JP5278011B2 - Semiconductor cooling structure and manufacturing method thereof - Google Patents

Semiconductor cooling structure and manufacturing method thereof Download PDF

Info

Publication number
JP5278011B2
JP5278011B2 JP2009024685A JP2009024685A JP5278011B2 JP 5278011 B2 JP5278011 B2 JP 5278011B2 JP 2009024685 A JP2009024685 A JP 2009024685A JP 2009024685 A JP2009024685 A JP 2009024685A JP 5278011 B2 JP5278011 B2 JP 5278011B2
Authority
JP
Japan
Prior art keywords
heat
semiconductor
cooling structure
heat spreader
semiconductor cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009024685A
Other languages
Japanese (ja)
Other versions
JP2010182855A (en
Inventor
博伸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009024685A priority Critical patent/JP5278011B2/en
Publication of JP2010182855A publication Critical patent/JP2010182855A/en
Application granted granted Critical
Publication of JP5278011B2 publication Critical patent/JP5278011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure for a semiconductor that is improved in cooling efficiency with simple constitution, and to provide a method of manufacturing the cooling structure. <P>SOLUTION: The cooling structure 10 for the semiconductor has a heat sink 8 arranged on the semiconductor 2 mounted on a substrate 1. Further, a heat-conductive heat spreader 6 is fitted on an upper surface of the semiconductor 2 through a heat-conductive member 5. Furthermore, the heat sink 8 is fitted to an upper surface 6c of the heat spreader 6 through heat-conductive grease 7. Here, the heat spreader 6 comprises a plurality of plate-like members 6a, which preferably each have a lower surface inclined in conformity with the shape of the upper surface of the semiconductor 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、基板上に実装された半導体などの電子部品が発生する熱を放熱する半導体の冷却構造及びその製造方法に関し、特に、基板上に実装された半導体上にヒートシンクが配置される半導体の冷却構造及びその製造方法に関するものである。   The present invention relates to a semiconductor cooling structure that dissipates heat generated by an electronic component such as a semiconductor mounted on a substrate and a manufacturing method thereof, and more particularly, to a semiconductor in which a heat sink is disposed on a semiconductor mounted on a substrate. The present invention relates to a cooling structure and a manufacturing method thereof.

近年、コンピュータの高性能化に伴いLSI等の半導体の高集積化、高速化が進行しており、LSIの電気信号をより多量かつ高速に伝達する手段として、プリント基板にLSIを直接半田付け、実装するフリップチップ実装が多数採用されている。また、同時に、LSIの消費電力は増加傾向にあり、そのLSIを高効率に冷却する冷却構造が常に求められている。   In recent years, with higher performance of computers, higher integration and higher speed of semiconductors such as LSI are progressing, and as a means to transmit LSI electrical signals in a large amount and at high speed, LSI is directly soldered to a printed circuit board, Many flip chip mountings are used. At the same time, the power consumption of an LSI is increasing, and a cooling structure that cools the LSI with high efficiency is always required.

一般に、LSIの実装構造としては、シリコンチップを内蔵したQFP(Quad Flatpack Package)やBGA(Ball Grid Array)をプリント基板に搭載する構造や、上記フリップチップ実装する構造が知られている。また、これら構造においては、発熱するLSI上に、ヒートシンクが取り付けられている。   In general, as a mounting structure of an LSI, a structure in which a QFP (Quad Flatpack Package) or BGA (Ball Grid Array) incorporating a silicon chip is mounted on a printed board, or a structure in which the flip chip is mounted is known. In these structures, a heat sink is mounted on the heat generating LSI.

ところで、プリント基板上にLSIをフリップチップ実装する構造においては、LSIとプリント基板との熱膨張係数の差からLSI裏面(上面)側に凸形状の反りが発生する。一方で、従来の冷却構造100において、LSI12上には、熱伝導グリース17を介して、平坦な下面を有するヒートシンク18が取り付けられている(図6)。これにより、熱伝導グリース17の端側D部の厚さが、中心側C部の厚さと比較して大きくなるため、端側D部の熱抵抗が中心側C部の熱抵抗よりも大きくなる。したがって、LSI12で発生した熱を効率よくヒートシンク18へ伝達するのが困難になるという問題が生じている。   By the way, in a structure in which an LSI is flip-chip mounted on a printed circuit board, a convex warp occurs on the back surface (upper surface) side of the LSI due to a difference in thermal expansion coefficient between the LSI and the printed circuit board. On the other hand, in the conventional cooling structure 100, a heat sink 18 having a flat lower surface is attached on the LSI 12 via a thermal conductive grease 17 (FIG. 6). Thereby, since the thickness of the end side D part of the heat conductive grease 17 becomes larger than the thickness of the center side C part, the thermal resistance of the end side D part becomes larger than the thermal resistance of the center side C part. . Therefore, there is a problem that it is difficult to efficiently transfer the heat generated in the LSI 12 to the heat sink 18.

特開2006−237060号公報JP 2006-237060 A

この問題に対して、熱伝導グリースの代わりに熱伝導率の高い接着剤を用いて、ヒートシンクをLSIに接着する構造が考えられる。しかしながら、例えば、LSIが大きくなるに従って、LSIの凸形状の反りも大きくなるため、接合が不十分となり、冷却効率の低下を招く虞がある。また、LSIの凸形状の反りに合わせて、ヒートシンクを凹面形状に加工する方法も考えられるが、数十μmオーダーでの加工が必要となるため、その加工自体が困難となり、コスト増加に繋がる虞もある。さらに、半導体上に載置したヒートシンクをLSIの形状にならう形で変形させるヒートシンクの実装構造が知られている(例えば、特許文献1参照)。この実装構造においては、ヒートシンクに対して加工等が必要となる。   To solve this problem, a structure in which a heat sink is bonded to the LSI using an adhesive having high thermal conductivity instead of the thermal conductive grease is conceivable. However, for example, as the LSI becomes larger, the warpage of the convex shape of the LSI also becomes larger, so that bonding becomes insufficient, and cooling efficiency may be reduced. A method of processing the heat sink into a concave shape in accordance with the warpage of the convex shape of the LSI is also conceivable, but since processing on the order of several tens of μm is required, the processing itself becomes difficult and may lead to an increase in cost. There is also. Furthermore, a heat sink mounting structure is known in which a heat sink placed on a semiconductor is deformed in a shape similar to an LSI shape (see, for example, Patent Document 1). In this mounting structure, it is necessary to process the heat sink.

本発明は、このような問題点を解決するためになされたものであり、簡易な構成で冷却効率を向上させた半導体の冷却構造及びその製造方法を提供することを主たる目的とする。   The present invention has been made to solve such problems, and a main object of the present invention is to provide a semiconductor cooling structure with improved cooling efficiency with a simple configuration and a method for manufacturing the same.

上記目的を達成するための本発明の一態様は、基板上に実装された半導体上に、ヒートシンクが配置される半導体の冷却構造であって、前記半導体の上面に、熱伝導部材を介して熱伝導性のヒートスプレッダが取り付けられ、前記ヒートスプレッダの上面に、熱伝導グリースを介して前記ヒートシンクが取り付けられる、ことを特徴とする半導体の冷却構造である。   One aspect of the present invention for achieving the above object is a semiconductor cooling structure in which a heat sink is disposed on a semiconductor mounted on a substrate, and heat is applied to the upper surface of the semiconductor via a heat conductive member. The semiconductor cooling structure is characterized in that a conductive heat spreader is attached, and the heat sink is attached to the upper surface of the heat spreader via heat conductive grease.

他方、上記目的を達成するための本発明の一態様は、基板上に半導体を取り付ける第1取付工程と、前記第1取付工程後、前記半導体の上面に、熱伝導部材を塗布する第1塗布工程と、前記第1塗布工程後、前記熱伝導部材上に熱伝導性のヒートスプレッダを取り付ける第2取付工程と、前記第2取付工程後、前記ヒートスプレッダの上面に熱伝導グリースを塗布する第2塗布工程と、前記第2塗布工程後、前記熱伝導グリース上にヒートシンクを取り付ける第3取付工程と、を含む、ことを特徴とする半導体の冷却構造の製造方法であってもよい。   On the other hand, according to one aspect of the present invention for achieving the above object, a first attachment step of attaching a semiconductor on a substrate, and a first application of applying a heat conductive member to the upper surface of the semiconductor after the first attachment step. A second attachment step of attaching a heat conductive heat spreader on the heat conductive member after the first application step, and a second application of applying heat conductive grease on the upper surface of the heat spreader after the second attachment step. And a third attachment step of attaching a heat sink on the thermally conductive grease after the second application step.

本発明によれば、簡易な構成で冷却効率を向上させた半導体の冷却構造及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling structure of the semiconductor which improved the cooling efficiency with simple structure, and its manufacturing method can be provided.

本発明の一実施形態に係る半導体の冷却構造の概略を示す断面図である。It is sectional drawing which shows the outline of the cooling structure of the semiconductor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るヒートスプレッダの概略的な構成を示す斜視図である。It is a perspective view showing a schematic structure of a heat spreader concerning one embodiment of the present invention. 本発明の一実施形態に係るヒートスプレッダの板状部材の概略的な構成を示す斜視図である。It is a perspective view showing a schematic structure of a plate-like member of a heat spreader concerning one embodiment of the present invention. ヒートスプレッダの各板状部材の傾斜面をLSIの凸形状の反りに沿った状態で配置し、取付ける状態の一例を示す図である。It is a figure which shows an example of the state which arrange | positions the inclined surface of each plate-shaped member of a heat spreader along the convex curvature of LSI, and attaches it. ヒートスプレッダの上面が略平面状となる状態の一例を示す図である。It is a figure which shows an example in the state by which the upper surface of a heat spreader becomes substantially planar shape. 従来に係る半導体の冷却構造の概略を示す断面図である。It is sectional drawing which shows the outline of the cooling structure of the semiconductor which concerns on the past.

以下、本発明を実施するための最良の形態について、添付図面を参照しながら一実施形態を挙げて説明する。図1は、本発明の一実施形態に係る半導体の冷却構造の概略を示す断面図である。本実施形態に係る半導体の冷却構造10において、プリント基板1上にLSI(半導体集積回路)2を、半田3により直接接合し実装するフリップチップ実装構造が適用されている。また、その半田3の接合部分は、アンダーフィル(封止用樹脂)4が充填硬化され、封止されている。上記フリップチップ実装構造においては、半田3の接合部分が非常に微細であるため、アンダーフィル4を充填硬化させて補強し、その接合の信頼性を確保している。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing a semiconductor cooling structure according to an embodiment of the present invention. In the semiconductor cooling structure 10 according to the present embodiment, a flip chip mounting structure in which an LSI (semiconductor integrated circuit) 2 is directly bonded and mounted on a printed board 1 with solder 3 is applied. Further, the joint portion of the solder 3 is filled with an underfill (sealing resin) 4 and hardened and sealed. In the flip chip mounting structure, since the joining portion of the solder 3 is very fine, the underfill 4 is filled and cured to be reinforced, and the reliability of the joining is ensured.

LSI2の上面には、熱伝導部材5を介して、高い熱伝導性を有するヒートスプレッダ6が取付けられている。熱伝導部材5は、例えば、加熱硬化型の熱伝導性接着剤であり、LSI2の上面とヒートスプレッダ6の下面とを接合する。また、熱伝導部材5として、例えば、エポキシ系の熱伝導性接着剤やシリコーン系接着剤、或いは半田材料などを用いることができる。   A heat spreader 6 having high thermal conductivity is attached to the upper surface of the LSI 2 via a heat conductive member 5. The heat conducting member 5 is, for example, a thermosetting heat conductive adhesive, and joins the upper surface of the LSI 2 and the lower surface of the heat spreader 6. Moreover, as the heat conductive member 5, for example, an epoxy-based heat conductive adhesive, a silicone-based adhesive, or a solder material can be used.

なお、LSI2の上面にヒートスプレッダ6を上記熱伝導性接着剤により接着する場合、ヒートスプレッダ6と熱伝導性接着剤との密着性を向上させるために、ヒートスプレッダ6の接着表面を荒らす処理を施してもよい。また、LSI2の上面にヒートスプレッダ6を半田3により接合する場合、LSI2及びヒートスプレッダ6の接着面に、半田3の濡れ性が良好となる表面処理(例えば、Au鍍金)を、夫々施すのが好ましい。これにより、熱伝導効率をより向上させることができる。さらに、ヒートスプレッダ6の材料には、熱伝導性の高い材料を用いるのが好ましく、例えば、Cu、CuWを母材としたもの等の金属、若しくは、AIN(窒化アルミニウム)等のセラミックを用いることができる。   In the case where the heat spreader 6 is bonded to the upper surface of the LSI 2 with the heat conductive adhesive, a treatment for roughening the bonding surface of the heat spreader 6 may be performed in order to improve the adhesion between the heat spreader 6 and the heat conductive adhesive. Good. Further, when the heat spreader 6 is joined to the upper surface of the LSI 2 by the solder 3, it is preferable to perform a surface treatment (for example, Au plating) on the adhesion surface of the LSI 2 and the heat spreader 6 so that the wettability of the solder 3 is good. Thereby, heat conduction efficiency can be improved more. Furthermore, it is preferable to use a material having high thermal conductivity as the material of the heat spreader 6, for example, a metal such as a material based on Cu or CuW, or a ceramic such as AIN (aluminum nitride). it can.

ヒートスプレッダ6の上面6cに、熱伝導グリース7を介してヒートシンク8が取り付けられている。熱伝導グリース7は、ヒートスプレッダ6とヒートシンク8との間の熱伝導を補助するものである。また、熱伝導グリース7として、例えば、アルミナ(酸化アルミニウム)や銅紛、ダイヤモンド紛が混入されたシリコングリス等が用いられており、高効率の熱伝導が可能となっている。   A heat sink 8 is attached to the upper surface 6 c of the heat spreader 6 via a heat conductive grease 7. The heat conductive grease 7 assists heat conduction between the heat spreader 6 and the heat sink 8. Further, as the thermal conductive grease 7, for example, silicon grease mixed with alumina (aluminum oxide), copper powder, diamond powder, or the like is used, so that highly efficient thermal conduction is possible.

ヒートシンク8は、例えば、略矩形状のベース部8aと、ベース部8a上で格子状に立設された複数の棒状のフィン8bと、を有しており、各フィン8bから高効率の放熱を行うことができる。また、ヒートシンク8は、例えば、アルミニウムや銅などの熱伝導率の優れた材質で、一体成形されている。以上のように構成された半導体の冷却構造10において、例えば、LSI2で発生した熱は、熱伝導部材5、ヒートスプレッダ6、熱伝導グリース7、および、ヒートシンク8の順に高効率で伝達され、ヒートシンク8の各フィン8bから放熱される。   The heat sink 8 includes, for example, a substantially rectangular base portion 8a and a plurality of rod-shaped fins 8b erected in a lattice shape on the base portion 8a, and highly efficient heat dissipation from each fin 8b. It can be carried out. The heat sink 8 is integrally formed of a material having excellent thermal conductivity such as aluminum or copper. In the semiconductor cooling structure 10 configured as described above, for example, heat generated in the LSI 2 is transmitted with high efficiency in the order of the heat conducting member 5, the heat spreader 6, the heat conducting grease 7, and the heat sink 8. The heat is radiated from each fin 8b.

図2は、本実施形態に係るヒートスプレッダの概略的な構成を示す斜視図である。本実施形態に係るヒートスプレッダ6は、例えば、4つの略正方形状の板状部材6aから構成されている。各板状部材6aの上面(ヒートシンク8側面)6cは、略平面状に形成されている。また、各板状部材6aの下面(LSI2側面)は、LSI2の上面の形状に合わせて、点線部分を加工した傾斜面6bが形成されている(図3)。なお、図3において、板状部材6aの傾斜面6bが見易いように、板状部材6aの下面(傾斜面6b)を上に向けている。   FIG. 2 is a perspective view illustrating a schematic configuration of the heat spreader according to the present embodiment. The heat spreader 6 according to the present embodiment is composed of, for example, four substantially square plate-like members 6a. The upper surface (side surface of the heat sink 8) 6c of each plate-like member 6a is formed in a substantially flat shape. Further, the lower surface (side surface of the LSI 2) of each plate-like member 6a is formed with an inclined surface 6b in which a dotted line portion is processed in accordance with the shape of the upper surface of the LSI 2 (FIG. 3). In FIG. 3, the lower surface (inclined surface 6b) of the plate-like member 6a is directed upward so that the inclined surface 6b of the plate-like member 6a can be easily seen.

各板状部材6aのG部(ヒートスプレッダ6の端側)が最も厚い部分となっており、E部(ヒートスプレッダ6の中心側)が最も薄い部分となっている。また、各板状部材6aのF部及びH部は、略同一の厚さとなっており、G部とE部との間の厚さとなっている。なお、E部、F部、G部及びH部を同一平面上に形成することで、各板状部材6aを容易に加工することができる。   The G part (the end side of the heat spreader 6) of each plate-like member 6a is the thickest part, and the E part (the center side of the heat spreader 6) is the thinnest part. Further, the F part and the H part of each plate-like member 6a have substantially the same thickness, and are between the G part and the E part. In addition, each plate-shaped member 6a can be easily processed by forming E part, F part, G part, and H part on the same plane.

さらに、各板状部材6aの傾斜面6bは、LSI2の凸形状の反りに合わせて形成されるのが好ましい。例えば、図1に示すよう、LSI2の凸形状の反りがLSI2の対角線において100μmである場合、E部の厚さがG部の厚さより約100〜150μm薄くなるように、各板状部材6aを加工してもよい。   Furthermore, the inclined surface 6b of each plate-like member 6a is preferably formed in accordance with the convex warp of the LSI 2. For example, as shown in FIG. 1, when the convex warp of the LSI 2 is 100 μm along the diagonal line of the LSI 2, the plate-like members 6a are arranged so that the thickness of the E portion is about 100 to 150 μm thinner than the thickness of the G portion. It may be processed.

図2に示すように、各板状部材6aの薄いE部がヒートスプレッダ6の中心側となり、各板状部材6aの厚いG部がヒートスプレッダ6の角側(端側)となるように、各板状部材6aは配置される。これにより、ヒートスプレッダ6の各板状部材6aの傾斜面6bは、LSI2の凸形状の反りに沿った状態で配置され(図4)、取付けられるため、ヒートスプレッダ6の上面6cは略平面状となる(図5)。これにより、この略平面状のヒートスプレッダ6の上面6cに、略均一の厚さの熱伝導グリース7を塗布することができ、この略均一の厚さの熱伝導グリース7上に、ヒートシンク8を取り付けることができる。したがって、熱伝導グリース7の熱抵抗は、中心側から端側にわたって略均一にすることができるため、LSI2で発生した熱を、熱伝導グリース7を介してヒートシンク8に対して効率的に伝達することができる。   As shown in FIG. 2, each plate-like member 6a has a thin E portion on the center side of the heat spreader 6, and each plate-like member 6a has a thick G portion on the corner side (end side) of the heat spreader 6. The shaped member 6a is arranged. As a result, the inclined surface 6b of each plate-like member 6a of the heat spreader 6 is arranged and attached in a state along the convex warp of the LSI 2 (FIG. 4), so that the upper surface 6c of the heat spreader 6 is substantially planar. (FIG. 5). As a result, the heat conduction grease 7 having a substantially uniform thickness can be applied to the upper surface 6c of the substantially planar heat spreader 6, and the heat sink 8 is mounted on the heat conduction grease 7 having a substantially uniform thickness. be able to. Accordingly, since the thermal resistance of the thermal conductive grease 7 can be made substantially uniform from the center side to the end side, the heat generated in the LSI 2 is efficiently transmitted to the heat sink 8 via the thermal conductive grease 7. be able to.

次に、本実施形態に係る半導体の冷却構造の製造方法について、詳細に説明する。例えば、プリント基板1上のLSI搭載パッドと、LSI2の半田3と、が対向するように、LSI2を位置決めし、プリント基板1上に配置する。そして、半田3が溶融する温度(例えば、Sn96.5/Ag3/Cu0.5(wt%)であれば、約22℃)以上まで加熱し、LSI2の半田付けを行う(第1取付工程)。さらに、プリント基板1とLSI2との隙間にアンダーフィル4をその側方から供給充填し、その樹脂の硬化温度(例えば、150℃)で加熱し硬化させる。   Next, the manufacturing method of the semiconductor cooling structure according to the present embodiment will be described in detail. For example, the LSI 2 is positioned and placed on the printed circuit board 1 so that the LSI mounting pad on the printed circuit board 1 and the solder 3 of the LSI 2 face each other. Then, the LSI 2 is heated to a temperature at which the solder 3 melts (for example, about 22 ° C. if Sn96.5 / Ag3 / Cu0.5 (wt%)) or higher, and the LSI 2 is soldered (first mounting step). Further, the underfill 4 is supplied and filled into the gap between the printed circuit board 1 and the LSI 2 from the side, and is heated and cured at the curing temperature (for example, 150 ° C.) of the resin.

このとき、アンダーフィル4の樹脂硬化中の温度(例えば、約150℃)において、プリント基板1及びLSI2は、略平面状(反りが発生していない状態)になっている。その後、樹脂硬化後の室温(例えば、25℃)まで冷却されると、プリント基板1及びLSI2には、バイメタル現象が発生する。このバイメタル現象は、プリント基板1の熱膨張係数がLSI2の熱膨張係数よりも大きいことから、生じる現象である。   At this time, at the temperature (for example, about 150 ° C.) during the resin curing of the underfill 4, the printed circuit board 1 and the LSI 2 are substantially planar (a state in which no warpage occurs). Thereafter, when cooled to room temperature (for example, 25 ° C.) after the resin is cured, a bimetal phenomenon occurs in the printed circuit board 1 and the LSI 2. This bimetal phenomenon is a phenomenon that occurs because the thermal expansion coefficient of the printed circuit board 1 is larger than the thermal expansion coefficient of the LSI 2.

このバイメタル現象により、LSI2にはヒートシンク8側へ凸形状の反りが発生する。なお、プリント基板1及びLSI2の熱膨張係数とLSI2の外形とに基づいて、LSI2に発生する凸形状の反りを推測してもよい。例えば、LSI2の熱膨張係数は約3ppmであり、プリント基板1(例えば、FR4)の熱膨張係数は約16ppmであり、LSI2の外形を約20mm平方とすると、LSI2には、約100μmの凸形状の反りが発生する。   Due to this bimetal phenomenon, the LSI 2 is warped in a convex shape toward the heat sink 8 side. Note that the warpage of the convex shape generated in the LSI 2 may be estimated based on the thermal expansion coefficients of the printed circuit board 1 and the LSI 2 and the external shape of the LSI 2. For example, the thermal expansion coefficient of LSI 2 is about 3 ppm, the thermal expansion coefficient of printed circuit board 1 (for example, FR4) is about 16 ppm, and if the outer shape of LSI 2 is about 20 mm square, LSI 2 has a convex shape of about 100 μm. Warpage occurs.

そこで、図3に示すように、板状部材6aの厚いG部に対し、板状部材6aの薄いE部が約100〜150μmだけ薄くなるように、ヒートスプレッダ6の板状部材6aの加工を行う。例えば、板状部材6aのG部の厚さが約3mmとなる場合、板状部材6aのE部の厚さは約2.9〜2.85mmとなり、F部及びH部の厚さはその間の約2.95〜2.92mmとなる。   Therefore, as shown in FIG. 3, the plate member 6a of the heat spreader 6 is processed so that the thin E portion of the plate member 6a is thinned by about 100 to 150 μm with respect to the thick G portion of the plate member 6a. . For example, when the thickness of the G portion of the plate-like member 6a is about 3 mm, the thickness of the E portion of the plate-like member 6a is about 2.9 to 2.85 mm, and the thickness of the F portion and the H portion is between Of about 2.95 to 2.92 mm.

次に、LSI2の上面に熱伝導部材5を塗布し(第1塗布工程)、図2に示すように、ヒートスプレッダ6の板状部材6aの薄いE部がヒートスプレッダ6の中心側となり、板状部材6aの厚いG部がヒートスプレッダ6の角側となるように、各板状部材6aを配置する。そして、配置した各板状部材6aを、LSI2の上面に塗布された熱伝導部材5に対して押付ける(第2取付工程)。さらに、図1に示すヒートスプレッダ6のA部近傍(LSI2とヒートスプレッダ6が重なる中央部近傍)を、ヒートスプレッダ6の上面6cから治工具で押さえ付けつつ、熱伝導部材5が硬化する温度(例えば、150℃)で加熱し硬化させる。   Next, the heat conductive member 5 is applied to the upper surface of the LSI 2 (first application step), and the thin E portion of the plate-like member 6a of the heat spreader 6 becomes the center side of the heat spreader 6 as shown in FIG. Each plate-like member 6 a is arranged so that the thick G portion of 6 a is on the corner side of the heat spreader 6. Then, each of the arranged plate-like members 6a is pressed against the heat conducting member 5 applied on the upper surface of the LSI 2 (second attachment step). Further, a temperature (for example, 150) at which the heat conducting member 5 is cured while pressing the vicinity of the portion A of the heat spreader 6 shown in FIG. C.) and cured.

熱伝導部材5の硬化後、室温に戻るとLSI2には、約100μmの凸形状の反りが発生するが、ヒートスプレッダ6の各板状部材6aの傾斜面6bは、予め、このLSI2の凸形状の反りに合わせて加工されている(加工工程)。従って、LSI2上面の凸形状の反りにならって、ヒートスプレッダ6の各板状部材6aを接着することができる。これにより、ヒートスプレッダ6の上面6cを略平面に維持することができる。次に、ヒートスプレッダ6の上面6cに熱伝導グリース7を、略均一の厚さで塗布し(第2塗布工程)、塗布した熱伝導グリース7に対してヒートシンク8を押さえ付けて固定し、取り付けを行う(第3取付工程)。   When the temperature of the heat conducting member 5 is returned to room temperature after the heat conducting member 5 is cured, a convex warp of about 100 μm is generated in the LSI 2, but the inclined surface 6 b of each plate-like member 6 a of the heat spreader 6 is previously formed in the convex shape of the LSI 2. Processed to warp (machining process). Therefore, the plate-like members 6a of the heat spreader 6 can be bonded in accordance with the convex warpage of the LSI 2 upper surface. Thereby, the upper surface 6c of the heat spreader 6 can be maintained substantially flat. Next, the thermal grease 7 is applied to the upper surface 6c of the heat spreader 6 with a substantially uniform thickness (second application process), and the heat sink 8 is pressed against the applied thermal grease 7 and fixed. Perform (third attachment step).

ここで、熱伝導部材5の厚さが、A部で10μmとなっている場合、B部では、A部の10μmにLSI2の反り100μmの1/4(25μm)を加算した約35μmとなる。この場合、熱伝導部材5の厚さの平均値を概算すると、(20+45)/2=約33μmになる。また、熱伝導グリース7の厚さは均一となるため、例えば、20μm程度にすることができる。なお、上述の如く、ヒートシンク8をヒートスプレッダ6に直接接着しない理由として、例えば、ヒートシンク8の着脱を可能にするためである。   Here, when the thickness of the heat conducting member 5 is 10 μm in the A portion, in the B portion, it is about 35 μm, which is obtained by adding 1/4 (25 μm) of the warp 100 μm of the LSI 2 to 10 μm of the A portion. In this case, when the average value of the thickness of the heat conducting member 5 is estimated, (20 + 45) / 2 = about 33 μm. Moreover, since the thickness of the heat conductive grease 7 becomes uniform, it can be set to about 20 μm, for example. As described above, the reason why the heat sink 8 is not directly bonded to the heat spreader 6 is, for example, that the heat sink 8 can be attached and detached.

一方で、図6に示すように、従来の半導体の冷却構造100において、LSI12の上面に熱伝導グリース17を塗布し、この塗布した熱伝導グリース17上に、平坦な下面を有するヒートシンク18を配置し、押付け取付けている。例えば、LSI12の反りが100μmの場合、熱伝導グリース17の中央C部の厚さは約10μmとなるが、熱伝導グリース17の外周D部の厚さは約110μmとなる。このとき、熱伝導グリース17の厚さの平均値を概算すると、(110+10)/2=約60μmになる。   On the other hand, as shown in FIG. 6, in a conventional semiconductor cooling structure 100, a thermal conductive grease 17 is applied to the upper surface of the LSI 12, and a heat sink 18 having a flat lower surface is disposed on the applied thermal conductive grease 17. And press-fit. For example, when the warp of the LSI 12 is 100 μm, the thickness of the central portion C of the thermal conductive grease 17 is about 10 μm, but the thickness of the outer peripheral portion D of the thermal conductive grease 17 is about 110 μm. At this time, when the average value of the thickness of the thermal conductive grease 17 is estimated, (110 + 10) / 2 = about 60 μm.

上述したように、例えば、本実施形態に係る半導体の冷却構造10の熱伝導部材5の厚さ(約33μm)と熱伝導グリース7の厚さ(約20μm)とを加算した厚さ(約53μm)は、従来に係る半導体の冷却構造100の熱伝導グリース17の厚さ(約60μm)と比較して、約12%薄くすることができる。   As described above, for example, the thickness (about 53 μm) obtained by adding the thickness (about 33 μm) of the heat conducting member 5 of the semiconductor cooling structure 10 according to the present embodiment and the thickness (about 20 μm) of the heat conducting grease 7. ) Can be reduced by about 12% compared to the thickness (about 60 μm) of the heat conductive grease 17 of the conventional semiconductor cooling structure 100.

このように、本実施形態に係る半導体の冷却構造10においては、従来の冷却構造100と比較して、熱伝導部材5及び熱伝導グリース7の厚さをより薄くすることができる。このため、LSI2とヒートシンク8との間の熱抵抗を低減することができ、LSI2で発生した熱をより効率的にヒートシンク8へ伝達することができる。したがって、ヒートシンク8の放熱効率が向上し、半導体の冷却構造10における冷却効率を向上させることができる。さらに、ヒートスプレッダ6の各板状部材6aの傾斜面6bを、LSI2の凸形状の反りに合わせて簡易に形成するだけで、上記冷却効率を向上させることが可能となる。すなわち、本実施形態に係る半導体の冷却構造10によれば、簡易な構成で冷却効率を向上させることができる。   Thus, in the semiconductor cooling structure 10 according to the present embodiment, the thickness of the heat conducting member 5 and the heat conducting grease 7 can be made thinner than that of the conventional cooling structure 100. For this reason, the thermal resistance between the LSI 2 and the heat sink 8 can be reduced, and the heat generated in the LSI 2 can be transmitted to the heat sink 8 more efficiently. Therefore, the heat dissipation efficiency of the heat sink 8 is improved, and the cooling efficiency in the semiconductor cooling structure 10 can be improved. Furthermore, the cooling efficiency can be improved by simply forming the inclined surface 6 b of each plate-like member 6 a of the heat spreader 6 in accordance with the convex warp of the LSI 2. That is, according to the semiconductor cooling structure 10 according to the present embodiment, the cooling efficiency can be improved with a simple configuration.

また、熱伝導グリース7の熱伝達率よりも高い熱伝達率を有する(熱伝導性がより良好な)熱伝導部材5を任意に選択してもよい。これにより、ヒートシンク8の放熱効率をより向上させることができ、半導体の冷却構造10における冷却効率をより向上させることができる。また、ヒートスプレッダ6の外形をLSI2の外形よりも大きくして、ヒートスプレッダ6の外形がLSI2の外形から、はみ出すように形成することで放熱部分を拡張してもよい。これにより、当該冷却構造10の放熱効率をより向上させることができ、冷却効率をより向上させることができる。さらに、本実施形態に係る半導体の冷却構造10の冷却効率を向上させることで、例えば、消費電力の大きいより高性能なLSI2を採用することができ、或いは、当該冷却構造10を搭載した半導体装置の小型化にも寄与できる。   Further, the heat conductive member 5 having a heat transfer coefficient higher than that of the heat conductive grease 7 (better heat conductivity) may be arbitrarily selected. Thereby, the heat dissipation efficiency of the heat sink 8 can be further improved, and the cooling efficiency in the semiconductor cooling structure 10 can be further improved. Further, the heat spreader 6 may be enlarged by making the outer shape of the heat spreader 6 larger than the outer shape of the LSI 2 so that the outer shape of the heat spreader 6 protrudes from the outer shape of the LSI 2. Thereby, the heat dissipation efficiency of the cooling structure 10 can be further improved, and the cooling efficiency can be further improved. Furthermore, by improving the cooling efficiency of the semiconductor cooling structure 10 according to the present embodiment, for example, a higher-performance LSI 2 with higher power consumption can be adopted, or a semiconductor device equipped with the cooling structure 10 Can also contribute to downsizing.

なお、本発明を実施するための最良の形態について上記一実施形態を用いて説明したが、本発明はこうした一実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、上述した一実施形態に種々の変形及び置換を加えることができる。   Although the best mode for carrying out the present invention has been described using the above-described one embodiment, the present invention is not limited to such one embodiment and is within the scope not departing from the gist of the present invention. Various modifications and substitutions can be added to the above-described embodiment.

例えば、上記一実施形態において、ヒートシンク8は、ベース部8aと複数のフィン8bとを有する構成であるが、これに限らず、任意の構成が適用可能である。また、上記一実施形態において、ヒートスプレッダは、4つの略正方形状の板状部材6aから構成されているが、これに限らず、例えば、2つの板状部材で構成(LSI2が長方形である場合等)されていてもよく、任意の数および形状で構成されていてもよい。   For example, in the above-described embodiment, the heat sink 8 has a configuration including the base portion 8a and the plurality of fins 8b. However, the configuration is not limited thereto, and any configuration can be applied. Further, in the above-described embodiment, the heat spreader is configured by the four substantially square plate-like members 6a. However, the heat spreader is not limited to this. For example, the heat spreader is configured by two plate-like members (such as when the LSI 2 is rectangular). And may be configured in any number and shape.

1 プリント基板
2 LSI
3 半田
4 アンダーフィル
5 熱伝導部材
6 ヒートスプレッダ
6a 板状部材
6b 傾斜面
6c 上面
7 熱伝導グリース
8 ヒートシンク
10 半導体の冷却構造
1 Printed circuit board 2 LSI
DESCRIPTION OF SYMBOLS 3 Solder 4 Underfill 5 Thermal conductive member 6 Heat spreader 6a Plate-shaped member 6b Inclined surface 6c Upper surface 7 Thermal conductive grease 8 Heat sink 10 Semiconductor cooling structure

Claims (10)

基板上に実装された半導体上に、ヒートシンクが配置される半導体の冷却構造であって、
前記半導体の上面に、熱伝導部材を介して熱伝導性のヒートスプレッダが取り付けられ、
前記ヒートスプレッダの上面に、熱伝導グリースを介して前記ヒートシンクが取り付けられ
前記ヒートスプレッダは複数の板状部材からなり、該板状部材の下面は前記半導体の上面の形状に合わせて傾斜している、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure in which a heat sink is disposed on a semiconductor mounted on a substrate,
A heat conductive heat spreader is attached to the upper surface of the semiconductor via a heat conductive member,
The heat sink is attached to the upper surface of the heat spreader via thermal grease ,
The heat spreader includes a plurality of plate-like members, and the lower surface of the plate-like member is inclined in accordance with the shape of the upper surface of the semiconductor.
請求項記載の半導体の冷却構造であって、
前記ヒートスプレッダの板状部材の傾斜面は、前記半導体の凸形状の反りに合わせて、形成されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to claim 1 ,
The semiconductor cooling structure, wherein the inclined surface of the plate member of the heat spreader is formed in accordance with the convex warpage of the semiconductor.
請求項1又は2記載の半導体の冷却構造であって、
前記ヒートスプレッダの中心側の厚さは、端側の厚さよりも薄くなるように形成されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to claim 1 or 2 ,
The semiconductor cooling structure, wherein the thickness of the heat spreader on the center side is formed to be thinner than the thickness on the end side.
請求項1乃至3のうちいずれか1項記載の半導体の冷却構造であって、
前記ヒートスプレッダの上面は、略平面状に形成されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to any one of claims 1 to 3 ,
An upper surface of the heat spreader is formed in a substantially planar shape.
請求項1乃至のうちいずれか1項記載の半導体の冷却構造であって、
前記ヒートスプレッダは、4つの板状部材から構成されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to any one of claims 1 to 4 ,
2. The semiconductor cooling structure according to claim 1, wherein the heat spreader includes four plate members.
請求項1乃至のうちいずれか1項記載の半導体の冷却構造であって、
前記熱伝導部材の熱伝達率は、前記熱伝導グリースの熱伝達率よりも高い、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to any one of claims 1 to 5 ,
The semiconductor cooling structure according to claim 1, wherein a heat transfer coefficient of the heat conductive member is higher than a heat transfer coefficient of the heat conductive grease.
請求項1乃至のうちいずれか1項記載の半導体の冷却構造であって、
前記ヒートスプレッダの外形は、前記半導体の外形よりも大きく形成されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to any one of claims 1 to 6 ,
A semiconductor cooling structure, wherein an outer shape of the heat spreader is formed larger than an outer shape of the semiconductor.
請求項1乃至のうちいずれか1項記載の半導体の冷却構造であって、
前記半導体は、半田により前記基板上に接合されており、該接合部分はアンダーフィルにより封止されている、ことを特徴とする半導体の冷却構造。
A semiconductor cooling structure according to any one of claims 1 to 7 ,
The semiconductor cooling structure, wherein the semiconductor is bonded onto the substrate by solder, and the bonded portion is sealed by underfill.
基板上に半導体を取り付ける第1取付工程と、
前記第1取付工程後、前記半導体の上面に、熱伝導部材を塗布する第1塗布工程と、
前記第1塗布工程後、前記熱伝導部材上に熱伝導性のヒートスプレッダを取り付ける第2取付工程と、
前記第2取付工程後、前記ヒートスプレッダの上面に熱伝導グリースを塗布する第2塗布工程と、
前記第2塗布工程後、前記熱伝導グリース上にヒートシンクを取り付ける第3取付工程と、を含み、
前記ヒートスプレッダは、複数の板状部材からなり、
前記板状部材の下面を、前記半導体の上面の形状に合わせて傾斜させる加工を行う加工工程を更に含む、ことを特徴とする半導体の冷却構造の製造方法。
A first mounting step of mounting a semiconductor on a substrate;
After the first attachment step, a first application step of applying a heat conducting member to the upper surface of the semiconductor;
A second attachment step of attaching a heat conductive heat spreader on the heat conductive member after the first application step;
After the second mounting step, a second application step of applying a thermal grease on the upper surface of the heat spreader;
After the second coating step, seen including a third mounting step of mounting the heat sink to the heat conducting on grease,
The heat spreader is composed of a plurality of plate-like members,
The manufacturing method of the semiconductor cooling structure characterized by further including the process process which inclines the lower surface of the said plate-shaped member according to the shape of the upper surface of the said semiconductor .
請求項に記載の半導体の冷却構造の製造方法であって、
前記加工工程において、前記ヒートスプレッダの板状部材の傾斜面を、前記半導体の凸形状の反りに合わせて加工する、ことを特徴とする半導体の冷却構造の製造方法。
A method for manufacturing a semiconductor cooling structure according to claim 9 ,
In the processing step, the inclined surface of the plate member of the heat spreader is processed in accordance with the convex warpage of the semiconductor.
JP2009024685A 2009-02-05 2009-02-05 Semiconductor cooling structure and manufacturing method thereof Expired - Fee Related JP5278011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024685A JP5278011B2 (en) 2009-02-05 2009-02-05 Semiconductor cooling structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024685A JP5278011B2 (en) 2009-02-05 2009-02-05 Semiconductor cooling structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010182855A JP2010182855A (en) 2010-08-19
JP5278011B2 true JP5278011B2 (en) 2013-09-04

Family

ID=42764197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024685A Expired - Fee Related JP5278011B2 (en) 2009-02-05 2009-02-05 Semiconductor cooling structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5278011B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182514B2 (en) * 2016-06-27 2019-01-15 International Business Machines Corporation Thermal interface material structures
JP2020077808A (en) * 2018-11-09 2020-05-21 株式会社デンソー Heat dissipation structure of semiconductor component
JP7494726B2 (en) 2020-12-18 2024-06-04 セイコーエプソン株式会社 Heat conducting structure and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056110A (en) * 1996-08-09 1998-02-24 Shinko Electric Ind Co Ltd Plastic package for semiconductor and semiconductor device
JP2003124665A (en) * 2001-10-11 2003-04-25 Fujikura Ltd Heat sink structure for electronic device
JP4715231B2 (en) * 2005-02-22 2011-07-06 日本電気株式会社 Heat sink mounting structure
JP2007258448A (en) * 2006-03-23 2007-10-04 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2010182855A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4715231B2 (en) Heat sink mounting structure
US7843058B2 (en) Flip chip packages with spacers separating heat sinks and substrates
JP6065973B2 (en) Semiconductor module
JP5617548B2 (en) Manufacturing method of semiconductor device
TW201411788A (en) Hybrid thermal interface material for IC packages with integrated heat spreader
JPWO2011042982A1 (en) Manufacturing method of semiconductor device
JP2008060172A (en) Semiconductor device
JP2008028352A (en) Electronic device and manufacturing method thereof
JP2004327951A (en) Semiconductor device
JP2007299974A (en) Circuit board and semiconductor module employing it
JP2006013080A (en) Semiconductor module and manufacturing method thereof
JP2007142097A (en) Semiconductor device
KR102352342B1 (en) Semiconductor package and method of manufacturing the same
US6828676B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JP2008251671A (en) Heat dissipating substrate, manufacturing method therefor, and electronic component module
JP4467380B2 (en) Semiconductor package, printed circuit board on which semiconductor package is mounted, and electronic apparatus having such printed circuit board
JP2012015225A (en) Semiconductor device
JP5278011B2 (en) Semiconductor cooling structure and manufacturing method thereof
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP6406996B2 (en) Semiconductor device
JP2008199057A (en) Electronic equipment and method of manufacturing the same
US20060278975A1 (en) Ball grid array package with thermally-enhanced heat spreader
JP2009071004A (en) Semiconductor device and manufacturing method thereof
JP5120320B2 (en) Package structure, printed circuit board on which the package structure is mounted, and electronic apparatus having the printed circuit board
JP7473156B2 (en) Semiconductor Package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees