction unit 132).
  • the temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 for each of a plurality of preset orders (6th order, 12th order, 18th order, 24th order).
  • the rotational position torque ripple amplitude calculator 12 also calculates the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 for each of a plurality of preset orders (6th order, 12th order, 18th order, 24th order). To do.
  • the target torque correction unit 13 multiplies the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 and the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 for each degree (multipliers 130a to 130d), and the multiplication result of each degree.
  • the torque ripple component is calculated by summing the values (summing unit 131). Since this is done, it is possible to effectively reduce the torque ripple component that has a great influence on the motor 2.
  • the motor control device 1 includes the magnet temperature estimation unit 18 that estimates the magnet temperature tmp based on the three-phase alternating currents Iu, Iv, and Iw flowing in the motor 2. Since it did in this way, magnet temperature tmp can be calculated
  • the torque ripple suppression orders are set to the 6th order, the 12th order, the 18th order and the 24th order, and for these orders, the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18 corresponding to the magnet temperature tmp. , Ttmp24, and the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 corresponding to the rotational position ⁇ and the magnet temperature tmp are calculated to correct the first target torque T*.
  • the orders for which the torque ripple is suppressed in the present invention are not limited to these orders.
  • the temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple amplitude corresponding to the magnet temperature tmp
  • the rotational position torque ripple amplitude calculation unit 12 calculates the rotational position ⁇ and the magnet temperature tmp. It is possible to calculate the rotational position torque ripple amplitude and use the calculation results to correct the first target torque T* by the target torque correction unit 13.
  • the temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple amplitude according to the magnet temperature tmp
  • the rotational position torque ripple amplitude calculation unit 12 calculates the rotational position torque ripple according to the rotational position ⁇ and the magnet temperature tmp.
  • An example in which the amplitude is calculated and the target torque correction unit 13 corrects the first target torque T* using these calculation results has been described, but the present invention is not limited to this. For example, even if the rotational position torque ripple amplitude calculator 12 is deleted and only the temperature torque ripple amplitude calculated by the temperature torque ripple amplitude calculator 11 is used to correct the first target torque T* by the target torque corrector 13. good.
  • the rotational position torque ripple amplitude calculation unit 12 may calculate the rotational position torque ripple amplitude for the first target torque T* using only the rotational position ⁇ without using the magnet temperature tmp. By doing so, the calculation load of the motor control device 1 can be reduced. However, since there is a possibility that the torque ripple reduction accuracy may be reduced, it is preferable to appropriately set the torque ripple reduction accuracy according to the allowable value of the torque ripple on the system.

Abstract

A motor control device 1 comprises a temperature-torque-ripple-amplitude computation unit 11 and a target torque correction unit 13. The temperature-torque-ripple-amplitude computation unit 11 computes temperature-torque-ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 on the basis of the magnet temperature tmp of a motor. The target torque correction unit 13 calculates a second target torque Tcor* by using the temperature-torque-ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 to correct a first target torque T* input as a target value for the torque value of the motor. As a result, it is possible to precisely reduce the torque ripple occurring in a permanent-magnet synchronous motor according to the magnet temperature of the motor.

Description

モータ制御装置Motor controller
 本発明は、モータ制御装置に関する。 The present invention relates to a motor control device.
 永久磁石同期モータは、ブラシや整流子といった機械的な電流の整流機構を必要とせず、保守が容易な上、小型軽量で効率、力率ともに高いため、電気自動車の駆動・発電等の用途に広く普及している。一般的に永久磁石同期モータは、電機子コイル等で構成される固定子と、永久磁石や鉄心等で構成される回転子から成る。バッテリ等の直流電源から供給される直流電圧をインバータで交流電圧に変換し、永久磁石同期モータの電機子コイルに交流電流を流すことにより、電機子磁束が発生する。この電機子磁束と永久磁石の磁石磁束との間に生じる吸引力・反発力によって発生するマグネットトルクや、回転子を透過する電機子磁束の磁気抵抗を最小化するために発生するリラクタンストルクにより、永久磁石同期モータが駆動される。 Permanent magnet synchronous motors do not require mechanical current rectification mechanisms such as brushes and commutators, are easy to maintain, and are compact and lightweight with high efficiency and power factor. Widely used. Generally, a permanent magnet synchronous motor is composed of a stator composed of an armature coil and the like, and a rotor composed of a permanent magnet and an iron core. Armature magnetic flux is generated by converting a DC voltage supplied from a DC power source such as a battery into an AC voltage by an inverter and supplying an AC current to an armature coil of a permanent magnet synchronous motor. Due to the magnet torque generated by the attractive force/repulsive force generated between the armature magnetic flux and the magnet magnetic flux of the permanent magnet, and the reluctance torque generated to minimize the magnetic resistance of the armature magnetic flux passing through the rotor, The permanent magnet synchronous motor is driven.
 永久磁石同期モータで発生するトルクには、モータの磁気回路の構造に起因するトルクの揺らぎ(トルクリプル)が含まれており、特に他の振動・騒音要因が少ない低回転時において、トルクリプルに起因する振動・騒音が顕在化する。トルクリプルはモータの電気角周波数を1次とした整数倍の周波数成分に分解でき、主に6次、12次、18次、24次の成分が大きい。そのため、これらのトルクリプル成分の削減は、トルクリプルの抑制効果が大きい。 The torque generated by the permanent magnet synchronous motor includes torque fluctuations (torque ripples) due to the structure of the magnetic circuit of the motor, and is caused by torque ripples especially at low rotation speed when other vibration and noise factors are small. Vibration and noise become apparent. The torque ripple can be decomposed into integral multiple frequency components with the electric angular frequency of the motor as the first order, and mainly the 6th, 12th, 18th, and 24th order components are large. Therefore, reduction of these torque ripple components has a great effect of suppressing torque ripple.
 モータにおけるトルクリプル成分の削減に関して、特許文献1に記載の技術が知られている。特許文献1には、サーボモータのトルクリプル成分と同じ周波数の正弦波を発生させる正弦波発生要素をサーボ補償器に挿入し、トルクリプル成分の反転位相の振幅を持たせることでトルクリプル成分を相殺することが開示されている。 Regarding the reduction of the torque ripple component in the motor, the technology described in Patent Document 1 is known. In Patent Document 1, a sine wave generating element that generates a sine wave having the same frequency as the torque ripple component of the servo motor is inserted into the servo compensator, and the torque ripple component is offset by providing an amplitude of an inverted phase of the torque ripple component. Is disclosed.
特開平4-195307号公報Japanese Patent Laid-Open No. 4-195307
 永久磁石同期モータが駆動する際には鉄損が発生する。この鉄損には、磁石磁束が鉄心を透過することで生じる渦電流損と、磁束の変化による磁気分子の相互間の摩擦から生じるヒステリシス損とがあり、回転子において発生したこれらの損失は回転子の永久磁石の温度上昇を引き起こす。永久磁石の温度が変化すると磁束が変化するため、次数ごとに異なる傾向でトルクリプルの出力が変化する。しかしながら、特許文献1の技術では、こうした磁石温度の変化によるトルクリプルの出力変化を考慮していないため、温度条件が変わるとトルクリプルの低減効果が不十分になる場合がある。 Iron loss occurs when the permanent magnet synchronous motor is driven. This iron loss includes eddy current loss caused by the magnetic flux passing through the iron core and hysteresis loss caused by friction between magnetic molecules due to changes in the magnetic flux. Causes a rise in the temperature of the child's permanent magnet. Since the magnetic flux changes when the temperature of the permanent magnet changes, the torque ripple output changes with a different tendency for each order. However, since the technique of Patent Document 1 does not consider the output change of the torque ripple due to the change of the magnet temperature, the effect of reducing the torque ripple may be insufficient when the temperature condition changes.
 本発明は、上記の課題に鑑みてなされたものであり、永久磁石同期モータで発生するトルクリプルを、モータの磁石温度に応じて精度よく低減することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to accurately reduce the torque ripple generated in a permanent magnet synchronous motor according to the magnet temperature of the motor.
 本発明によるモータ制御装置は、永久磁石同期モータの駆動を制御するものであって、前記モータの磁石温度に基づく温度トルクリプル振幅を演算する温度トルクリプル振幅演算部と、前記温度トルクリプル振幅に基づいて、前記モータのトルク値の目標値として入力される第一の目標トルクを補正して第二の目標トルクを演算する目標トルク補正部と、を備える。 A motor control device according to the present invention is for controlling the drive of a permanent magnet synchronous motor, and based on the temperature torque ripple amplitude calculation unit for calculating a temperature torque ripple amplitude based on the magnet temperature of the motor, based on the temperature torque ripple amplitude, A target torque correction unit that corrects a first target torque input as a target value of the torque value of the motor to calculate a second target torque.
 本発明によれば、永久磁石同期モータで発生するトルクリプルを、モータの磁石温度に応じて精度よく低減できる。 According to the present invention, the torque ripple generated in the permanent magnet synchronous motor can be accurately reduced according to the magnet temperature of the motor.
本発明の一実施形態に係るモータ制御装置を備えたモータ駆動システムの全体構成図Overall configuration diagram of a motor drive system including a motor control device according to an embodiment of the present invention 本発明の一実施形態に係るモータ制御装置の機能構成を示すブロック図Block diagram showing a functional configuration of a motor control device according to an embodiment of the present invention 温度トルクリプル振幅演算部のブロック図Block diagram of temperature torque ripple amplitude calculator 回転位置トルクリプル振幅演算部のブロック図Block diagram of rotational position torque ripple amplitude calculator 目標トルク補正部のブロック図Block diagram of target torque correction unit
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。本実施形態では、電気自動車やハイブリッド自動車に搭載されて使用されるモータ駆動システムへの適用例について説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the present embodiment, an application example to a motor drive system mounted and used in an electric vehicle or a hybrid vehicle will be described.
 図1は、本発明の一実施形態に係るモータ制御装置を備えたモータ駆動システムの全体構成図である。図1において、モータ駆動システム6は、モータ制御装置1、永久磁石同期モータ(以下、単に「モータ」と称する)2、インバータ3、回転位置検出手段41、高圧バッテリ5を備える。 FIG. 1 is an overall configuration diagram of a motor drive system including a motor control device according to an embodiment of the present invention. In FIG. 1, a motor drive system 6 includes a motor control device 1, a permanent magnet synchronous motor (hereinafter simply referred to as “motor”) 2, an inverter 3, a rotational position detecting means 41, and a high voltage battery 5.
 モータ制御装置1は、車両から要求される第一の目標トルクT*に基づいて、モータ2の駆動を制御するためのPWM制御信号を生成し、インバータ3に出力する。なお、モータ制御装置1の詳細については、後で図2~図5を参照して説明する。 The motor control device 1 generates a PWM control signal for controlling the drive of the motor 2 based on the first target torque T* required by the vehicle, and outputs the PWM control signal to the inverter 3. The details of the motor control device 1 will be described later with reference to FIGS. 2 to 5.
 インバータ3は、インバータ回路31、PWM信号出力手段32および平滑キャパシタ33を有する。PWM信号出力手段32は、モータ制御装置1から入力されるPWM制御信号に基づいて、インバータ回路31が有する各スイッチング素子を制御するためのPWM信号を生成し、インバータ回路31に出力する。インバータ回路31は、U相、V相、W相の上アームにそれぞれ対応するスイッチング素子Sup、SvpおよびSwpと、U相、V相、W相の下アームにそれぞれ対応するスイッチング素子Sun、SvnおよびSwnとを有している。PWM信号出力手段32から入力されたPWM信号に従ってこれらのスイッチング素子がそれぞれ制御されることで、高圧バッテリ5から供給される直流電力が交流電力に変換され、モータ2に出力される。平滑キャパシタ33は、高圧バッテリ5からインバータ回路31に供給される直流電力を平滑化する。 The inverter 3 has an inverter circuit 31, a PWM signal output means 32 and a smoothing capacitor 33. The PWM signal output means 32 generates a PWM signal for controlling each switching element included in the inverter circuit 31 based on the PWM control signal input from the motor control device 1, and outputs the PWM signal to the inverter circuit 31. The inverter circuit 31 includes switching elements Sup, Svp, and Swp corresponding to the upper arms of the U-phase, V-phase, and W-phase, and switching elements Sun, Svn, and the switching elements corresponding to the lower arms of the U-phase, V-phase, and W-phase, respectively. Swn and. By controlling each of these switching elements according to the PWM signal input from the PWM signal output means 32, the DC power supplied from the high voltage battery 5 is converted into AC power and output to the motor 2. The smoothing capacitor 33 smoothes the DC power supplied from the high voltage battery 5 to the inverter circuit 31.
 モータ2は、固定子21および回転子22を有する。インバータ3から入力された交流電力が固定子21の電機子コイルに印加されると、モータ2において三相交流電流Iu、Iv、Iwが導通し、電機子コイルに電機子磁束が発生する。この電機子コイルの電機子磁束と、回転子22に配置された永久磁石の磁石磁束との間で吸引力・反発力が発生することで、回転子22にトルクが発生し、回転子22が回転駆動される。 The motor 2 has a stator 21 and a rotor 22. When the AC power input from the inverter 3 is applied to the armature coil of the stator 21, the three-phase AC currents Iu, Iv, Iw are conducted in the motor 2, and the armature magnetic flux is generated in the armature coil. When an attractive force and a repulsive force are generated between the armature magnetic flux of the armature coil and the magnet magnetic flux of the permanent magnet arranged in the rotor 22, torque is generated in the rotor 22 and the rotor 22 moves. It is driven to rotate.
 回転位置検出手段41は、モータ2に取り付けられたレゾルバ等の回転位置センサ4からの信号に基づいて、モータ2における回転子22の回転位置θを演算する。回転位置検出手段41による回転位置θの演算結果はモータ制御装置1に入力され、モータ制御装置1が行うPWM制御信号の生成に利用される。 The rotational position detection means 41 calculates the rotational position θ of the rotor 22 in the motor 2 based on the signal from the rotational position sensor 4 such as a resolver attached to the motor 2. The calculation result of the rotational position θ by the rotational position detection means 41 is input to the motor control device 1 and used for generating the PWM control signal performed by the motor control device 1.
 インバータ3とモータ2の間には、三相交流電流Iu、Iv、Iwを検出するための電流検出手段7が配置されている。電流検出手段7は、例えばホール電流センサ等を用いて構成される。電流検出手段7による三相交流電流Iu、Iv、Iwの検出結果はモータ制御装置1に入力され、モータ制御装置1が行うPWM制御信号の生成に利用される。 Between the inverter 3 and the motor 2, a current detecting means 7 for detecting the three-phase alternating currents Iu, Iv, Iw is arranged. The current detecting means 7 is configured by using, for example, a Hall current sensor or the like. The detection results of the three-phase alternating currents Iu, Iv, Iw by the current detection means 7 are input to the motor control device 1 and used for generating the PWM control signal performed by the motor control device 1.
 次に、モータ制御装置1の詳細について説明する。図2は、本発明の一実施形態に係るモータ制御装置1の機能構成を示すブロック図である。図2において、モータ制御装置1は、温度トルクリプル振幅演算部11、回転位置トルクリプル振幅演算部12、目標トルク補正部13、電流指令生成部14、三相/dq変換部15、電流制御部16、dq/三相電圧変換部17、磁石温度推定部18およびゲート信号生成部19の各機能ブロックを有する。モータ制御装置1は、例えばマイクロコンピュータにより構成され、マイクロコンピュータにおいて所定のプログラムを実行することにより、これらの機能ブロックを実現することができる。あるいは、これらの機能ブロックの一部または全部をロジックICやFPGA等のハードウェア回路を用いて実現してもよい。 Next, details of the motor control device 1 will be described. FIG. 2 is a block diagram showing a functional configuration of the motor control device 1 according to the embodiment of the present invention. In FIG. 2, the motor control device 1 includes a temperature torque ripple amplitude calculator 11, a rotational position torque ripple amplitude calculator 12, a target torque corrector 13, a current command generator 14, a three-phase/dq converter 15, a current controller 16, It has functional blocks of a dq/three-phase voltage conversion unit 17, a magnet temperature estimation unit 18, and a gate signal generation unit 19. The motor control device 1 is composed of, for example, a microcomputer, and these functional blocks can be realized by executing a predetermined program in the microcomputer. Alternatively, some or all of these functional blocks may be realized by using a hardware circuit such as a logic IC or FPGA.
 温度トルクリプル振幅演算部11は、車両から要求される第一の目標トルクT*と、磁石温度推定部18により推定される磁石温度tmpとに基づいて、磁石温度tmpに応じた各次数の温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24を演算する。ここで、温度トルクリプル振幅Ttmp6は、モータ2において生じる磁石温度tmpに応じたトルクリプルの6次成分の振幅に相当する。同様に、温度トルクリプル振幅Ttmp12は磁石温度tmpに応じたトルクリプルの12次成分の振幅に、温度トルクリプル振幅Ttmp18は磁石温度tmpに応じたトルクリプルの18次成分の振幅に、温度トルクリプル振幅Ttmp24は磁石温度tmpに応じたトルクリプルの24次成分の振幅に、それぞれ相当する。なお、温度トルクリプル振幅演算部11の詳細については、後で図3を参照して説明する。 The temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple of each order according to the magnet temperature tmp based on the first target torque T* required by the vehicle and the magnet temperature tmp estimated by the magnet temperature estimation unit 18. The amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 are calculated. Here, the temperature torque ripple amplitude Ttmp6 corresponds to the amplitude of the sixth-order component of the torque ripple according to the magnet temperature tmp generated in the motor 2. Similarly, the temperature torque ripple amplitude Ttmp12 is the amplitude of the twelfth component of the torque ripple according to the magnet temperature tmp, the temperature torque ripple amplitude Ttmp18 is the amplitude of the eighteenth component of the torque ripple corresponding to the magnet temperature tmp, and the temperature torque ripple amplitude Ttmp24 is the magnet temperature. It corresponds to the amplitude of the 24th order component of the torque ripple according to tmp. The details of the temperature torque ripple amplitude calculator 11 will be described later with reference to FIG.
 回転位置トルクリプル振幅演算部12は、図1の回転位置検出手段41からモータ制御装置1に入力されるモータ2の回転位置θと、上記の磁石温度tmpおよび第一の目標トルクT*とに基づいて、回転位置θに応じた各次数の回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算する。ここで、回転位置トルクリプル振幅Tdeg6は、モータ2において生じる回転位置θに応じたトルクリプルの6次成分の振幅に相当する。同様に、回転位置トルクリプル振幅Tdeg12は回転位置θに応じたトルクリプルの12次成分の振幅に、回転位置トルクリプル振幅Tdeg18は回転位置θに応じたトルクリプルの18次成分の振幅に、回転位置トルクリプル振幅Tdeg24は回転位置θに応じたトルクリプルの24次成分の振幅に、それぞれ相当する。なお、回転位置トルクリプル振幅演算部12の詳細については、後で図4を参照して説明する。 The rotational position torque ripple amplitude calculation unit 12 is based on the rotational position θ of the motor 2 input from the rotational position detection means 41 of FIG. 1 to the motor control device 1, the magnet temperature tmp, and the first target torque T*. Then, the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 of each order according to the rotational position θ are calculated. Here, the rotational position torque ripple amplitude Tdeg6 corresponds to the amplitude of the sixth-order component of the torque ripple according to the rotational position θ generated in the motor 2. Similarly, the rotational position torque ripple amplitude Tdeg12 is the amplitude of the twelfth component of the torque ripple according to the rotational position θ, the rotational position torque ripple amplitude Tdeg18 is the amplitude of the eighteenth component of the torque ripple according to the rotational position θ, and the rotational position torque ripple amplitude Tdeg24. Corresponds to the amplitude of the 24th order component of the torque ripple according to the rotational position θ. The details of the rotational position torque ripple amplitude calculator 12 will be described later with reference to FIG.
 目標トルク補正部13は、温度トルクリプル振幅演算部11により演算された各次数の温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と、回転位置トルクリプル振幅演算部12により演算された各次数の回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24とに基づいて、第一の目標トルクT*を補正した第二の目標トルクTcor*を演算する。なお、目標トルク補正部13の詳細については、後で図5を参照して説明する。 The target torque correction unit 13 includes the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 of the respective orders calculated by the temperature torque ripple amplitude calculation unit 11, and the rotational position torque ripple amplitudes of the respective orders calculated by the rotational position torque ripple amplitude calculation unit 12. A second target torque Tcor* obtained by correcting the first target torque T* is calculated based on Tdeg6, Tdeg12, Tdeg18, and Tdeg24. The details of the target torque correction unit 13 will be described later with reference to FIG.
 電流指令生成部14は、目標トルク補正部13により演算された第二の目標トルクTcor*と、電源電圧Eとに基づいて、電流指令Id*、Iq*を演算する。ここでは、例えば予め設定された電流指令マップや数式等を用いて、第二の目標トルクTcor*および電源電圧Eに対応する電流指令Id*、Iq*を求める。 The current command generator 14 calculates the current commands Id* and Iq* based on the second target torque Tcor* calculated by the target torque corrector 13 and the power supply voltage E. Here, the current commands Id* and Iq* corresponding to the second target torque Tcor* and the power supply voltage E are obtained by using, for example, a preset current command map or a mathematical formula.
 三相/dq変換部15は、回転位置θに基づく三相-二相変換を行い、電流検出手段7による三相交流電流検出値Iu、Iv、Iwをdq軸電流検出値Id、Iqに変換する。 The three-phase/dq converter 15 performs three-phase/two-phase conversion based on the rotational position θ, and converts the three-phase AC current detection values Iu, Iv, Iw by the current detection means 7 into dq-axis current detection values Id, Iq. To do.
 電流制御部16は、電流指令生成部14により演算されたdq軸電流指令Id*、Iq*と、三相/dq変換部15により求められたdq軸電流検出値Id、Iqとの偏差を算出し、算出した偏差に基づいてdq軸電圧指令Vd*、Vq*を演算する。ここでは、例えばPI制御等の制御方式により、dq軸電流指令Id*、Iq*とdq軸電流検出値Id、Iqとの偏差に応じたdq軸電圧指令Vd*、Vq*を求める。 The current control unit 16 calculates the deviation between the dq-axis current commands Id* and Iq* calculated by the current command generation unit 14 and the dq-axis current detection values Id and Iq calculated by the three-phase/dq conversion unit 15. Then, the dq axis voltage commands Vd* and Vq* are calculated based on the calculated deviation. Here, the dq-axis voltage commands Vd*, Vq* corresponding to the deviation between the dq-axis current commands Id*, Iq* and the dq-axis current detection values Id, Iq are obtained by a control method such as PI control.
 dq/三相電圧変換部17は、回転位置θに基づく二相-三相変換を行い、電流制御部16により演算されたdq軸電圧指令Vd*、Vq*を三相電圧指令Vu*、Vv*、Vw*に変換する。 The dq/three-phase voltage conversion unit 17 performs two-phase/three-phase conversion based on the rotational position θ, and converts the dq-axis voltage commands Vd* and Vq* calculated by the current control unit 16 into three-phase voltage commands Vu* and Vv. Convert to *, Vw*.
 磁石温度推定部18は、電流検出手段7により検出されたモータ2に流れる三相交流電流Iu、Iv、Iwに基づいて、モータ2の回転子22に配置された永久磁石の温度を推定し、その推定結果を磁石温度tmpとして出力する。ここでは公知の演算方法、例えば特開2015-116021号公報で示された磁石温度の演算方法を用いて、三相交流電流Iu、Iv、Iwから磁石温度tmpを演算することができる。なお、回転子22において永久磁石の近傍に温度センサを配置し、この温度センサの検出値から磁石温度tmpを求めてもよい。 The magnet temperature estimation unit 18 estimates the temperature of the permanent magnet arranged in the rotor 22 of the motor 2 based on the three-phase alternating currents Iu, Iv, Iw flowing in the motor 2 detected by the current detection means 7, The estimation result is output as the magnet temperature tmp. Here, the magnet temperature tmp can be calculated from the three-phase AC currents Iu, Iv, and Iw by using a known calculation method, for example, the calculation method of the magnet temperature disclosed in Japanese Patent Laid-Open No. 2015-116021. A temperature sensor may be arranged near the permanent magnet in the rotor 22, and the magnet temperature tmp may be obtained from the detection value of this temperature sensor.
 ゲート信号生成部19は、dq/三相電圧変換部17により求められた三相電圧指令Vu*、Vv*、Vw*に基づいて、図1のインバータ回路31を構成する各スイッチング素子Sup、Sun、Svp、Svn、Swp、Swnに対してそれぞれ出力されるPWM制御信号Gup、Gun、Gvp、Gvn、Gwp、Gwnを生成する。ここでは、例えば三角搬送波との比較等の周知の方式により、三相電圧指令Vu*、Vv*、Vw*に対応するPWM制御信号Gup、Gun、Gvp、Gvn、Gwp、Gwnを生成する。 The gate signal generation unit 19 uses the three-phase voltage commands Vu*, Vv*, and Vw* obtained by the dq/three-phase voltage conversion unit 17, based on the switching elements Sup and Sun that configure the inverter circuit 31 of FIG. 1. , Svp, Svn, Swp, Swn, PWM control signals Gup, Gun, Gvp, Gvn, Gwp, Gwn are generated. Here, the PWM control signals Gup, Gun, Gvp, Gvn, Gwp, Gwn corresponding to the three-phase voltage commands Vu*, Vv*, Vw* are generated by a known method such as comparison with a triangular carrier wave.
 図3は、温度トルクリプル振幅演算部11のブロック図である。温度トルクリプル振幅演算部11は、6次リプル振幅マップ110a、12次リプル振幅マップ110b、18次リプル振幅マップ110c、24次リプル振幅マップ110dを有する。 FIG. 3 is a block diagram of the temperature torque ripple amplitude calculator 11. The temperature torque ripple amplitude calculator 11 has a sixth-order ripple amplitude map 110a, a twelfth-order ripple amplitude map 110b, an eighteenth-order ripple amplitude map 110c, and a twenty-fourth-order ripple amplitude map 110d.
 6次リプル振幅マップ110a、12次リプル振幅マップ110b、18次リプル振幅マップ110c、24次リプル振幅マップ110dの各マップ情報は、第一の目標トルクT*と磁石温度tmpの様々な組み合わせに対してモータ2に発生するトルクリプルの振幅を、予めシミュレーションや実測により次数ごとに求めて作成されたものである。温度トルクリプル振幅演算部11では、これらのマップ情報を参照することで、第一の目標トルクT*および磁石温度tmpの現在値に対応する各次数の温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24を演算することができる。すなわち、トルクリプルの抑制対象次数として予め設定された6次、12次、18次、24次の各々について、要求された第一の目標トルクT*に対して、磁石温度tmpに応じた温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24を演算することができる。 The map information of the sixth-order ripple amplitude map 110a, the 12th-order ripple amplitude map 110b, the 18th-order ripple amplitude map 110c, and the 24th-order ripple amplitude map 110d correspond to various combinations of the first target torque T* and the magnet temperature tmp. The amplitude of the torque ripple generated in the motor 2 is calculated for each order in advance by simulation or actual measurement, and is created. The temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 of each order corresponding to the current values of the first target torque T* and the magnet temperature tmp by referring to these map information. can do. That is, for each of the 6th order, 12th order, 18th order, and 24th order set in advance as the suppression target orders of torque ripple, the temperature torque ripple amplitude corresponding to the magnet temperature tmp with respect to the required first target torque T*. It is possible to calculate Ttmp6, Ttmp12, Ttmp18, and Ttmp24.
 図4は、回転位置トルクリプル振幅演算部12のブロック図である。回転位置トルクリプル振幅演算部12は、極対数乗算部120、次数乗算部121a~121d、6次リプルαマップ122a、12次リプルαマップ122b、18次リプルαマップ122c、24次リプルαマップ122d、加算部123a~123d、余弦演算部124a~124dを有する。 FIG. 4 is a block diagram of the rotational position torque ripple amplitude calculator 12. The rotational position torque ripple amplitude calculation unit 12 includes a pole pair number multiplication unit 120, order multiplication units 121a to 121d, a sixth order α map 122a, a twelfth order α map 122b, an eighteenth order α map 122c, a twenty-fourth order α map 122d, It has adders 123a to 123d and cosine calculators 124a to 124d.
 回転位置トルクリプル振幅演算部12は、以下の式(1)に従い、回転中のモータ位相における各次数のトルクリプル振幅を演算する。図4のブロック図は、この演算を実現するための機能ブロック構成の一例を示している。
 TdegX = cos(ωX+αX)  ・・・(1)
 (但し、X=6、12、18、24)
The rotational position torque ripple amplitude calculator 12 calculates the torque ripple amplitude of each order in the rotating motor phase according to the following equation (1). The block diagram of FIG. 4 shows an example of a functional block configuration for realizing this calculation.
TdegX=cos(ωX+αX) (1)
(However, X=6, 12, 18, 24)
 極対数乗算部120では、回転位置θにモータ2の極対数を乗算することで、電気角位相ωを演算する。 The pole pair number multiplication unit 120 calculates the electrical angle phase ω by multiplying the rotational position θ by the number of pole pairs of the motor 2.
 次数乗算部121a~121dは、6次、12次、18次、24次の各次数を電気角位相ωに乗算し、補正前の各次数のトルクリプル位相ω6、ω12、ω18、ω24を演算する。 The order multiplying units 121a to 121d multiply the electrical angle phase ω by each of the 6th order, the 12th order, the 18th order, and the 24th order, and calculate the torque ripple phases ω6, ω12, ω18, and ω24 of each order before correction.
 6次リプルαマップ122a、12次リプルαマップ122b、18次リプルαマップ122c、24次リプルαマップ122dの各マップ情報は、第一の目標トルクT*と磁石温度tmpの様々な組み合わせに対してモータ2に発生するトルクリプルの位相ずれを、予めシミュレーションや実測により次数ごとに求めて作成されたものである。回転位置トルクリプル振幅演算部12では、これらのマップ情報を参照することで、第一の目標トルクT*および磁石温度tmpの現在値に対応する各次数のトルクリプル位相ずれα6、α12、α18、α24を演算することができる。 The map information of the sixth-order ripple α map 122a, the 12th-order ripple α map 122b, the 18th-order ripple α map 122c, and the 24th-order ripple α map 122d correspond to various combinations of the first target torque T* and the magnet temperature tmp. The phase shift of the torque ripple generated in the motor 2 is calculated in advance by simulation or actual measurement for each order and created. The rotational position torque ripple amplitude calculator 12 refers to these pieces of map information to calculate the torque ripple phase shifts α6, α12, α18, α24 of the respective orders corresponding to the current values of the first target torque T* and the magnet temperature tmp. It can be calculated.
 加算部123a~123dは、補正前の各次数のトルクリプル位相ω6、ω12、ω18、ω24に各次数のトルクリプル位相ずれα6、α12、α18、α24をそれぞれ加算することで、補正後の各次数のトルクリプル位相ωX+αXを演算する。 The adding units 123a to 123d add the torque ripple phase shifts α6, α12, α18, and α24 of the respective orders to the torque ripple phases ω6, ω12, ω18, and ω24 of the respective orders before the correction, respectively, to thereby obtain the torque ripples of the respective orders after the correction. The phase ωX+αX is calculated.
 余弦演算部124a~124dは、補正後の各次数のトルクリプル位相ωX+αXの余弦をそれぞれ演算することで、前述の式(1)に従い、回転位置θに対応する各次数の回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24をそれぞれ演算する。 The cosine calculators 124a to 124d respectively calculate the cosines of the corrected torque ripple phases ωX+αX of the respective orders, so that the rotational position torque ripple amplitudes Tdeg6 and Tdeg12 of the respective orders corresponding to the rotational position θ are calculated according to the above equation (1). , Tdeg18, and Tdeg24 are respectively calculated.
 回転位置トルクリプル振幅演算部12では、上記のようにして、第一の目標トルクT*、回転位置θおよび磁石温度tmpの現在値に対応する各次数の回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算することができる。すなわち、トルクリプルの抑制対象次数として予め設定された6次、12次、18次、24次の各々について、要求された第一の目標トルクT*に対して、回転位置θおよび磁石温度tmpに応じた回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算することができる。 In the rotational position torque ripple amplitude calculator 12, the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 of each order corresponding to the current values of the first target torque T*, the rotational position θ and the magnet temperature tmp are set as described above. Can be calculated. That is, for each of the 6th order, the 12th order, the 18th order, and the 24th order that are preset as the orders to suppress torque ripple, the rotational position θ and the magnet temperature tmp are determined according to the required first target torque T*. The rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 can be calculated.
 図5は、目標トルク補正部13のブロック図である。目標トルク補正部13は、乗算部130a~130d、合計部131、減算部132を有する。 FIG. 5 is a block diagram of the target torque correction unit 13. The target torque correction unit 13 has multiplication units 130a to 130d, a summation unit 131, and a subtraction unit 132.
 乗算部130a~130dは、温度トルクリプル振幅演算部11により演算された各次数の温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と、回転位置トルクリプル振幅演算部12により演算された各次数の回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24とをそれぞれ乗算することで、各次数のトルクリプル成分を演算する。 The multiplying units 130a to 130d include the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 of the respective orders calculated by the temperature torque ripple amplitude calculating unit 11, and the rotational position torque ripple amplitudes of the respective orders calculated by the rotational position torque ripple amplitude calculating unit 12. The torque ripple component of each order is calculated by multiplying Tdeg6, Tdeg12, Tdeg18, and Tdeg24, respectively.
 合計部131は、乗算部130a~130dにより演算された各次数のトルクリプル成分を合計することで、モータ2において発生するトルクリプル成分を演算する。 The summing unit 131 calculates the torque ripple component generated in the motor 2 by summing the torque ripple components of each order calculated by the multiplication units 130a to 130d.
 減算部132は、合計部131により演算されたトルクリプル成分を第一の目標トルクT*から減算することで、トルクリプル成分の逆相を第一の目標トルクT*に重畳する。これにより、第一の目標トルクT*を補正し、補正結果を第二の目標トルクTcor*として出力する。 The subtracting unit 132 subtracts the torque ripple component calculated by the summing unit 131 from the first target torque T*, thereby superimposing the reverse phase of the torque ripple component on the first target torque T*. As a result, the first target torque T* is corrected and the correction result is output as the second target torque Tcor*.
 本実施形態では、モータ制御装置1において、上記のようにして目標トルクにトルクリプルの逆相を重畳する補正を行い、補正された目標トルクに従ってインバータ3を制御することで、モータ2を駆動させる。これにより、目標トルクに重畳したトルクリプルと出力トルクのトルクリプルがモータ温度に応じて相殺され、精度よくトルクリプルを低減することができる。 In the present embodiment, the motor control device 1 corrects the target torque by superimposing the opposite phase of the torque ripple as described above, and drives the motor 2 by controlling the inverter 3 according to the corrected target torque. As a result, the torque ripple superimposed on the target torque and the torque ripple of the output torque are canceled according to the motor temperature, and the torque ripple can be accurately reduced.
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。 According to the embodiment of the present invention described above, the following operational effects are achieved.
(1)モータ制御装置1は、永久磁石同期モータ2の駆動を制御するものであって、温度トルクリプル振幅演算部11と、目標トルク補正部13とを備える。温度トルクリプル振幅演算部11は、モータ2の磁石温度tmpに基づく温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24を演算する。目標トルク補正部13は、温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24に基づいて、モータ2のトルク値の目標値として入力される第一の目標トルクT*を補正して第二の目標トルクTcor*を演算する。このようにしたので、永久磁石同期モータ2で発生するトルクリプルを、モータ2の磁石温度に応じて精度よく低減できる。 (1) The motor control device 1 controls the drive of the permanent magnet synchronous motor 2, and includes a temperature torque ripple amplitude calculation unit 11 and a target torque correction unit 13. The temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 based on the magnet temperature tmp of the motor 2. The target torque correction unit 13 corrects the first target torque T*, which is input as the target value of the torque value of the motor 2, based on the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 to correct the second target torque Tcor. Calculate *. Since it did in this way, the torque ripple generated in the permanent magnet synchronous motor 2 can be reduced accurately according to the magnet temperature of the motor 2.
(2)モータ制御装置1は、モータ2の回転位置θに基づく回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算する回転位置トルクリプル振幅演算部12を備える。目標トルク補正部13は、温度トルクリプル振幅演算部11により演算された温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と、回転位置トルクリプル振幅演算部12により演算された回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24とを用いて、第一の目標トルクT*を補正する。このようにしたので、トルクリプルの位相ずれを考慮して、永久磁石同期モータ2で発生するトルクリプルをより精度よく低減できる。 (2) The motor control device 1 includes a rotational position torque ripple amplitude calculation unit 12 that calculates rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 based on the rotational position θ of the motor 2. The target torque correction unit 13 includes temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 calculated by the temperature torque ripple amplitude calculation unit 11, and rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18 calculated by the rotation position torque ripple amplitude calculation unit 12. The first target torque T* is corrected using Tdeg24. Since it did in this way, the torque ripple generated in the permanent magnet synchronous motor 2 can be reduced more accurately in consideration of the phase shift of the torque ripple.
(3)回転位置トルクリプル振幅演算部12は、モータ2の回転位置θと、モータ2の磁石温度tmpとに基づいて、回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算する。このようにしたので、モータ2の回転位置だけでなく磁石温度をも考慮して、トルクリプルの位相ずれを正確に演算できる。 (3) The rotational position torque ripple amplitude calculator 12 calculates the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 based on the rotational position θ of the motor 2 and the magnet temperature tmp of the motor 2. Since this is done, the phase shift of the torque ripple can be accurately calculated by considering not only the rotational position of the motor 2 but also the magnet temperature.
(4)目標トルク補正部13は、温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を乗算してトルクリプル成分を演算し(乗算部130a~130d、合計部131)、演算したトルクリプル成分の逆相を第一の目標トルクT*に重畳することで(減算部132)、第一の目標トルクT*を補正する。このようにしたので、温度トルクリプル振幅演算部11により演算された温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と、回転位置トルクリプル振幅演算部12により演算された回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24とを用いて、第一の目標トルクT*を適切に補正することができる。 (4) The target torque correction unit 13 calculates the torque ripple component by multiplying the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 by the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 (multiplying units 130a to 130d, totaling unit). 131), the first target torque T* is corrected by superimposing the calculated reverse phase of the torque ripple component on the first target torque T* (subtraction unit 132). Since it did in this way, temperature torque ripple amplitude Ttmp6, Ttmp12, Ttmp18, Ttmp24 calculated by the temperature torque ripple amplitude calculation part 11, and rotation position torque ripple amplitude Tdeg6, Tdeg12, Tdeg18, Tdeg24 calculated by the rotation position torque ripple amplitude calculation part 12. By using and, the first target torque T* can be appropriately corrected.
(5)温度トルクリプル振幅演算部11は、予め設定された複数の次数(6次、12次、18次、24次)の各々について、温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24を演算する。また、回転位置トルクリプル振幅演算部12も同様に、予め設定された複数の次数(6次、12次、18次、24次)の各々について、回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を演算する。そして、目標トルク補正部13は、温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24を次数ごとに乗算し(乗算部130a~130d)、各次数の乗算結果を合計することで(合計部131)、トルクリプル成分を演算する。このようにしたので、モータ2に及ぼす影響が大きいトルクリプル成分を効果的に削減することができる。 (5) The temperature torque ripple amplitude calculator 11 calculates the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, and Ttmp24 for each of a plurality of preset orders (6th order, 12th order, 18th order, 24th order). Similarly, the rotational position torque ripple amplitude calculator 12 also calculates the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 for each of a plurality of preset orders (6th order, 12th order, 18th order, 24th order). To do. Then, the target torque correction unit 13 multiplies the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18, Ttmp24 and the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, Tdeg24 for each degree (multipliers 130a to 130d), and the multiplication result of each degree. The torque ripple component is calculated by summing the values (summing unit 131). Since this is done, it is possible to effectively reduce the torque ripple component that has a great influence on the motor 2.
(6)モータ制御装置1は、モータ2に流れる三相交流電流Iu、Iv、Iwに基づいて磁石温度tmpを推定する磁石温度推定部18を備える。このようにしたので、温度センサを用いずに磁石温度tmpを求めることができる。 (6) The motor control device 1 includes the magnet temperature estimation unit 18 that estimates the magnet temperature tmp based on the three-phase alternating currents Iu, Iv, and Iw flowing in the motor 2. Since it did in this way, magnet temperature tmp can be calculated|required, without using a temperature sensor.
 なお、上記の実施形態では、トルクリプルの抑制対象次数を6次、12次、18次および24次と設定し、これらの次数に対して、磁石温度tmpに応じた温度トルクリプル振幅Ttmp6、Ttmp12、Ttmp18、Ttmp24と、回転位置θおよび磁石温度tmpに応じた回転位置トルクリプル振幅Tdeg6、Tdeg12、Tdeg18、Tdeg24とを演算し、第一の目標トルクT*を補正する例を説明した。しかしながら、本発明においてトルクリプルの抑制対象とする次数は、これらの次数に限定されるものではない。例えば、任意の次数をトルクリプルの抑制対象から除外しても良いし、他の次数をトルクリプルの抑制対象に加えても良い。あるいは、任意の一つの次数(例えば6次)のみをトルクリプルの抑制対象としても良い。いずれの場合でも、当該次数に対して、温度トルクリプル振幅演算部11により磁石温度tmpに応じた温度トルクリプル振幅を演算するとともに、回転位置トルクリプル振幅演算部12により回転位置θおよび磁石温度tmpに応じた回転位置トルクリプル振幅を演算し、これらの演算結果を用いて、目標トルク補正部13により第一の目標トルクT*を補正することが可能である。 It should be noted that in the above-described embodiment, the torque ripple suppression orders are set to the 6th order, the 12th order, the 18th order and the 24th order, and for these orders, the temperature torque ripple amplitudes Ttmp6, Ttmp12, Ttmp18 corresponding to the magnet temperature tmp. , Ttmp24, and the rotational position torque ripple amplitudes Tdeg6, Tdeg12, Tdeg18, and Tdeg24 corresponding to the rotational position θ and the magnet temperature tmp are calculated to correct the first target torque T*. However, the orders for which the torque ripple is suppressed in the present invention are not limited to these orders. For example, an arbitrary order may be excluded from the target of torque ripple suppression, or another order may be added to the target of torque ripple suppression. Alternatively, only one arbitrary order (for example, sixth order) may be the target for suppressing torque ripple. In any case, the temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple amplitude corresponding to the magnet temperature tmp, and the rotational position torque ripple amplitude calculation unit 12 calculates the rotational position θ and the magnet temperature tmp. It is possible to calculate the rotational position torque ripple amplitude and use the calculation results to correct the first target torque T* by the target torque correction unit 13.
 また、上記の実施形態では、温度トルクリプル振幅演算部11により磁石温度tmpに応じた温度トルクリプル振幅を演算するとともに、回転位置トルクリプル振幅演算部12により回転位置θおよび磁石温度tmpに応じた回転位置トルクリプル振幅を演算し、これらの演算結果を用いて、目標トルク補正部13により第一の目標トルクT*を補正する例を説明したが、本発明はこれに限定されない。例えば、回転位置トルクリプル振幅演算部12を削除して、温度トルクリプル振幅演算部11により演算された温度トルクリプル振幅のみを用いて、目標トルク補正部13により第一の目標トルクT*を補正しても良い。また、回転位置トルクリプル振幅演算部12において、磁石温度tmpを用いずに回転位置θのみを用いて、第一の目標トルクT*に対する回転位置トルクリプル振幅を演算しても良い。このようにすれば、モータ制御装置1の演算負荷を減らすことができる。但し、トルクリプルの低減精度が低下する可能性もあるため、システム上のトルクリプルの許容値等に応じて適宜定めることが好ましい。 Further, in the above embodiment, the temperature torque ripple amplitude calculation unit 11 calculates the temperature torque ripple amplitude according to the magnet temperature tmp, and the rotational position torque ripple amplitude calculation unit 12 calculates the rotational position torque ripple according to the rotational position θ and the magnet temperature tmp. An example in which the amplitude is calculated and the target torque correction unit 13 corrects the first target torque T* using these calculation results has been described, but the present invention is not limited to this. For example, even if the rotational position torque ripple amplitude calculator 12 is deleted and only the temperature torque ripple amplitude calculated by the temperature torque ripple amplitude calculator 11 is used to correct the first target torque T* by the target torque corrector 13. good. Further, the rotational position torque ripple amplitude calculation unit 12 may calculate the rotational position torque ripple amplitude for the first target torque T* using only the rotational position θ without using the magnet temperature tmp. By doing so, the calculation load of the motor control device 1 can be reduced. However, since there is a possibility that the torque ripple reduction accuracy may be reduced, it is preferable to appropriately set the torque ripple reduction accuracy according to the allowable value of the torque ripple on the system.
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents unless the characteristics of the invention are impaired. Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other modes that can be considered within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 1…モータ制御装置、2…永久磁石同期モータ(モータ)、3…インバータ、4…回転位置センサ、5…高圧バッテリ、6…モータ駆動システム、7…電流検出手段、11…温度トルクリプル振幅演算部、12…回転位置トルクリプル振幅演算部、13…目標トルク補正部、14…電流指令生成部、15…三相/dq変換部、16…電流制御部、17…dq/三相電圧変換部、18…磁石温度推定部、19…ゲート信号生成部、21…固定子、22…回転子、31…インバータ回路、32…PWM信号出力手段、33…平滑キャパシタ、41…回転位置検出手段 DESCRIPTION OF SYMBOLS 1... Motor control device, 2... Permanent magnet synchronous motor (motor), 3... Inverter, 4... Rotation position sensor, 5... High voltage battery, 6... Motor drive system, 7... Current detection means, 11... Temperature torque ripple amplitude calculation part , 12... Rotational position torque ripple amplitude calculation unit, 13... Target torque correction unit, 14... Current command generation unit, 15... Three-phase/dq conversion unit, 16... Current control unit, 17... dq/Three-phase voltage conversion unit, 18 ... Magnet temperature estimation unit, 19... Gate signal generation unit, 21... Stator, 22... Rotor, 31... Inverter circuit, 32... PWM signal output means, 33... Smoothing capacitor, 41... Rotation position detection means

Claims (8)

  1.  永久磁石同期モータの駆動を制御するモータ制御装置であって、
     前記モータの磁石温度に基づく温度トルクリプル振幅を演算する温度トルクリプル振幅演算部と、
     前記温度トルクリプル振幅に基づいて、前記モータのトルク値の目標値として入力される第一の目標トルクを補正して第二の目標トルクを演算する目標トルク補正部と、を備えるモータ制御装置。
    A motor control device for controlling the drive of a permanent magnet synchronous motor,
    A temperature torque ripple amplitude calculator that calculates a temperature torque ripple amplitude based on the magnet temperature of the motor;
    A motor control device comprising: a target torque correction unit that corrects a first target torque that is input as a target value of the torque value of the motor based on the temperature torque ripple amplitude to calculate a second target torque.
  2.  請求項1に記載のモータ制御装置において、
     前記モータの回転位置に基づく回転位置トルクリプル振幅を演算する回転位置トルクリプル振幅演算部を備え、
     前記目標トルク補正部は、前記温度トルクリプル振幅演算部により演算された前記温度トルクリプル振幅と、前記回転位置トルクリプル振幅演算部により演算された前記回転位置トルクリプル振幅とを用いて、前記第一の目標トルクを補正するモータ制御装置。
    The motor control device according to claim 1,
    A rotational position torque ripple amplitude calculation unit for calculating a rotational position torque ripple amplitude based on the rotational position of the motor,
    The target torque correction unit uses the temperature torque ripple amplitude calculated by the temperature torque ripple amplitude calculation unit and the rotation position torque ripple amplitude calculated by the rotation position torque ripple amplitude calculation unit to calculate the first target torque. A motor control device that corrects
  3.  請求項2に記載のモータ制御装置において、
     前記回転位置トルクリプル振幅演算部は、前記モータの回転位置と、前記モータの磁石温度とに基づいて、前記回転位置トルクリプル振幅を演算するモータ制御装置。
    The motor control device according to claim 2,
    The motor control device, wherein the rotational position torque ripple amplitude calculation unit calculates the rotational position torque ripple amplitude based on a rotational position of the motor and a magnet temperature of the motor.
  4.  請求項2または3に記載のモータ制御装置において、
     前記目標トルク補正部は、前記温度トルクリプル振幅と前記回転位置トルクリプル振幅を乗算してトルクリプル成分を演算し、演算した前記トルクリプル成分の逆相を前記第一の目標トルクに重畳することで、前記第一の目標トルクを補正するモータ制御装置。
    The motor control device according to claim 2 or 3,
    The target torque correction unit calculates a torque ripple component by multiplying the temperature torque ripple amplitude and the rotational position torque ripple amplitude, and superimposes a reverse phase of the calculated torque ripple component on the first target torque, A motor control device that corrects one target torque.
  5.  請求項1に記載のモータ制御装置において、
     前記温度トルクリプル振幅演算部は、予め設定された複数の次数の各々について、前記温度トルクリプル振幅を演算するモータ制御装置。
    The motor control device according to claim 1,
    The temperature torque ripple amplitude calculation unit is a motor control device that calculates the temperature torque ripple amplitude for each of a plurality of preset orders.
  6.  請求項2または請求項3に記載のモータ制御装置において、
     前記温度トルクリプル振幅演算部は、予め設定された複数の次数の各々について、前記温度トルクリプル振幅を演算し、
     前記回転位置トルクリプル振幅演算部は、前記複数の次数の各々について、前記回転位置トルクリプル振幅を演算するモータ制御装置。
    The motor control device according to claim 2 or 3,
    The temperature torque ripple amplitude calculator calculates the temperature torque ripple amplitude for each of a plurality of preset orders,
    The motor control device, wherein the rotational position torque ripple amplitude calculator calculates the rotational position torque ripple amplitude for each of the plurality of orders.
  7.  請求項4に記載のモータ制御装置において、
     前記温度トルクリプル振幅演算部は、予め設定された複数の次数の各々について、前記温度トルクリプル振幅を演算し、
     前記回転位置トルクリプル振幅演算部は、前記複数の次数の各々について、前記回転位置トルクリプル振幅を演算し、
     前記目標トルク補正部は、前記温度トルクリプル振幅と前記回転位置トルクリプル振幅を次数ごとに乗算し、各次数の乗算結果を合計することで、前記トルクリプル成分を演算するモータ制御装置。
    The motor control device according to claim 4,
    The temperature torque ripple amplitude calculator calculates the temperature torque ripple amplitude for each of a plurality of preset orders,
    The rotational position torque ripple amplitude calculator calculates the rotational position torque ripple amplitude for each of the plurality of orders,
    The target torque correction unit is a motor control device that calculates the torque ripple component by multiplying the temperature torque ripple amplitude and the rotational position torque ripple amplitude for each order and summing the multiplication results of each order.
  8.  請求項1から請求項3のいずれか一項に記載のモータ制御装置において、
     前記モータに流れる交流電流に基づいて前記磁石温度を推定する磁石温度推定部を備えるモータ制御装置。
    The motor control device according to any one of claims 1 to 3,
    A motor control device comprising a magnet temperature estimation unit that estimates the magnet temperature based on an alternating current flowing through the motor.
PCT/JP2019/049746 2019-01-11 2019-12-19 Motor control device WO2020145068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019003786A JP2022043375A (en) 2019-01-11 2019-01-11 Motor control device
JP2019-003786 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020145068A1 true WO2020145068A1 (en) 2020-07-16

Family

ID=71521323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049746 WO2020145068A1 (en) 2019-01-11 2019-12-19 Motor control device

Country Status (2)

Country Link
JP (1) JP2022043375A (en)
WO (1) WO2020145068A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223582A (en) * 2001-01-26 2002-08-09 Hitachi Ltd Apparatus and method for controlling permanent magnet type synchronous motor
JP2007274779A (en) * 2006-03-30 2007-10-18 Aisin Aw Co Ltd Electromotive drive control device, and electromotive drive control method
JP2009005553A (en) * 2007-06-25 2009-01-08 Hitachi Ltd System and method for controlling permanent magnet motor, and method for controlling elevator
JP2017070000A (en) * 2015-09-28 2017-04-06 株式会社デンソー Control apparatus of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223582A (en) * 2001-01-26 2002-08-09 Hitachi Ltd Apparatus and method for controlling permanent magnet type synchronous motor
JP2007274779A (en) * 2006-03-30 2007-10-18 Aisin Aw Co Ltd Electromotive drive control device, and electromotive drive control method
JP2009005553A (en) * 2007-06-25 2009-01-08 Hitachi Ltd System and method for controlling permanent magnet motor, and method for controlling elevator
JP2017070000A (en) * 2015-09-28 2017-04-06 株式会社デンソー Control apparatus of rotary electric machine

Also Published As

Publication number Publication date
JP2022043375A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US9136785B2 (en) Motor control system to compensate for torque ripple
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP4881635B2 (en) Vector controller for permanent magnet motor
JP4988329B2 (en) Beatless control device for permanent magnet motor
US9413281B2 (en) Apparatus for controlling AC motor
EP3528383B1 (en) Control device and control method for alternating current motor
JP4631672B2 (en) Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
EP2779414A2 (en) Motor control system having bandwidth compensation
US8760098B2 (en) Sensorless motor control
JP5488845B2 (en) AC motor control device
US20170264227A1 (en) Inverter control device and motor drive system
JPWO2015019495A1 (en) Motor drive system and motor control device
JP2004289926A (en) Motor controller
JP5975822B2 (en) PWM control method and drive system for AC motor
JP2019170095A (en) Motor controller
JP3939481B2 (en) AC motor control device
JP6541092B2 (en) Control device of permanent magnet synchronous motor
US20190006968A1 (en) Controller of rotary electric machine
JP2014117069A (en) Control apparatus for ac rotary machine and control method for ac rotary machine
JP2004289927A (en) Motor controller
CN114208020A (en) Control device for AC rotating machine and electric power steering device
WO2020145068A1 (en) Motor control device
JP4448351B2 (en) Control device for power converter
JP7385776B2 (en) Electric motor control device
JP4526628B2 (en) AC motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP