JP2019009187A - Method of manufacturing power module and cooling implement - Google Patents

Method of manufacturing power module and cooling implement Download PDF

Info

Publication number
JP2019009187A
JP2019009187A JP2017121573A JP2017121573A JP2019009187A JP 2019009187 A JP2019009187 A JP 2019009187A JP 2017121573 A JP2017121573 A JP 2017121573A JP 2017121573 A JP2017121573 A JP 2017121573A JP 2019009187 A JP2019009187 A JP 2019009187A
Authority
JP
Japan
Prior art keywords
cooling
base plate
power module
manufacturing
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121573A
Other languages
Japanese (ja)
Other versions
JP6696481B2 (en
Inventor
佑樹 矢野
Yuki Yano
佑樹 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017121573A priority Critical patent/JP6696481B2/en
Publication of JP2019009187A publication Critical patent/JP2019009187A/en
Application granted granted Critical
Publication of JP6696481B2 publication Critical patent/JP6696481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a method of manufacturing a power module and a cooling implement each enabling shrinkage cavities to be sufficiently suppressed.SOLUTION: A cooling implement 4 including a cooling plate 2 having a recessed portion 1 and a plurality of metal balls 3 laid in the recessed portion 1 is prepared. An insulating substrate 7 is placed on the upper surface of a base plate 5 via a molten solder 6. The lower surface of the base plate 5 is brought into contact with the plurality of metal balls 3 to be cooled, resulting in solidification of the solder 6. A semiconductor element 8 is mounted on the insulating substrate 7.SELECTED DRAWING: Figure 2

Description

本発明は、パワーモジュールの製造方法及びそれに用いる冷却治具に関する。   The present invention relates to a method for manufacturing a power module and a cooling jig used therefor.

産業機器のモータ制御にパワーモジュールが用いられている。このパワーモジュールの製造工程において、従来、はんだ溶融後にベース板に冷却プレートを接触させて冷却し、はんだを凝固させる接触冷却方式が用いられていた。その際、ベース板の反り形状のばらつき又は加熱時の形状変化により冷却プレートとの接触面積が小さくなると、冷却速度の面内ばらつきが生じる。このため、はんだの凝固の際の体積収縮が最終凝固箇所に集中して、はんだに引け巣と呼ばれる空隙が発生する。   Power modules are used for motor control of industrial equipment. In the manufacturing process of the power module, conventionally, a contact cooling method has been used in which a cooling plate is brought into contact with the base plate after the solder is melted to cool and solidify the solder. At this time, if the contact area with the cooling plate is reduced due to variations in the warp shape of the base plate or changes in shape during heating, in-plane variation in the cooling rate occurs. For this reason, volume shrinkage at the time of solidification of the solder concentrates on the final solidification site, and a void called a shrinkage cavity is generated in the solder.

引け巣はチップの放熱を阻害しモジュールの能力を著しく低下させるため、製造工程において手作業による修正又は廃棄を実施しなければならなかった。この引け巣を抑制するために、絶縁基板の周縁部に沿ってベース板とのはんだ接合面に複数のディンプルを配置する手法が知られている(例えば、特許文献1参照)。   Shrinkage hinders chip heat dissipation and significantly reduces the module's ability, requiring manual correction or disposal in the manufacturing process. In order to suppress this shrinkage nest, a technique is known in which a plurality of dimples are arranged on the solder joint surface with the base plate along the peripheral edge of the insulating substrate (see, for example, Patent Document 1).

特開2014−146645号公報JP 2014-146645 A

しかし、製品の回路パターンによっては絶縁基板の周縁部にディンプルを配置できない場合があった。このため、ディンプル設置による引け巣対策ができない品種が存在した。また、ディンプル幅よりも狭い幅の細い引け巣がディンプルの間を通って発生することもあり、ディンプル設置だけでは引け巣を十分に抑制することができなかった。   However, depending on the circuit pattern of the product, there is a case where dimples cannot be arranged on the peripheral edge of the insulating substrate. For this reason, there were varieties that could not take measures against shrinkage by installing dimples. In addition, a thin shrinkage nest having a width smaller than the dimple width may occur between the dimples, and the shrinkage nest cannot be sufficiently suppressed only by installing the dimples.

本発明は、上述のような課題を解決するためになされたもので、その目的は引け巣を十分に抑制することができるパワーモジュールの製造方法及び冷却治具を得るものである。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a power module manufacturing method and a cooling jig capable of sufficiently suppressing shrinkage nests.

本発明に係るパワーモジュールの製造方法は、凹部を有する冷却プレートと、前記凹部の内部に敷き詰められた複数の金属球とを有する冷却治具を準備する工程と、ベース板の上面に溶融したはんだを介して絶縁基板を載せる工程と、前記ベース板の下面を前記複数の金属球に接触させて冷却して前記はんだを凝固させる工程と、前記絶縁基板に半導体素子を実装する工程とを備えることを特徴とする。   The method of manufacturing a power module according to the present invention includes a step of preparing a cooling jig having a cooling plate having a recess and a plurality of metal balls spread inside the recess, and a solder melted on the upper surface of the base plate. A step of placing an insulating substrate through the substrate, a step of bringing the lower surface of the base plate into contact with the plurality of metal balls and cooling to solidify the solder, and a step of mounting a semiconductor element on the insulating substrate. It is characterized by.

本発明ではベース板の下面を冷却治具の複数の金属球に接触させるため、ベース板の形状ばらつき及び加熱時の挙動に追従した接触冷却が可能である。これにより、冷却速度の面内ばらつきを極力抑え、はんだを体積収縮が偏ることなく凝固させることで引け巣を十分に抑制することができる。   In the present invention, since the lower surface of the base plate is brought into contact with the plurality of metal balls of the cooling jig, contact cooling that follows the shape variation of the base plate and the behavior during heating is possible. Accordingly, in-plane variation of the cooling rate is suppressed as much as possible, and shrinkage nests can be sufficiently suppressed by solidifying the solder without biasing volume shrinkage.

本発明の実施の形態1に係るパワーモジュールの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the power module which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on Embodiment 1 of this invention. 比較例に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on a comparative example. 本発明の実施の形態2に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るパワーモジュールの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power module which concerns on Embodiment 4 of this invention.

本発明の実施の形態に係るパワーモジュールの製造方法及び冷却治具について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A method for manufacturing a power module and a cooling jig according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
図1は、本発明の実施の形態1に係るパワーモジュールの製造方法のフローチャートである。図2及び図3は、本発明の実施の形態1に係るパワーモジュールの製造方法を示す断面図である。
Embodiment 1 FIG.
FIG. 1 is a flowchart of a method for manufacturing a power module according to Embodiment 1 of the present invention. 2 and 3 are cross-sectional views illustrating the method for manufacturing the power module according to Embodiment 1 of the present invention.

まず、上面に凹部1を有する冷却プレート2と、凹部1の内部に敷き詰められた複数の金属球3とを有する冷却治具4を準備する(ステップS1)。金属球3の直径は0.5mm以下、材質はアルミ等である。次に、ベース板5の上面にはんだ6を載せて、加熱によりはんだ6を溶融させる(ステップS2)。   First, a cooling jig 4 having a cooling plate 2 having a recess 1 on the upper surface and a plurality of metal balls 3 spread inside the recess 1 is prepared (step S1). The diameter of the metal sphere 3 is 0.5 mm or less, and the material is aluminum or the like. Next, the solder 6 is placed on the upper surface of the base plate 5, and the solder 6 is melted by heating (step S2).

次に、ベース板5の上面に溶融したはんだ6を介して絶縁基板7を載せる。絶縁基板7の上面と下面にはそれぞれCuパターン回路が形成されている。次に、ベース板5の下面を複数の金属球3に接触させて冷却してはんだ6を凝固させる(ステップS3)。これにより、ベース板5と絶縁基板7がはんだ6により接合される。   Next, the insulating substrate 7 is placed on the upper surface of the base plate 5 via the molten solder 6. Cu pattern circuits are formed on the upper and lower surfaces of the insulating substrate 7, respectively. Next, the lower surface of the base plate 5 is brought into contact with the plurality of metal balls 3 and cooled to solidify the solder 6 (step S3). Thereby, the base plate 5 and the insulating substrate 7 are joined by the solder 6.

次に、図3に示すように、絶縁基板7に半導体素子8を実装し、ワイヤボンド等の工程を実施する。半導体素子8はIGBT、MOSFET、SBD又はPNダイオードなどである。   Next, as shown in FIG. 3, the semiconductor element 8 is mounted on the insulating substrate 7 and a process such as wire bonding is performed. The semiconductor element 8 is an IGBT, MOSFET, SBD, PN diode, or the like.

続いて、本実施の形態の効果を比較例と比較して説明する。図4は、比較例に係るパワーモジュールの製造方法を示す断面図である。比較例では、冷却治具として平板の冷却プレート9を用いる。ベース板5の反り形状のばらつき又は加熱時の形状変化により冷却プレート9との接触面積が小さくなると、冷却速度の面内ばらつきが生じる。このため、はんだ6の凝固の際の体積収縮が最終凝固箇所に集中して、はんだ6に引け巣が発生する。   Subsequently, the effect of the present embodiment will be described in comparison with a comparative example. FIG. 4 is a cross-sectional view illustrating a method for manufacturing a power module according to a comparative example. In the comparative example, a flat cooling plate 9 is used as a cooling jig. When the contact area with the cooling plate 9 is reduced due to variations in the warp shape of the base plate 5 or changes in shape during heating, in-plane variations in the cooling rate occur. For this reason, volume shrinkage at the time of solidification of the solder 6 is concentrated on the final solidified portion, and a shrinkage nest is generated in the solder 6.

これに対して、本実施の形態ではベース板5の下面を複数の金属球3に接触させるため、ベース板5の形状ばらつき及び加熱時の挙動に追従した接触冷却が可能である。これにより、冷却速度の面内ばらつきを極力抑え、はんだ6を体積収縮が偏ることなく凝固させることで引け巣を十分に抑制することができる。   In contrast, in the present embodiment, since the lower surface of the base plate 5 is brought into contact with the plurality of metal balls 3, contact cooling that follows the shape variation of the base plate 5 and the behavior during heating is possible. Thereby, in-plane variation of the cooling rate can be suppressed as much as possible, and shrinkage can be sufficiently suppressed by solidifying the solder 6 without biasing volume shrinkage.

実施の形態2.
図5は、本発明の実施の形態2に係るパワーモジュールの製造方法を示す断面図である。凹部1の中央部の方が凹部1の外周部よりも深く、複数の金属球3の層が厚い。これにより、ベース板5の外周部の方が中央部よりも冷却プレート2に近くなるため、冷却速度が速くなる。この結果、ベース板5の外周部からはんだ6の凝固が始まり、最終凝固点を中央部に誘導するため、外周部の引け巣を抑制することができる。その他の構成及び効果は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view showing a method for manufacturing a power module according to Embodiment 2 of the present invention. The central portion of the concave portion 1 is deeper than the outer peripheral portion of the concave portion 1, and the layers of the plurality of metal balls 3 are thick. Thereby, since the outer peripheral part of the base plate 5 is closer to the cooling plate 2 than the central part, the cooling rate is increased. As a result, solidification of the solder 6 starts from the outer peripheral portion of the base plate 5 and the final solidification point is guided to the central portion, so that shrinkage cavities in the outer peripheral portion can be suppressed. Other configurations and effects are the same as those of the first embodiment.

実施の形態3.
図6は、本発明の実施の形態3に係るパワーモジュールの製造方法を示す断面図である。ベース板5の幅よりも凹部1の幅を大きくし、ベース板5の側面も複数の金属球3に接触させる。これによりベース板5の側面からの放熱を促すことでベース板5の外周部の冷却速度が更に速くなる。この結果、最終凝固点を中央部に誘導して外周部の引け巣を更に抑制することができる。その他の構成及び効果は実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 6 is a cross-sectional view illustrating a method for manufacturing a power module according to Embodiment 3 of the present invention. The width of the recess 1 is made larger than the width of the base plate 5, and the side surfaces of the base plate 5 are also brought into contact with the plurality of metal balls 3. As a result, the cooling rate of the outer peripheral portion of the base plate 5 is further increased by encouraging heat radiation from the side surface of the base plate 5. As a result, the final freezing point can be guided to the center portion to further suppress shrinkage nests on the outer peripheral portion. Other configurations and effects are the same as those of the first embodiment.

実施の形態4.
図7は、本発明の実施の形態4に係るパワーモジュールの製造方法を示す断面図である。本実施の形態は実施の形態2,3を組み合わせたものである。即ち、凹部1の中央部の方が凹部1の外周部よりも深く、複数の金属球3の層が厚い。さらに、ベース板5の幅よりも凹部1の幅を大きくし、ベース板5の側面も複数の金属球3に接触させる。これにより、ベース板5の外周部の方が中央部よりも冷却速度が速くなる。この結果、ベース板5の外周部からはんだ6の凝固が始まり、最終凝固点を中央部に誘導するため、外周部の引け巣を抑制することができる。その他の構成及び効果は実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 7 is a cross-sectional view showing a method for manufacturing a power module according to Embodiment 4 of the present invention. This embodiment is a combination of the second and third embodiments. That is, the central portion of the recess 1 is deeper than the outer periphery of the recess 1 and the layers of the plurality of metal balls 3 are thick. Furthermore, the width of the recess 1 is made larger than the width of the base plate 5, and the side surfaces of the base plate 5 are also brought into contact with the plurality of metal balls 3. As a result, the cooling rate of the outer peripheral portion of the base plate 5 is faster than that of the central portion. As a result, solidification of the solder 6 starts from the outer peripheral portion of the base plate 5 and the final solidification point is guided to the central portion, so that shrinkage cavities in the outer peripheral portion can be suppressed. Other configurations and effects are the same as those of the first embodiment.

なお、半導体素子8は、珪素によって形成されたものに限らず、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものでもよい。ワイドバンドギャップ半導体は、例えば、炭化珪素、窒化ガリウム系材料、又はダイヤモンドである。このようなワイドバンドギャップ半導体によって形成された半導体素子8は、耐電圧性と許容電流密度が高いため、小型化できる。この小型化された半導体素子8を用いることで、この半導体素子8を組み込んだパワーモジュールも小型化・高集積化できる。また、半導体素子8の耐熱性が高いため、ヒートシンクの放熱フィンを小型化でき、水冷部を空冷化できるので、パワーモジュールを更に小型化できる。また、半導体素子8の電力損失が低く高効率であるため、パワーモジュールを高効率化できる。   The semiconductor element 8 is not limited to being formed of silicon, but may be formed of a wide band gap semiconductor having a larger band gap than silicon. The wide band gap semiconductor is, for example, silicon carbide, a gallium nitride-based material, or diamond. Since the semiconductor element 8 formed of such a wide band gap semiconductor has high voltage resistance and allowable current density, it can be miniaturized. By using the miniaturized semiconductor element 8, a power module incorporating the semiconductor element 8 can be miniaturized and highly integrated. Moreover, since the heat resistance of the semiconductor element 8 is high, the heat dissipating fins of the heat sink can be reduced in size, and the water cooling part can be cooled in the air, so that the power module can be further reduced in size. Moreover, since the power loss of the semiconductor element 8 is low and the efficiency is high, the power module can be highly efficient.

1 凹部、2 冷却プレート、3 金属球、4 冷却治具、5 ベース板、6 はんだ、7 絶縁基板、8 半導体素子 1 recess, 2 cooling plate, 3 metal ball, 4 cooling jig, 5 base plate, 6 solder, 7 insulating substrate, 8 semiconductor element

Claims (6)

凹部を有する冷却プレートと、前記凹部の内部に敷き詰められた複数の金属球とを有する冷却治具を準備する工程と、
ベース板の上面に溶融したはんだを介して絶縁基板を載せる工程と、
前記ベース板の下面を前記複数の金属球に接触させて冷却して前記はんだを凝固させる工程と、
前記絶縁基板に半導体素子を実装する工程とを備えることを特徴とするパワーモジュールの製造方法。
Preparing a cooling jig having a cooling plate having a recess and a plurality of metal balls spread in the recess;
A process of placing an insulating substrate on the upper surface of the base plate via molten solder;
A step of bringing the lower surface of the base plate into contact with the plurality of metal balls and cooling to solidify the solder;
And a step of mounting a semiconductor element on the insulating substrate.
前記凹部の中央部の方が前記凹部の外周部よりも深く、前記複数の金属球の層が厚いことを特徴とする請求項1に記載のパワーモジュールの製造方法。   The method for manufacturing a power module according to claim 1, wherein a central portion of the concave portion is deeper than an outer peripheral portion of the concave portion, and the plurality of metal sphere layers are thick. 前記ベース板の幅よりも前記凹部の幅を大きくし、前記ベース板の側面も前記複数の金属球に接触させることを特徴とする請求項1又は2に記載のパワーモジュールの製造方法。   3. The method of manufacturing a power module according to claim 1, wherein a width of the concave portion is made larger than a width of the base plate, and a side surface of the base plate is also brought into contact with the plurality of metal balls. 前記半導体素子はワイドバンドギャップ半導体によって形成されていることを特徴とする請求項1〜3の何れか1項に記載のパワーモジュールの製造方法。   The method for manufacturing a power module according to claim 1, wherein the semiconductor element is formed of a wide band gap semiconductor. 凹部を有する冷却プレートと、
前記凹部の内部に敷き詰められた複数の金属球とを備えることを特徴とする冷却治具。
A cooling plate having a recess;
A cooling jig comprising: a plurality of metal balls spread in the recess.
前記凹部の中央部の方が前記凹部の外周部よりも深く、前記複数の金属球の層が厚いことを特徴とする請求項5に記載の冷却治具。   The cooling jig according to claim 5, wherein a central portion of the concave portion is deeper than an outer peripheral portion of the concave portion, and the plurality of metal sphere layers are thick.
JP2017121573A 2017-06-21 2017-06-21 Power module manufacturing method and cooling jig Active JP6696481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121573A JP6696481B2 (en) 2017-06-21 2017-06-21 Power module manufacturing method and cooling jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121573A JP6696481B2 (en) 2017-06-21 2017-06-21 Power module manufacturing method and cooling jig

Publications (2)

Publication Number Publication Date
JP2019009187A true JP2019009187A (en) 2019-01-17
JP6696481B2 JP6696481B2 (en) 2020-05-20

Family

ID=65025975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121573A Active JP6696481B2 (en) 2017-06-21 2017-06-21 Power module manufacturing method and cooling jig

Country Status (1)

Country Link
JP (1) JP6696481B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982844A (en) * 1995-09-20 1997-03-28 Mitsubishi Electric Corp Semiconductor module board and manufacture thereof
JP2001526001A (en) * 1997-05-23 2001-12-11 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Method for manufacturing solder bump array with pattern forming
JP2003342619A (en) * 2002-05-30 2003-12-03 Minebea Co Ltd Method for manufacturing metallic ball
JP2009110789A (en) * 2007-10-30 2009-05-21 Mitsubishi Electric Corp Induction heating device, and induction heating method
JP2013197432A (en) * 2012-03-22 2013-09-30 Mitsubishi Electric Corp Power semiconductor device module
WO2015053316A1 (en) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 Substrate for heat sink-equipped power module, and production method for same
JP2015153925A (en) * 2014-02-17 2015-08-24 三菱マテリアル株式会社 Method of manufacturing substrate for power module with heat sink

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982844A (en) * 1995-09-20 1997-03-28 Mitsubishi Electric Corp Semiconductor module board and manufacture thereof
JP2001526001A (en) * 1997-05-23 2001-12-11 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Method for manufacturing solder bump array with pattern forming
JP2003342619A (en) * 2002-05-30 2003-12-03 Minebea Co Ltd Method for manufacturing metallic ball
JP2009110789A (en) * 2007-10-30 2009-05-21 Mitsubishi Electric Corp Induction heating device, and induction heating method
JP2013197432A (en) * 2012-03-22 2013-09-30 Mitsubishi Electric Corp Power semiconductor device module
WO2015053316A1 (en) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 Substrate for heat sink-equipped power module, and production method for same
JP2015153925A (en) * 2014-02-17 2015-08-24 三菱マテリアル株式会社 Method of manufacturing substrate for power module with heat sink

Also Published As

Publication number Publication date
JP6696481B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP4302607B2 (en) Semiconductor device
US8569890B2 (en) Power semiconductor device module
JP5900620B2 (en) Semiconductor device
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
JP6350364B2 (en) Connection structure
TWI389222B (en) Improvements in or relating to lead frame based semiconductor package and a method of manufacturing the same
JPH04293259A (en) Semiconductor device and manufacture thereof
JP6008750B2 (en) Semiconductor device
JP2008311295A (en) Method of manufacturing substrate for power module
US20190157235A1 (en) Semiconductor device
JP6696481B2 (en) Power module manufacturing method and cooling jig
JP2010103350A (en) Semiconductor device
JP2008294281A (en) Semiconductor device and manufacturing method therefor
JP6874645B2 (en) Manufacturing method of semiconductor devices
JP4305424B2 (en) Semiconductor device and manufacturing method thereof
JP6182850B2 (en) Power converter
JP5061740B2 (en) Power module substrate
JP6437012B2 (en) Surface mount package and method of manufacturing the same
US9355999B2 (en) Semiconductor device
JP2006351927A (en) Semiconductor device, circuit board, and electric connection box
JP5278011B2 (en) Semiconductor cooling structure and manufacturing method thereof
JP4214880B2 (en) Semiconductor device
US9704775B2 (en) Method for manufacturing thermal interface sheet
JP7136367B2 (en) semiconductor package
US20230154811A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250