JP4448351B2 - Control device for power converter - Google Patents

Control device for power converter Download PDF

Info

Publication number
JP4448351B2
JP4448351B2 JP2004067197A JP2004067197A JP4448351B2 JP 4448351 B2 JP4448351 B2 JP 4448351B2 JP 2004067197 A JP2004067197 A JP 2004067197A JP 2004067197 A JP2004067197 A JP 2004067197A JP 4448351 B2 JP4448351 B2 JP 4448351B2
Authority
JP
Japan
Prior art keywords
voltage command
current
phase
error
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004067197A
Other languages
Japanese (ja)
Other versions
JP2005261036A (en
Inventor
彰 佐竹
真一 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004067197A priority Critical patent/JP4448351B2/en
Publication of JP2005261036A publication Critical patent/JP2005261036A/en
Application granted granted Critical
Publication of JP4448351B2 publication Critical patent/JP4448351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、電力変換器の制御装置、特にPWMインバータ等の出力電圧を指令する電圧指令の誤差を精度良く補正できる電力変換器の制御装置に関するものである。   The present invention relates to a power converter control device, and more particularly to a power converter control device capable of accurately correcting an error in a voltage command for commanding an output voltage of a PWM inverter or the like.

PWMインバータ(以下、インバータという)においては、インバータの正側と負側素子とを交互にオンオフ制御し、電圧指令のパルス幅を変化させることにより、出力電圧を電圧指令に従い制御する。このとき、両素子が同時にオンして直流短絡を生じないように、素子のターンオフタイムを考慮し、オンオフ変化時に両素子ともオフとする期間を設けている。このために、出力電圧歪が発生する。インバータにより駆動される電動機は、この出力電圧歪のために、トルクリプルが発生し、トルクおよび速度の制御精度が劣化する。出力電圧歪を抑制するために、出力電流の基本波成分ベクトルに直交する電圧指令成分及び出力電流成分(基本波以外の変動成分)により、インバータの電圧指令誤差を推定し、補正するものがある(例えば、特許文献1参照)。   In a PWM inverter (hereinafter referred to as an inverter), the positive side and negative side elements of the inverter are alternately turned on and off, and the output voltage is controlled according to the voltage command by changing the pulse width of the voltage command. At this time, in order to prevent both elements from being turned on at the same time and causing a DC short circuit, in consideration of the turn-off time of the elements, a period in which both elements are turned off when on / off changes is provided. For this reason, output voltage distortion occurs. In the electric motor driven by the inverter, torque ripple occurs due to this output voltage distortion, and the control accuracy of torque and speed deteriorates. In order to suppress the output voltage distortion, there are some which estimate and correct the voltage command error of the inverter by the voltage command component orthogonal to the fundamental wave component vector of the output current and the output current component (variation component other than the fundamental wave). (For example, refer to Patent Document 1).

ところが、インバータにより駆動される負荷には、例えば永久磁石モータのように誘起電圧に高調波を含むものがある。このような負荷で運転力率が1でない状態、すなわち出力電圧(電圧指令)と出力電流に位相差がある場合には、出力電流の基本波成分ベクトルに直交する電圧指令成分が存在するので当該直交する電圧指令成分及び出力電流成分にも、上記誘起電圧高調波による成分が含まれる。
また、従来のインバータの制御装置における電圧指令誤差の補正では、補正値は全ての相で共通であるが、実際のインバータにおいては素子ごとの特性ばらつきがあり、このため導通している素子により電圧指令誤差が異なる場合がある。
However, some of the loads driven by the inverter include harmonics in the induced voltage, such as a permanent magnet motor. When the driving power factor is not 1 with such a load, that is, when there is a phase difference between the output voltage (voltage command) and the output current, there is a voltage command component that is orthogonal to the fundamental component vector of the output current. The orthogonal voltage command component and the output current component also include components due to the induced voltage harmonics.
In addition, in the correction of the voltage command error in the conventional inverter control device, the correction value is common to all phases. However, in an actual inverter, there is a characteristic variation for each element, and therefore, the voltage due to the conductive element is Command error may be different.

特開平08−126335号公報(段落番号0007〜0009、(数2),(数3)、図1及び図2参照)JP-A-08-126335 (see paragraph numbers 0007 to 0009, (Equation 2), (Equation 3), FIG. 1 and FIG. 2)

従来の電力変換器の制御装置における電圧指令誤差の補正では、出力電流の基本波成分ベクトルに直交する電圧指令成分及び検出された出力電流成分を用いるので、これらの信号に上記のように負荷が発生する誘起電圧高調波に伴う誤差成分が含まれる場合には、精度良く電圧指令誤差の補正を行うことができなかった。また、従来の電力変換器の制御装置における電圧指令誤差の補正では、補正値は全ての相で共通で同じ値であるため、素子ごとの特性ばらつきにより相ごとの電圧指令誤差が異なる場合には、精度のよい電圧指令誤差の補正を行うことができなかった。   In the correction of the voltage command error in the conventional power converter control device, the voltage command component orthogonal to the fundamental wave component vector of the output current and the detected output current component are used. Therefore, the load is applied to these signals as described above. When an error component associated with the generated induced voltage harmonic is included, the voltage command error cannot be corrected with high accuracy. Further, in the correction of the voltage command error in the conventional power converter control device, the correction value is common and the same value in all phases, and therefore, when the voltage command error for each phase differs due to characteristic variation for each element. The voltage command error cannot be corrected with high accuracy.

この発明は上記のような問題点を解決するためになされたものであり、第1の目的は、誘起電圧に高調波を含む負荷を駆動する場合にも、精度良く出力電圧指令誤差の補正を行うことができる電力変換器の制御装置を得ることを目的とする。また、第2の目的は、例えば素子ごとの特性ばらつきにより相ごとの出力電圧指令誤差が異なる場合にも、適切に出力電圧指令誤差の補正を行うことができる電力変換器の制御装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and a first object is to accurately correct an output voltage command error even when a load including a harmonic in an induced voltage is driven. It is an object of the present invention to obtain a control device for a power converter that can be performed. In addition, a second object is to obtain a control device for a power converter that can appropriately correct an output voltage command error even when the output voltage command error differs from phase to phase due to, for example, characteristic variations among elements. With the goal.

この発明に係る電力変換器の制御装置は、電力変換器に出力電圧指令値を与える出力電圧指令手段と、電力変換器の出力電流値を検出する電流検出手段と、出力電圧指令値と出力電流値との少なくとも一方に基づいて負荷の誘起電圧に直交する方向を求めるとともに出力電圧指令値及び出力電流値から推定した電力変換器の出力電圧誤差の誘起電圧に直交する方向の値を求めこの直交する方向の値と出力電流値とに基づいて出力電圧指令値を補正する出力電圧指令値補正手段とを備えたものである。   The power converter control device according to the present invention includes an output voltage command means for giving an output voltage command value to the power converter, a current detection means for detecting an output current value of the power converter, an output voltage command value and an output current. The direction orthogonal to the induced voltage of the load is obtained based on at least one of the values and the value orthogonal to the induced voltage of the output voltage error of the power converter estimated from the output voltage command value and the output current value is obtained. Output voltage command value correcting means for correcting the output voltage command value based on the direction value and the output current value.

この発明に係る電力変換器の制御装置においては、電力変換器に出力電圧指令値を与える出力電圧指令手段と、電力変換器の出力電流値を検出する電流検出手段と、出力電圧指令値と出力電流値との少なくとも一方に基づいて負荷の誘起電圧に直交する方向を求めるとともに出力電圧指令値及び出力電流値から推定した電力変換器の出力電圧誤差の誘起電圧に直交する方向の値を求めこの直交する方向の値と出力電流値とに基づいて出力電圧指令値を補正する出力電圧指令値補正手段とを備えたので、誘起電圧に高調波を含む負荷を駆動する場合にも、精度良く出力電圧指令誤差の補正を行うことができる。   In the control device for the power converter according to the present invention, the output voltage command means for giving the output voltage command value to the power converter, the current detection means for detecting the output current value of the power converter, the output voltage command value and the output A direction orthogonal to the induced voltage of the load is obtained based on at least one of the current values, and a value orthogonal to the induced voltage of the output voltage error of the power converter estimated from the output voltage command value and the output current value is obtained. Output voltage command value correction means that corrects the output voltage command value based on the value in the orthogonal direction and the output current value is provided, so even when driving a load that includes harmonics in the induced voltage, output is accurate. The voltage command error can be corrected.

実施の形態1.
図1〜図4は、この発明の実施の形態1による電力変換器の制御装置を示すものであり、図1は制御装置の構成図、図2は電圧指令誤差特徴信号発生器の詳細構成を示す構成図である。図3は、動作を説明するための信号の波形図、図4はベクトル図である。この実施の形態においては、従来の永久磁石モータの電流制御系に、電圧指令誤差の補正系を加えて改良したものである。まず、永久磁石モータの電流制御系の構成について説明する。図1において、永久磁石モータ1の回転軸に角度検出器2が取り付けられ、この角度検出器2が出力する永久磁石モータ1の回転子の永久磁石磁束の位相角θに基づいて電流制御が行われる。
Embodiment 1 FIG.
1 to 4 show a control apparatus for a power converter according to Embodiment 1 of the present invention. FIG. 1 is a configuration diagram of the control apparatus, and FIG. 2 is a detailed configuration of a voltage command error feature signal generator. FIG. FIG. 3 is a waveform diagram of signals for explaining the operation, and FIG. 4 is a vector diagram. In this embodiment, the current control system of a conventional permanent magnet motor is improved by adding a correction system for a voltage command error. First, the configuration of the current control system of the permanent magnet motor will be described. In FIG. 1, an angle detector 2 is attached to the rotating shaft of the permanent magnet motor 1, and current control is performed based on the phase angle θ of the permanent magnet magnetic flux of the rotor of the permanent magnet motor 1 output from the angle detector 2. Is called.

永久磁石モータ1の図示しない三相巻線に流れる電流は電流検出器3により出力電流として検出されて電流検出値iu,iv,iwが得られる。この電流検出値は座標変換器4により、位相角θ方向の成分であるd軸電流検出値iddと、その直交成分であるq軸電流検出値iqdに変換される。加算器5,6によりdq軸電流検出値idd,iqdと電流指令値idr,iqrとの偏差がそれぞれ計算され、d軸電流制御器7及びq軸電流制御器8によりdq軸電圧指令vd,vqが算出される。dq軸電圧指令vd,vqは座標変換器9により三相電圧指令に変換される。   A current flowing through a three-phase winding (not shown) of the permanent magnet motor 1 is detected as an output current by the current detector 3, and current detection values iu, iv, and iw are obtained. This current detection value is converted by the coordinate converter 4 into a d-axis current detection value idd which is a component in the phase angle θ direction and a q-axis current detection value iqd which is an orthogonal component thereof. Deviations between the dq-axis current detection values idd and iqd and the current command values idr and iqr are respectively calculated by the adders 5 and 6, and the d-axis current controller 7 and the q-axis current controller 8 respectively calculate the dq-axis voltage commands vd and vq. Is calculated. The dq axis voltage commands vd and vq are converted into a three-phase voltage command by the coordinate converter 9.

次に電圧指令誤差の補正系の構成について説明する。位相計算器10はdq軸電流検出値idd,iqdよりd軸に対する電流の位相差Δθを求める。加算器11は電流位相差Δθと回転子位相角θを加算して電流位相θiを求め、信号発生器12はこの電流位相θiに同期した、電圧指令誤差検出信号verrdtを発生する。一方、電圧指令誤差特徴信号発生器13はdq軸電流検出値idd,iqd及びdq軸電圧指令vd,vqから、電流に同期して発生する電圧指令誤差がもたらす特徴的な電圧指令誤差特徴信号verrftを算出する。この電圧指令誤差特徴信号verrftは乗算器14により電圧指令誤差検出信号verrdtと乗算され、電圧指令誤差に比例した誤差信号verrが抽出される。   Next, the configuration of the voltage command error correction system will be described. The phase calculator 10 obtains a current phase difference Δθ with respect to the d axis from the dq axis current detection values idd and iqd. The adder 11 adds the current phase difference Δθ and the rotor phase angle θ to obtain the current phase θi, and the signal generator 12 generates a voltage command error detection signal verrdt synchronized with the current phase θi. On the other hand, the voltage command error feature signal generator 13 generates a characteristic voltage command error feature signal verrrft caused by a voltage command error generated in synchronization with the current from the dq axis current detection values idd, iqd and the dq axis voltage commands vd, vq. Is calculated. The voltage command error feature signal verrrft is multiplied by the voltage command error detection signal verrdt by the multiplier 14 to extract an error signal verr proportional to the voltage command error.

この誤差信号verrは演算器15により比例積分され、電圧指令誤差補正信号vcompが得られる。符号検出器16は電流検出値iu,iv,iwのそれぞれの符号を検出して各電流符号を出力し、この各電流符号と電圧指令誤差補正信号vcompが乗算器17により乗ぜられ、各相電圧に対応した電圧指令補正値vucomp,vvcomp,vwcompが算出される。この電圧指令補正値は加算器18により座標変換器9が出力する三相電圧指令に加算され、最終的な電圧指令vu,vv,vwが得られる。この電圧指令によりPWMインバータ19がスイッチング制御されて永久磁石モータ1を駆動する。なお、電圧指令誤差特徴信号発生器13、乗算器14、演算器15、符号検出器16、乗算器17及び加算器18が、この発明における電圧指令値補正手段である。   The error signal verr is proportionally integrated by the calculator 15 to obtain a voltage command error correction signal vcomp. The sign detector 16 detects the sign of each of the current detection values iu, iv, and iw and outputs each current sign. The current sign and the voltage command error correction signal vcomp are multiplied by the multiplier 17 and each phase voltage is detected. The voltage command correction values vucomp, vvcomp, vwcomp corresponding to are calculated. This voltage command correction value is added to the three-phase voltage command output from the coordinate converter 9 by the adder 18 to obtain final voltage commands vu, vv, vw. By this voltage command, the PWM inverter 19 is subjected to switching control to drive the permanent magnet motor 1. The voltage command error feature signal generator 13, the multiplier 14, the arithmetic unit 15, the sign detector 16, the multiplier 17 and the adder 18 are voltage command value correction means in the present invention.

次に、電圧指令誤差特徴信号発生器13の詳細について説明する。図2は電圧指令誤差特徴信号発生器13の詳細構成を示す図であるが、図2において、磁束位相演算器20は、dq軸電流検出値idd,iqdを元に電機子鎖交磁束のd軸に対する位相差αを算出する。具体的には、例えば次の(1)式による演算を行う。但し(1)式において、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Φfは永久磁石磁束である。
α=arctan(Lq・iqd/(Ld・idd+Φf) ・・・(1)
一方、電圧演算器21、22はdq軸電流検出値idd,iqdによって発生する電圧Δvd,Δvqをそれぞれ計算する。具体的には、例えば(2)式による演算を行う。但し(2)式において、Rは電機子抵抗である。
Δvd=R・idd+Ld(d(idd)/dt)及び
Δvq=R・iqd+Ld(d(iqd)/dt) ・・・(2)
Next, details of the voltage command error feature signal generator 13 will be described. FIG. 2 is a diagram showing a detailed configuration of the voltage command error feature signal generator 13. In FIG. 2, the magnetic flux phase calculator 20 uses the dq-axis current detection values idd and iqd as the armature interlinkage flux d. A phase difference α with respect to the axis is calculated. Specifically, for example, the calculation according to the following equation (1) is performed. However, in the formula (1), Ld is a d-axis inductance, Lq is a q-axis inductance, and Φf is a permanent magnet magnetic flux.
α = arctan (Lq · iqd / (Ld · idd + Φf) (1)
On the other hand, the voltage calculators 21 and 22 calculate voltages Δvd and Δvq generated by the dq-axis current detection values idd and iqd, respectively. Specifically, for example, the calculation according to equation (2) is performed. However, in Formula (2), R is an armature resistance.
Δvd = R · idd + Ld (d (idd) / dt) and Δvq = R · iqd + Ld (d (iqd) / dt) (2)

加算器23、24は、dq軸電圧指令vd,vqから電流分電圧Δvd,Δvqを減じて、修正後電圧vde,vqeを算出する。座標変換器25はこの修正後電圧vde,vqeから電機子鎖交磁束位相差αを用いて電機子鎖交磁束方向の成分を算出する。また加算器26は、位相差Δθから電機子鎖交磁束位相差αとπ/2を減じて電機子鎖交磁束ベクトルΦと電流ベクトルIの位相差β(後述の図4参照)を求める。演算器27は位相差βの余弦値の逆数(1/cosβ)を算出し、乗算器28は位相差βの余弦値の逆数と前記修正後電圧vde,vqeの電機子鎖交磁束方向成分を乗算して、電圧指令誤差特徴信号発生器13の出力である電圧指令誤差特徴信号verrftを発生する。   The adders 23 and 24 calculate the corrected voltages vde and vqe by subtracting the current divided voltages Δvd and Δvq from the dq axis voltage commands vd and vq. The coordinate converter 25 calculates a component in the armature flux linkage direction from the corrected voltages vde and vqe using the armature flux linkage phase difference α. The adder 26 subtracts the armature flux linkage phase differences α and π / 2 from the phase difference Δθ to obtain a phase difference β between the armature flux linkage vector Φ and the current vector I (see FIG. 4 described later). The computing unit 27 calculates the reciprocal of the cosine value of the phase difference β (1 / cos β), and the multiplier 28 calculates the reciprocal of the cosine value of the phase difference β and the armature flux linkage component of the corrected voltages vde and vqe. Multiplication is performed to generate a voltage command error feature signal verrft which is an output of the voltage command error feature signal generator 13.

ここで、電圧指令誤差の検出における信号の様子を図3及び図4を用いて説明する。例えば電流指令値として図4に示すような電流ベクトルIが与えられて理想的に電流制御が行われている場合のU相電流の波形は、図3(a)のように表され、このときにPWMインバータの短絡防止時間により発生するU相の電圧指令誤差は図3(b)のようになる。このU相の電圧指令誤差を電流ベクトルIの方向成分とその直交方向成分に座標変換したものが図3(c)、(d)の波形である。V相及びW相の電圧指令誤差は、図3(b)の位相がそれぞれ120°、240°ずれたものであり、各相の電圧指令誤差を同様に座標変換して合計すれば、図3(e)、(f)のような波形の信号になる。   Here, the state of the signal in detecting the voltage command error will be described with reference to FIGS. For example, when a current vector I as shown in FIG. 4 is given as a current command value and current control is ideally performed, the waveform of the U-phase current is expressed as shown in FIG. FIG. 3B shows the U-phase voltage command error generated by the PWM inverter short-circuit prevention time. The waveforms shown in FIGS. 3C and 3D are obtained by converting the U-phase voltage command error into the direction component of the current vector I and the orthogonal direction component thereof. The voltage command errors for the V phase and the W phase are obtained by shifting the phases of FIG. 3B by 120 ° and 240 °, respectively. (E) The signal has a waveform as shown in (f).

すなわち、電流ベクトル方向の電圧指令誤差成分は概ね直流成分であり、電流ベクトル直交方向の電圧指令誤差成分は電気角6倍周期のノコギリ波信号であって、その信号が正から負へ急変する位相が、各相電流が0になる位相と一致していることがわかる。図4に電流ベクトル方向の電圧指令誤差成分をベクトルverr0、電流ベクトル直交方向の電圧指令誤差成分をベクトルverr1で示す。理想的に電流制御が行われている場合は、電圧指令に上記の電圧指令誤差を補償する逆信号が含まれる。   That is, the voltage command error component in the current vector direction is generally a DC component, and the voltage command error component in the current vector orthogonal direction is a sawtooth wave signal having a period of 6 electrical angles, and the phase of the signal suddenly changes from positive to negative. However, it turns out that it corresponds with the phase in which each phase current becomes 0. FIG. 4 shows a voltage command error component in the current vector direction as a vector verr0, and a voltage command error component in the current vector orthogonal direction as a vector verr1. When current control is ideally performed, the voltage command includes an inverse signal that compensates for the voltage command error.

一方永久磁石モータにおいては、永久磁石が発生する磁束が基本波以外の高調波成分を含んでいる。また、モータ電流によって発生する電機子反作用磁束にも、固定子の構造に起因する高調波成分が含まれる場合がある。このためこれらの磁束による誘起電圧にも高調波成分が含まれ、その中には電気角6倍周期の成分が含まれる場合が多い。この誘起電圧は、上記の永久磁石磁束Φmと電機子反作用磁束Φaを合成した電機子鎖交磁束ベクトルΦに直交する方向に発生するが、この誘起電圧に含まれる高調波成分を図4に電圧ベクトルvbemfで示す。   On the other hand, in the permanent magnet motor, the magnetic flux generated by the permanent magnet includes harmonic components other than the fundamental wave. In addition, the armature reaction magnetic flux generated by the motor current may include a harmonic component due to the structure of the stator. For this reason, harmonic components are also included in the induced voltage due to these magnetic fluxes, and in many cases, components with a period of 6 times the electrical angle are included. This induced voltage is generated in a direction orthogonal to the armature linkage magnetic flux vector Φ, which is a combination of the permanent magnet magnetic flux Φm and the armature reaction magnetic flux Φa. The harmonic component contained in this induced voltage is shown in FIG. This is indicated by the vector vbemf.

なお、このときd軸と電機子鎖交磁束ベクトルΦは、先に示した(1)式で表される位相差αを有する。理想的に電流制御が行われている場合は、電圧指令にこの誘起電圧高調波成分を補償する逆信号も含まれ、最終的に電圧指令には、先に述べた電圧指令誤差と、上記の誘起電圧高調波成分の二つを補償する逆信号が含まれることになる。但し、図4より明らかなように、磁束による誘起電圧(電圧ベクトルvbemf)と直交する方向、すなわち電機子鎖交磁束ベクトルΦと同じ方向の電圧指令には、誘起電圧高調波による成分は含まれず、電圧指令誤差による成分のみが含まれる。またこの場合、電流ベクトル直交方向の電圧指令誤差成分ベクトルverr1を電機子鎖交磁束ベクトル方向において観測した成分は、電圧指令誤差成分ベクトルverr1と電機子鎖交磁束ベクトルΦとの間に(Δθ−α−π/2)の位相差があることから、振幅はcos(Δθ−α−π/2)を乗じた値となり、その分だけ減少することが分かる。   At this time, the d-axis and the armature flux linkage vector Φ have the phase difference α represented by the above-described equation (1). When current control is ideally performed, the voltage command also includes an inverse signal that compensates for this induced voltage harmonic component. Finally, the voltage command includes the voltage command error described above and the above-described voltage command error. An inverse signal that compensates for two of the induced voltage harmonic components will be included. However, as is apparent from FIG. 4, the voltage command in the direction orthogonal to the induced voltage (voltage vector vbemf) due to the magnetic flux, that is, in the same direction as the armature linkage magnetic flux vector Φ, does not include the component due to the induced voltage harmonics. Only the component due to the voltage command error is included. Further, in this case, a component obtained by observing the voltage command error component vector verr1 in the direction orthogonal to the current vector in the armature linkage magnetic flux vector direction is (Δθ−) between the voltage command error component vector verr1 and the armature linkage flux vector φ. Since there is a phase difference of [alpha]-[pi] / 2), it can be seen that the amplitude becomes a value multiplied by cos ([Delta] [theta]-[alpha]-[pi] / 2), and decreases accordingly.

本実施の形態による電圧指令誤差の補正系においては、図2に示したように、電圧演算器21、22及び加算器23、24により、dq軸電圧指令vd,vqから電流分電圧Δvd,Δvqをそれぞれ減じて修正後電圧vde,vqeを算出する。この修正後電圧vde,vqeは、電圧指令誤差成分と誘起電圧分の和である。一方、磁束位相演算器20は電機子鎖交磁束ベクトル(図4のΦ)とd軸との位相差αを算出し、座標変換器25にて修正後電圧vde,vqeの電機子鎖交磁束ベクトルΦと同じ方向の成分を求める。   In the voltage command error correction system according to the present embodiment, as shown in FIG. 2, the voltage calculators 21 and 22 and the adders 23 and 24 cause the current divided voltages Δvd and Δvq from the dq axis voltage commands vd and vq. Are respectively corrected to calculate corrected voltages vde and vqe. The corrected voltages vde and vqe are the sum of the voltage command error component and the induced voltage. On the other hand, the magnetic flux phase calculator 20 calculates the phase difference α between the armature linkage magnetic flux vector (Φ in FIG. 4) and the d axis, and the coordinate converter 25 corrects the armature linkage flux of the voltages vde and vqe. Find the component in the same direction as the vector Φ.

上述のように、同成分には誘起電圧高調波による成分は含まれないが、電流ベクトルIと直交する方向の電圧指令誤差成分ベクトルverr1に比べてcos(Δθ−α−π/2)を乗じた分だけ振幅が減少する。このため、(Δθ−α−π/2)を加算器26で求めた後に、演算器27及び乗算器28によりcos(Δθ−α−π/2)の逆数を座標変換器25の出力に乗じて、電流ベクトルIと直交する方向の電圧指令誤差成分ベクトルverr1と同じ振幅の電気角6倍周期のノコギリ波信号が得られるようにしている。以上のような処理を行った結果、図4(g)に示すような電圧指令誤差特徴信号verrftが得られる。このとき、電圧指令誤差特徴信号verrftには、誘起電圧及び電流ベクトル方向の電圧指令誤差成分の直流成分が加わる。   As described above, the component does not include a component due to induced voltage harmonics, but is multiplied by cos (Δθ−α−π / 2) as compared with the voltage command error component vector verr1 in the direction orthogonal to the current vector I. Amplitude decreases by that amount. For this reason, after obtaining (Δθ−α−π / 2) by the adder 26, the arithmetic unit 27 and the multiplier 28 multiply the output of the coordinate converter 25 by the reciprocal of cos (Δθ−α−π / 2). Thus, a sawtooth wave signal having the same amplitude as the voltage command error component vector verr1 in the direction orthogonal to the current vector I and having a period of 6 times the electrical angle is obtained. As a result of the above processing, a voltage command error feature signal verrrft as shown in FIG. 4G is obtained. At this time, the DC voltage component of the voltage command error component in the induced voltage and current vector directions is added to the voltage command error feature signal verrrft.

図3より分かるように、図3(g)の電圧指令誤差特徴信号verrftに含まれるノコギリ波の振幅と図3(b)の電圧指令誤差の大きさに相関があるので、電圧指令誤差を低減するには、上記ノコギリ波成分の振幅を観測しながら補正すべき矩形波電圧の大きさを調整すればよい。図3(g)の電圧指令誤差特徴信号verrftのノコギリ波の振幅を誤差信号verrとして取り出すには様々な方法が考えられるが、例えば図1に示すように乗算器14により出力電流(図3(a)U相電流参照)と同期した交流信号である電圧指令誤差検出信号verrdt(図3(h)参照)を乗じれば、平均すれば上記ノコギリ波の振幅に相当する誤差信号verrが得られる。この誤差信号verrは、電圧指令誤差の負荷誘起電圧に直交する方向すなわち電機子鎖交磁束方向の値に比例する値である。   As can be seen from FIG. 3, the amplitude of the sawtooth wave included in the voltage command error feature signal verrrft in FIG. 3G and the magnitude of the voltage command error in FIG. For this purpose, the magnitude of the rectangular wave voltage to be corrected may be adjusted while observing the amplitude of the sawtooth wave component. Various methods can be considered for extracting the amplitude of the sawtooth wave of the voltage command error feature signal verrrft in FIG. 3G as the error signal verr. For example, as shown in FIG. If the voltage command error detection signal verrdt (see FIG. 3 (h)) which is an AC signal synchronized with a) the U-phase current is multiplied, an error signal verr corresponding to the amplitude of the sawtooth wave is obtained on average. . The error signal verr is a value proportional to the value in the direction orthogonal to the load induced voltage of the voltage command error, that is, the value in the armature flux linkage direction.

このため、位相計算器10及び加算器11により電流位相θiを求め、この位相に同期した電圧指令誤差検出信号verrdtを信号発生器12より発生させるのである。この場合の電圧指令誤差検出信号verrdtとしては、電圧指令誤差特徴信号verrftに同期して符号が変化する信号であればよいが、例えば図3(h)に示すように図3(g)と同様の波形で振幅一定のノコギリ波で直流成分を持たない波形を用いれば、電圧指令誤差特徴信号verrftの特徴成分をより正確に検出できるので有効である。また図3(i)に示すように、1相分の誤差信号である図3(d)の逆符号の信号波形を用いれば、特に対象となる相の誤差成分と相関をもつ誤差信号が抽出できるが、電圧指令誤差は各相で概ね同じであることが多いので、図3(i)の電圧指令誤差検出信号verrdtを乗じて得られる誤差信号verrを用いてもよい。   Therefore, the current phase θi is obtained by the phase calculator 10 and the adder 11, and the voltage command error detection signal verrdt synchronized with this phase is generated from the signal generator 12. The voltage command error detection signal verrdt in this case may be a signal whose sign changes in synchronization with the voltage command error feature signal verrrft. For example, as shown in FIG. Using a sawtooth wave with a constant amplitude and having no direct current component is effective because the characteristic component of the voltage command error feature signal verrrft can be detected more accurately. As shown in FIG. 3 (i), an error signal having a correlation with an error component of a target phase is extracted by using the signal waveform of the opposite sign of FIG. 3 (d) which is an error signal for one phase. However, since the voltage command error is generally the same in each phase, an error signal verr obtained by multiplying the voltage command error detection signal verrdt in FIG. 3 (i) may be used.

実施の形態2.
図5、図6は、この発明の実施の形態2を示すものであり、図5は電力変換器の制御装置の構成図、図6は動作を説明するための波形図である。先の実施の形態1においては、各相の電圧指令誤差は同一の補正系による同じ補正値で補正されていたが、この実施の形態2においては、個別の補正系により、それぞれ独立した補正値で補正される。図5において、位相計算器10及び加算器11により電流位相θiを算出する。信号発生器12a、12b、12cは、算出された電流位相θiに対して、それぞれ前記電流位相θiから算出される各相電流に同期した電圧指令誤差検出信号verrdtu、verrdtv、verrdtwを発生する。各相電流iu,iv,iwと各相電圧指令誤差検出信号verrdtu、verrdtv、verrdtwの関係を図6(a)〜(f)に示す。電圧指令誤差検出信号verrdtu、verrdtv、verrdtwとしては、図3(d)に示すような各相分の誤差信号に同期して符号が変化する信号であればよいが、図6に示すような各相分の誤差信号の逆符号波形を用いれば、特に対象となる相の誤差成分と相関をもつ誤差信号が良好に抽出できるので好都合である。
Embodiment 2. FIG.
5 and 6 show a second embodiment of the present invention. FIG. 5 is a block diagram of the control device for the power converter, and FIG. 6 is a waveform diagram for explaining the operation. In the first embodiment, the voltage command error of each phase is corrected with the same correction value by the same correction system. However, in this second embodiment, independent correction values are obtained by individual correction systems. It is corrected by. In FIG. 5, the current phase θi is calculated by the phase calculator 10 and the adder 11. The signal generators 12a, 12b, and 12c generate voltage command error detection signals verrdtu, verrdtv, and verrdtw that are synchronized with the phase currents calculated from the current phase θi with respect to the calculated current phase θi. The relationship between each phase current iu, iv, iw and each phase voltage command error detection signal verrdtu, verrdtv, verrdtw is shown in FIGS. The voltage command error detection signals verrdtu, verrdtv, and verrdtw may be any signal whose sign changes in synchronization with the error signal for each phase as shown in FIG. Use of the inverse sign waveform of the error signal of the phase is advantageous because an error signal having a correlation with the error component of the target phase can be extracted particularly well.

一方、電圧指令誤差特徴信号発生器13は、実施の形態1と同様に電圧指令誤差特徴信号verrftを算出するが、この電圧指令誤差特徴信号verrftは、乗算器14a、14b、14cにより各電圧指令誤差検出信号verrdtu、verrdtv、verrdtwとそれぞれ乗算され、各相の電圧指令誤差に比例した誤差信号verru、verrv、verrwが出力される。この誤差信号verru、verrv、verrwは、演算器15a、15b、15cによりそれぞれ比例積分され、電圧指令誤差補正信号vcompu、vcompv、vcompwが得られる。   On the other hand, the voltage command error feature signal generator 13 calculates the voltage command error feature signal verrrft in the same manner as in the first embodiment. The voltage command error feature signal verrrft is calculated by the multipliers 14a, 14b, and 14c. The error detection signals verrdtu, verrdtv, and verrdtw are respectively multiplied, and error signals verru, verrv, verrw proportional to the voltage command error of each phase are output. The error signals verru, verrv, and verrw are proportionally integrated by the calculators 15a, 15b, and 15c, respectively, to obtain voltage command error correction signals vcompu, vcompv, and vcompw.

符号検出器16a、16b、16cは電流検出値iu,iv,iwのそれぞれの符号を検出して各電流符号を出力し、この各電流符号と各電圧指令誤差補正信号vcompu、vcompv、vcompwが乗算器17a、17b、17cにより乗ぜられ、各相電圧指令に対応した電圧指令補正値vucomp,vvcomp,vwcompが算出される。この電圧指令補正値は加算器18により座標変換器9が出力する三相電圧指令に加算され、最終的な電圧指令vu,vv,vwが得られる。本実施の形態による電力変換器の制御装置では、各相の電圧指令誤差は個別に補正されるので、各相における電圧指令誤差にばらつきがある場合でも正確に誤差を補正することができる。なお本実施の形態は、実施の形態1に述べた電圧指令誤差特徴信号発生器13の構成に依存するものではなく、従来の電力変換器における電圧指令誤差補正方式においても適用可能なものである。   The sign detectors 16a, 16b, and 16c detect the signs of the current detection values iu, iv, and iw, and output the current signs. The current signs are multiplied by the voltage command error correction signals vcompu, vcompv, and vcompw. The voltage command correction values vucomp, vvcomp, vwcomp corresponding to each phase voltage command are calculated by the multipliers 17a, 17b, 17c. This voltage command correction value is added to the three-phase voltage command output from the coordinate converter 9 by the adder 18 to obtain final voltage commands vu, vv, vw. In the control device for the power converter according to the present embodiment, the voltage command error of each phase is individually corrected. Therefore, even when the voltage command error in each phase varies, the error can be accurately corrected. The present embodiment does not depend on the configuration of the voltage command error feature signal generator 13 described in the first embodiment, and can also be applied to a voltage command error correction method in a conventional power converter. .

さらに本方式を拡張して、各相の電圧指令補正値を電流の符号により異なる値に調整することも可能である。例えば、各相電流値の符号に対応した6つの信号発生器を用意し、これに対応する乗算器、演算器を各6つ用いれば、各相の正負にそれぞれ対応する電圧指令誤差補正信号が算出でき、これより符号検出器と乗算器により各相の電圧指令補正値を算出すれば、各相の電圧指令誤差を電流の符号により異なる値に調整することが可能になる。   Furthermore, this method can be extended to adjust the voltage command correction value for each phase to a different value depending on the sign of the current. For example, by preparing six signal generators corresponding to the signs of the respective phase current values and using six multipliers and arithmetic units corresponding thereto, voltage command error correction signals respectively corresponding to the positive and negative of each phase can be obtained. If the voltage command correction value for each phase is calculated by the sign detector and the multiplier, the voltage command error for each phase can be adjusted to a different value depending on the sign of the current.

この発明に係る電力変換器の制御装置においては、電力変換器に出力電圧指令値を与える出力電圧指令手段と、電力変換器の出力電流値を検出する電流検出手段と、出力電圧指令値と出力電流値との少なくとも一方に基づいて負荷の誘起電圧に直交する方向を求めるとともに出力電圧指令値及び出力電流値から推定した電力変換器の出力電圧誤差の誘起電圧に直交する方向の値を求めこの直交する方向の値と出力電流値とに基づいて出力電圧指令値を補正する出力電圧指令値補正手段とを備えたので、誘起電圧に高調波を含む負荷を駆動する場合にも、精度良く電圧指令誤差の補正を行うことができる。   In the control device for the power converter according to the present invention, the output voltage command means for giving the output voltage command value to the power converter, the current detection means for detecting the output current value of the power converter, the output voltage command value and the output A direction orthogonal to the induced voltage of the load is obtained based on at least one of the current values, and a value orthogonal to the induced voltage of the output voltage error of the power converter estimated from the output voltage command value and the output current value is obtained. Since the output voltage command value correcting means for correcting the output voltage command value based on the value in the orthogonal direction and the output current value is provided, even when driving a load including harmonics in the induced voltage, the voltage can be accurately detected. The command error can be corrected.

そして、この発明に係る電力変換器の制御装置においては、電力変換器に各相ごとに出力電圧指令値を与える各相出力電圧指令手段と、電力変換器の出力電流値を検出する電流検出手段と、出力電圧指令値と出力電流値とに基づいて出力電圧指令値を各相ごとに補正する各相出力電圧指令値補正手段とを備えたので、例えば素子ごとの特性ばらつきにより相ごとの出力電圧指令誤差が異なる場合にも、適切に出力電圧指令誤差の補正を行うことができる。   And in the control apparatus of the power converter which concerns on this invention, each phase output voltage command means which gives an output voltage command value for every phase to a power converter, and the current detection means which detects the output current value of a power converter And each phase output voltage command value correcting means for correcting the output voltage command value for each phase based on the output voltage command value and the output current value. Even when the voltage command error is different, the output voltage command error can be appropriately corrected.

さらに、出力電圧指令値補正手段は、各相ごとに出力電圧指令値を補正するものであることを特徴とするので、相ごとの出力電圧指令誤差が異なる場合にも、適切に出力電圧指令誤差の補正を行うことができる。   Furthermore, the output voltage command value correcting means corrects the output voltage command value for each phase. Therefore, even when the output voltage command error for each phase is different, the output voltage command error is appropriately adjusted. Can be corrected.

この発明の実施の形態1である電力変換器の制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the control apparatus of the power converter which is Embodiment 1 of this invention. 図1の電圧指令誤差特徴信号発生器の詳細構成を示す構成図である。It is a block diagram which shows the detailed structure of the voltage command error characteristic signal generator of FIG. 図1の電力変換器の制御装置の動作を説明するための信号の波形図である。It is a wave form diagram of a signal for explaining operation of a control device of a power converter of Drawing 1. 図1の電力変換器の制御装置の動作を説明するためのベクトル図である。It is a vector diagram for demonstrating operation | movement of the control apparatus of the power converter of FIG. この発明の実施の形態2である電力変換器の制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the control apparatus of the power converter which is Embodiment 2 of this invention. 図5の電力変換器の制御装置の動作を説明するためのベクトル図である。It is a vector diagram for demonstrating operation | movement of the control apparatus of the power converter of FIG.

1 永久磁石モータ、3 電流検出器、7,8 d軸及びq軸電流制御器、
13 電圧指令誤差特徴信号発生器、14,14a,14b,14c 乗算器、
15,15a,15b,15c 演算器、16,16a,16b,16c 符号検出器、
17 乗算器、18 加算器、19 PWMインバータ。
1 permanent magnet motor, 3 current detector, 7, 8 d-axis and q-axis current controller,
13 voltage command error feature signal generator, 14, 14a, 14b, 14c multiplier,
15, 15a, 15b, 15c calculator, 16, 16a, 16b, 16c code detector,
17 multiplier, 18 adder, 19 PWM inverter.

Claims (2)

電力変換器に出力電圧指令値を与える出力電圧指令手段と、上記電力変換器の出力電流値を検出する電流検出手段と、上記出力電圧指令値と上記出力電流値との少なくとも一方に基づいて負荷の誘起電圧に直交する方向を求めるとともに上記出力電圧指令値及び上記出力電流値から推定した上記電力変換器の出力電圧誤差の上記誘起電圧に直交する方向の値を求めこの直交する方向の値と上記出力電流値とに基づいて上記出力電圧指令値を補正する出力電圧指令値補正手段とを備えた電力変換器の制御装置。 An output voltage command means for giving an output voltage command value to the power converter, a current detection means for detecting an output current value of the power converter, and a load based on at least one of the output voltage command value and the output current value A direction orthogonal to the induced voltage of the power converter and a value in the direction orthogonal to the induced voltage of the output voltage error of the power converter estimated from the output voltage command value and the output current value are obtained. A control device for a power converter, comprising: output voltage command value correcting means for correcting the output voltage command value based on the output current value. 上記出力電圧指令値補正手段は、各相ごとに上記出力電圧指令値を補正するものであることを特徴とする請求項1に記載の電力変換器の制御装置。 2. The control device for a power converter according to claim 1, wherein the output voltage command value correcting means corrects the output voltage command value for each phase .
JP2004067197A 2004-03-10 2004-03-10 Control device for power converter Expired - Fee Related JP4448351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067197A JP4448351B2 (en) 2004-03-10 2004-03-10 Control device for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067197A JP4448351B2 (en) 2004-03-10 2004-03-10 Control device for power converter

Publications (2)

Publication Number Publication Date
JP2005261036A JP2005261036A (en) 2005-09-22
JP4448351B2 true JP4448351B2 (en) 2010-04-07

Family

ID=35086232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067197A Expired - Fee Related JP4448351B2 (en) 2004-03-10 2004-03-10 Control device for power converter

Country Status (1)

Country Link
JP (1) JP4448351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444833C1 (en) * 2010-06-30 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Vector method for control of three-phase static converter with asymmetric load
JP6756975B2 (en) * 2016-09-14 2020-09-16 富士電機株式会社 Power converter controller

Also Published As

Publication number Publication date
JP2005261036A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
JP4674525B2 (en) Magnetic pole position estimation method and motor control apparatus
US8044618B2 (en) Control apparatus for AC motor
US10199979B2 (en) Power conversion device
CN104718694B (en) Synchronous machine control device
US9112436B2 (en) System for controlling controlled variable of rotary machine
JP4631672B2 (en) Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
EP2784928A2 (en) Motor control apparatus and magnetic-pole position estimating method
US20050146306A1 (en) Sensorless controller of ac motor and control method
US20170264227A1 (en) Inverter control device and motor drive system
JP2008167568A (en) Beatless control device of permanent magnet motor
KR101485989B1 (en) Motor control device
JP5543388B2 (en) Control device for permanent magnet synchronous motor
JP2004289926A (en) Motor controller
EP3958457A1 (en) Electric motor control device
WO2012066800A1 (en) Electric current detection device and motor control device
WO2022009599A1 (en) Motor control device and motor control method
US12095395B2 (en) Power conversion apparatus
JP2010068581A (en) Electric motor drive unit
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP6541092B2 (en) Control device of permanent magnet synchronous motor
JP2014117069A (en) Control apparatus for ac rotary machine and control method for ac rotary machine
JP2006230200A (en) Control unit of ac motor
JP2004289927A (en) Motor controller
JP4448351B2 (en) Control device for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees