JP2019003901A - Negative electrode material for all solid lithium ion secondary battery, negative electrode member, and manufacturing method of all solid lithium ion secondary battery using the same - Google Patents

Negative electrode material for all solid lithium ion secondary battery, negative electrode member, and manufacturing method of all solid lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2019003901A
JP2019003901A JP2017119804A JP2017119804A JP2019003901A JP 2019003901 A JP2019003901 A JP 2019003901A JP 2017119804 A JP2017119804 A JP 2017119804A JP 2017119804 A JP2017119804 A JP 2017119804A JP 2019003901 A JP2019003901 A JP 2019003901A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
solid
secondary battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017119804A
Other languages
Japanese (ja)
Other versions
JP6875208B2 (en
Inventor
高田 和典
Kazunori Takada
和典 高田
剛 大西
Takeshi Onishi
剛 大西
鳴海 太田
Narumi Ota
鳴海 太田
淳一 坂部
Junichi Sakabe
淳一 坂部
南田 善隆
Yoshitaka Minamida
善隆 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Priority to JP2017119804A priority Critical patent/JP6875208B2/en
Publication of JP2019003901A publication Critical patent/JP2019003901A/en
Application granted granted Critical
Publication of JP6875208B2 publication Critical patent/JP6875208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a negative electrode material suitable for manufacturing an all solid lithium ion secondary battery having a negative electrode containing an alloy of Si and Li as a negative electrode active material and having good cycling characteristics even with a low constraint, and a negative electrode member, and a manufacturing method of all solid lithium ion secondary battery using the same.SOLUTION: There is provided a negative electrode material for an all solid lithium ion secondary battery containing a simple substance of Si having a pore density of 1.5 g/cmor less as a negative electrode active material.SELECTED DRAWING: Figure 1

Description

本開示は、全固体リチウムイオン二次電池用負極原料、負極部材、及び、これらを用いる全固体リチウムイオン二次電池の製造方法に関する。   The present disclosure relates to a negative electrode raw material for an all solid lithium ion secondary battery, a negative electrode member, and a method for producing an all solid lithium ion secondary battery using these.

Siを含有する合金系活物質(Si合金系活物質)は、炭素系の負極活物質と比較して体積当たりの理論容量が大きいことから、Si合金系活物質を負極に用いたリチウムイオン電池が提案されている。   Since an alloy-based active material containing Si (Si alloy-based active material) has a larger theoretical capacity per volume than a carbon-based negative electrode active material, a lithium ion battery using the Si alloy-based active material as a negative electrode Has been proposed.

特許文献1には、Siを活物質として含む負極と、正極と、固体電解質を備えた固体電池の製造方法が開示されている。特許文献1の実施例では、正極、固体電解質、負極の貼り合わせの際に加圧成形する旨記載されている。   Patent Document 1 discloses a method of manufacturing a solid battery including a negative electrode containing Si as an active material, a positive electrode, and a solid electrolyte. In an example of Patent Document 1, it is described that pressure forming is performed when a positive electrode, a solid electrolyte, and a negative electrode are bonded together.

特開2013−069416号公報JP 2013-066941 A

しかしながら、本発明者らの検討によると、特許文献1で開示されている負極活物質原料としてSi単体を使用した全固体リチウムイオン二次電池で、高い容量を維持するためには、大型の拘束具を用いて電池に高い拘束圧を印加する必要があり、低拘束化しようとすると、容量維持率が低下してしまうという問題が生じることを知見した。
本開示は、上記実情に鑑み、負極活物質としてSiとLiとの合金を含む負極を有し、低い拘束圧でもサイクル特性が良好である全固体リチウムイオン二次電池の製造に適した負極原料、負極部材、及び、これらを用いる全固体リチウムイオン二次電池の製造方法を提供することを目的とする。
However, according to the study by the present inventors, in order to maintain a high capacity in an all-solid-state lithium ion secondary battery using a simple substance of Si as a negative electrode active material raw material disclosed in Patent Document 1, a large restraint is required. It has been found that it is necessary to apply a high restraint pressure to the battery using a tool, and that the capacity maintenance rate decreases when attempting to reduce the restraint.
In view of the above circumstances, the present disclosure has a negative electrode containing an alloy of Si and Li as a negative electrode active material, and is suitable for the production of an all-solid-state lithium ion secondary battery having good cycle characteristics even at a low restraint pressure. An object of the present invention is to provide a negative electrode member and a method for producing an all solid lithium ion secondary battery using these.

本開示の全固体リチウムイオン二次電池用負極原料は、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する。
本開示の全固体リチウムイオン二次電池用負極原料は、前記細孔を有するSi単体がHeガスを内包する閉気孔を有することが好ましい。
The negative electrode raw material for an all-solid-state lithium ion secondary battery according to the present disclosure contains Si as a negative electrode active material raw material having a density of 1.5 g / cm 3 or less and having pores.
The negative electrode material for an all-solid-state lithium ion secondary battery according to the present disclosure preferably has the Si simple substance having closed pores containing He gas.

本開示の全固体リチウムイオン二次電池用負極部材は、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する。
本開示の全固体リチウムイオン二次電池用負極部材は、前記細孔を有するSi単体がHeガスを内包する閉気孔を有することが好ましい。
The negative electrode member for an all-solid-state lithium ion secondary battery according to the present disclosure contains Si as a negative electrode active material material having a density of 1.5 g / cm 3 or less and having pores.
In the negative electrode member for an all-solid-state lithium ion secondary battery of the present disclosure, it is preferable that the Si simple substance having the pores has closed pores containing He gas.

本開示の製造方法は、負極活物質としてSiとLiとの合金を含む負極を備える全固体リチウムイオン二次電池の製造方法であって、前記負極部材、正極部材、及び、固体電解質部材を備える電池部材を準備する工程と、前記電池部材に通電する通電工程と、を有する。
本開示の全固体リチウムイオン二次電池の製造方法において、前記全固体リチウムイオン二次電池が、更に、正極、固体電解質層、及び負極の配列方向に拘束圧を印加することができる拘束具を備え、前記負極部材と前記固体電解質部材の配列方向に、第1の圧力を印加して当該負極部材と当該固体電解質部材を圧着する工程と、前記拘束具の拘束圧を第1圧力より低い第2圧力に調整する工程と、を有することが好ましい。
本開示の全固体リチウムイオン二次電池の製造方法において、前記第2の圧力が7MPa以下であることが好ましい。
The manufacturing method of this indication is a manufacturing method of an all-solid-state lithium ion secondary battery provided with the negative electrode containing the alloy of Si and Li as a negative electrode active material, Comprising: The said negative electrode member, a positive electrode member, and a solid electrolyte member are provided. A step of preparing a battery member; and an energization step of energizing the battery member.
In the manufacturing method of the all-solid-state lithium ion secondary battery according to the present disclosure, the all-solid-state lithium ion secondary battery further includes a restraining tool capable of applying a restraining pressure in the arrangement direction of the positive electrode, the solid electrolyte layer, and the negative electrode. A step of applying a first pressure in the arrangement direction of the negative electrode member and the solid electrolyte member to crimp the negative electrode member and the solid electrolyte member, and a restraint pressure of the restraining tool lower than the first pressure. And adjusting to 2 pressures.
In the manufacturing method of the all-solid-state lithium ion secondary battery of this indication, it is preferable that a said 2nd pressure is 7 Mpa or less.

本開示によれば、低い拘束圧でサイクル特性が良好である全固体リチウムイオン二次電池の製造に適した負極原料、負極部材、及びこれらを用いる全固体リチウムイオン二次電池の製造方法を提供することができる。   According to the present disclosure, a negative electrode material and a negative electrode member suitable for manufacturing an all solid lithium ion secondary battery having low cycle pressure and good cycle characteristics, and a method for manufacturing an all solid lithium ion secondary battery using these materials are provided. can do.

実施例1で成膜されたSi単体膜断面のSEM画像である。3 is a SEM image of a cross section of a single Si film formed in Example 1. FIG. 実施例1で成膜されたSi単体膜断面の選択箇所におけるEELSスペクトルである。It is an EELS spectrum in the selection part of the Si single-piece | unit film | membrane formed into a film in Example 1. FIG. 実施例1で成膜されたSi単体膜断面におけるHeガス分布を示す図である。6 is a diagram showing a He gas distribution in a cross section of a single Si film formed in Example 1. FIG. 実施例1のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。3 is a graph showing the relationship between the number of cycles and the capacity in the cycle characteristic evaluation cell of Example 1. FIG. 実施例2のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。4 is a graph showing the relationship between the number of cycles and the capacity in a cycle characteristic evaluation cell of Example 2. 比較例1のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。5 is a graph showing the relationship between the number of cycles and capacity in a cycle characteristic evaluation cell of Comparative Example 1; 比較例2のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。6 is a graph showing the relationship between the number of cycles and capacity in a cycle characteristic evaluation cell of Comparative Example 2. 比較例3のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。10 is a graph showing the relationship between the number of cycles and capacity in a cycle characteristic evaluation cell of Comparative Example 3. 比較例4のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフである。10 is a graph showing the relationship between the number of cycles and capacity in a cycle characteristic evaluation cell of Comparative Example 4;

本開示の全固体リチウムイオン二次電池用負極原料は、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する。 The negative electrode raw material for an all-solid-state lithium ion secondary battery according to the present disclosure contains Si as a negative electrode active material raw material having a density of 1.5 g / cm 3 or less and having pores.

負極活物質としてSiとLiとの合金を使用するリチウムイオン二次電池では、リチウムイオン二次電池の充電に伴い、負極において、下記式(1)に示すような、いわゆる電気化学的合金化反応が起こる。
式(1) xLi + xe + ySi → LiSi
また、リチウムイオン電池の放電に伴い、負極では、下記式(2)に示すように、前記SiとLiとの合金からLiイオンの離脱反応が起こる。
式(2) LiSi → xLi + xe + ySi
In a lithium ion secondary battery that uses an alloy of Si and Li as the negative electrode active material, a so-called electrochemical alloying reaction as shown in the following formula (1) occurs in the negative electrode as the lithium ion secondary battery is charged. Happens.
Equation (1) xLi + + xe - + ySi → Li x Si y
Further, along with the discharge of the lithium ion battery, in the negative electrode, as shown in the following formula (2), the separation reaction of Li ions occurs from the alloy of Si and Li.
Formula (2) Li x Si y → xLi + + xe + ySi

SiとLiとの合金を負極活物質として使用したリチウムイオン二次電池では、上記式(1)及び式(2)に示すLiの挿入・離脱反応に伴う体積変化が大きい。
そのため、電解質として流動性のある電解液ではなく固体電解質を使用する全固体リチウムイオン二次電池では、SiとLiとの合金を含有する負極自体の体積変化に追従可能な固体電解質層と負極の界面を形成することが困難で、当該界面に剥離等が生じる。そのため、主に負極(SiとLiとの合金)の収縮(放電)時に固体電解質と負極との間でLiイオンが移動しにくくなり、当該界面にリチウム金属が析出してしまう。
このような理由から、負極活物質としてSiとLiとの合金(以下、SiLi合金と称する場合がある。)を含有する全固体リチウムイオン二次電池では、低い拘束圧条件では、充放電サイクルを繰り返した場合に容量維持率が低くなると考えられる。
In a lithium ion secondary battery using an alloy of Si and Li as a negative electrode active material, the volume change accompanying Li insertion / release reaction shown in the above formulas (1) and (2) is large.
Therefore, in an all-solid-state lithium ion secondary battery that uses a solid electrolyte instead of a fluid electrolyte as an electrolyte, the solid electrolyte layer and the negative electrode that can follow the volume change of the negative electrode itself containing an alloy of Si and Li. It is difficult to form an interface, and peeling or the like occurs at the interface. Therefore, Li ions hardly move between the solid electrolyte and the negative electrode mainly when the negative electrode (alloy of Si and Li) contracts (discharges), and lithium metal is deposited at the interface.
For these reasons, in an all-solid-state lithium ion secondary battery containing an alloy of Si and Li (hereinafter sometimes referred to as an SiLi alloy) as a negative electrode active material, a charge / discharge cycle is performed under low restraint pressure conditions. It is considered that the capacity retention rate decreases when repeated.

また、上述のように、電池に高い拘束圧を印加することで、負極活物質であるSiLi合金の体積変化による固体電解質層と負極の界面へ影響を低減することはできるが、大型の拘束具を用いる必要があるため、体積当たりの理論容量が大きいSi合金系活物質を使用しても電池全体としてのエネルギー密度を向上することができなかった。   In addition, as described above, by applying a high restraint pressure to the battery, the influence on the interface between the solid electrolyte layer and the negative electrode due to the volume change of the SiLi alloy as the negative electrode active material can be reduced. Therefore, even when a Si alloy active material having a large theoretical capacity per volume was used, the energy density of the entire battery could not be improved.

本開示の全固体リチウムイオン二次電池用負極原料及び負極部材においては、負極活物質原料として使用する、密度が1.5g/cm以下であり細孔を有するSi単体が、内部に細孔を有するため、Liとの合金化反応に伴う体積膨張、及び、当該LiとSiの合金からLiが離脱する反応に伴う体積収縮が低減される。そのため、当該負極原料及び負極部材から製造された負極を備える全固体リチウムイオン二次電池では、充放電に伴う負極の体積変化、及び固体電解質層と負極の界面に与える影響を低減することができる。
このような理由から、本開示の負極原料及び負極部材から製造された負極を備える全固体リチウムイオン二次電池では、低い拘束圧であっても、容量維持率を高く保つことができると考えられる。
In the negative electrode raw material and negative electrode member for an all-solid-state lithium ion secondary battery of the present disclosure, the Si simple substance having a density of 1.5 g / cm 3 or less and having pores is used as the negative electrode active material raw material. Therefore, volume expansion associated with an alloying reaction with Li and volume shrinkage associated with a reaction where Li is released from the Li-Si alloy are reduced. Therefore, in the all-solid-state lithium ion secondary battery including the negative electrode manufactured from the negative electrode raw material and the negative electrode member, the volume change of the negative electrode accompanying charge / discharge and the influence on the interface between the solid electrolyte layer and the negative electrode can be reduced. .
For these reasons, in an all-solid-state lithium ion secondary battery including a negative electrode manufactured from the negative electrode material and the negative electrode member of the present disclosure, it is considered that the capacity retention rate can be kept high even at a low restraint pressure. .

以下、本開示の負極原料、負極部材、及び、全固体リチウムイオン二次電池の製造方法の順に詳細に説明する。   Hereinafter, the negative electrode raw material, the negative electrode member, and the manufacturing method of the all solid lithium ion secondary battery according to the present disclosure will be described in detail in the order.

1.負極原料
本開示の負極原料は、全固体リチウムイオン二次電池の製造に用いる負極原料であって、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有するものであれば特に制限はない。
後述する通電工程において、上述の式(1)の反応により、本開示の負極原料から得られる負極部材中の前記細孔を有するSi単体がLiと合金化されることで、負極活物質としてSiとLiとの合金を含む負極が得られる。
内部に細孔を有さない中実なSi単体では、上記式(1)のLiイオンの挿入反応に伴い、体積は4倍にもなることが知られている。
本開示の負極原料は、負極活物質原料として細孔を有するSi単体を用いるため、Si単体の内部方向に体積膨張を誘導することによって、Liイオンの挿入反応に伴う体積変化を吸収することができるため、負極活物質原料である細孔を有するSi単体と負極活物質であるLiSi合金の体積の変化を低減することが可能となる。
1. Negative electrode raw material The negative electrode raw material of the present disclosure is a negative electrode raw material used for the production of an all-solid-state lithium ion secondary battery, and includes a Si simple substance having a density of 1.5 g / cm 3 or less as a negative electrode active material raw material. There is no particular limitation as long as it does.
In the energization process described later, the Si simple substance having the pores in the negative electrode member obtained from the negative electrode material of the present disclosure is alloyed with Li by the reaction of the above-described formula (1). A negative electrode containing an alloy of Li and Li is obtained.
It is known that a solid Si simple substance having no pores inside has a volume four times as large as the Li ion insertion reaction of the above formula (1).
Since the negative electrode raw material of the present disclosure uses Si simple substance having pores as the negative electrode active material raw material, by inducing volume expansion in the internal direction of the Si simple substance, it is possible to absorb the volume change accompanying the insertion reaction of Li ions. Therefore, it is possible to reduce the volume change of the Si simple substance having pores as the negative electrode active material raw material and the LiSi alloy as the negative electrode active material.

本開示の負極原料が負極活物質原料として含有する前記細孔を有するSi単体は、密度が1.5g/cm以下である。密度が1.5g/cmを超えるSi単体では、細孔が少なすぎるため、合金化に伴う体積変化を充分に吸収することができない。そのため、負極活物質として密度が1.5g/cmを超えるSi単体を含有する負極原料から製造される全固体リチウムイオン二次電池では、充放電に伴う負極の体積変化、及び、固体電解質と負極の界面へ影響を低減することができず、低い拘束圧では、容量維持率を高く保つことができない。
また、エネルギー密度の観点から、前記細孔を有するSi単体は、密度が0.6g/cm以上であってもよいし、1.0g/cm以上であってもよい。
なお、細孔を有さない中実なSi単体の密度は約2.3g/cmである。
The Si simple substance having pores contained in the negative electrode material of the present disclosure as the negative electrode active material material has a density of 1.5 g / cm 3 or less. In the case of Si alone having a density exceeding 1.5 g / cm 3 , the number of pores is too small to sufficiently absorb the volume change accompanying alloying. Therefore, in an all-solid-state lithium ion secondary battery manufactured from a negative electrode raw material containing Si alone having a density exceeding 1.5 g / cm 3 as a negative electrode active material, the volume change of the negative electrode accompanying charge / discharge, and the solid electrolyte The influence on the interface of the negative electrode cannot be reduced, and the capacity retention rate cannot be kept high at a low restraint pressure.
Further, from the viewpoint of energy density, the Si simple substance having the pores may have a density of 0.6 g / cm 3 or more, or 1.0 g / cm 3 or more.
In addition, the density of the solid Si simple substance which does not have a pore is about 2.3 g / cm < 3 >.

本開示において、密度とはSi単体に含まれる細孔(内部の空隙も含む)も体積として含んで計算された密度を指す。密度の測定方法に特に制限はないが、Si単体の質量を、細孔を含むSi単体の体積で割ることにより、算出することができる。例えば、Si単体が膜状である場合には細孔を含むSi単体の体積は、Si単体の面積×Si単体の厚さで算出することができ、Si単体の厚さは、SEMや触針式プロファイリングシステム(商品名:Dektak、BRUKER製)等で測定することができる。また、例えば、Si単体が粒状である場合にはビーズ置換法など、細孔を含むSi単体の体積を計測できる公知の方法で測定することができる。   In the present disclosure, the density refers to a density calculated by including pores (including internal voids) contained in Si alone as a volume. The density measurement method is not particularly limited, but it can be calculated by dividing the mass of Si alone by the volume of Si alone including pores. For example, when the Si simple substance is a film, the volume of the Si simple substance including the pores can be calculated by the area of the Si simple substance × the thickness of the Si simple substance. It can be measured by an expression profiling system (trade name: Dektak, manufactured by BRUKER) or the like. In addition, for example, when Si is granular, it can be measured by a known method that can measure the volume of Si including pores, such as a bead replacement method.

本開示の負極原料が負極活物質原料として含有するSi単体は、細孔を有する。本開示において、細孔を有するSi単体とは、多数の細孔を有するSi単体であってもよい。
前記細孔のSi単体中における分布にも特に制限はないが、細孔がSi単体中に均一に分布していてもよい。また、前記細孔のサイズにも特に制限はないが、細孔の内径が0.001〜1μmであってもよく、0.001〜0.1μmであってもよい。
Si simple substance which the negative electrode raw material of this indication contains as a negative electrode active material raw material has a pore. In the present disclosure, the Si simple substance having pores may be a Si simple substance having a large number of pores.
The distribution of the pores in the Si simple substance is not particularly limited, but the pores may be uniformly distributed in the Si simple substance. Moreover, although there is no restriction | limiting in particular in the size of the said pore, the internal diameter of a pore may be 0.001-1 micrometer and 0.001-0.1 micrometer may be sufficient.

前記細孔は、閉気孔であっても開気孔であってもよい。また、前記細孔として、Heガスが内包される閉気孔を有していてもよい。Heガスが内包される閉気孔を有することにより、体積膨張に対する反発力が発生するため、充放電に伴う体積膨張を低減することが可能となる。
前記Si単体が、Heガスが内包される閉気孔を有するか否かの判断方法にも特に制限はないが、STEM−EELS(Scanning Transmission Electron Microscope−Electron Energy Loss Spectroscopy)観察により判断することができる。
The pores may be closed pores or open pores. Further, the pores may have closed pores in which He gas is included. By having the closed pores in which the He gas is included, a repulsive force against the volume expansion is generated, so that it is possible to reduce the volume expansion associated with charging and discharging.
Although there is no particular limitation on a method for determining whether or not the Si simple substance has closed pores containing He gas, it can be determined by STEM-EELS (Scanning Transmission Electron Microscope-Electron Energy Loss Spectroscopy) observation. .

本開示の負極原料が負極活物質原料として含有するSi単体の形状にも特に制限はなく、例えば、膜状、粒状等のSi単体があげられる。エネルギー密度の観点から、膜状であってもよい。   The shape of the Si simple substance contained in the negative electrode raw material of the present disclosure as the negative electrode active material raw material is not particularly limited, and examples thereof include Si simple substances such as a film shape and a granular shape. From the viewpoint of energy density, it may be a film.

また、前記Si単体は、電子伝導性の観点から、Si以外の金属元素である微量のドーパントによりドープされていてもよい。
前記Si単体は、市販のものを使用しても良いし、製造して準備してもよい。当該Si単体の製造方法にも特に制限はないが、Heガスを含有する放電ガスを用いてスパッタ法により製造されたものであってもよい。
Moreover, the said Si simple substance may be doped with the trace amount dopant which is metal elements other than Si from a viewpoint of electronic conductivity.
The Si simple substance may be a commercially available one, or may be manufactured and prepared. Although there is no restriction | limiting in particular also in the manufacturing method of the said Si single-piece | unit, What was manufactured by the sputtering method using discharge gas containing He gas may be used.

負極原料は、負極活物質原料以外に、必要に応じ、導電材、固体電解質、及び、結着剤などの他の原料を含むものであってもよい。
負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する負極原料から製造された負極であれば充放電に伴う体積変化を吸収することができるため、他の成分を含む負極原料から製造された負極であっても、充放電に伴う体積の変化が低減されるためである。
前記導電材としては、アセチレンブラック、カーボンファイバー等の炭素材料を挙げることができる。
前記固体電解質としては、固体電解質結晶、非晶性固体電解質、固体電解質ガラスセラミックスのいずれであってもよく、後述する固体電解質部材の原料と同様のものを用いることができる。
前記結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができる。
The negative electrode raw material may include other raw materials such as a conductive material, a solid electrolyte, and a binder as required in addition to the negative electrode active material raw material.
A negative electrode manufactured from a negative electrode raw material having a density of 1.5 g / cm 3 or less as a negative electrode active material raw material and containing a simple substance of Si having pores can absorb a change in volume accompanying charge and discharge. This is because even a negative electrode manufactured from a negative electrode raw material containing any of the above components can reduce a change in volume accompanying charge / discharge.
Examples of the conductive material include carbon materials such as acetylene black and carbon fiber.
The solid electrolyte may be any of a solid electrolyte crystal, an amorphous solid electrolyte, and a solid electrolyte glass ceramic, and the same materials as those of the solid electrolyte member described later can be used.
Examples of the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), and an acrylic resin. it can.

負極活物質原料以外の成分が少ないほど、得られる電池のエネルギー密度が高くなることから、本開示の負極原料は、負極活物質原料のみを含むものであってもよいし、密度が1.5g/cm以下であり細孔を有するSi単体のみを含むものであってもよい。 Since the energy density of the obtained battery increases as the amount of components other than the negative electrode active material raw material decreases, the negative electrode raw material of the present disclosure may include only the negative electrode active material raw material, and the density is 1.5 g. / Si 3 or less, and may include only Si having pores.

また、負極原料は、前記細孔を有するSi単体を含む負極活物質原料、並びに、必要に応じ含有される、導電材、固体電解質、及び、結着剤の原料以外の成分を含んでいてもよく、さらに、後述の負極部材を形成する途中で除去される成分を含んでいてもよい。負極原料中に含まれるが、負極部材を形成する途中で除去される成分としては、溶剤や除去可能な結着剤が挙げられる。除去可能な結着剤としては、負極部材を形成するときには結着剤として機能するが、負極部材を得る工程で焼成することにより分解又は揮散等し除去され、結着剤を含まない負極部材とすることができる、結着剤を用いることができる。そのような除去可能な結着剤としては、ポリビニルブチルフラール、アクリル樹脂等が挙げられる。   Further, the negative electrode raw material may contain a component other than the negative electrode active material raw material including the Si simple substance having pores, and the conductive material, the solid electrolyte, and the binder raw material contained as necessary. In addition, a component that is removed during the formation of the negative electrode member described later may be included. Examples of the component that is contained in the negative electrode raw material but is removed during the formation of the negative electrode member include a solvent and a removable binder. The removable binder functions as a binder when forming the negative electrode member, but is removed by decomposition or volatilization by firing in the step of obtaining the negative electrode member, and does not include the binder. A binder can be used. Examples of such removable binders include polyvinyl butylfural and acrylic resins.

2.負極部材
本開示の全固体リチウムイオン二次電池用負極部材は、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する。負極部材に含有される負極活物質やその他の原料、また好適組成については、1.負極原料において記載したため、記載を省略する。
2. Negative Electrode Member The negative electrode member for an all-solid-state lithium ion secondary battery of the present disclosure contains Si as a negative electrode active material raw material having a density of 1.5 g / cm 3 or less and having pores. Regarding the negative electrode active material and other raw materials contained in the negative electrode member, and preferred compositions, Since it was described in the negative electrode raw material, the description is omitted.

負極部材を製造する方法にも、特に制限はない。負極活物質原料として使用する密度が1.5g/cm以下であり細孔を有するSi単体を用いた負極部材から製造される負極では、その製造方法に関わらず、充放電に伴う負極全体としての体積変化が小さくなると考えられるためである。 There is no particular limitation on the method for producing the negative electrode member. In a negative electrode manufactured from a negative electrode member using a simple substance of Si having a density of 1.5 g / cm 3 or less and used as a negative electrode active material raw material, the negative electrode as a whole accompanying charge and discharge is used regardless of the manufacturing method. This is because the volume change is considered to be small.

負極部材を形成する方法としては、例えば、前記負極原料の粉末を圧縮成形する方法が挙げられる。負極原料の粉末を圧縮成形する場合には、通常、1〜400MPa程度のプレス圧を負荷する。
また、除去可能な結着剤を含む負極原料の粉末を圧縮成形した後、焼成することにより結着剤を除去する方法や、溶剤及び除去可能な結着剤を含む負極原料の分散液を固体電解質部材の上又は集電体等の他の支持体の上に塗布、乾燥して負極部材の形状に形成した後、焼成することにより結着剤を除去する方法などが挙げられる。
Examples of a method for forming the negative electrode member include a method in which the negative electrode raw material powder is compression-molded. When the negative electrode raw material powder is compression-molded, a press pressure of about 1 to 400 MPa is usually applied.
In addition, a method of removing a binder by compressing and molding a negative electrode raw material powder containing a removable binder, or a solid dispersion of a negative electrode raw material containing a solvent and a removable binder. Examples of the method include a method of removing the binder by firing after forming on the electrolyte member or another support such as a current collector and drying to form the shape of the negative electrode member.

また、本開示の負極部材が、負極活物質原料である密度が1.5g/cm以下であり細孔を有するSi単体膜のみを含むものである場合には、Heガスを含有する放電ガスを用いてスパッタ法により集電体等の他の支持体や後述する固体電解質部材上に成膜してもよい。 In addition, when the negative electrode member of the present disclosure has only a density of 1.5 g / cm 3 that is a negative electrode active material material and includes only a Si simple film having pores, a discharge gas containing He gas is used. Alternatively, a film may be formed on another support such as a current collector or a solid electrolyte member described later by a sputtering method.

3.全固体リチウムイオン二次電池の製造方法
本開示の負極活物質としてSiとLiとの合金を含む負極を備える全固体リチウムイオン二次電池の製造方法は、前記負極部材、正極部材、及び固体電解質部材を備える電池部材を準備する工程と、前記電池部材に通電する通電工程と、を有する。
3. Manufacturing method of all-solid-state lithium ion secondary battery The manufacturing method of the all-solid-state lithium ion secondary battery provided with the negative electrode containing the alloy of Si and Li as a negative electrode active material of this indication is the said negative electrode member, a positive electrode member, and solid electrolyte A step of preparing a battery member including the member, and an energization step of energizing the battery member.

3−1.負極部材、正極部材、及び固体電解質部材を備える電池部材を準備する工程
負極部材については、2.で説明したため、以下、正極部材、固体電解質部材、及び電池部材の例について述べる。
3-1. Step of preparing a battery member including a negative electrode member, a positive electrode member, and a solid electrolyte member. Therefore, examples of the positive electrode member, the solid electrolyte member, and the battery member will be described below.

3−1−1.正極部材
本開示の製造方法において、正極部材は、通常、Liを含有する正極活物質原料を含み、必要に応じ、結着材、固体電解質、及び導電材等の他の正極原料を含む。当該正極部材が、後述する通電工程を経て、全固体リチウム二次電池の正極となる。
本開示においてLiを含有する正極活物質原料は、負極活物質との関係で電池化学反応上の正極として機能し、Liイオンの移動を伴う電池化学反応を進行させる物質であれば、特に制限されず正極活物質原料として用いることができ、従来リチウムイオン電池の正極活物質として知られている物質も、本開示の製造方法において用いることができる。
正極活物質原料としては例えば、リチウム含有金属酸化物が挙げられる。リチウム含有金属酸化物としては、例えば、LiCoO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCoPO等のオリビン型活物質等を挙げることができる。
前記正極活物質原料の形状は特に限定されないが、膜状であっても粒子状であってもよい。
正極原料中の正極活物質原料の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%〜100質量%の範囲内であることが好ましく、70質量%〜100質量%の範囲内であることがより好ましい。
3-1-1. Positive Electrode Member In the production method of the present disclosure, the positive electrode member usually includes a positive electrode active material material containing Li, and optionally includes other positive electrode materials such as a binder, a solid electrolyte, and a conductive material. The positive electrode member becomes a positive electrode of an all-solid lithium secondary battery through an energization process described later.
In the present disclosure, the positive electrode active material raw material containing Li is not particularly limited as long as it is a substance that functions as a positive electrode on the battery chemical reaction in relation to the negative electrode active material and advances the battery chemical reaction accompanied by the movement of Li ions. Any material that can be used as a positive electrode active material, and conventionally known as a positive electrode active material of a lithium ion battery can also be used in the manufacturing method of the present disclosure.
Examples of the positive electrode active material material include lithium-containing metal oxides. Examples of the lithium-containing metal oxide include rock salt layer type active materials such as LiCoO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li (Ni 0). .5 Mn 1.5) spinel active material O 4 or the like, can be cited LiFePO 4, LiMnPO 4, LiNiPO 4, LiCoPO olivine active material such as 4.
The shape of the positive electrode active material raw material is not particularly limited, but may be a film shape or a particle shape.
The ratio of the positive electrode active material raw material in the positive electrode raw material is not particularly limited, but is, for example, 50% by mass or more, preferably in the range of 60% by mass to 100% by mass, and 70% by mass to 100%. More preferably, it is in the range of mass%.

結着材、導電材、固体電解質の原料としては、負極原料で使用する原料と同様のものを用いることができる。   As the raw material for the binder, the conductive material, and the solid electrolyte, the same materials as those used for the negative electrode material can be used.

正極部材を形成するための正極原料は、さらに、正極部材を形成する途中で除去される成分を含んでいてもよい。正極原料中に含まれるが、正極部材を形成する途中で除去される成分としては、負極原料に含有させることができる溶剤や除去可能な結着材と同様の成分が挙げられる。
正極部材を形成する方法としては、負極部材を形成する方法と同様の方法が挙げられる。
The positive electrode raw material for forming the positive electrode member may further contain a component that is removed during the formation of the positive electrode member. The components that are contained in the positive electrode raw material but are removed during the formation of the positive electrode member include the same components as the solvent that can be contained in the negative electrode raw material and the removable binder.
Examples of the method for forming the positive electrode member include the same methods as the method for forming the negative electrode member.

3−1−2.固体電解質部材
本開示の製造方法において、固体電解質部材は、例えば、固体電解質を含み、必要に応じ、他の成分を含む。当該固体電解質部材が、後述する通電工程を経て、全固体リチウム二次電池の固体電解質層となる。
固体電解質としては、Liイオンの伝導度が高い酸化物系固体電解質、及び硫化物系固体電解質が好ましく用いられる。
前記酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、LiPON等が挙げられ、前記硫化物系固体電解質としては、例えば、Li11、LiPS、Li、Li13GeP16、Li10GeP12等が挙げられる。
3-1-2. Solid Electrolyte Member In the manufacturing method of the present disclosure, the solid electrolyte member includes, for example, a solid electrolyte, and includes other components as necessary. The solid electrolyte member becomes a solid electrolyte layer of an all-solid lithium secondary battery through an energization process described later.
As the solid electrolyte, an oxide solid electrolyte having a high Li ion conductivity and a sulfide solid electrolyte are preferably used.
Examples of the oxide-based solid electrolyte include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 , LiPON, and the like. Examples of the sulfide-based solid electrolyte include Li 7 P 3 S 11, Li 3 PS 4 , Li 8 P 2 S 9, Li 13 GeP 3 S 16, Li 10 GeP 2 S 12 , and the like.

固体電解質部材中の固体電解質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%〜100質量%の範囲内であることが好ましく、70質量%〜100質量%の範囲内であることがより好ましい。   Although the ratio of the solid electrolyte in a solid electrolyte member is not specifically limited, For example, it is 50 mass% or more, and it is preferable to exist in the range of 60 mass%-100 mass%, and 70 mass%-100 mass. % Is more preferable.

固体電解質部材を形成する方法としては、固体電解質及び必要に他の成分を含む固体電解質層製造用原料の粉末を圧縮成形する方法が挙げられる。固体電解質層製造用原料の粉末を圧縮成形する場合には、通常、負極原料の粉末を圧縮成形する場合と同様に、1〜400MPa程度のプレス圧を負荷する。
また、他の方法としては、固体電解質及び必要に応じ他の成分を含有する固体電解質層製造用原料の溶液又は分散液を用いたキャスト成膜法などを行うことができる。
Examples of the method for forming the solid electrolyte member include a method of compression molding a solid electrolyte and a raw material powder for producing a solid electrolyte layer containing other components as necessary. When the powder of the raw material for producing the solid electrolyte layer is compression-molded, a press pressure of about 1 to 400 MPa is usually applied as in the case of compression-molding the powder of the negative electrode material.
Moreover, as another method, the cast film-forming method etc. which used the solution or dispersion liquid of the raw material for solid electrolyte layers manufacture containing a solid electrolyte and another component as needed can be performed.

3−1−3.電池部材
本開示の製造方法において電池部材は、例えば、正極部材、固体電解質部材、及び、負極部材がこの順序で配列され、直接または他の材料からなる部分を介して接合しており、さらに、正極部材上の固体電解質部材が存在する位置とは反対側(正極合材の外方側)、及び、負極部材上の固体電解質部材が存在する位置とは反対側(負極合材の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体(正極部材−固体電解質部材−負極部材集合体)である。当該電池部材が、後述する通電工程を経て、全固体リチウムイオン二次電池となる。
前記電池部材は、正極部材側から固体電解質部材を経由して負極部材側に至る方向へ通電できる限り、他の材料からなる部分が付属していてもよい。正極部材と固体電解質部材の間には、例えば、LiNbO、LiTi12、LiPOのような被覆層が設けられていても良い。正極部材の外方側及び負極部材の外方側のいずれか一方又は両方の側には、例えば、集電体、外装体が付属していてもよい。
上記電池部材は、典型的には、正極部材、負極部材、及び、前記正極部材と前記負極部材の間に配置された固体電解質部材が直接接合し、且つ、正極部材の外方側及び負極部材の外方側のいずれにも他の材料からなる部分が接合していない配列構造を有する集合体である。
3-1-3. Battery member In the manufacturing method of the present disclosure, for example, the battery member includes a positive electrode member, a solid electrolyte member, and a negative electrode member arranged in this order, and joined directly or via a portion made of another material. The side opposite to the position where the solid electrolyte member exists on the positive electrode member (outside of the positive electrode mixture) and the side opposite to the position where the solid electrolyte member exists on the negative electrode member (outside of the negative electrode mixture) ) On one side or both sides of each other, an assembly of each part having an array structure in which portions made of other materials may be joined (positive electrode member-solid electrolyte member-negative electrode member assembly). The battery member becomes an all-solid-state lithium ion secondary battery through an energization process described later.
As long as the battery member can be energized in a direction from the positive electrode member side to the negative electrode member side via the solid electrolyte member, a portion made of another material may be attached. Between the positive electrode member and the solid electrolyte member, for example, a coating layer such as LiNbO 3 , Li 4 Ti 5 O 12 , or Li 3 PO 4 may be provided. For example, a current collector or an exterior body may be attached to one or both of the outer side of the positive electrode member and the outer side of the negative electrode member.
The battery member typically includes a positive electrode member, a negative electrode member, and a solid electrolyte member disposed between the positive electrode member and the negative electrode member, and the outer side of the positive electrode member and the negative electrode member. It is an aggregate | assembly which has the arrangement | sequence structure in which the part which consists of another material is not joined to any of the outward side of.

電池部材を作製する方法は、特に限定されるものではなく、例えば、粉体圧縮成形用の圧縮シリンダ内に、負極原料の粉末を投入し均一な厚みに堆積して負極原料粉末層を形成し、その負極原料粉末層の上に、固体電解質粉末及び必要に応じ他の成分を含む固体電解質層製造用原料の粉末を投入し均一な厚みに堆積して固体電解質層製造用原料粉末層を形成し、その固体電解質層製造用原料粉末層の上に、Liを含有する正極活物質を含む正極原料の粉末を投入し均一な厚みに堆積して正極原料粉末層を形成した後、このようにして形成された3層の粉末堆積層を有する粉末堆積体を一度に圧縮成形することにより、電池部材を作製してもよい。   The method for producing the battery member is not particularly limited. For example, the negative electrode raw material powder is placed in a compression cylinder for powder compression molding and deposited to a uniform thickness to form a negative electrode raw material powder layer. Then, on the anode raw material powder layer, the solid electrolyte powder and the raw material powder for producing the solid electrolyte layer containing other components as required are deposited and deposited to a uniform thickness to form the raw material powder layer for producing the solid electrolyte layer Then, a positive electrode raw material powder containing a positive electrode active material containing Li is placed on the raw material powder layer for producing the solid electrolyte layer and deposited to a uniform thickness to form a positive electrode raw material powder layer. The battery member may be manufactured by compressing and molding a powder deposited body having three powder deposited layers formed at the same time.

また、固体電解質部材、負極部材、及び、正極部材は、粉体圧縮成形以外の手法で作製してもよい。具体的な方法は、本明細書中で上記したとおりである。例えば、固体電解質部材は、固体電解質を含む固体電解質層製造用原料の溶液又は分散液を用いたキャスト成膜法や、ダイコーターによる塗工法により成形してもよい。負極部材及び正極部材は、例えば、除去可能な結着剤を含む負極原料又は正極原料分散液を固体電解質部材の上に塗布することにより塗膜を形成した後、この塗膜を加熱して塗膜から結着剤を除去する方法や、あるいは、除去可能な結着剤を含む負極原料又は正極原料の粉末を圧縮成形して正極部材又は負極部材の形状とした後、この成形体を加熱して塗膜から結着剤を除去する方法により形成してもよい。負極部材及び正極部材については、電極密度を高めるため、圧縮成形前に予め緻密化プレスを行ってもよい。
また、負極部材及び正極部材は、固体電解質部材以外の支持体上に形成してもよい。その場合、当該支持体から負極部材及び正極部材を剥離し、剥離した負極部材又は正極部材を、固体電解質部材の上に接合する。
Moreover, you may produce a solid electrolyte member, a negative electrode member, and a positive electrode member by methods other than powder compression molding. The specific method is as described above in this specification. For example, the solid electrolyte member may be formed by a cast film forming method using a solution or dispersion of a raw material for producing a solid electrolyte layer containing a solid electrolyte, or a coating method using a die coater. The negative electrode member and the positive electrode member are formed by, for example, forming a coating film by applying a negative electrode raw material or a positive electrode raw material dispersion containing a removable binder onto the solid electrolyte member, and then heating the coating film. A method of removing the binder from the film, or a negative electrode raw material or a positive electrode raw material powder containing a removable binder is compression-molded to form a positive electrode member or a negative electrode member, and then the molded body is heated. Alternatively, it may be formed by a method of removing the binder from the coating film. About a negative electrode member and a positive electrode member, in order to raise an electrode density, you may perform densification press previously before compression molding.
Moreover, you may form a negative electrode member and a positive electrode member on support bodies other than a solid electrolyte member. In that case, the negative electrode member and the positive electrode member are peeled from the support, and the peeled negative electrode member or positive electrode member is bonded onto the solid electrolyte member.

3−2.電池部材に通電する通電工程
本開示の製造方法は、正極部材側から固体電解質部材を経由して負極部材側に至る方向へ通電する工程を有する。すなわち、通電により、正極活物質中のLiイオンが、固体電解質部材を介して、負極部材中の前記Si単体に挿入される電気化学的合金化反応が進行し、負極部材が負極活物質としてSiとLiとの合金を含む負極となることで、全固体リチウムイオン二次電池を得ることができる。
前記電池部材に通電する方法にも特に制限はないが、効率よく上記式(1)に示すような、電気化学的合金化反応を進行させるため、電流密度を0.001〜10mA/cmの範囲としてもよいし、電圧を0.01〜0.1V(vs Li/Li)の範囲としてもよい。
3-2. The energization process which supplies with electricity to a battery member The manufacturing method of this indication has the process of energizing in the direction which reaches the negative electrode member side via a solid electrolyte member from the positive electrode member side. That is, by energization, an electrochemical alloying reaction in which Li ions in the positive electrode active material are inserted into the Si simple substance in the negative electrode member through the solid electrolyte member proceeds, and the negative electrode member becomes Si as the negative electrode active material. By forming a negative electrode containing an alloy of Li and Li, an all-solid-state lithium ion secondary battery can be obtained.
The method for energizing the battery member is not particularly limited, but the current density is 0.001 to 10 mA / cm 2 in order to efficiently proceed the electrochemical alloying reaction as shown in the above formula (1). The voltage may be in the range, or the voltage may be in the range of 0.01 to 0.1 V (vs Li / Li + ).

3−3.拘束具を備える全固体リチウムイオン二次電池の製造方法
正極、固体電解質層、及び負極の配列方向に拘束圧を印加することができる拘束具を備える全固体リチウムイオン二次電池を製造する場合には、更に、少なくとも前記負極部材と前記固体電解質部材を重ねた状態で、第1の圧力を印加して当該負極部材と当該固体電解質部材を圧着する工程と、前記拘束具の拘束圧を第1の圧力より低い第2の圧力に調整する工程、を有していてもよい。
相対的に高い第1の圧力を印加して負極部材と固体電解質部材を圧着する工程により、予め強固な負極部材と固体電解質部材の界面を形成することによって、相対的に低い第2の圧力で全固体リチウムイオン二次電池を拘束した場合であっても、得られる全固体リチウムイオン二次電池の容量維持率を高く保つことが可能となる。
強固な負極部材と固体電解質部材の界面を形成できることから、前記第1の圧力は100MPa以上であってもよく、200MPa以上であってもよい。
3-3. Manufacturing method of all-solid-state lithium ion secondary battery provided with restraint tool When manufacturing an all-solid-state lithium ion secondary battery provided with a restraint tool capable of applying a restraining pressure in the arrangement direction of the positive electrode, the solid electrolyte layer, and the negative electrode Further includes applying a first pressure to pressure-bond the negative electrode member and the solid electrolyte member in a state where at least the negative electrode member and the solid electrolyte member are overlapped, A step of adjusting to a second pressure lower than the first pressure may be included.
By forming a strong interface between the negative electrode member and the solid electrolyte member in advance by applying a relatively high first pressure and crimping the negative electrode member and the solid electrolyte member, the second pressure is relatively low. Even when the all solid lithium ion secondary battery is constrained, the capacity retention rate of the obtained all solid lithium ion secondary battery can be kept high.
Since the strong negative electrode member and solid electrolyte member interface can be formed, the first pressure may be 100 MPa or more, or 200 MPa or more.

前記拘束具の拘束圧を第1の圧力より低い第2の圧力に調整する工程は、前記電池部材に通電する通電工程の前であってもよいし、通電工程の後であってもよいが、負極活物質原料であるSi単体が、負極活物質であるSiとLiとの合金になる際の体積変化による、負極部材と固体電解質部材の界面への影響を低減することができることから、通電工程前であってもよい。
拘束具を小型化できることから、前記第2の圧力が7MPa以下であってもよい。
The step of adjusting the restraining pressure of the restraining tool to the second pressure lower than the first pressure may be before the energizing step of energizing the battery member or after the energizing step. Since the influence of the volume change when Si as a negative electrode active material raw material becomes an alloy of Si and Li as the negative electrode active material can be reduced, the effect on the interface between the negative electrode member and the solid electrolyte member can be reduced. It may be before the process.
Since the restraint can be reduced in size, the second pressure may be 7 MPa or less.

4.全固体リチウムイオン二次電池
二次電池として機能するものであれば本開示の負極原料及び負極部材より製造される全固体リチウムイオン二次電池の構成に特に制限はないが、典型的には、正極、負極、並びに、当該正極及び当該負極の間に配置される固体電解質層を備え、正極−固体電解質層−負極集合体として構成される。この正極−固体電解質層−負極集合体は、正極、固体電解質及び負極がこの順序で配列され、直接または他の材料からなる部分を介して接合していてもよく、さらに、正極上の固体電解質層が存在する位置とは反対側(正極の外方側)、及び、負極上の固体電解質層が存在する位置とは反対側(負極の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体である。
上記の正極−固体電解質層−負極集合体に、集電体等の他の部材を取り付けることにより、全固体電池の機能的単位であるセルが得られ、当該セルをそのまま全固体リチウムイオン電池として用いてもよいし、複数のセルを集積して電気的に接続することによりセル集合体として、本開示の全固体リチウムイオン電池として用いてもよい。
正極−固体電解質層−負極集合体の正極と負極それぞれの厚みは、通常0.1μm〜10mm程度であり、固体電解質の厚みは、通常0.01μm〜1mm程度である。
全固体リチウムイオン二次電池は拘束具を備えていてもよい。拘束具を用いて、第2圧力によって全固体リチウムイオン二次電池を拘束することにより、容量維持率を更に高くすることが可能となるが、拘束具を備えると電池が大型化するため、求める性能に応じて、拘束具の有無やサイズを決定すればよい。
4). All-solid lithium ion secondary battery There is no particular limitation on the configuration of the all-solid lithium ion secondary battery produced from the negative electrode raw material and the negative electrode member of the present disclosure as long as it functions as a secondary battery. A positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode are provided, and a positive electrode-solid electrolyte layer-negative electrode assembly is configured. In the positive electrode-solid electrolyte layer-negative electrode assembly, the positive electrode, the solid electrolyte, and the negative electrode may be arranged in this order, and may be joined directly or via a portion made of another material. Further, the solid electrolyte on the positive electrode One or both of the side opposite to the position where the layer is present (the outer side of the positive electrode) and the side opposite to the position where the solid electrolyte layer is present on the negative electrode (the outer side of the negative electrode) It is the aggregate | assembly of each part which has the arrangement | sequence structure which the part which consists of another material may join.
By attaching another member such as a current collector to the positive electrode-solid electrolyte layer-negative electrode assembly, a cell which is a functional unit of an all-solid battery is obtained, and the cell is used as an all-solid lithium ion battery as it is. It may be used, or may be used as an all-solid-state lithium ion battery of the present disclosure as a cell aggregate by integrating and electrically connecting a plurality of cells.
The thickness of each of the positive electrode and the negative electrode of the positive electrode-solid electrolyte layer-negative electrode assembly is usually about 0.1 μm to 10 mm, and the thickness of the solid electrolyte is usually about 0.01 μm to 1 mm.
The all-solid-state lithium ion secondary battery may include a restraining tool. It is possible to further increase the capacity maintenance rate by restraining the all-solid-state lithium ion secondary battery by the second pressure using the restraint, but the battery becomes larger if the restraint is provided. The presence / absence and size of the restraint may be determined according to the performance.

4−1.負極
本開示の負極部材より製造される負極は、負極活物質としてSiとLiとの合金を含む。
前述のように電池部材に通電することによって、負極部材では、上記式(1)に示すSi単体に対するLiイオンの挿入反応が進行し、負極活物質としてSiとLiとの合金を含む負極を備える全固体リチウムイオン二次電池となる。
4-1. Negative electrode The negative electrode manufactured from the negative electrode member of the present disclosure includes an alloy of Si and Li as a negative electrode active material.
When the battery member is energized as described above, in the negative electrode member, the insertion reaction of Li ions with respect to the Si simple substance shown in the above formula (1) proceeds, and the negative electrode includes a negative electrode containing an alloy of Si and Li as a negative electrode active material. It becomes an all-solid-state lithium ion secondary battery.

負極活物質原料として密度が1.5g/cm以下である多孔質Si単体使用しているため、Liの挿入量が少ない放電状態では、SiLi合金である負極活物質中には、負極活物質原料に由来する細孔が存在する。
SiLi合金である負極活物質中にLiイオンが挿入する充電反応では、体積膨張を負極活物質の細孔内に誘導することによって、充電に伴う負極の体積変化を低減することができる。
また、SiLi合金であるLiイオンが離脱する放電反応では、離脱したLiの体積に相当する細孔が負極活物質内に回復するため、放電に伴う負極を体積変化が低減することができる。
このように本開示の負極原料、及び、負極部材より製造される負極では充放電に伴う体積変化が少なく、負極と固体電解質層の界面の破損が抑制されるため、本開示の負極原料、及び、負極部材から製造された負極を備える全固体リチウムイオン二次電池では、低い拘束圧であっても、容量維持率を高く保つことができる。
Since the porous Si simple substance having a density of 1.5 g / cm 3 or less is used as the negative electrode active material raw material, the negative electrode active material, which is a SiLi alloy, is included in the negative electrode active material in a discharge state with a small amount of Li insertion. There are pores derived from the raw material.
In the charging reaction in which Li ions are inserted into the negative electrode active material that is a SiLi alloy, volume change of the negative electrode accompanying charging can be reduced by inducing volume expansion into the pores of the negative electrode active material.
Further, in the discharge reaction in which Li ions, which are SiLi alloys, are released, the pores corresponding to the volume of the released Li are recovered in the negative electrode active material, so that the volume change of the negative electrode accompanying discharge can be reduced.
Thus, in the negative electrode raw material of the present disclosure and the negative electrode manufactured from the negative electrode member, there is little volume change due to charging and discharging, and damage to the interface between the negative electrode and the solid electrolyte layer is suppressed. In an all-solid-state lithium ion secondary battery including a negative electrode manufactured from a negative electrode member, the capacity retention rate can be kept high even at a low restraint pressure.

負極活物質として含有するSiとLiとの合金は、Heガスが内包される閉気孔を有する物であってもよい。   The alloy of Si and Li contained as the negative electrode active material may have a closed pore in which He gas is included.

SiとLiとの合金が、Heガスが内包される閉気孔を有するか否かの判断方法にも特に制限はないが、Si単体と同様にSTEM−EELS(Scanning Transmission Electron Microscope−Electron Energy Loss Spectroscopy)観察により判断することができる。   Although there is no particular limitation on the method for determining whether the alloy of Si and Li has closed pores in which He gas is included, STEM-EELS (Scanning Transmission Electron Microscopic Energy Loss Spectroscopy as well as Si simple substance) ) Can be judged by observation.

前記SiLi合金の形状にも特に制限はなく、例えば、粒子状、膜状の形状等が挙げられる。負極活物質であるSiLi合金は、当該合金以外の成分が無くても負極として機能することができることから、膜状の形状であってもよい。   There is no restriction | limiting in particular also in the shape of the said SiLi alloy, For example, the shape of a particle form, a film | membrane form, etc. are mentioned. Since the SiLi alloy that is the negative electrode active material can function as the negative electrode even if there is no component other than the alloy, it may have a film shape.

負極には負極活物質以外に、必要に応じて、負極部材に含まれる、結着剤、導電材、固体電解質などの他の成分が含まれていてもよい。結着剤、導電材、固体電解質などの他の成分は、負極部材で使用する材料と同様である。   In addition to the negative electrode active material, the negative electrode may contain other components such as a binder, a conductive material, and a solid electrolyte, which are included in the negative electrode member, as necessary. Other components such as the binder, the conductive material, and the solid electrolyte are the same as the materials used in the negative electrode member.

負極活物質以外の成分が少ないほど、エネルギー密度が高くなることから、負極は、負極活物質のみを含むものであってもよいし、負極活物質は、SiとLiとの合金のみからなるものであってもよい。   Since the energy density increases as the amount of components other than the negative electrode active material decreases, the negative electrode may include only the negative electrode active material, or the negative electrode active material includes only an alloy of Si and Li. It may be.

4−2.正極
前記正極は、全固体リチウムイオン二次電池の正極として機能するものであれば、特に制限はないが、通常、Liを含有する正極活物質を含み、必要に応じ、結着材、固体電解質、及び導電材等の他の成分を含む。
正極活物質、結着材、導電材、固体電解質としては、正極部材で使用する材料と同様である。
4-2. Positive electrode The positive electrode is not particularly limited as long as it functions as a positive electrode of an all-solid-state lithium ion secondary battery, but usually contains a positive electrode active material containing Li, and if necessary, a binder, a solid electrolyte And other components such as a conductive material.
The positive electrode active material, the binder, the conductive material, and the solid electrolyte are the same as the materials used for the positive electrode member.

4−3.固体電解質層
固体電解質層も、全固体リチウム二次電池の固体電解質層として機能するものであれば、特に制限はないが、通常、固体電解質を含み、必要に応じ、他の成分を含む。
固体電解質、及び、他の成分としては、固体電解質部材で使用する材料と同様である。
4-3. Solid Electrolyte Layer The solid electrolyte layer is not particularly limited as long as it functions as a solid electrolyte layer of an all-solid lithium secondary battery, but usually includes a solid electrolyte and, if necessary, includes other components.
The solid electrolyte and other components are the same as the materials used for the solid electrolyte member.

4−4.拘束具
本開示の負極原料、及び、負極部材より製造される全固体リチウムイオン二次電池が必要に応じて備えてもよい拘束具は、正極、固体電解質層、及び負極の配列方向に拘束圧を印加することができるものであれば特に制限はないが、通常、ボルト締めにより、正極、固体電解質層、及び負極の配列方向に均一な拘束圧を印加することができる拘束具を用いる。
4-4. Restraint The negative electrode raw material of the present disclosure and the all-solid-state lithium ion secondary battery manufactured from the negative electrode member may include a restraint tool as necessary in the arrangement direction of the positive electrode, the solid electrolyte layer, and the negative electrode. Although there is no restriction | limiting in particular if it can apply | coat, The restraint tool which can apply a uniform restraint pressure to the arrangement direction of a positive electrode, a solid electrolyte layer, and a negative electrode by bolting normally is used.

(固体電解質の合成)
出発原料として、LiS、及びPを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、化学量論組成(モル比で4:1)の組成となるように混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(5mmφ、80個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(商品名:P7、フリッチュ・ジャパン株式会社製)に取り付け、台盤回転数500rpmで、20時間メカニカルミリングを行った。これにより、固体電解質としてLiの粉末を得た。
(Synthesis of solid electrolyte)
Li 2 S and P 2 S 5 were used as starting materials. These powders were mixed in a glove box under an argon atmosphere so as to have a stoichiometric composition (4: 1 molar ratio) to obtain a raw material composition. Next, 1 g of the raw material composition was placed in a zirconia pot (45 ml) together with zirconia balls (5 mmφ, 80 pieces), and the pot was completely sealed (argon atmosphere). This pot was attached to a planetary ball mill (trade name: P7, manufactured by Fritsch Japan Co., Ltd.), and mechanical milling was performed at a base plate rotation speed of 500 rpm for 20 hours. Thus, to obtain a powder of Li 8 P 2 S 9 as a solid electrolyte.

(サイクル特性評価用セルの準備)
[実施例1]
集電体であるステンレス板の表面に、負極原料であるSi単体の膜を、RF/DCマグネトロンスパッタ装置(商品名:SPAD−2240UM、AOV株式会社製)を用いて、放電ガスとしてHeガスを使用したスパッタ法により成膜し実施例1の負極部材を得た。なお、実施例1においては負極原料中には負極活物質原料以外の成分は含まれないため、負極活物質原料が負極原料である。
In箔(ニラコ社製、φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付した対極材料(LiIn箔)を用意した。
前記固体電解質の粉末150mgを、マコール製のシリンダに添加し、340MPa(3.5ton/cm)でプレスし固体電解質部材を得た。
当該固体電解質部材の一方の表面に、LiIn箔を配置し、100MPa(5ton/cm)でプレスした。
当該固体電解質部材の他方の表面に実施例1の負極部材を配置し、LiIn箔−固体電解質部材−負極合材集合体を得た。
このように得られた、LiIn箔−固体電解質部材−負極部材集合体に拘束具を設置し、LiIn箔、固体電解質部材、及び負極部材の配列方向に7MPaの拘束圧を印加して、0.1mA/cmの定電流で、電圧が2.5V(vs Li/Li)となるまで通電し、実施例1のサイクル特性評価用セルを得た。
[比較例1]
実施例1において、放電ガスをArガスに変更したこと以外は、実施例1と同様に比較例1の負極部材及びサイクル特性評価用セルを準備した。
(Preparation of cell for cycle characteristic evaluation)
[Example 1]
Using a RF / DC magnetron sputtering apparatus (trade name: SPAD-2240UM, manufactured by AOV Co., Ltd.), a He gas as a discharge gas is formed on the surface of a stainless steel plate, which is a current collector, using a film of Si as a negative electrode material. A negative electrode member of Example 1 was obtained by film formation by the sputtering method used. In Example 1, since the negative electrode material does not contain any components other than the negative electrode active material, the negative electrode active material is the negative electrode material.
A counter electrode material (LiIn foil) was prepared by attaching Li foil (manufactured by Honjo Chemical Co., Ltd.) to In foil (manufactured by Niraco, φ10 mm, thickness 0.1 mm).
150 mg of the solid electrolyte powder was added to a cylinder made by Macor and pressed at 340 MPa (3.5 ton / cm 2 ) to obtain a solid electrolyte member.
A LiIn foil was placed on one surface of the solid electrolyte member and pressed at 100 MPa (5 ton / cm 2 ).
The negative electrode member of Example 1 was arrange | positioned on the other surface of the said solid electrolyte member, and LiIn foil-solid electrolyte member-negative electrode composite material assembly was obtained.
A restraint was placed on the LiIn foil-solid electrolyte member-negative electrode member assembly obtained in this way, and a restraint pressure of 7 MPa was applied in the arrangement direction of the LiIn foil, solid electrolyte member, and negative electrode member, and 0. Electricity was supplied at a constant current of 1 mA / cm 2 until the voltage reached 2.5 V (vs Li / Li + ), and the cycle characteristic evaluation cell of Example 1 was obtained.
[Comparative Example 1]
In Example 1, a negative electrode member and a cycle characteristic evaluation cell of Comparative Example 1 were prepared in the same manner as in Example 1 except that the discharge gas was changed to Ar gas.

[実施例2]
実施例1において、固体電解質部材の表面に実施例2の負極部材を配置した状態で100MPaの圧力を印加したこと以外は、実施例1と同様に実施例2の負極合材及びサイクル特性評価用セルを準備した。
[Example 2]
In Example 1, except that a pressure of 100 MPa was applied in a state where the negative electrode member of Example 2 was disposed on the surface of the solid electrolyte member, the negative electrode mixture and cycle characteristic evaluation of Example 2 were performed in the same manner as in Example 1. A cell was prepared.

[比較例2−4]
実施例2において、表4に示すように放電ガス種等のスパッタ条件を変更したこと以外は、実施例2と同様に比較例2−4の負極部材及びサイクル特性評価用セルを準備した。
[Comparative Example 2-4]
In Example 2, the negative electrode member and the cycle characteristic evaluation cell of Comparative Example 2-4 were prepared in the same manner as in Example 2 except that the sputtering conditions such as the discharge gas species were changed as shown in Table 4.

[参考実施例1]
実施例2において、LiIn箔−固体電解質部材−負極部材集合体に拘束具を設置し、LiIn箔、固体電解質部材、及び負極部材の配列方向に100MPaと高い拘束圧を印加したこと以外は、実施例2と同様に参考実施例1の負極部材及びサイクル特性評価用セルを準備した。
[Reference Example 1]
In Example 2, except that a restraint was installed on the LiIn foil-solid electrolyte member-negative electrode member assembly, and a high restraint pressure of 100 MPa was applied in the arrangement direction of the LiIn foil, solid electrolyte member, and negative electrode member. Similarly to Example 2, the negative electrode member of Reference Example 1 and a cell for evaluating cycle characteristics were prepared.

[参考比較例1−3]
比較例2−4において、LiIn箔−固体電解質部材−負極部材集合体に拘束具を設置し、LiIn箔、固体電解質部材、及び負極部材の配列方向に100MPaと高い拘束圧を印加したこと以外は、比較例2−4と同様に参考比較例1−3の負極合材及びサイクル特性評価用セルを準備した。
[Reference Comparative Example 1-3]
In Comparative Example 2-4, a restraint was installed on the LiIn foil-solid electrolyte member-negative electrode member assembly, and a high restraint pressure of 100 MPa was applied in the arrangement direction of the LiIn foil, solid electrolyte member, and negative electrode member. Similarly to Comparative Example 2-4, the negative electrode composite material and cycle characteristic evaluation cell of Reference Comparative Example 1-3 were prepared.

(評価方法)
1.STEM−EELS観察
実施例及び比較例において成膜した負極活物質材料であるSi単体の膜に対するSTEM−EELS観察は、下記表1に記載した条件で原子分解能分析電子顕微鏡(商品名:JEM−ARM200F(HR)、日本電子株式会社製)を用いて行った。
(Evaluation method)
1. STEM-EELS Observation STEM-EELS observation on a single Si film, which is a negative electrode active material formed in Examples and Comparative Examples, was performed under the conditions described in Table 1 below using an atomic resolution analytical electron microscope (trade name: JEM-ARM200F). (HR), manufactured by JEOL Ltd.).

2.容量維持率の測定
サイクル特性評価用セルを用いて、0.1mA/cmの定電流で、電圧範囲を2.5V〜0.01(vs Li/Li)の範囲で充放電させる充放電サイクルを、100サイクルを目標として行った(容量維持率が低い場合には、100サイクルに到達する前に、充放電サイクルを終了した。)。最大のサイクル数における容量維持率を、最大のサイクル数における放電容量を1から最大サイクル中で確認された最大放電容量で除することにより算出した。
2. Measurement of capacity retention rate Charging / discharging with a constant current of 0.1 mA / cm 2 and a voltage range of 2.5 V to 0.01 (vs Li / Li + ) using a cell for cycle characteristic evaluation The cycle was performed with 100 cycles as a target (when the capacity retention rate was low, the charge / discharge cycle was completed before reaching 100 cycles). The capacity retention rate at the maximum cycle number was calculated by dividing the discharge capacity at the maximum cycle number from 1 by the maximum discharge capacity confirmed during the maximum cycle.

(結果)
STEM−EELS観察結果からHeガスが内包される閉気孔の有無を確認した方法について図1乃至3を参照しながら、説明する。
図1は実施例1において成膜したSi単体膜の断面のSEM画像である。図1のSEM画像に示すように、実施例1において成膜したSi単体膜には、全体に気孔が確認された。
図1に示した範囲の気孔に対して、表1の条件で、STEM−EELS観察を行なった結果、図2に示す、EELSスペクトルが得られた。図2のEELSスペクトルでは、Heガスの存在を示す22eV付近にエネルギー損失ピークが確認された。
以上の結果から、当該HeガスはSi単体膜をスパッタ法による成膜時に気孔内に内包されたものと考えられるため、図1で選択された範囲の気孔にはHeガスが存在すること、また、当該気孔が閉気孔であると判断することができる。
次に、図1の写真の全体に対してSTEM−EELS観察を行い、得られたEELSスペクトルについてバックグラウンドを除去した後に、EELS強度を積算した。得られたEELS強度積算値が高い箇所ほど(すなわちHeガス濃度が高い)ほど、白くなるように画像処理した実施例1のSi単体膜の断面の画像を図3に示す。
図3に示すように、全体にHeガスが包含される閉気孔が分布していることが確認された。
実施例1以外のSi単体膜についても、同様の手法で、Heガスが包含される閉気孔の有無を確認した。
(result)
A method for confirming the presence or absence of closed pores containing He gas from the STEM-EELS observation results will be described with reference to FIGS.
FIG. 1 is an SEM image of a cross section of a single Si film formed in Example 1. As shown in the SEM image of FIG. 1, pores were confirmed in the entire Si single film formed in Example 1.
As a result of STEM-EELS observation on the pores in the range shown in FIG. 1 under the conditions shown in Table 1, the EELS spectrum shown in FIG. 2 was obtained. In the EELS spectrum of FIG. 2, an energy loss peak was confirmed in the vicinity of 22 eV indicating the presence of He gas.
From the above results, since the He gas is considered to be contained in the pores during the deposition of the Si simple film by the sputtering method, there is He gas in the pores in the range selected in FIG. Therefore, it can be determined that the pore is a closed pore.
Next, STEM-EELS observation was performed on the entire photograph of FIG. 1 and the background was removed from the obtained EELS spectrum, and then the EELS intensity was integrated. FIG. 3 shows an image of a cross section of the Si simple film of Example 1 in which image processing is performed such that the higher the obtained EELS intensity integrated value (that is, the higher the He gas concentration), the whiter the image processing is.
As shown in FIG. 3, it was confirmed that closed pores containing He gas were distributed throughout.
With respect to the Si simple substance film other than Example 1, the presence or absence of closed pores containing He gas was confirmed by the same method.

まず、参考として100MPaで固体電解質部材と負極部材を圧着し、且つ、評価用セル自体に100MPaの拘束圧を印加した参考実施例1及び参考比較例1〜3のサイクル特性評価用セルの、容量維持率の測定結果等を表2に示す。   First, the capacity of the cell for evaluating cycle characteristics of Reference Example 1 and Reference Comparative Examples 1 to 3 in which the solid electrolyte member and the negative electrode member were pressure-bonded at 100 MPa as a reference, and a constraint pressure of 100 MPa was applied to the evaluation cell itself. Table 2 shows the measurement results of the maintenance rate.

表2に示すように、参考比較例3の負極部材が負極活物質原料として含有する、Arガスを放電ガスとして成膜したSi単体の膜は、膜密度が2.3g/cmであり、SEM観察では気孔が確認されず、STEM−EELS観察においてHeガスが内包される閉気孔も確認されなかったことから、ほぼ中実であると考えられる。100MPaで固体電解質部材と負極部材を圧着し、且つ、100MPaと高い拘束圧を印加する条件で、中実なSi単体の膜を負極活物質原料として使用した参考比較例3の100サイクル目の容量維持率は70%であった。
また、参考実施例1、参考比較例1、及び参考比較例2の負極部材が負極活物質原料として含有する、Heガスを含有する放電ガスを用いてスパッタ法により成膜したSi単体の膜は、膜密度が1.4〜2.2g/cmであり、SEM観察で気孔が確認され、STEM−EELS観察においてHeガスが内包される閉気孔が確認された。100MPaで固体電解質部材と負極部材を圧着し、且つ、100MPaと高い拘束圧を印加する条件で、このように、細孔を有するSi単体の膜を負極活物質原料として使用した参考実施例1、参考比較例1、及び、参考比較例2では、100サイクル目の容量維持率は91%以上であった。
As shown in Table 2, the negative electrode member of Reference Comparative Example 3 contained as a negative electrode active material raw material, and a simple Si film formed using Ar gas as a discharge gas has a film density of 2.3 g / cm 3 . No pores were confirmed by SEM observation, and closed pores containing He gas were not confirmed by STEM-EELS observation, which is considered to be almost solid. The capacity of the 100th cycle of Reference Comparative Example 3 using a solid Si film as a negative electrode active material material under the condition that the solid electrolyte member and the negative electrode member are pressure-bonded at 100 MPa and a high restraint pressure of 100 MPa is applied. The maintenance rate was 70%.
Moreover, the film | membrane of the single-piece | unit Si formed into a film by the sputtering method using the discharge gas containing He gas which the negative electrode member of Reference Example 1, Reference Comparative Example 1, and Reference Comparative Example 2 contains as a negative electrode active material raw material is The film density was 1.4 to 2.2 g / cm 3 , pores were confirmed by SEM observation, and closed pores containing He gas were confirmed by STEM-EELS observation. Reference Example 1 in which the solid electrolyte member and the negative electrode member were pressure-bonded at 100 MPa and a film of a simple substance of Si having pores was used as a negative electrode active material raw material under the conditions of applying a high pressure of 100 MPa as described above. In Reference Comparative Example 1 and Reference Comparative Example 2, the capacity retention rate at the 100th cycle was 91% or more.

次に、固体電解質部材と負極部材を圧着せずに製造し、拘束圧が7MPaと低い実施例1及び比較例1のサイクル特性評価用セルの、容量維持率の測定結果等を表3に示す。なお、実施例1のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフを図4に、比較例1のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフを図6に示した。   Next, Table 3 shows the measurement results of the capacity retention ratios of the cells for evaluating the cycle characteristics of Example 1 and Comparative Example 1 that were manufactured without pressure bonding the solid electrolyte member and the negative electrode member and the constraint pressure was as low as 7 MPa. . FIG. 4 is a graph showing the relationship between the cycle number and capacity in the cycle characteristic evaluation cell of Example 1, and FIG. 6 is a graph showing the relationship between the cycle number and capacity in the cycle characteristic evaluation cell of Comparative Example 1. It was shown to.

比較例1の負極部材が負極活物質原料として含有する、Arガスを放電ガスとして成膜したSi単体の膜は、膜密度が2.3g/cmであり、SEM観察では気孔が確認されず、STEM−EELS観察においてHeガスが内包される閉気孔も確認されなかったことから、参考比較例3と同じくほぼ中実であると考えられる。
このように中実なSi単体の膜を負極活物質原料として含有する比較例1の負極部材より製造した比較例1のサイクル特性評価用セルでは、15サイクル時点での容量維持率が25%にまで低下し、15サイクル以上の充放電サイクルを実施することができなかった。
中実なSi単体の膜を負極活物質原料として用いる場合であっても、参考比較例3のように、100MPaで固体電解質部材と負極部材を圧着し、且つ、評価用セル自体に100MPaと高い拘束圧を印加することで、比較的高い容量維持率を保つことができるが、比較例1のサイクル特性評価用セルでは、固体電解質部材と負極部材を圧着することなく、また、拘束圧が7MPaと低いため、負極自体の体積変化の影響で固体電解質と負極の界面に剥離が生じためであると考えられた。
The film of the simple substance of Si, which is formed by using the Ar gas as the discharge gas, contained in the negative electrode member of Comparative Example 1 as the negative electrode active material raw material has a film density of 2.3 g / cm 3 , and no pores are confirmed by SEM observation. In addition, since closed pores containing He gas were not confirmed in STEM-EELS observation, it is considered to be almost solid as in Reference Comparative Example 3.
In the cycle characteristic evaluation cell of Comparative Example 1 manufactured from the negative electrode member of Comparative Example 1 containing a solid Si film as a negative electrode active material, the capacity retention rate at the 15th cycle was 25%. The charge / discharge cycle of 15 cycles or more could not be carried out.
Even when a solid Si single film is used as the negative electrode active material, the solid electrolyte member and the negative electrode member are pressure-bonded at 100 MPa as in Reference Comparative Example 3, and the evaluation cell itself is as high as 100 MPa. Although a relatively high capacity retention rate can be maintained by applying the restraining pressure, the cell for evaluating cycle characteristics of Comparative Example 1 does not press the solid electrolyte member and the negative electrode member, and the restraining pressure is 7 MPa. Therefore, it was considered that peeling occurred at the interface between the solid electrolyte and the negative electrode due to the volume change of the negative electrode itself.

これに対して実施例1の負極部材が負極活物質原料として含有する、Heガスを放電ガスを用いてスパッタ法により成膜したSi単体の膜は、膜密度が1.5g/cmであり、上述のように、SEM観察で気孔が確認され、STEM−EELS観察においてHeガスが内包される閉気孔が確認された。
このように細孔を有するSi単体の膜を負極活物質原料として含有する実施例1の負極部材より製造した実施例1のサイクル特性評価用セルでは、50サイクル時点での容量維持率が59%と、比較例1のサイクル特性評価用セルと比較して、極めて高かった。
細孔を有するSi単体の膜を負極活物質材料とて使用したため、得られる負極の体積変化が抑制され、固体電解質部材と負極部材を圧着することなく、また、拘束圧が7MPaと低い状態でも、高い容量維持率を示したと考えられる。
On the other hand, the film of the Si simple substance formed by sputtering using He gas, which is contained in the negative electrode member of Example 1 as a negative electrode active material material, has a film density of 1.5 g / cm 3 . As described above, pores were confirmed by SEM observation, and closed pores containing He gas were confirmed by STEM-EELS observation.
Thus, in the cell for evaluating cycle characteristics of Example 1 manufactured from the negative electrode member of Example 1 containing a film of Si alone having pores as a negative electrode active material material, the capacity retention rate at the time of 50 cycles was 59%. Compared with the cell for evaluating cycle characteristics of Comparative Example 1, it was extremely high.
Since a simple Si film having pores was used as a negative electrode active material, volume change of the obtained negative electrode was suppressed, and the solid electrolyte member and the negative electrode member were not pressure-bonded, and the restraint pressure was as low as 7 MPa. It is thought that the high capacity maintenance rate was shown.

続いて、固体電解質部材と負極合材を圧着して製造し、また、拘束圧が7MPaと低い実施例2及び比較例2〜4のサイクル特性評価用セルの、容量維持率の測定結果等を表4に示す。なお、実施例2のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフを図5に、比較例2〜4のサイクル特性評価用セルにおけるサイクル数と容量の関係を示したグラフを図7〜9に示した。   Subsequently, the solid electrolyte member and the negative electrode composite material are pressure-bonded and manufactured, and the measurement results of the capacity retention rate of the cell for evaluating cycle characteristics of Example 2 and Comparative Examples 2 to 4 having a low restraint pressure of 7 MPa are shown. Table 4 shows. FIG. 5 is a graph showing the relationship between the cycle number and capacity in the cycle characteristic evaluation cell of Example 2, and FIG. 5 is a graph showing the relationship between the cycle number and capacity in the cycle characteristic evaluation cell of Comparative Examples 2 to 4. It was shown in FIGS.

比較例4の負極部材が負極活物質原料として含有する、Arガスを放電ガスとして成膜したSi単体の膜は、膜密度が2.3g/cmであり、SEM観察では細孔が確認されず、STEM−EELS観察においてHeガスが内包される閉気孔も確認されなかったことから、比較例1及び参考比較例3と同様にほぼ中実であると考えられる。
このように中実なSi単体の膜を負極活物質原料として含有する比較例4の負極部材を用いて、固体電解質部材と負極部材を100MPaで圧着して製造した比較例4のサイクル特性評価用セルでは、前記充放電サイクルを100サイクルまで行うことができたため、圧着工程を経ずに製造した比較例1のサイクル特性評価用セルよりも、サイクル特性に優れていると評価できる。しかし、同じ負極部材を使用して100MPaで固体電解質部材と負極部材を圧着し、且つ、評価用セル自体に100MPaと高い拘束圧を印加した参考比較例3のサイクル特性評価用セルでは、前記充放電サイクル100サイクル目の容量維持率が70%であったのに対し、比較例4のサイクル特性評価用セルでは、100サイクル目の容量維持率が4%と極めて低かった。中実なSi単体の膜を負極活物質原料では、評価用セル自体の拘束圧を低くすると、容量維持率を高く維持することが出来ないと考えられた。
The film of the simple substance of Si, which was formed using Ar gas as the discharge gas, contained in the negative electrode member of Comparative Example 4 as the negative electrode active material material, had a film density of 2.3 g / cm 3 , and pores were confirmed by SEM observation. In addition, since closed pores containing He gas were not confirmed in STEM-EELS observation, it is considered to be almost solid as in Comparative Example 1 and Reference Comparative Example 3.
For the cycle characteristic evaluation of Comparative Example 4 manufactured by press-bonding the solid electrolyte member and the negative electrode member at 100 MPa using the negative electrode member of Comparative Example 4 containing a solid Si simple substance film as the negative electrode active material material. In the cell, since the charge / discharge cycle could be performed up to 100 cycles, it can be evaluated that the cycle characteristics are superior to the cell for evaluating cycle characteristics of Comparative Example 1 manufactured without going through the crimping process. However, in the cell for evaluating cycle characteristics of Reference Comparative Example 3 in which the same negative electrode member was used and the solid electrolyte member and the negative electrode member were pressure-bonded at 100 MPa and a high restraint pressure of 100 MPa was applied to the evaluation cell itself, While the capacity retention rate at the 100th discharge cycle was 70%, the capacity retention rate at the 100th cycle was extremely low at 4% in the cycle characteristic evaluation cell of Comparative Example 4. It was thought that the capacity retention rate could not be maintained high if the solid elemental Si film was a negative electrode active material material and the restraint pressure of the evaluation cell itself was lowered.

比較例3の負極部材が負極活物質原料として含有する、ArとHeの混合ガスを放電ガスとして成膜したSi単体の膜は、膜密度が2.2g/cmであり、SEM観察では細孔が確認され、STEM−EELS観察においてHeガスが内包される閉気孔も確認されたことから、多孔質であると考えられる。
このように細孔を有するSi単体の膜を負極活物質原料として含有する比較例3の負極部材を用いて、固体電解質部材と負極部材を圧着して製造した比較例3のサイクル特性評価用セルでも、100サイクル目の容量維持率が4%と極めて低かった。
また、比較例2の負極部材が負極活物質原料として含有する、ArとHeの混合ガスを放電ガスとして成膜したSi単体の膜は、膜密度が2.1g/cmであり、SEM観察では細孔が確認され、STEM−EELS観察においてHeガスが内包される閉気孔も確認されたことから、多孔質であると考えられる。
このように細孔を有するSi単体の膜を負極活物質原料として含有する比較例2の負極部材を用いて、固体電解質部材と負極合材を圧着して製造した比較例2のサイクル特性評価用セルでも、100サイクル目の容量維持率が12%と低かった。
細孔を有するSi単体を負極活物質原料として使用した場合であっても、密度が2.1g/cm以上では、気孔が少なすぎるため、合金化に伴う体積変化を充分に吸収することができないため、評価用セル自体の拘束圧を低くすると、容量維持率を高くすることができないことが明らかとなった。
The film of Si alone, which is formed by using the mixed gas of Ar and He as the discharge gas and contained in the negative electrode member of Comparative Example 3 as the negative electrode active material raw material, has a film density of 2.2 g / cm 3. Since pores were confirmed, and closed pores containing He gas were also confirmed in STEM-EELS observation, it is considered to be porous.
A cell for evaluating cycle characteristics of Comparative Example 3 manufactured by press-bonding a solid electrolyte member and a negative electrode member using the negative electrode member of Comparative Example 3 containing a simple Si film having pores as a negative electrode active material material. However, the capacity retention rate at the 100th cycle was extremely low at 4%.
Further, the Si simple substance film formed using the mixed gas of Ar and He as the discharge gas, which is contained in the negative electrode member of Comparative Example 2 as the negative electrode active material raw material, has a film density of 2.1 g / cm 3 and is observed by SEM. Then, pores were confirmed, and closed pores containing He gas were also confirmed in STEM-EELS observation, so it is considered to be porous.
Thus, for the evaluation of cycle characteristics of Comparative Example 2 manufactured by press-bonding a solid electrolyte member and a negative electrode mixture using the negative electrode member of Comparative Example 2 containing a film of Si alone having pores as a negative electrode active material raw material Even in the cell, the capacity maintenance rate at the 100th cycle was as low as 12%.
Even when Si alone having pores is used as a negative electrode active material raw material, if the density is 2.1 g / cm 3 or more, there are too few pores, so that the volume change accompanying alloying can be sufficiently absorbed. Therefore, it became clear that the capacity retention rate could not be increased if the restraining pressure of the evaluation cell itself was lowered.

これらに対して実施例2の負極部材が負極活物質原料として含有する、Heガスを放電ガスとして用いてスパッタ法により成膜したSi単体の膜は、膜密度が1.4g/cmであり、SEM観察で気孔が確認され、STEM−EELS観察においてHeガスが内包される閉気孔が確認された。
このように膜密度が1.4g/cmであり細孔を有するSi単体の膜を負極活物質原料として含有する実施例2の負極部材を用いて、固体電解質部材と負極部材を圧着して製造し、また、拘束圧が7MPaと低い実施例2のサイクル特性評価用セルでは、100サイクル時点での容量維持率が83%と、比較例2〜4のサイクル特性評価用セルと比較して、極めて高かった。
密度が1.5g/cm以下である場合には、拘束圧を7MPaと低くしても、合金化に伴う体積変化を、気孔により吸収することができるためであると考えられる。
また、固体電解質部材と負極部材を圧着して製造した実施例2のサイクル特性評価用セルでは、圧着工程を経ずに製造した実施例1のサイクル特性評価用セルよりも、高い容量維持率を示した。負極部材と固体電解質部材を圧着したことにより、負極と固体電解質がより強く接合され、拘束圧が7MPaと低い状態でも、負極の体積変化に対する負極と固体電解質の界面への影響を低減することができたためであると考えられる。
On the other hand, the film of the Si simple substance formed by sputtering using He gas as the discharge gas, which the negative electrode member of Example 2 contains as the negative electrode active material material, has a film density of 1.4 g / cm 3 . SEM observation confirmed pores, and STEM-EELS observation confirmed closed pores containing He gas.
Thus, the solid electrolyte member and the negative electrode member were pressure-bonded using the negative electrode member of Example 2 having a film density of 1.4 g / cm 3 and containing a porous Si simple substance film as a negative electrode active material material. In the cell for evaluation of cycle characteristics of Example 2, which is manufactured and has a low restraint pressure of 7 MPa, the capacity retention rate at the time of 100 cycles is 83%, compared with the cell for evaluation of cycle characteristics of Comparative Examples 2 to 4. It was extremely expensive.
When the density is 1.5 g / cm 3 or less, it is considered that the volume change accompanying alloying can be absorbed by the pores even if the restraining pressure is lowered to 7 MPa.
In addition, the cell for evaluating cycle characteristics of Example 2 manufactured by press-bonding the solid electrolyte member and the negative electrode member has a higher capacity retention rate than the cell for evaluating cycle characteristics of Example 1 manufactured without going through the pressing process. Indicated. By pressure bonding the negative electrode member and the solid electrolyte member, the negative electrode and the solid electrolyte are more strongly bonded, and even when the restraining pressure is as low as 7 MPa, the influence on the negative electrode volume change on the interface between the negative electrode and the solid electrolyte can be reduced. It is thought that it was because it was made.

高い拘束圧の条件下における参考実施例1、参考比較例1、及び、参考比較例2の結果では、膜密度が1.4〜2.2g/cmの範囲では、容量維持率は91〜96%と大きく違いがない。そのため、低い拘束圧条件下において、膜密度が1.5g/cmを超える範囲では容量を維持する効果はほとんどなく、1.5g/cm以下範囲とすることで容量を極めて高く維持することが可能となることを、予測することは極めて困難であるといえる。 In the results of Reference Example 1, Reference Comparative Example 1, and Reference Comparative Example 2 under the condition of high restraint pressure, the capacity retention rate is 91 to 91 when the film density is in the range of 1.4 to 2.2 g / cm 3. There is no big difference with 96%. Therefore, there is almost no effect of maintaining the capacity in the range where the film density exceeds 1.5 g / cm 3 under low restraint pressure conditions, and the capacity is maintained extremely high by setting the range to 1.5 g / cm 3 or less. It is extremely difficult to predict that it will be possible.

以上の結果より、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する負極原料、及び、負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する負極部材により、低い拘束圧でサイクル特性が良好である全固体リチウムイオン二次電池を製造することができることが明らかとなった。 From the above results, the negative electrode active material raw material having a density of 1.5 g / cm 3 or lower and containing Si alone having pores, and the negative electrode active material raw material having a density of 1.5 g / cm 3 or lower It has been clarified that an all-solid lithium ion secondary battery having good cycle characteristics with a low restraint pressure can be produced by a negative electrode member containing simple Si having pores.

Claims (7)

負極活物質原料として密度が1.5g/cm以下であり細孔を有するSi単体を含有する全固体リチウムイオン二次電池用負極原料。 A negative electrode material for an all-solid-state lithium ion secondary battery, which contains Si as a negative electrode active material material having a density of 1.5 g / cm 3 or less and having pores. 前記細孔を有するSi単体がHeガスを内包する閉気孔を有する、請求項1に記載の全固体リチウムイオン二次電池用負極原料。   2. The negative electrode material for an all-solid-state lithium ion secondary battery according to claim 1, wherein the Si simple substance having pores has closed pores containing He gas. 負極活物質原料として密度が1.5g/cm以下である細孔を有するSi単体を含有する全固体リチウムイオン二次電池用負極部材。 A negative electrode member for an all-solid-state lithium ion secondary battery containing Si alone having pores having a density of 1.5 g / cm 3 or less as a negative electrode active material raw material. 前記細孔を有するSi単体がHeガスを内包する閉気孔を有する、請求項3に記載の全固体リチウムイオン二次電池用負極部材。   The negative electrode member for an all-solid-state lithium ion secondary battery according to claim 3, wherein the Si simple substance having the pores has closed pores containing He gas. 負極活物質としてSiとLiとの合金を含む負極を備える全固体リチウムイオン二次電池の製造方法であって、
請求項3又は4に記載の負極部材、正極部材、及び、固体電解質部材を備える電池部材を準備する工程と、
前記電池部材に通電する通電工程と、を有する全固体リチウムイオン二次電池の製造方法。
A method for producing an all solid lithium ion secondary battery comprising a negative electrode containing an alloy of Si and Li as a negative electrode active material,
Preparing a battery member comprising the negative electrode member according to claim 3 or 4, the positive electrode member, and a solid electrolyte member;
An energization step of energizing the battery member. A method for producing an all-solid-state lithium ion secondary battery.
前記全固体リチウムイオン二次電池が、更に、正極、固体電解質層、及び負極の配列方向に拘束圧を印加することができる拘束具を備え、
少なくとも前記負極部材と前記固体電解質部材を重ねた状態で、第1の圧力を印加して当該負極合材と当該固体電解質部材を圧着する工程と、
前記拘束具の拘束圧を第1圧力より低い第2圧力に調整する工程と、を有する請求項5に記載の全固体リチウムイオン二次電池の製造方法。
The all-solid-state lithium ion secondary battery further includes a restraining tool capable of applying a restraining pressure in the arrangement direction of the positive electrode, the solid electrolyte layer, and the negative electrode,
A step of applying a first pressure and crimping the negative electrode mixture and the solid electrolyte member in a state where at least the negative electrode member and the solid electrolyte member are stacked;
The method of manufacturing the all-solid-state lithium ion secondary battery of Claim 5 which has the process of adjusting the restraint pressure of the said restraint tool to 2nd pressure lower than 1st pressure.
前記第2の圧力が7MPa以下である、請求項6に記載の全固体リチウムイオン二次電池の製造方法。   The manufacturing method of the all-solid-state lithium ion secondary battery of Claim 6 whose said 2nd pressure is 7 Mpa or less.
JP2017119804A 2017-06-19 2017-06-19 Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these. Active JP6875208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017119804A JP6875208B2 (en) 2017-06-19 2017-06-19 Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119804A JP6875208B2 (en) 2017-06-19 2017-06-19 Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these.

Publications (2)

Publication Number Publication Date
JP2019003901A true JP2019003901A (en) 2019-01-10
JP6875208B2 JP6875208B2 (en) 2021-05-19

Family

ID=65006066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119804A Active JP6875208B2 (en) 2017-06-19 2017-06-19 Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these.

Country Status (1)

Country Link
JP (1) JP6875208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497225A (en) * 2020-04-07 2021-10-12 丰田自动车株式会社 Method for producing active material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
WO2014188722A1 (en) * 2013-05-22 2014-11-27 パナソニックIpマネジメント株式会社 Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery
JP2016508114A (en) * 2013-09-02 2016-03-17 エルジー・ケム・リミテッド Porous silicon-based particles, production method thereof, and negative electrode active material including the same
JP2016081790A (en) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 Method for manufacturing all-solid type secondary battery
US20160226065A1 (en) * 2015-01-29 2016-08-04 Board Of Trustees Of The University Of Arkansas Density modulated thin film electrodes, methods of making same, and applications of same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
WO2014188722A1 (en) * 2013-05-22 2014-11-27 パナソニックIpマネジメント株式会社 Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery
JP2016508114A (en) * 2013-09-02 2016-03-17 エルジー・ケム・リミテッド Porous silicon-based particles, production method thereof, and negative electrode active material including the same
JP2016081790A (en) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 Method for manufacturing all-solid type secondary battery
US20160226065A1 (en) * 2015-01-29 2016-08-04 Board Of Trustees Of The University Of Arkansas Density modulated thin film electrodes, methods of making same, and applications of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497225A (en) * 2020-04-07 2021-10-12 丰田自动车株式会社 Method for producing active material
CN113497225B (en) * 2020-04-07 2023-12-15 丰田自动车株式会社 Method for producing active material

Also Published As

Publication number Publication date
JP6875208B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
US9954248B2 (en) Solid lithium secondary battery and method of manufacturing same
CN110350145B (en) All-solid-state battery
KR102081303B1 (en) All-solid-state lithium ion secondary battery
EP2963704A1 (en) Solid state lithium secondary battery and method for producing the same
WO2018193994A1 (en) All-solid lithium ion secondary battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
CN103329334A (en) Nonaqueous electrolyte battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
CN111864207A (en) All-solid-state battery
JP6696920B2 (en) All-solid-state lithium-ion secondary battery and method for manufacturing the same
KR102081301B1 (en) All-solid-state lithium ion secondary battery
CN112635763A (en) All-solid-state battery
JP6776995B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
JP2021072283A (en) Solid electrolyte, solid electrolyte battery and method for manufacturing the same
JP6875208B2 (en) Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these.
JP2020129519A (en) All-solid battery
JP6593381B2 (en) Negative electrode mixture for all solid lithium ion secondary battery, negative electrode including the negative electrode mixture, and all solid lithium ion secondary battery including the negative electrode
JP6859234B2 (en) Manufacturing method of all-solid-state battery
US10847836B2 (en) Method for producing solid-state secondary battery system
KR102562412B1 (en) All solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250