JP2019005096A - プロセッサ装置及びその作動方法 - Google Patents

プロセッサ装置及びその作動方法 Download PDF

Info

Publication number
JP2019005096A
JP2019005096A JP2017122779A JP2017122779A JP2019005096A JP 2019005096 A JP2019005096 A JP 2019005096A JP 2017122779 A JP2017122779 A JP 2017122779A JP 2017122779 A JP2017122779 A JP 2017122779A JP 2019005096 A JP2019005096 A JP 2019005096A
Authority
JP
Japan
Prior art keywords
white balance
correction coefficient
coefficient
image
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017122779A
Other languages
English (en)
Other versions
JP6817154B2 (ja
Inventor
弘亮 岩根
Hirosuke Iwane
弘亮 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2017122779A priority Critical patent/JP6817154B2/ja
Priority to US16/015,214 priority patent/US10499027B2/en
Publication of JP2019005096A publication Critical patent/JP2019005096A/ja
Application granted granted Critical
Publication of JP6817154B2 publication Critical patent/JP6817154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Abstract

【課題】光源装置又はプロセッサ装置に適合しない内視鏡が接続された場合において、ユーザーに負担をかけることなくホワイトバランスの補正を行うことができるプロセッサ装置及びその作動方法を提供する。【解決手段】補正係数取得部56は、内視鏡13a又は内視鏡13bから補正係数を取得する。ホワイトバランス制御部63は、取得補正係数を参照し、取得補正係数を用いてホワイトバランスの補正を行う第1ホワイトバランス処理、又は、第1の変換係数を取得補正係数に乗算することにより得られる第1の乗算済補正係数を用いてホワイトバランスの補正を行う第2ホワイトバランス処理のいずれかを選択して実行する。【選択図】図1

Description

本発明は、観察対象の撮像により得られるカラー画像のホワイトバランスの補正を行うプロセッサ装置及びその作動方法に関する。
医療分野においては、光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムが普及している。内視鏡システムにおいては、光源装置から発せられる照明光を、内視鏡を介して、観察対象に照明する。内視鏡は、照明光によって照明された観察対象を、撮像素子を用いて撮像することにより、観察対象の画像を取得する。取得した観察対象の画像は、プロセッサ装置において各種の画像処理が施される。各種の画像処理が施された観察対象の画像は、モニタに出力されて表示される。
以上のような、光源装置に設けられる光源や内視鏡に設けられる撮像素子などについては、製造過程において個体差が生ずることがある。このような光源装置や内視鏡の個体差は、観察対象の画像の画質、特に、ホワイトバランスに影響を及ぼすことになる。そこで、内視鏡においては、光源装置や内視鏡の個体差によって生ずるホワイトバランスのズレを補正する補正係数を記憶するようにしている。そして、内視鏡を光源装置及びプロセッサ装置に接続した場合に、内視鏡から補正係数を読み出して、読み出した補正係数を観察対象の画像に掛け合わせることによって、ホワイトバランスのズレを補正している。
ホワイトバランスの補正の用いる補正係数は、内視鏡と同じ機種の光源装置又はプロセッサ装置に内視鏡を接続した場合など、光源装置又はプロセッサ装置に適合する内視鏡を接続した場合に、有効である。そのため、例えば、内視鏡とは異なる機種の光源装置やプロセッサ装置に内視鏡を接続した場合など、光源装置又はプロセッサ装置に適合しない内視鏡を接続した場合には、内視鏡に記憶した補正係数は、ホワイトバランスの補正を正確に行うことができない。
そこで、特許文献1では、内視鏡が光源装置又はプロセッサ装置に接続された場合に、内視鏡に記憶した補正係数を参照し、光源装置又はプロセッサ装置に適合しない内視鏡が接続された場合には、白色被写体を撮像して、新規に補正係数を算出するキャリブレーション処理を行うようにしている。このような補正係数を用いることにより、内視鏡と光源装置又はプロセッサ装置がそれぞれ異なる機種である場合にも、ホワイトバランスの補正を正確に行うことができるようになる。
特開2002−248077号公報
ここで、内視鏡と光源装置又はプロセッサ装置とがそれぞれ異なる機種である場合であっても、光源装置やプロセッサ装置の特性が、内視鏡に対応する機種の光源装置やプロセッサ装置の特性とそれほど変わらない場合には、ホワイトバランスのズレもそれほど変わらないことになる。このような場合においても、特許文献1のように、キャリブレーション処理により、白色被写体を撮像して新規に補正係数を算出することは、ユーザーにとって負担をかけることになる。
本発明は、光源装置又はプロセッサ装置に適合しない内視鏡が接続された場合において、ユーザーに負担をかけることなくホワイトバランスの補正を行うことができるプロセッサ装置及びその作動方法を提供することを目的とする。
本発明は、観察対象を撮像して得られたカラー画像のホワイトバランスを補正する補正係数を記憶する内視鏡が接続され、内視鏡から取得したカラー画像に対してホワイトバランスの補正を行うプロセッサ装置において、内視鏡から補正係数を取得する補正係数取得部と、補正係数取得部によって取得された補正係数である取得補正係数を参照し、取得補正係数を用いてホワイトバランスの補正を行う第1ホワイトバランス処理、又は、予め設定された第1の変換係数を取得補正係数に乗算することによって得られた第1の乗算済補正係数を用いてホワイトバランスの補正を行う第2ホワイトバランス処理のいずれかを選択して実行する制御を行う。
ホワイトバランス制御部は、取得補正係数を参照して、内視鏡との組み合わせが適合すると判定した場合には、第1ホワイトバランス処理を選択して実行し、取得補正係数を参照して、内視鏡との組み合わせが適合しないと判定し、且つ、取得補正係数が、第1の変換係数によりホワイトバランスの補正を可能にする第1の設定範囲に入っている場合には、第2ホワイトバランス処理を選択して実行することが好ましい。
ホワイトバランス制御部は、取得補正係数を参照して、内視鏡との組み合わせが適合しないと判定し、且つ、取得補正係数が、第1の変換係数によりホワイトバランスの補正を可能にする第1の設定範囲に入っていない場合には、第1の変換係数と異なる第2の変換係数を新規に算出するキャリブレーション処理を実行し、第2の変換係数を取得補正係数に乗算することによって得られた第2の乗算済補正係数を用いてホワイトバランスの補正を行う第3ホワイトバランス処理を実行することが好ましい。キャリブレーション処理は、内視鏡にて基準白板を撮像して得られた白色画像に基づいて、第2の変換係数を算出することが好ましい。キャリブレーション処理は、白色画像から補正係数として算出される白色画像用補正係数と取得補正係数との比を、第2の変換係数として算出することが好ましい。
第2の変換係数を用いてホワイトバランスの補正を可能にする第2の設定範囲を設定する範囲設定部と、第2の設定範囲と第2の変換係数とを対応付けて記憶する変換係数記憶部とを備え、ホワイトバランス制御部は、取得補正係数を参照して、内視鏡との組み合わせが適合しないと判定し、且つ、取得補正係数が第2の設定範囲に入っている場合には、第3ホワイトバランス処理を実行することが好ましい。
カラー画像はR画像、G画像、及びB画像であり、補正係数は、R画像、G画像、及びB画像に対してそれぞれ掛け合わされるRゲイン係数、Gゲイン係数、及びBゲイン係数のうちの2つのゲイン係数であることが好ましい。カラー画像はR画像、G画像、及びB画像であり、補正係数は、R画像、G画像、及びB画像に対してそれぞれ掛け合わされるRゲイン係数、Gゲイン係数、及びBゲイン係数のうちの2つのゲイン係数であり、第1の設定範囲は、Rゲイン係数、Gゲイン係数、及びBゲイン係数のうち2つのゲイン係数から定められる範囲であることが好ましい。
本発明は、観察対象を撮像して得られたカラー画像のホワイトバランスを補正する補正係数を記憶する内視鏡が接続され、内視鏡から取得したカラー画像に対してホワイトバランスの補正を行うプロセッサ装置の作動方法において、補正係数取得部が、内視鏡から補正係数を取得する補正係数取得ステップと、ホワイトバランス制御部が、補正係数取得部によって取得された補正係数である取得補正係数を参照し、取得補正係数を用いてホワイトバランスの補正を行う第1ホワイトバランス処理、又は、予め設定された第1の変換係数を取得補正係数に乗算することによって得られる第1の乗算済補正係数を用いてホワイトバランスの補正を行う第2ホワイトバランス処理のいずれかを選択して実行する制御を行うホワイトバランス制御ステップとを有する。
ホワイトバランス制御ステップは、取得補正係数を参照して、内視鏡との組み合わせが適合すると判定した場合には、第1ホワイトバランス処理を選択して実行し、取得補正係数を参照して、内視鏡との組み合わせが適合しないと判定し、且つ、取得補正係数が、第1の変換係数によりホワイトバランスの補正を可能にする第1の設定範囲に入っている場合には、第2ホワイトバランス処理を選択して実行するステップを含むことが好ましい。
本発明によれば、光源装置又はプロセッサ装置に適合しない内視鏡が接続された場合においても、ユーザーに負担をかけることなくホワイトバランスの補正を行うことができる。
内視鏡システムのブロック図である。 光源装置又はプロセッサ装置に適合する内視鏡が接続された場合における内視鏡システムのブロック図である。 光源装置又はプロセッサ装置に適合しない内視鏡が接続された場合における内視鏡システムのブロック図である。 第1の設定範囲を示す説明図である。 基準白板STを用いてキャリブレーション処理を行う場合における内視鏡システムのブロック図である。 第2の設定範囲を示す説明図である。 内視鏡を接続した場合に行われるホワイトバランスの設定方法の流れを示すフローチャートである。
図1に示すように、内視鏡システム10は、光源装置12と、プロセッサ装置14とを備える。また、内視鏡システム10においては、光源装置12又はプロセッサ装置14に対して、光源装置12又はプロセッサ装置14と同じ機種の内視鏡13aが接続される他、光源装置12又はプロセッサ装置14と異なる機種の内視鏡13bが接続される。
光源装置12は、観察対象に対して照明光を発生する。プロセッサ装置14は、内視鏡システム10のシステム制御及び画像処理等を行う。内視鏡13a、13bは、観察対象を照明光によって照明し、照明光によって照明された観察対象の撮像を行う。内視鏡13a、13bによって得られた観察対象の画像は、プロセッサ装置14に送られる。プロセッサ装置14において画像処理等が施された観察対象の画像は、モニタ18に表示される。なお、プロセッサ装置14等への設定入力等は、コンソール19により行われる。
光源装置12は、照明光を発光する光源部20と、光源部20の駆動を制御する光源制御部22と、を備える。光源部20は、例えば、中心波長または波長帯域が異なる光を発光する複数のLED(Light Emitting Diode)を光源として備えている。各LEDの発光または点灯、及び、光量の調節等により、波長が異なる複数種類の照明光を発光することができる。
例えば、光源部20は、波長帯域が比較的広い広帯域な紫色光、青色光、緑色光、及び赤色光を、それぞれ照明光として発光できる。特に、光源部20は、広帯域な紫色光、青色光、緑色光、及び赤色光の他に、狭帯域(波長帯域が10nmから20nm程度の範囲であることをいう)な紫色光、青色光、緑色光、及び赤色光を照明光として発光できる。また、光源部20は、照明光として、中心波長が約400nmの狭帯域紫色光、中心波長が約450nmの第1狭帯域青色光、中心波長が約470nmの第2狭帯域青色光、中心波長が約540nmの狭帯域緑色光、及び、中心波長が約640nmの狭帯域赤色光を発光できる。この他、光源部20は、広帯域または狭帯域な紫色光、青色光、緑色光、及び赤色光を組み合わせることにより、白色光を照明光として発光することができる。なお、赤色光を無くして、紫色光、青色光、及び緑色光の3色の光によって白色光を発光するようにしてもよい。
なお、光源部20には、LEDの代わりに、LD(Laser Diode)と蛍光体と帯域制限フィルタとの組み合わせや、キセノンランプ等のランプと帯域制限フィルタの組み合わせ等を用いることができる。もちろん、光源部20をLEDにより構成する場合も、蛍光体または帯域制限フィルタを組み合わせて使用することができる。
光源制御部22は、光源部20を構成する各光源の点灯または消灯のタイミング、及び、点灯時の発光量等をそれぞれ独立に制御する。その結果、光源部20は、波長が異なる複数種類の照明光を発光することができる。また、光源制御部22は、イメージセンサ48の撮像のタイミング(いわゆるフレーム)に合わせて光源部20を制御する。
内視鏡13aは、光源部20が発光した照明光を導光するライトガイド41を備える。ライトガイド41は、照明光を内視鏡13aの先端部まで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用できる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用できる。
内視鏡13aの先端部には、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは、照明レンズ45を有しており、この照明レンズ45を介して照明光を観察対象に向けて出射する。撮像光学系30bは、対物レンズ46、及びイメージセンサ48を有している。イメージセンサ48は、対物レンズ46を介して、観察対象から戻る照明光の反射光等(反射光の他、散乱光、観察対象が発する蛍光、または、観察対象に投与等した薬剤に起因した蛍光等を含む)を用いて観察対象を撮像する。なお、対物レンズ46とイメージセンサ48との間には、観察対象を拡大または縮小するズームレンズを設けてもよい。
イメージセンサ48は、例えば原色系のカラーフィルタを有するカラーセンサであり、青色カラーフィルタを有するB画素(青色画素)、緑色カラーフィルタを有するG画素(緑色画素)、及び、赤色カラーフィルタを有するR画素(赤色画素)の3種類の画素を備える。青色カラーフィルタは、主として紫色から青色の光を透過する。緑色カラーフィルタは、主として緑色の光を透過する。赤色カラーフィルタは、主として赤色の光を透過する。上記のように原色系のイメージセンサ48を用いて観察対象を撮像することにより、B画素から得るB画像(青色画像)、G画素から得るG画像(緑色画像)、及び、R画素から得るR画像(赤色画像)からなる3色のカラー画像を同時に得ることができる。
なお、イメージセンサ48としては、CCD(Charge Coupled Device)センサや、CMOS(Complementary Metal Oxide Semiconductor)センサを利用可能である。また、本実施形態のイメージセンサ48は、原色系のカラーセンサであるが、補色系のカラーセンサを用いることもできる。補色系のカラーセンサは、例えば、シアンカラーフィルタが設けられたシアン画素、マゼンタカラーフィルタが設けられたマゼンタ画素、イエローカラーフィルタが設けられたイエロー画素、及び、グリーンカラーフィルタが設けられたグリーン画素を有する。補色系カラーセンサを用いる場合に上記各色の画素から得る画像は、補色−原色色変換をすれば、B画像、G画像、及びR画像に変換できる。また、カラーセンサの代わりに、カラーフィルタを設けていないモノクロセンサをイメージセンサ48として使用できる。この場合、BGR等各色の照明光を用いて観察対象を順次撮像することにより、上記各色の画像を得ることができる。
内視鏡13aには、カラー画像のホワイトバランスを補正するための補正係数Kxを記憶する補正係数記憶部49aが設けられている。この補正係数Kxによって、内視鏡13aの個体差、又は内視鏡13aと同機種の光源装置12の個体差によって生ずるホワイトバランスのズレを補正することができる。内視鏡13aの個体差としては、例えば、ライトガイド41の光学特性のバラツキ、イメージセンサ48の分光感度のバラツキなどがある。光源装置12の個体差としては、例えば、光源部20から発せられる照明光の分光放射強度のバラツキなどがある。なお、後述するプロセッサ装置14のホワイトバランス制御部63の補正係数記憶部63aにおいても、光源装置12またはプロセッサ装置14に適合する内視鏡13aが接続されたか否かを判断するために、補正係数Kxを記憶している。
例えば、補正係数Kxとして、カラー画像のR画像に掛け合わされるRゲイン係数Grxと、カラー画像のB画像に掛け合わされるBゲイン係数Gbxとが用いられる。なお、補正係数Kxは、Rゲイン係数GrxとBゲイン係数Gbxの組合せであることが好ましいが、これに代えて、カラー画像のG画像に掛け合わされるGゲイン係数GgxとRゲイン係数Grxの組合せ、または、Bゲイン係数GbxとGゲイン係数Ggxの組合せとしてもよい。後述の補正係数Kyについても同様である。
内視鏡13bは、内視鏡13aとほぼ同様の構成を有する。ただし、内視鏡13bは内視鏡13aと機種が異なるので、各部の特性がそれぞれ異なっている場合がある。また、この内視鏡13bにも、カラー画像のホワイトバランスを補正するための補正係数Kyを記憶する補正係数記憶部49bが設けられている。この補正係数Kyによって、内視鏡13bの個体差、又は内視鏡13bと同機種の光源装置12の個体差によって生ずるホワイトバランスのズレを補正することができる。補正係数Kyとしては、カラー画像のR画像に掛け合わされるRゲイン係数Gryと、カラー画像のB画像に掛け合わされるBゲイン係数Gbyとが用いられる。
プロセッサ装置14は、中央制御部52と、画像取得部54と、補正係数取得部56と、画像処理部61と、表示制御部66と、を有する。中央制御部52は、照明光の照射タイミングと撮像のタイミングの同期制御等の内視鏡システム10の統括的な制御を行う。また、コンソール19等を用いて、各種設定の入力等をした場合には、中央制御部52は、その設定を、光源制御部22、イメージセンサ48、または画像処理部61等の内視鏡システム10の各部に入力する。
画像取得部54は、イメージセンサ48から、カラー画像を取得する。補正係数取得部56は、内視鏡13a又は内視鏡13bから補正係数を取得する。補正係数取得部56によって取得した補正係数を取得補正係数という。画像取得部54が取得したカラー画像と取得補正係数は、画像処理部61に送られる。
画像処理部61はカラー画像に対して各種の画像処理を施す。本実施形態では、画像処理部61は、カラー画像のホワイトバランスの補正などを行うホワイトバランス制御部63を備えている。ホワイトバランス制御部63の詳細については後述する。画像処理部61において各種の画像処理が施されたカラー画像は、表示制御部66に送られる。表示制御部66は、カラー画像をモニタ18に表示する制御を行う。
なお、画像処理部61においては、ホワイトバランスの補正の他に、必要に応じて欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理、YC変換処理、及びノイズ低減処理等の各種処理を施すことが好ましい。
欠陥補正処理は、イメージセンサ48の欠陥画素に対応する画素の画素値を補正する処理である。オフセット処理は、欠陥補正処理を施した画像から暗電流成分を低減し、正確な零レベルを設定する処理である。リニアマトリクス処理は、オフセット処理をした画像の色再現性を高める処理であり、ガンマ変換処理は、リニアマトリクス処理後の画像の明るさや彩度を整える処理である。デモザイク処理(等方化処理や同時化処理とも言う)は、欠落した画素の画素値を補間する処理であり、ガンマ変換処理後の画像に対して施す。欠落した画素とは、カラーフィルタの配列に起因して(イメージセンサ48において他の色の画素を配置しているため)、画素値がない画素である。
例えば、B画像はB画素において観察対象を撮像して得る画像なので、G画素やR画素に対応する位置の画素には画素値がない。デモザイク処理は、B画像を補間して、イメージセンサ48のG画素及びR画素の位置にある画素の画素値を生成する。YC変換処理は、デモザイク処理後の画像を、輝度チャンネルYと色差チャンネルCb及び色差チャンネルCrに変換する処理である。
ノイズ低減処理は、輝度チャンネルY、色差チャンネルCb及び色差チャンネルCrに対して、例えば、移動平均法またはメディアンフィルタ法等を用いてノイズ低減処理を施す。なお、ノイズ低減処理後の輝度チャンネルY、色差チャンネルCb及び色差チャンネルCrは、再びBGRの各色の画像に再変換される。
ホワイトバランス制御部63は、取得補正係数を参照して、取得補正係数を用いてカラー画像のホワイトバランスの補正を行う第1ホワイトバランス処理、又は、取得補正係数に第1の変換係数α1をすることによって得られる第1の乗算済補正係数を用いて、カラー画像のホワイトバランスの補正を行う第2ホワイトバランス処理の少なくともいずれかの選択を行う。なお、第1の変換係数α1は、変換係数記憶部63cに予め記憶されている。
図2に示すように、内視鏡13aが光源装置12又はプロセッサ装置14に接続されると、内視鏡13aから取得補正係数として、補正係数Kxを取得する。この補正係数Kxは、プロセッサ装置14側の補正係数記憶部63aに記憶されている補正係数Kxと一致するため、光源装置12又はプロセッサ装置14に適合する内視鏡13aが接続された(内視鏡との組み合わせが適合する)と判定される。この場合には、ホワイトバランス制御部63は、第1ホワイトバランス処理を選択して実行を行う。第1ホワイトバランス処理では、補正係数KxであるRゲイン係数Grx、及びBゲイン係数Gbxを用いる。そして、これらRゲイン係数Grx、及びBゲイン係数Gbxをそれぞれカラー画像のR画像、及びB画像に掛け合わせる。これにより、第1ホワイトバランス処理が完了する。
一方、図3に示すように、内視鏡13bが光源装置12又はプロセッサ装置14に接続されると、内視鏡13bから取得補正係数として、補正係数Kyを取得する。この補正係数Kyは、プロセッサ装置14側の補正係数記憶部63aに記憶されている補正係数Kxと一致しないため、光源装置12又はプロセッサ装置14に適合しない内視鏡13bが接続された(内視鏡との組み合わせが適合しない)と判定される。この場合には、ホワイトバランス制御部63は、補正係数Kyが、第1の設定範囲に入っている場合に、補正係数Kyに第1の変換係数α1を乗算することによって得られる第1の乗算済補正係数「α1×Ky」を用いる第2ホワイトバランス処理を選択して実行を行う。ここで、第1の設定範囲とは、光源装置12又はプロセッサ装置14の特性に対応させる第1の変換係数α1によって取得補正係数を変換することによって、光源装置12又はプロセッサ装置14に適合しない内視鏡13bが接続された場合であっても、ホワイトバランスの補正を可能にできる範囲のことをいう。
例えば、図4に示すように、第1の設定範囲は、第1のRゲイン設定範囲と第1のBゲイン設定範囲からなり、取得補正係数である補正係数KyのうちRゲイン係数Gryが第1のRゲイン設定範囲に入っており、且つBゲイン係数Gbyが第1のBゲイン設定範囲に入っている場合に、補正係数Kyが、第1の設定範囲に入っているとされる。なお、図4においては、横軸はRゲイン係数Gryを表しており、右側ほど、Rゲイン係数Gryが大きくなる。また、縦軸はBゲイン係数Gbyを表しており、上側ほど、Bゲイン係数Gbyが大きくなる。これは図6においても同様である。
そして、第2ホワイトバランス処理では、第1の乗算済補正係数として、第1の変換係数α1を乗算したRゲイン係数(α1×Gry)を、R画像に掛け合わせる。同様にして、第1の乗算済補正係数として、第1の変換係数α1を乗算したBゲイン係数(α1×Gby)を、B画像に掛け合わせる。これにより、第2ホワイトバランス処理が完了する。以上のように、光源装置12又はプロセッサ装置14に適合しない内視鏡13bが接続された場合であっても、第1の変換係数αを用いることによって、後述するキャリブレーション処理を行うことなく、ホワイトバランスの補正が可能となる。なお、第1の変換係数α1は、Rゲイン係数GrxとBゲイン係数Gbxについて共通の係数とするのではなく、Rゲイン係数GrxとBゲイン係数Gbxについてそれぞれ別々の係数を用いるようにしてもよい。
また、光源装置12又はプロセッサ装置14に適合しない内視鏡13bが接続された(内視鏡との組み合わせが適合しない)と判定され、且つ、補正係数Kyが、第1の設定範囲に入ってない場合には、第1の変換係数α1では、ホワイトバランスの補正を正確に行うことができない。そこで、ホワイトバランス制御部63は、補正係数Kyを用いてホワイトバランスの補正を正確に行うことができるように、新規に第2の変換係数α2を算出するキャリブレーション処理を行う。
キャリブレーション処理では、図5に示すように、内視鏡13bにて基準白板STを撮像して得られた白色画像を用いて、第2の変換係数α2の算出を行う。例えば、白色画像から、ホワイトバランスを補正するための白色画像用補正係数を算出する。白色画像用補正係数は、例えば、Rゲイン係数Grw、Bゲイン係数Gbwからなる。そして、補正係数KyのRゲイン係数Gryと白色画像用補正係数であるRゲイン係数Grwの比(Grw/Gry)から、第2の変換係数α2を算出する。
なお、補正係数KyのBゲイン係数Gbyと白色画像用補正係数であるGbwの比(Gbw/Gby)から、第2の変換係数α2を算出するようにしてもよい。また、第2の変換係数α2は、Rゲイン係数GryとBゲイン係数Gbyについて共通の係数とするのではなく、Rゲイン係数GryとBゲイン係数Gbyについてそれぞれ別々の係数を用いるようにしてもよい。
第2の変換係数α2の算出後は、ホワイトバランス制御部63は、補正係数Kyに第2の変換係数α2を乗算することによって得られる第2の乗算済補正係数「α2×Ky」を用いて、カラー画像のホワイトバランスの補正を行う第3ホワイトバランス処理を行うようにする。また、ホワイトバランス制御部63は、範囲設定部63bによって、補正係数Kyの大きさを参照して、第2の変換係数α2によってホワイトバランスの補正を可能にする第2の設定範囲を設定する。この設定した第2の設定範囲と第2の変換係数α2とは対応付けて、変換係数記憶部63cに記憶される。
例えば、図6に示すように、補正係数KyのRゲイン係数Gryが、第1のRゲイン設定範囲の下限値よりも小さく、Bゲイン係数Gbyが、第1のBゲイン設定範囲の上限値よりも大きい場合には、範囲設定部63bは、第1の設定範囲と異なる第2の設定範囲を設定する。第2の設定範囲において、第2のRゲイン設定範囲はRゲイン係数Gryの大きさに応じて決められ、第2のBゲイン設定範囲はBゲイン係数Gbyの大きさに応じて決められる。
このように第2の設定範囲を設けておくことで、内視鏡13bと機種は異なるものの、同じように第2の設定範囲に収まる補正係数を持つ内視鏡が光源装置12またはプロセッサ装置14に接続された場合に、第2の変換係数α2をそのまま用いることができる。これにより、キャリブレーション処理を行うことなく、簡便にホワイトバランスの補正を行うことができる。なお、図6のような場合には、第2の設定範囲の他に、第3〜第9の変換係数α3〜α9に対応する第3〜第9の設定範囲を設けることができる。第3〜第9の変換係数α3〜α9の算出と第3〜第9の設定範囲の設定については、第2の変換係数α2の算出方法と第2の設定範囲の設定方法と同様である。
次に、光源装置12又はプロセッサ装置14に対して内視鏡が接続した場合に行われるホワイトバランスの設定方法について、図7のフローチャートに沿って説明を行う。まず、内視鏡を光源装置12及びプロセッサ装置14に接続する。内視鏡が光源装置12及びプロセッサ装置14に接続されると、補正係数取得部56は、内視鏡13a又は内視鏡13bから補正係数を取得する。ホワイトバランス制御部63は、補正係数取得部56によって取得した補正係数である取得補正係数を参照して、接続された内視鏡が光源装置12又はプロセッサ装置14に適合するか否かを判定する。
接続された内視鏡が内視鏡13aであれば、取得補正係数とプロセッサ装置14側の補正係数記憶部63aに記憶した補正係数とは「Kx」で一致するため、接続された内視鏡は光源装置12又はプロセッサ装置14に適合する(内視鏡との組み合わせが適合する)と判定される。この場合には、補正係数Kxを用いて第1ホワイトバランス処理を実行する。
一方、接続された内視鏡が内視鏡13bの場合には、取得補正係数は「Ky」であるのに対して、プロセッサ装置14側の補正係数記憶部63aに記憶した補正係数「Kx」で、両者は一致しないため、接続された内視鏡は光源装置12又はプロセッサ装置14に適合しない(内視鏡との組み合わせが適合しない)と判定される。この場合は、更に、取得補正係数である「Ky」が第1の設定範囲に入っているかどうかの判定が行われる。補正係数は「Ky」が第1の設定範囲に入っていると判定された場合には、補正係数「Ky」に第1の変換係数α1を乗算することよって得られる第1の乗算済補正係数「α1×Ky」を用いて第2のホワイトバランス処理を実行する。
これに対して、補正係数は「Ky」が第1の設定範囲に入っていないと判定された場合には、内視鏡13bによって基準白板STを撮像し、白色画像を取得する。この白色画像と補正係数「Ky」を用いてキャリブレーション処理を行うことにより、第2の変換係数α2を算出する。第2の変換係数α2が算出されると、補正係数「Ky」に第2の変換係数α2を乗算することによって得られる第2の乗算済補正係数「α2×Ky」を用いて第3のホワイトバランス処理を実行する。また、範囲設定部63bは、補正係数「Ky」の大きさを参照して、第2の設定範囲を設定する。第2の設定範囲が設定されたら、第2の変換係数α2と対応付けて、変換係数記憶部63に記憶する。
上記実施形態において、中央制御部52、画像取得部54、補正係数取得部56、画像処理部61、ホワイトバランス制御部63、範囲設定部63b、変換係数記憶部63c、表示制御部66といった各種の制御や処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
1つの処理部は、これら各種のプロセッサのうちの1つによって構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)によって構成されてもよい。また、複数の処理部を1つのプロセッサによって構成してもよい。複数の処理部を1つのプロセッサによって構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせによって1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップによって実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
さらに、これらの各種のプロセッサのハードウェア的な構造は、例えば、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。
10 内視鏡システム
12 光源装置
13a 内視鏡
13b 内視鏡
14 プロセッサ装置
18 モニタ
19 コンソール
20 光源部
22 光源制御部
30a 照明光学系
30b 撮像光学系
41 ライトガイド
45 照明レンズ
46 対物レンズ
48 イメージセンサ
49a 補正係数記憶部
49b 補正係数記憶部
52 中央制御部
54 画像取得部
56 補正係数取得部
61 画像処理部
63 ホワイトバランス制御部
63a 補正係数記憶部
63b 範囲設定部
63c 変換係数記憶部
66 表示制御部

Claims (10)

  1. 観察対象を撮像して得られたカラー画像のホワイトバランスを補正する補正係数を記憶する内視鏡が接続され、前記内視鏡から取得した前記カラー画像に対して前記ホワイトバランスの補正を行うプロセッサ装置において、
    前記内視鏡から前記補正係数を取得する補正係数取得部と、
    前記補正係数取得部によって取得された前記補正係数である取得補正係数を参照し、前記取得補正係数を用いて前記ホワイトバランスの補正を行う第1ホワイトバランス処理、又は、予め設定された第1の変換係数を前記取得補正係数に乗算することによって得られる第1の乗算済補正係数を用いて前記ホワイトバランスの補正を行う第2ホワイトバランス処理のいずれかを選択して実行する制御を行うホワイトバランス制御部とを有するプロセッサ装置。
  2. 前記ホワイトバランス制御部は、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合すると判定した場合には、前記第1ホワイトバランス処理を選択して実行し、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合しないと判定し、且つ、前記取得補正係数が、前記第1の変換係数により前記ホワイトバランスの補正を可能にする第1の設定範囲に入っている場合には、前記第2ホワイトバランス処理を選択して実行する請求項1記載のプロセッサ装置。
  3. 前記ホワイトバランス制御部は、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合しないと判定し、且つ、前記取得補正係数が、前記第1の変換係数により前記ホワイトバランスの補正を可能にする第1の設定範囲に入っていない場合には、前記第1の変換係数と異なる第2の変換係数を新規に算出するキャリブレーション処理を実行し、前記第2の変換係数を前記取得補正係数に乗算することによって得られた第2の乗算済補正係数を用いて前記ホワイトバランスの補正を行う第3ホワイトバランス処理を実行する請求項1または2記載のプロセッサ装置。
  4. 前記キャリブレーション処理は、前記内視鏡にて基準白板を撮像して得られた白色画像に基づいて、前記第2の変換係数を算出する請求項3記載のプロセッサ装置。
  5. 前記キャリブレーション処理は、前記白色画像から前記補正係数として算出される白色画像用補正係数と前記取得補正係数との比を、前記第2の変換係数として算出する請求項4記載のプロセッサ装置。
  6. 前記第2の変換係数を用いて前記ホワイトバランスの補正を可能にする第2の設定範囲を設定する範囲設定部と、
    前記第2の設定範囲と前記第2の変換係数とを対応付けて記憶する変換係数記憶部とを備え、
    前記ホワイトバランス制御部は、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合しないと判定し、且つ、前記取得補正係数が前記第2の設定範囲に入っている場合には、前記第3ホワイトバランス処理を実行する請求項3ないし5いずれか1項記載のプロセッサ装置。
  7. 前記カラー画像はR画像、G画像、及びB画像であり、前記補正係数は、前記R画像、前記G画像、及び前記B画像に対してそれぞれ掛け合わされるRゲイン係数、Gゲイン係数、及びBゲイン係数のうちの2つのゲイン係数である請求項1ないし6いずれか1項記載のプロセッサ装置。
  8. 前記カラー画像はR画像、G画像、及びB画像であり、前記補正係数は、前記R画像、前記G画像、及び前記B画像に対してそれぞれ掛け合わされるRゲイン係数、Gゲイン係数、及びBゲイン係数のうちの2つのゲイン係数であり、
    前記第1の設定範囲は、前記Rゲイン係数、前記Gゲイン係数、及び前記Bゲイン係数のうち2つのゲイン係数から定められる範囲である請求項2ないし6いずれか1項記載のプロセッサ装置。
  9. 観察対象を撮像して得られたカラー画像のホワイトバランスを補正する補正係数を記憶する内視鏡が接続され、前記内視鏡から取得した前記カラー画像に対して前記ホワイトバランスの補正を行うプロセッサ装置の作動方法において、
    補正係数取得部が、前記内視鏡から前記補正係数を取得する補正係数取得ステップと、
    ホワイトバランス制御部が、前記補正係数取得部によって取得された前記補正係数である取得補正係数を参照し、前記取得補正係数を用いて前記ホワイトバランスの補正を行う第1ホワイトバランス処理、又は、予め設定された第1の変換係数を前記取得補正係数に乗算することによって得られる第1の乗算済補正係数を用いて前記ホワイトバランスの補正を行う第2ホワイトバランス処理のいずれかを選択して実行する制御を行うホワイトバランス制御ステップとを有するプロセッサ装置。
  10. 前記ホワイトバランス制御ステップは、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合すると判定した場合には、前記第1ホワイトバランス処理を選択して実行し、
    前記取得補正係数を参照して、前記内視鏡との組み合わせが適合しないと判定し、且つ、前記取得補正係数が、前記第1の変換係数により前記ホワイトバランスの補正を可能にする第1の設定範囲に入っている場合には、前記第2ホワイトバランス処理を選択して実行するステップを含む請求項9記載のプロセッサ装置。
JP2017122779A 2017-06-23 2017-06-23 プロセッサ装置及びその作動方法 Active JP6817154B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017122779A JP6817154B2 (ja) 2017-06-23 2017-06-23 プロセッサ装置及びその作動方法
US16/015,214 US10499027B2 (en) 2017-06-23 2018-06-22 Processor device and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122779A JP6817154B2 (ja) 2017-06-23 2017-06-23 プロセッサ装置及びその作動方法

Publications (2)

Publication Number Publication Date
JP2019005096A true JP2019005096A (ja) 2019-01-17
JP6817154B2 JP6817154B2 (ja) 2021-01-20

Family

ID=64692992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122779A Active JP6817154B2 (ja) 2017-06-23 2017-06-23 プロセッサ装置及びその作動方法

Country Status (2)

Country Link
US (1) US10499027B2 (ja)
JP (1) JP6817154B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158165A1 (ja) * 2019-01-30 2020-08-06 富士フイルム株式会社 内視鏡システム
JPWO2020178970A1 (ja) * 2019-03-05 2020-09-10

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325098A (zh) 2016-11-28 2019-10-11 适内有限责任公司 具有可分离一次性轴的内窥镜
CN110740307A (zh) * 2019-11-18 2020-01-31 重庆金山医疗技术研究院有限公司 自动白平衡的内窥镜及白平衡参数调节方法
US10986321B1 (en) * 2019-12-10 2021-04-20 Arthrex, Inc. Method and device for color correction of two or more self-illuminated camera systems
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248077A (ja) * 2001-02-23 2002-09-03 Fuji Photo Optical Co Ltd 電子内視鏡装置
WO2011162111A1 (ja) * 2010-06-25 2011-12-29 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2015194422A1 (ja) * 2014-06-17 2015-12-23 オリンパス株式会社 内視鏡システム及びそのホワイトバランス調整方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086663B2 (ja) * 2012-06-19 2017-03-01 オリンパス株式会社 画像処理装置、内視鏡装置及び孤立点ノイズ補正方法
JP6013382B2 (ja) * 2014-02-27 2016-10-25 富士フイルム株式会社 内視鏡システム及びその作動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248077A (ja) * 2001-02-23 2002-09-03 Fuji Photo Optical Co Ltd 電子内視鏡装置
WO2011162111A1 (ja) * 2010-06-25 2011-12-29 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2015194422A1 (ja) * 2014-06-17 2015-12-23 オリンパス株式会社 内視鏡システム及びそのホワイトバランス調整方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158165A1 (ja) * 2019-01-30 2020-08-06 富士フイルム株式会社 内視鏡システム
CN113366366A (zh) * 2019-01-30 2021-09-07 富士胶片株式会社 内窥镜系统
JPWO2020158165A1 (ja) * 2019-01-30 2021-11-11 富士フイルム株式会社 内視鏡システム
JP7136933B2 (ja) 2019-01-30 2022-09-13 富士フイルム株式会社 内視鏡システム
JPWO2020178970A1 (ja) * 2019-03-05 2020-09-10
WO2020178970A1 (ja) * 2019-03-05 2020-09-10 オリンパス株式会社 内視鏡装置および画像処理方法
CN113518574A (zh) * 2019-03-05 2021-10-19 奥林巴斯株式会社 内窥镜装置和图像处理方法
JP7159441B2 (ja) 2019-03-05 2022-10-24 オリンパス株式会社 内視鏡装置および内視鏡装置の作動方法

Also Published As

Publication number Publication date
US20180376119A1 (en) 2018-12-27
US10499027B2 (en) 2019-12-03
JP6817154B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6817154B2 (ja) プロセッサ装置及びその作動方法
JP5968944B2 (ja) 内視鏡システム、プロセッサ装置、光源装置、内視鏡システムの作動方法、プロセッサ装置の作動方法、光源装置の作動方法
JP5887367B2 (ja) プロセッサ装置、内視鏡システム、及び内視鏡システムの作動方法
US20160287061A1 (en) Endoscope system, processor device, and operation method of endoscope system
WO2019093355A1 (ja) 内視鏡システム及びその作動方法
US11375928B2 (en) Endoscope system
US11596293B2 (en) Endoscope system and operation method therefor
US11311185B2 (en) Endoscope system
US11937788B2 (en) Endoscope system
WO2019093356A1 (ja) 内視鏡システム及びその作動方法
US11308578B2 (en) Endoscope system
JP2018033719A (ja) 内視鏡システム及び内視鏡システムの作動方法
CN112004455B (zh) 医疗图像处理系统
JP7196016B2 (ja) 情報処理装置及びその作動方法並びに内視鏡システム及びその作動方法
JP6570490B2 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP2019136412A (ja) 内視鏡システム及び内視鏡管理装置並びにキャリブレーション方法
JP6630702B2 (ja) 光源装置及び内視鏡システム
WO2021065939A1 (ja) 内視鏡システム及びその作動方法
WO2021070663A1 (ja) 内視鏡システム及びその作動方法
JP7163243B2 (ja) プロセッサ装置及び内視鏡システム並びにプロセッサ装置の作動方法
WO2023119795A1 (ja) 内視鏡システム及びその作動方法
WO2019155815A1 (ja) 内視鏡システム
WO2020121868A1 (ja) 内視鏡システム
CN111970954A (zh) 医疗图像处理系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6817154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250