JP2016081790A - Method for manufacturing all-solid type secondary battery - Google Patents

Method for manufacturing all-solid type secondary battery Download PDF

Info

Publication number
JP2016081790A
JP2016081790A JP2014213357A JP2014213357A JP2016081790A JP 2016081790 A JP2016081790 A JP 2016081790A JP 2014213357 A JP2014213357 A JP 2014213357A JP 2014213357 A JP2014213357 A JP 2014213357A JP 2016081790 A JP2016081790 A JP 2016081790A
Authority
JP
Japan
Prior art keywords
battery
constant voltage
capacity
constant
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014213357A
Other languages
Japanese (ja)
Inventor
水谷 聡
Satoshi Mizutani
聡 水谷
重規 濱
Shigeki Hama
重規 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014213357A priority Critical patent/JP2016081790A/en
Publication of JP2016081790A publication Critical patent/JP2016081790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid type secondary battery manufacturing method which enables the manufacturing of an all-solid type secondary battery with enhanced cycle characteristics.SOLUTION: An all-solid type secondary battery manufacturing method comprises the steps of: an assembly step for assembling a battery having positive and negative electrodes, and a sulfide solid electrolyte layer disposed therebetween; an initial charging step for initially charging the battery thus assembled with a constant current and a constant voltage; a constant-voltage charging step for charging the battery with a constant voltage subsequently to the initial charging step; and an initial discharging step for initially discharging the battery with a constant current and a constant voltage subsequently to the constant-voltage charging step. The constant-voltage charging step is a step for charging the battery with the constant voltage while applying a binding pressure of 0.1-10 MPa to the battery under a temperature environment of 40-60°C; the capacity charged in the constant-voltage charging step is 5-10% of a discharge capacity of the battery identified when the battery is initially discharged with the constant current and the constant voltage without performing the constant-voltage charging step.SELECTED DRAWING: Figure 1

Description

本発明は、全固体二次電池の製造方法に関する。   The present invention relates to a method for manufacturing an all-solid secondary battery.

難燃性の固体電解質を用いた固体電解質層を有する金属イオン二次電池(例えば、リチウムイオン二次電池等。以下において「全固体二次電池」又は「全固体電池」ということがある。)は、安全性を確保するためのシステムを簡素化しやすい等の長所を有している。   A metal ion secondary battery having a solid electrolyte layer using a flame retardant solid electrolyte (for example, a lithium ion secondary battery or the like. Hereinafter, it may be referred to as an “all solid state secondary battery” or “all solid state battery”). Has advantages such as easy to simplify the system for ensuring safety.

このような全固体二次電池とは異なる、電解液を用いる非水電解質二次電池に関する技術として、例えば特許文献1には、電池を組み立てる組立工程と、組立後の電池を充電する初期充電工程と、充電後の電池を、正極の開回路電位が3.90V〜4.88V(vs.Li/Li)となる状態で3〜720時間放置する放置工程と、を経る、5V級の非水電解質二次電池の製造方法が開示されている。 As a technique related to a nonaqueous electrolyte secondary battery using an electrolytic solution, which is different from such an all-solid secondary battery, for example, Patent Document 1 discloses an assembly process for assembling a battery and an initial charging process for charging the assembled battery. And leaving the charged battery in a state where the open circuit potential of the positive electrode is 3.90 V to 4.88 V (vs. Li / Li + ) for 3 to 720 hours. A method for manufacturing a water electrolyte secondary battery is disclosed.

特開2005−108682号公報JP 2005-108682 A

特許文献1には、上記放置工程を経ることにより、初期充電時及び放電時において、電極上にSEI(Solid Electrolyte Interface:固体電解質界面)と称される保護被膜が早期に形成されるので、電極表面での電解液の分解を抑制することが可能になり、その結果、電池の膨れを抑制できる旨、記載されている。このように、電解液を用いる非水電解質二次電池では、放置工程でSEIを形成し、これによって電池の膨れを抑制する思想が知られている。しかしながら、全固体二次電池では、初期充電時の被膜生成という概念自体が公知になっていない。一方、全固体二次電池は、繰り返し充放電後に容量が低下するため、電池の使用時間が短くなりやすいという課題がある。全固体二次電池の使用時間を延ばすために、繰り返し充放電後の容量低下を抑制すること、すなわち、全固体二次電池のサイクル特性を向上させることが望まれている。   In Patent Document 1, a protective film referred to as SEI (Solid Electrolyte Interface) is formed on the electrode at an early stage during initial charging and discharging through the above leaving step. It is described that it is possible to suppress the decomposition of the electrolytic solution on the surface, and as a result, it is possible to suppress the swelling of the battery. As described above, in the non-aqueous electrolyte secondary battery using the electrolytic solution, the idea of forming SEI in the leaving step and thereby suppressing the swelling of the battery is known. However, in the all-solid-state secondary battery, the concept of film formation at the time of initial charging is not known. On the other hand, an all-solid secondary battery has a problem in that the capacity of the battery decreases after repeated charging and discharging, so that the battery usage time tends to be short. In order to extend the usage time of the all-solid secondary battery, it is desired to suppress the capacity reduction after repeated charge and discharge, that is, to improve the cycle characteristics of the all-solid secondary battery.

そこで本発明は、サイクル特性を向上させた全固体二次電池を製造することが可能な全固体二次電池の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the all-solid-state secondary battery which can manufacture the all-solid-state secondary battery which improved cycling characteristics.

本発明者らは、全固体二次電池を組み立て、電池から取り出し可能な可逆容量分の充電を意図した初回の定電流定電圧充電を行った後、さらに、所定の温度環境下で所定の圧力を付与しながら、電池から取り出し不可能な不可逆容量分の充電を意図した定電圧充電を行った。その結果、正極活物質の表面に被膜を形成することが可能になり、サイクル特性を向上させることが可能になることを知見した。本発明は、当該知見に基づいて完成させた。   The present inventors assembled an all-solid-state secondary battery, performed the first constant current constant voltage charging intended to charge the reversible capacity that can be taken out from the battery, and then further, a predetermined pressure under a predetermined temperature environment. The constant voltage charge intended to charge the irreversible capacity that cannot be removed from the battery was performed. As a result, it has been found that a film can be formed on the surface of the positive electrode active material, and the cycle characteristics can be improved. The present invention has been completed based on this finding.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、正極及び負極と、これらの間に配置された硫化物固体電解質層と、を有する電池を組み立てる組立工程と、該組立工程で組み立てられた電池について、初回の定電流定電圧充電を行う初回充電工程と、該初回充電工程に続いて、上記電池について定電圧充電を行う定電圧充電工程と、該定電圧充電工程に続いて、上記電池について、初回の定電流定電圧放電を行う初回放電工程と、を有し、上記定電圧充電工程は、40℃〜60℃の温度環境下で、上記電池に0.1MPa〜10MPaの拘束圧を付与しながら定電圧充電を行う工程であり、且つ、上記定電圧充電工程で充電される容量は、該定電圧充電工程を行うことなく初回の定電流定電圧放電を行った際に特定される電池の放電容量の5%〜10%である、ことを特徴とする、全固体二次電池の製造方法である。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention relates to an assembling process for assembling a battery having a positive electrode and a negative electrode, and a sulfide solid electrolyte layer disposed therebetween, and for the battery assembled in the assembling process, the first constant current and constant voltage charging is performed. An initial charging step to be performed, a constant voltage charging step for performing constant voltage charging for the battery following the initial charging step, and an initial constant current constant voltage discharging for the battery following the constant voltage charging step. The constant voltage charging step is a step of performing constant voltage charging while applying a constraint pressure of 0.1 MPa to 10 MPa to the battery in a temperature environment of 40 ° C. to 60 ° C. And the capacity | capacitance charged by the said constant voltage charge process is 5 to 10% of the discharge capacity of the battery specified when performing the first constant current constant voltage discharge without performing this constant voltage charge process. It is characterized by A method for manufacturing an all-solid secondary battery.

ここで、「該定電圧充電工程を行うことなく初回の定電流定電圧放電を行った際に特定される電池の放電容量」とは、初回充電工程を行った後、定電圧充電工程を行うことなく最初に定電流定電圧放電を行ったときに電池から取り出される容量をいい、より具体的には、初回充電工程を行った後、定電圧充電工程を行うことなく最初に定電流定電圧放電を行ったときに、0.01Cで終止電圧に至るまでに電池から取り出される電気量をいう。
取り出し可能な容量分(可逆容量分)の充電を行うことを目的として行われる初回充電工程に続いて、取り出し不可能な容量分(不可逆容量分)の充電を行うことを目的として行われる定電圧充電工程を行うことにより、正極活物質の表面に被膜を形成することが可能になる。そして、定電圧充電工程を、40℃〜60℃の温度環境下で、0.1MPa〜10MPaの拘束圧を付与しながら、該定電圧充電工程を経ずに初回の定電流定電圧放電を行った際の放電容量の5%〜10%分の容量を充電する定電圧充電を行う工程にすることにより、サイクル特性を向上させることが可能な形態の被膜を形成することが可能になる。したがって、このような形態にすることにより、サイクル特性を向上させた全固体二次電池を製造することが可能になる。なお、上記本発明において、初回充電工程を終了する際の電流値は、初回充電工程が可逆容量分の充電を行う工程であることを踏まえて、適宜設定することが可能であり、例えば、0.01Cとすることができる。
Here, “the discharge capacity of the battery specified when performing the first constant current and constant voltage discharge without performing the constant voltage charging step” refers to performing the constant voltage charging step after performing the first charging step. The capacity taken out from the battery when the constant current constant voltage discharge is performed for the first time, more specifically, after performing the initial charging process, the constant current constant voltage without performing the constant voltage charging process first. The amount of electricity that is taken out of the battery before reaching the end voltage at 0.01 C when discharged.
A constant voltage for the purpose of charging the capacity that cannot be removed (for the irreversible capacity) following the initial charging process for the purpose of charging the capacity that can be taken out (for the reversible capacity) By performing the charging step, a film can be formed on the surface of the positive electrode active material. Then, the constant-voltage charging process is performed at the initial constant-current constant-voltage discharge without passing through the constant-voltage charging process while applying a restraining pressure of 0.1 MPa to 10 MPa in a temperature environment of 40 ° C. to 60 ° C. By adopting a step of performing constant voltage charging for charging a capacity corresponding to 5% to 10% of the discharged capacity, it is possible to form a film in a form capable of improving cycle characteristics. Therefore, by adopting such a form, it becomes possible to manufacture an all-solid-state secondary battery with improved cycle characteristics. In the present invention, the current value at the time of ending the initial charging step can be set as appropriate based on the fact that the initial charging step is a step of charging the reversible capacity. .01C.

また、上記本発明において、正極に、LiNiCoMn(1−x−y)(ただし、0<x<1、0<y<1、0<x+y<1)が正極活物質として含まれていても良い。例えばこのような形態にすることにより、正極活物質の表面へ、サイクル特性を向上させることが可能な形態の被膜を形成することが可能である。したがって、例えばこのような形態にすることにより、サイクル特性を向上させた全固体二次電池を製造することが可能になる。 In the present invention, LiNi x Co y Mn (1-xy) O 2 (where 0 <x <1, 0 <y <1, 0 <x + y <1) is used as the positive electrode active material. It may be included. For example, by adopting such a form, it is possible to form a film having a form capable of improving cycle characteristics on the surface of the positive electrode active material. Therefore, for example, by adopting such a form, it becomes possible to manufacture an all-solid secondary battery with improved cycle characteristics.

また、上記本発明において、正極活物質の表面が、ニオブ酸リチウムで被覆されていることが好ましい。例えばこのような形態にすることにより、サイクル特性を向上させやすい形態の全固体二次電池を製造することが可能になる。   Moreover, in the said invention, it is preferable that the surface of a positive electrode active material is coat | covered with lithium niobate. For example, by adopting such a form, it becomes possible to manufacture an all-solid-state secondary battery in a form that easily improves cycle characteristics.

本発明によれば、サイクル特性を向上させた全固体二次電池を製造することが可能な全固体二次電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the all-solid-state secondary battery which can manufacture the all-solid-state secondary battery which improved cycling characteristics can be provided.

本発明の全固体二次電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the all-solid-state secondary battery of this invention. 全固体二次電池20を説明する図である。It is a figure explaining the all-solid-state secondary battery. 電池電圧及び充電電流と時間との関係を説明する図である。It is a figure explaining the relationship between battery voltage and charging current, and time. 定電圧充電工程の終止容量と容量比との関係を示す図である。It is a figure which shows the relationship between the termination capacity of a constant voltage charge process, and a capacity | capacitance ratio. 定電圧充電工程の温度と容量比との関係を示す図である。It is a figure which shows the relationship between the temperature of a constant voltage charging process, and a capacity | capacitance ratio. 定電圧充電工程における拘束圧と容量比との関係を示す図である。It is a figure which shows the relationship between the restraint pressure in a constant voltage charge process, and a capacity | capacitance ratio.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

図1は、本発明の全固体二次電池の製造方法を説明する図である。図1に示した本発明の製造方法は、組立工程(S11)と、初回充電工程(S12)と、定電圧充電工程(S13)と、初回放電工程(S14)と、を有している。   FIG. 1 is a diagram for explaining a method for producing an all-solid secondary battery of the present invention. The manufacturing method of the present invention shown in FIG. 1 includes an assembly process (S11), an initial charging process (S12), a constant voltage charging process (S13), and an initial discharging process (S14).

1.組立工程(S11)
組立工程(以下において、「S11」と称することがある。)は、正極及び負極と、これらの間に配置された硫化物固体電解質層と、を有する電池を組み立てる工程である。S11で組み立てられる電池20の例を図2に示す。図2では、電池20に備えられる端子や外装体等の記載を省略している。図2に示した電池20は、正極集電体21と、この正極集電体21に接続された正極22と、負極集電体25と、負極集電体25に接続された負極24と、正極22及び負極24の間に配設された硫化物固体電解質層23と、を有している。正極集電体21や負極集電体25には、不図示の端子が接続されており、電池20は不図示の外装体に収容されている。
1. Assembly process (S11)
The assembly process (hereinafter sometimes referred to as “S11”) is a process of assembling a battery having a positive electrode and a negative electrode, and a sulfide solid electrolyte layer disposed therebetween. An example of the battery 20 assembled in S11 is shown in FIG. In FIG. 2, descriptions of terminals and exterior bodies provided in the battery 20 are omitted. 2 includes a positive electrode current collector 21, a positive electrode 22 connected to the positive electrode current collector 21, a negative electrode current collector 25, a negative electrode 24 connected to the negative electrode current collector 25, A sulfide solid electrolyte layer 23 disposed between the positive electrode 22 and the negative electrode 24. Terminals (not shown) are connected to the positive electrode current collector 21 and the negative electrode current collector 25, and the battery 20 is accommodated in an exterior body (not shown).

2.初回充電工程(S12)
初回充電工程(以下において、「S12」と称することがある。)は、S11で組み立てられた電池20に初回の定電流定電圧充電を行う工程である。S12で行う定電流定電圧充電は、従来の電池と同様に、電池20から取り出す電気量(可逆容量分)を充電することを目的として行なわれる。S12は、可逆容量分の充電を目的として定電流定電圧充電を行う工程であれば、その形態は特に限定されない。S12は、所定の電圧に達するまで定電流充電を行った後、引き続き、電流値を低減しながら定電圧充電を行う工程であり、定電圧充電を終了する際(S12を終了する際)の電流値は、例えば0.01Cとすることができる。
2. Initial charging process (S12)
The initial charging step (hereinafter may be referred to as “S12”) is a step of performing the initial constant current / constant voltage charging on the battery 20 assembled in S11. The constant current and constant voltage charging performed in S12 is performed for the purpose of charging the amount of electricity (reversible capacity) taken out from the battery 20 as in the conventional battery. The form of S12 is not particularly limited as long as it is a step of performing constant-current constant-voltage charging for the purpose of reversible capacity charging. S12 is a step of performing constant voltage charging while reducing the current value after performing constant current charging until reaching a predetermined voltage, and current at the time of ending constant voltage charging (when ending S12) The value can be, for example, 0.01C.

3.定電圧充電工程(S13)
定電圧充電工程(以下において、「S13」と称することがある。)は、S12に続いて、40℃〜60℃の温度環境下で、電池20に0.1MPa〜10MPaの拘束圧を付与しながら、定電圧充電を行う工程である。40℃以上60℃以下の温度環境下でS13を行うことにより、サイクル特性を向上させることが可能な電池20を短時間で製造することが可能になる。また、電池20に0.1MPa以上10MPa以下の拘束圧を付与しながらS13を行うことにより、正極活物質の表面に被膜を均一に形成することが可能なので、サイクル特性を向上させることが可能な電池20を製造することが可能になる。S13における拘束圧の付与方法は特に限定されず、例えば、油圧プレス機等を用いて、電池20に拘束圧を付与する形態、とすることができる。
本発明では、S13を行うことなく初回の定電流定電圧放電を行った際に特定される電池の放電容量の5%〜10%に相当する容量が充電された時点で、S13を終了する。S13で増やす容量(以下において、「終止容量」と称することがある。)を上記5%〜10%の範囲内にすることにより、電池20のサイクル特性を向上させることが可能である。S13の終止容量は、上記5%〜10%の中から適宜決定すれば良い。
S12に続いて行われるS13では、電池20から取り出せない電気量(不可逆容量分)を充電する。S13でゆっくりと定電圧充電することにより、正極活物質の表面に緻密な被膜を形成することが可能になり、その結果、サイクル特性を向上させることが可能になる。S12及びS13における、電池電圧及び充電電流と時間との関係を、図3に示す。S13はS12に続いて定電圧充電を行う工程であるため、図3に示したように、S13の開始時における電流値は、S12の終了時における電流値とする。
3. Constant voltage charging process (S13)
In the constant voltage charging step (hereinafter sometimes referred to as “S13”), following S12, a restraint pressure of 0.1 MPa to 10 MPa is applied to the battery 20 in a temperature environment of 40 ° C. to 60 ° C. However, this is a step of performing constant voltage charging. By performing S13 in a temperature environment of 40 ° C. or more and 60 ° C. or less, the battery 20 capable of improving the cycle characteristics can be manufactured in a short time. In addition, by performing S13 while applying a restraining pressure of 0.1 MPa or more and 10 MPa or less to the battery 20, it is possible to form a film uniformly on the surface of the positive electrode active material, and thus it is possible to improve cycle characteristics. The battery 20 can be manufactured. The method for applying the constraint pressure in S13 is not particularly limited, and for example, a configuration in which the constraint pressure is applied to the battery 20 using a hydraulic press machine or the like can be used.
In this invention, S13 is complete | finished when the capacity | capacitance equivalent to 5%-10% of the discharge capacity of the battery specified when performing the first constant current constant voltage discharge without performing S13 is charged. By setting the capacity increased in S13 (hereinafter sometimes referred to as “end capacity”) within the range of 5% to 10%, the cycle characteristics of the battery 20 can be improved. The termination capacity of S13 may be appropriately determined from the above 5% to 10%.
In S13 performed subsequent to S12, the amount of electricity that cannot be taken out from the battery 20 (irreversible capacity) is charged. By slowly charging at constant voltage in S13, a dense film can be formed on the surface of the positive electrode active material, and as a result, cycle characteristics can be improved. FIG. 3 shows the relationship between battery voltage and charging current and time in S12 and S13. Since S13 is a step of performing constant voltage charging following S12, as shown in FIG. 3, the current value at the start of S13 is the current value at the end of S12.

4.初回放電工程(S14)
初回放電工程(以下において、「S14」と称することがある。)は、S13に続いて、電池20について、初回の定電流定電圧放電を行う工程である。S14で行う定電流定電圧放電は、S12で電池20に溜めた電気量を取り出すことを目的として行なわれる。S14は、定電流定電圧放電を行う工程であれば、その形態は特に限定されない。S14は、所定の電圧に達するまで定電流放電を行った後、引き続き、電流値を低減しながら定電圧放電を行う工程であり、定電圧放電を終了する際(S14を終了する際)の電流値は、例えば0.01Cとすることができる。
4). First discharge process (S14)
The initial discharge step (hereinafter may be referred to as “S14”) is a step of performing an initial constant-current / constant-voltage discharge for the battery 20 following S13. The constant current and constant voltage discharge performed in S14 is performed for the purpose of taking out the amount of electricity accumulated in the battery 20 in S12. The form of S14 is not particularly limited as long as it is a step of performing constant current and constant voltage discharge. S14 is a step of performing constant voltage discharge while reducing the current value after performing constant current discharge until a predetermined voltage is reached, and the current when the constant voltage discharge is terminated (when S14 is terminated). The value can be, for example, 0.01C.

S12に続いて、所定の温度、拘束圧、及び、終止容量の条件下で定電圧充電を行うS13を経ることにより、正極活物質の表面に、サイクル特性を向上させることが可能な形態の被膜を形成することが可能になる。したがって、S11乃至S14を有する形態とすることにより、サイクル特性を向上させた電池20を製造することが可能な、全固体二次電池の製造方法を提供することができる。   Subsequent to S12, through S13 in which constant voltage charging is performed under conditions of a predetermined temperature, restraining pressure, and final capacity, a coating film in a form capable of improving cycle characteristics on the surface of the positive electrode active material Can be formed. Therefore, by using the form having S11 to S14, it is possible to provide a method for manufacturing an all-solid-state secondary battery that can manufacture the battery 20 with improved cycle characteristics.

S11は、電池20を組み立てる工程であれば、その形態は特に限定されない。S11は、例えば以下に示す過程を経て電池20を組み立てる工程とすることができる。   If S11 is a process of assembling the battery 20, the form is not particularly limited. S11 can be set as the process of assembling the battery 20 through the process shown below, for example.

正極22は、例えば、正極22を構成すべき物質(例えば、正極活物質、硫化物固体電解質、及び、導電材等。以下において同じ。)を液体に分散させることにより作製したスラリー状の正極組成物を、別途用意した正極集電体21の表面に塗布し、乾燥した後、所定の圧力でプレスする過程を経て作製することができる。このほか、正極22を構成すべき物質を混合することにより作製した混合物をプレスすることによって、正極22を作製することも可能である。   The positive electrode 22 is, for example, a slurry-like positive electrode composition prepared by dispersing a substance (for example, a positive electrode active material, a sulfide solid electrolyte, a conductive material, etc., which is the same hereinafter) constituting the positive electrode 22 in a liquid. The product can be produced by applying it to the surface of a separately prepared positive electrode current collector 21, drying it, and pressing it at a predetermined pressure. In addition, it is also possible to produce the positive electrode 22 by pressing a mixture produced by mixing the substances that constitute the positive electrode 22.

正極集電体21は、全固体二次電池の集電体として使用可能な金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。   As the positive electrode current collector 21, a metal that can be used as a current collector of an all-solid-state secondary battery can be used. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.

また、正極22に含有させる正極活物質としては、全固体二次電池で使用可能な正極活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn(1−x−y)(ただし、0<x<1、0<y<1、0<x+y<1))等の層状活物質のほか、オリビン型リン酸鉄リチウム(LiFePO)等のオリビン型活物質や、スピネル型マンガン酸リチウム(LiMn)等のスピネル型活物質等を例示することができる。正極活物質の形状は、例えば粒子状や薄膜状等にすることができる。正極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、正極層における正極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。 Moreover, as a positive electrode active material contained in the positive electrode 22, the positive electrode active material which can be used with an all-solid-state secondary battery can be used suitably. Examples of such a positive electrode active material include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel cobalt manganese composite oxide (LiNi x Co y Mn (1-xy) O 2 (however, In addition to layered active materials such as 0 <x <1, 0 <y <1, 0 <x + y <1)), olivine-type active materials such as olivine-type lithium iron phosphate (LiFePO 4 ), and spinel-type lithium manganate A spinel active material such as (LiMn 2 O 4 ) can be exemplified. The shape of the positive electrode active material can be, for example, particulate or thin film. The average particle diameter (D 50 ) of the positive electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. Further, the content of the positive electrode active material in the positive electrode layer is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.

また、正極22には、硫化物固体電解質を用いた全固体二次電池に使用可能な硫化物固体電解質を適宜含有させることができる。そのような硫化物固体電解質としては、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P、LiPS等を例示することができる。硫化物固体電解質は、結晶質であっても良く、非結晶質であっても良く、ガラスセラミックスであっても良い。 Further, the positive electrode 22 can appropriately contain a sulfide solid electrolyte that can be used in an all-solid secondary battery using a sulfide solid electrolyte. Examples of such sulfide solid electrolytes include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 O 5 , LiI—. Examples include Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 , Li 3 PS 4, and the like. The sulfide solid electrolyte may be crystalline, non-crystalline, or glass ceramic.

正極活物質と硫化物固体電解質との界面に高抵抗層が形成され難い形態にすることによって、電池抵抗の増加を防止しやすい形態にする観点から、正極22に含有させる正極活物質は、イオン伝導性酸化物で被覆されていることが好ましい。正極活物質を被覆するリチウムイオン伝導性酸化物としては、例えば、一般式LiAO(Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta又はWであり、x及びyは正の数である。)で表される酸化物を挙げることができる。具体的には、LiBO、LiCO、LiAlO、LiSiO、LiPO、LiSO、LiTi12、LiZrO、LiNbO、LiMoO、LiWO等を例示することができる。また、リチウムイオン伝導性酸化物は、複合酸化物であっても良い。正極活物質を被覆する複合酸化物としては、上記リチウムイオン伝導性酸化物の任意の組み合わせを採用することができ、例えば、LiSiO−LiBO、LiSiO−LiPO等を挙げることができる。また、正極活物質の表面をイオン伝導性酸化物で被覆する場合、イオン伝導性酸化物は、正極活物質の少なくとも一部を被覆してれば良く、正極活物質の全面を被覆していても良い。また、正極活物質を被覆するイオン伝導性酸化物の厚さは、例えば、0.1nm以上100nm以下であることが好ましく、1nm以上20nm以下であることがより好ましい。なお、イオン伝導性酸化物の厚さは、例えば、透過型電子顕微鏡(TEM)等を用いて測定することができる。 From the viewpoint of making it easy to prevent an increase in battery resistance by making the high resistance layer difficult to form at the interface between the positive electrode active material and the sulfide solid electrolyte, the positive electrode active material contained in the positive electrode 22 is an ion It is preferably coated with a conductive oxide. Examples of the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers). Specifically, Li 3 BO 3 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 3 PO 4 , Li 2 SO 4 , Li 4 Ti 5 O 12 , Li 2 ZrO 3 , LiNbO 3 , Li 2 Examples thereof include MoO 4 and Li 2 WO 4 . The lithium ion conductive oxide may be a complex oxide. As the composite oxide covering the positive electrode active material, any combination of the above lithium ion conductive oxides can be employed. For example, Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned. Further, when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good. In addition, the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).

また、正極22には、導電性を向上させる導電材を適宜含有させることができる。そのような導電材としては、気相成長炭素繊維、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料のほか、全固体二次電池の使用時の環境に耐えることが可能な金属材料を例示することができる。   Further, the positive electrode 22 can appropriately contain a conductive material that improves conductivity. Such conductive materials include vapor grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), carbon nanofiber (CNF) and other carbon materials, as well as all-solid secondary A metal material that can withstand the environment when the battery is used can be exemplified.

また、正極22には、バインダーを適宜含有させることができる。そのようなバインダーとしては、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)等を例示することができる。   Moreover, the positive electrode 22 can contain a binder as appropriate. Examples of such a binder include acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), and the like.

上記正極活物質、硫化物固体電解質、及び、導電材等を液体に分散して調整したスラリー状の正極組成物を用いて正極22を作製する場合、使用可能な液体としてはヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、正極22の厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、電池20の性能を高めやすくするために、正極22はプレスする過程を経て作製されることが好ましい。本発明において、正極22を作製する際のプレス圧力は、100MPa程度とすることができる。   When the positive electrode 22 is produced using a slurry-like positive electrode composition prepared by dispersing the positive electrode active material, the sulfide solid electrolyte, and the conductive material in a liquid, heptane or the like is exemplified as a usable liquid. A nonpolar solvent can be preferably used. Further, the thickness of the positive electrode 22 is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make it easy to improve the performance of the battery 20, the positive electrode 22 is preferably manufactured through a pressing process. In the present invention, the pressing pressure when producing the positive electrode 22 can be about 100 MPa.

一方、負極24は、例えば、負極24を構成すべき物質(例えば、負極活物質及び硫化物固体電解質等。)を液体に分散させることにより作製したスラリー状の負極組成物を、別途用意した負極集電体25の表面に塗布し、乾燥した後、所定の圧力でプレスする過程を経て作製することができる。このほか、負極24を構成すべき物質を混合することにより作製した混合物をプレスすることによって、負極24を作製することも可能である。   On the other hand, the negative electrode 24 is a negative electrode prepared separately by, for example, preparing a slurry-like negative electrode composition prepared by dispersing a material (for example, a negative electrode active material and a sulfide solid electrolyte) to constitute the negative electrode 24 in a liquid. It can be manufactured through a process in which it is applied to the surface of the current collector 25, dried, and then pressed at a predetermined pressure. In addition, the negative electrode 24 can be manufactured by pressing a mixture prepared by mixing the substances that constitute the negative electrode 24.

ここで、負極集電体25は、全固体二次電池の集電体として使用可能な金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。   Here, the negative electrode current collector 25 can be made of a metal that can be used as a current collector of an all-solid secondary battery. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.

また、負極24に含有させる負極活物質としては、全固体二次電池で使用可能な負極活物質を適宜用いることができる。そのような負極活物質としては、例えば、カーボン活物質、酸化物活物質、及び、金属活物質等を挙げることができる。カーボン活物質は、炭素を含有していれば特に限定されず、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、Si、及び、Sn等を挙げることができる。また、負極活物質として、リチウム含有金属活物質を用いても良い。リチウム含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されず、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、Si、及び、Snの少なくとも一種とを含有する合金を挙げることができる。負極活物質の形状は、例えば粒子状、薄膜状等にすることができる。負極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、負極層における負極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。 Moreover, as a negative electrode active material contained in the negative electrode 24, the negative electrode active material which can be used with an all-solid-state secondary battery can be used suitably. Examples of such a negative electrode active material include a carbon active material, an oxide active material, and a metal active material. The carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. Examples of the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO. Examples of the metal active material include In, Al, Si, and Sn. Further, a lithium-containing metal active material may be used as the negative electrode active material. The lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn. The shape of the negative electrode active material can be, for example, particulate or thin film. The average particle diameter (D 50 ) of the negative electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. In addition, the content of the negative electrode active material in the negative electrode layer is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.

また、負極24には、硫化物固体電解質を用いた全固体二次電池に使用可能な硫化物固体電解質を適宜含有させることができる。そのような硫化物固体電解質としては、正極22に含有させることが可能な上記硫化物固体電解質を例示することができる。   The negative electrode 24 can appropriately contain a sulfide solid electrolyte that can be used in an all-solid secondary battery using a sulfide solid electrolyte. As such a sulfide solid electrolyte, the sulfide solid electrolyte that can be contained in the positive electrode 22 can be exemplified.

また、負極24には、導電性を向上させる導電材を適宜含有させることができる。そのような導電材としては、正極22に含有させることが可能な上記導電材を例示することができる。   Further, the negative electrode 24 can appropriately contain a conductive material that improves conductivity. As such a conductive material, the said conductive material which can be contained in the positive electrode 22 can be illustrated.

また、負極24には、バインダーを適宜含有させることができる。そのようなバインダーとしては、正極22に含有させることが可能な上記バインダーを例示することができる。   Moreover, the negative electrode 24 can contain a binder as appropriate. As such a binder, the said binder which can be contained in the positive electrode 22 can be illustrated.

上記負極活物質及び硫化物固体電解質等を液体に分散して調整したスラリー状の負極組成物を用いて負極層を作製する場合、負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極24の厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、電池20の性能を高めやすくするために、負極24はプレスする過程を経て作製されることが好ましい。本発明において、負極24をプレスする際の圧力は、例えば400MPa程度とすることができる。   When a negative electrode layer is prepared using a slurry-like negative electrode composition prepared by dispersing the negative electrode active material and sulfide solid electrolyte in a liquid, heptane or the like is exemplified as a liquid in which the negative electrode active material or the like is dispersed. A nonpolar solvent can be preferably used. Further, the thickness of the negative electrode 24 is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make it easy to improve the performance of the battery 20, the negative electrode 24 is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing the negative electrode 24 can be about 400 MPa, for example.

また、硫化物固体電解質層23に含有させる硫化物固体電解質としては、全固体二次電池に使用可能な硫化物固体電解質を適宜用いることができる。そのような硫化物固体電解質としては、正極22や負極24に含有させることが可能な上記硫化物固体電解質を例示することができる。このほか、硫化物固体電解質層23には、可塑性を発現させる等の観点から、硫化物固体電解質同士を結着させるバインダーを含有させることができる。そのようなバインダーとしては、正極22や負極24に含有させることが可能な上記バインダー等を例示することができる。ただし、高出力化を図りやすくするために、硫化物固体電解質の過度の凝集を防止し且つ均一に分散された硫化物固体電解質を有する硫化物固体電解質層23を形成可能にする等の観点から、硫化物固体電解質層23に含有させるバインダーは5質量%以下とすることが好ましい。また、液体に上記硫化物固体電解質等を分散して調整したスラリー状の固体電解質組成物を正極22や負極24等に塗布する過程を経て硫化物固体電解質層23を作製する場合、硫化物固体電解質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。硫化物固体電解質層23における硫化物固体電解質材料の含有量は、質量%で、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。硫化物固体電解質層23の厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。   Moreover, as the sulfide solid electrolyte contained in the sulfide solid electrolyte layer 23, a sulfide solid electrolyte that can be used in an all-solid secondary battery can be appropriately used. As such a sulfide solid electrolyte, the above-mentioned sulfide solid electrolyte that can be contained in the positive electrode 22 and the negative electrode 24 can be exemplified. In addition, the sulfide solid electrolyte layer 23 can contain a binder that binds the sulfide solid electrolytes together from the viewpoint of developing plasticity. As such a binder, the said binder etc. which can be contained in the positive electrode 22 or the negative electrode 24 can be illustrated. However, from the viewpoint of making it possible to form a sulfide solid electrolyte layer 23 having a sulfide solid electrolyte uniformly dispersed and preventing excessive aggregation of the sulfide solid electrolyte in order to facilitate high output. The binder contained in the sulfide solid electrolyte layer 23 is preferably 5% by mass or less. Further, when the sulfide solid electrolyte layer 23 is manufactured through a process of applying the slurry solid electrolyte composition prepared by dispersing the sulfide solid electrolyte or the like in a liquid to the positive electrode 22 or the negative electrode 24, the sulfide solid electrolyte layer 23 is prepared. Examples of the liquid for dispersing the electrolyte and the like include heptane and the like, and a nonpolar solvent can be preferably used. The content of the sulfide solid electrolyte material in the sulfide solid electrolyte layer 23 is mass%, for example, 60% or more, preferably 70% or more, and particularly preferably 80% or more. Although the thickness of the sulfide solid electrolyte layer 23 varies greatly depending on the configuration of the battery, for example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

このようにして作製可能な正極22、負極24、及び、硫化物固体電解質層23を有する電池20を組み立てる際には、例えば、正極集電体21の一方の表面に正極22を形成し、負極集電体25の一方の表面に負極24を形成し、さらに、この負極24の表面に硫化物固体電解質層23を形成する。その後、正極22と負極24の間に硫化物固体電解質層23が配設されるように、正極集電体21の表面に形成された正極22、硫化物固体電解質層23、及び、負極集電体25の表面に形成された負極24を積層することにより、正極集電体21、正極22、硫化物固体電解質層23、負極24、及び、負極集電体25を有する積層体を形成する。そして、この積層体を外装体に収容して密封する等の工程を経ることにより、電池20を組み立てることができる。積層体を収容する外装体としては、全固体二次電池で使用可能なラミネートフィルムを適宜用いることができる。そのようなラミネートフィルムとしては、樹脂製のラミネートフィルムや、樹脂製のラミネートフィルムに金属を蒸着させたフィルム等を例示することができる。   When assembling the battery 20 having the positive electrode 22, the negative electrode 24, and the sulfide solid electrolyte layer 23 that can be produced in this manner, for example, the positive electrode 22 is formed on one surface of the positive electrode current collector 21, and the negative electrode A negative electrode 24 is formed on one surface of the current collector 25, and a sulfide solid electrolyte layer 23 is formed on the surface of the negative electrode 24. Thereafter, the positive electrode 22, the sulfide solid electrolyte layer 23, and the negative electrode current collector formed on the surface of the positive electrode current collector 21 so that the sulfide solid electrolyte layer 23 is disposed between the positive electrode 22 and the negative electrode 24. By laminating the negative electrode 24 formed on the surface of the body 25, a laminate having the positive electrode current collector 21, the positive electrode 22, the sulfide solid electrolyte layer 23, the negative electrode 24, and the negative electrode current collector 25 is formed. And the battery 20 can be assembled by passing through processes, such as accommodating and sealing this laminated body in an exterior body. As an exterior body that houses the laminate, a laminate film that can be used in an all-solid secondary battery can be appropriately used. Examples of such a laminate film include a resin laminate film, a film obtained by depositing a metal on a resin laminate film, and the like.

実施例を参照しつつ、本発明について、さらに説明を続ける。   The present invention will be further described with reference to examples.

(1)硫化物固体電解質の合成
LiS(日本化学工業株式会社製)及びP(アルドリッチ社製)を出発原料として、LiSを0.7656g、Pを1.2344g秤量し、メノウ乳鉢で5分間に亘って混合した。その後、4gのヘプタンを入れ、遊星型ボールミル(フリッチュ社製、Pulverisette-7)を用いて40分間に亘ってメカニカルミリングすることにより、硫化物固体電解質を得た。
(1) Synthesis of sulfide solid electrolyte Li 2 S (manufactured by Nippon Kagaku Kogyo Co., Ltd.) and P 2 S 5 (manufactured by Aldrich) are used as starting materials, 0.756 g of Li 2 S, and P 2 S 5 of 1. 2344 g was weighed and mixed for 5 minutes in an agate mortar. Thereafter, 4 g of heptane was added, and a sulfide solid electrolyte was obtained by mechanical milling for 40 minutes using a planetary ball mill (Pulverisette-7, manufactured by Fritsch).

(2)電池の作製
正極活物質には、LiNbOで表面が被覆された、ニッケルコバルトマンガン酸リチウムLiNi3/5Co1/5Mn1/5を使用した。また、導電材には気相成長炭素繊維(昭和電工株式会社製)を使用した。12.03mgの正極活物質、0.51mgの導電材、及び、上述の方法で合成した硫化物固体電解質5.03mgをそれぞれ秤量し、これらを混合したものを正極合剤とした。
負極活物質には、グラファイト(三菱化学株式会社製)を使用した。9.06mgの負極活物質、及び、上述の方法で合成した硫化物固体電解質8.24mgをそれぞれ秤量し、これらを混合したものを負極合剤とした。
軸方向を法線方向とする中空部の断面積が1cmであるセラミックス製の型に、上述の方法で合成した硫化物固体電解質18mgを秤量して入れ、98MPaでプレスすることにより、硫化物固体電解質層を作製した。次に、このようにして作製した硫化物固体電解質層の片側に、17.57mgの正極合剤を入れ、98MPaでプレスすることにより、正極を作製した。さらに、正極合剤を入れた側とは逆側に、17.3mgの負極合剤を入れ、490MPaでプレスすることにより、負極を作製した。その後、正極集電体(Al箔)を正極に接触させ、且つ、負極集電体(Cu箔)を負極に接触させる過程を経て、電池(全固体二次電池)を作製した。
(2) Production of Battery As the positive electrode active material, lithium cobalt manganate LiNi 3/5 Co 1/5 Mn 1/5 O 2 whose surface was coated with LiNbO 3 was used. Moreover, the vapor growth carbon fiber (made by Showa Denko KK) was used for the electrically conductive material. 12.03 mg of the positive electrode active material, 0.51 mg of the conductive material, and 5.03 mg of the sulfide solid electrolyte synthesized by the method described above were weighed, and a mixture thereof was used as the positive electrode mixture.
Graphite (manufactured by Mitsubishi Chemical Corporation) was used as the negative electrode active material. 9.06 mg of the negative electrode active material and 8.24 mg of the sulfide solid electrolyte synthesized by the method described above were weighed, and a mixture thereof was used as the negative electrode mixture.
By weighing 18 mg of the sulfide solid electrolyte synthesized by the above-mentioned method into a ceramic mold having a hollow cross-sectional area of 1 cm 2 with the axial direction as the normal direction, the sulfide is pressed by pressing at 98 MPa. A solid electrolyte layer was prepared. Next, 17.57 mg of a positive electrode mixture was placed on one side of the sulfide solid electrolyte layer thus prepared, and pressed at 98 MPa to prepare a positive electrode. Furthermore, 17.3 mg of the negative electrode mixture was put on the side opposite to the side where the positive electrode mixture was put, and pressed at 490 MPa to prepare a negative electrode. Thereafter, a battery (all-solid secondary battery) was manufactured through a process in which the positive electrode current collector (Al foil) was brought into contact with the positive electrode and the negative electrode current collector (Cu foil) was brought into contact with the negative electrode.

(3)特性評価(繰り返し充放電後の容量維持率測定)
<実施例1>
上述の方法で作製した電池に対し、1Cで4.4Vまで定電流充電を行い、続いて、4.4Vにて、電流値を終止電流値0.01Cまで徐々に低減しながら定電圧充電を行った(初回充電工程)。その後、40℃の環境下で、油圧プレス機(理研精機社製、油圧プレスMS2)で1MPaの拘束圧を付与しながら、後述する比較例1の初回の放電容量の5%に相当する容量分だけ増加するまで、4.4Vにて、電流値を0.01Cから徐々に低減しながら、定電圧充電を行った(定電圧充電工程)。その後、1Cで3.0Vまで定電流放電を行い、続いて、3.0Vにて、電流値を終止電流値0.01Cまで徐々に低減しながら定電圧放電を行った(初回放電工程)。
その後、2Cで4.4Vまで定電流充電を行い、続いて、4.4Vにて、電流値を終止電流値0.02Cまで徐々に低減しながら定電圧充電を行った(2回目の充電工程)。その後、2Cで3.0Vまで定電流放電を行い、続いて、3.0Vにて、電流値を終止電流値0.02Cまで徐々に低減しながら定電圧放電を行った(2回目の放電工程)。
2回目の放電工程が終了した電池に対し、2mAで4.4Vまで定電流充電を行い、その後、2mAで3.0Vまで定電流放電を行う充放電を1サイクルとして、200サイクルに亘る繰り返し充放電を行った。200サイクル目の定電流放電を行った後、上記2回目の充電工程及び2回目の放電工程と同条件の充放電を行い、上記2回目の放電工程と同条件の放電で特定された放電容量を、実施例1の繰り返し使用後の放電容量とした。そして、後述する比較例1の初回の放電容量を用いて、容量比(%)=100×実施例1の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例1の容量比を求めた。
(3) Characteristic evaluation (capacity retention rate measurement after repeated charge / discharge)
<Example 1>
The battery manufactured by the above-described method is charged with a constant current up to 4.4V at 1C, and then charged with a constant voltage at 4.4V while gradually reducing the current value to a termination current value of 0.01C. (First charging step). Thereafter, a capacity equivalent to 5% of the initial discharge capacity of Comparative Example 1 described later is applied in a 40 ° C. environment while applying a 1 MPa restraining pressure with a hydraulic press (manufactured by Riken Seiki Co., Ltd., hydraulic press MS2). Constant voltage charging was performed while gradually decreasing the current value from 0.01 C at 4.4 V (constant voltage charging step). Then, constant current discharge was performed to 3.0V at 1C, and then constant voltage discharge was performed at 3.0V while gradually reducing the current value to a final current value of 0.01C (initial discharge process).
Thereafter, constant current charging was performed up to 4.4V at 2C, and then constant voltage charging was performed at 4.4V while gradually reducing the current value to the end current value of 0.02C (second charging step) ). Then, constant current discharge was performed to 3.0V at 2C, and then constant voltage discharge was performed at 3.0V while gradually reducing the current value to the end current value of 0.02C (second discharge process) ).
The battery that has completed the second discharge process is charged at a constant current of up to 4.4 V at 2 mA, and then charged and discharged at a constant current of up to 3.0 V at 2 mA for one cycle. Discharge was performed. After performing the constant current discharge of the 200th cycle, charge / discharge under the same conditions as the second charging step and the second discharging step, and the discharge capacity specified by the discharging under the same conditions as the second discharging step Was the discharge capacity after repeated use of Example 1. Then, using the initial discharge capacity of Comparative Example 1 described later, capacity ratio (%) = 100 × discharge capacity after repeated use of Example 1 / initial discharge capacity of Comparative Example 1 The ratio was determined.

<比較例1>
定電圧充電工程を行わないほかは実施例1と同様にして、初回充電工程及び初回放電工程を行い、さらに、実施例1と同様にして、2回目の充電工程及び2回目の放電工程を行った。そして、2回目の放電工程で特定された放電容量を、比較例1の初回の放電容量とした。
その後、実施例1と同様にして、比較例1の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例1の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例1の容量比を求めた。
<Comparative Example 1>
The first charging step and the first discharging step are performed in the same manner as in Example 1 except that the constant voltage charging step is not performed, and further, the second charging step and the second discharging step are performed in the same manner as in Example 1. It was. The discharge capacity specified in the second discharge process was used as the first discharge capacity of Comparative Example 1.
Thereafter, in the same manner as in Example 1, the discharge capacity after repeated use of Comparative Example 1 was obtained, and the capacity ratio (%) = 100 × discharge capacity after repeated use of Comparative Example 1 / initial discharge capacity of Comparative Example 1 Thus, the capacity ratio of Comparative Example 1 was obtained.

<比較例2>
初回充電工程の終了後に24時間に亘って電池を放置(エージング)してから初回放電工程を行ったほかは、比較例1と同様にして、比較例2の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例2の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例2の容量比を求めた。
<Comparative Example 2>
The discharge capacity after repeated use of Comparative Example 2 was determined in the same manner as in Comparative Example 1, except that the battery was left for 24 hours after the completion of the initial charging process (aging) and then the initial discharge process was performed. Capacity ratio (%) = 100 × discharge capacity after repeated use of Comparative Example 2 / initial discharge capacity of Comparative Example 1 The capacity ratio of Comparative Example 2 was determined.

<実施例2>
比較例1の初回の放電容量の7%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、実施例2の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例2の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例2の容量比を求めた。
<Example 2>
The discharge capacity after repeated use of Example 2 was determined in the same manner as in Example 1 except that the constant voltage charging process was performed until the capacity corresponding to 7% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × discharge capacity after repeated use of Example 2 / first time discharge capacity of Comparative Example 1 The capacity ratio of Example 2 was determined.

<実施例3>
比較例1の初回の放電容量の9%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、実施例3の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例3の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例3の容量比を求めた。
<Example 3>
The discharge capacity after repeated use of Example 3 was determined in the same manner as in Example 1 except that the constant voltage charging step was performed until the capacity corresponding to 9% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × discharge capacity after repeated use of Example 3 / first time discharge capacity of Comparative Example 1 The capacity ratio of Example 3 was determined.

<実施例4>
比較例1の初回の放電容量の10%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、実施例4の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例4の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例4の容量比を求めた。
<Example 4>
The discharge capacity after repeated use of Example 4 was determined in the same manner as in Example 1 except that the constant voltage charging process was performed until the capacity corresponding to 10% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × discharge capacity after repeated use of Example 4 / initial discharge capacity of Comparative Example 1 The capacity ratio of Example 4 was determined.

<実施例5>
定電圧充電工程を行う際の温度を50℃に変更したほかは、実施例2と同様にして、実施例5の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例5の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例5の容量比を求めた。
<Example 5>
The discharge capacity after repeated use of Example 5 was determined in the same manner as in Example 2 except that the temperature during the constant voltage charging step was changed to 50 ° C., and the capacity ratio (%) = 100 × Example 5 The capacity ratio of Example 5 was obtained from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<実施例6>
定電圧充電工程を行う際の温度を60℃に変更したほかは、実施例5と同様にして、実施例6の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例6の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例6の容量比を求めた。
<Example 6>
The discharge capacity after repeated use of Example 6 was determined in the same manner as in Example 5 except that the temperature during the constant voltage charging step was changed to 60 ° C., and the capacity ratio (%) = 100 × Example 6 The capacity ratio of Example 6 was determined from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<実施例7>
定電圧充電工程の拘束圧を0.1MPaに変更したほかは、実施例5と同様にして、実施例7の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例7の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例7の容量比を求めた。
<Example 7>
The discharge capacity after repeated use of Example 7 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 0.1 MPa, and the capacity ratio (%) = 100 × Example 7 The capacity ratio of Example 7 was determined from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<実施例8>
定電圧充電工程の拘束圧を2MPaに変更したほかは、実施例5と同様にして、実施例8の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例8の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例8の容量比を求めた。
<Example 8>
The discharge capacity after repeated use of Example 8 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 2 MPa, and the capacity ratio (%) = 100 × repeated use of Example 8 The capacity ratio of Example 8 was determined from the subsequent discharge capacity / the initial discharge capacity of Comparative Example 1.

<実施例9>
定電圧充電工程の拘束圧を4MPaに変更したほかは、実施例5と同様にして、実施例9の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例9の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例9の容量比を求めた。
<Example 9>
The discharge capacity after repeated use of Example 9 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 4 MPa, and the capacity ratio (%) = 100 × repeated use of Example 9 The capacity ratio of Example 9 was determined from the subsequent discharge capacity / the initial discharge capacity of Comparative Example 1.

<実施例10>
定電圧充電工程の拘束圧を8MPaに変更したほかは、実施例5と同様にして、実施例10の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例10の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例10の容量比を求めた。
<Example 10>
The discharge capacity after repeated use of Example 10 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 8 MPa, and the capacity ratio (%) = 100 × repeated use of Example 10 The capacity ratio of Example 10 was determined from the subsequent discharge capacity / the initial discharge capacity of Comparative Example 1.

<実施例11>
定電圧充電工程の拘束圧を10MPaに変更したほかは、実施例5と同様にして、実施例11の繰り返し使用後の放電容量を求め、容量比(%)=100×実施例11の繰り返し使用後の放電容量/比較例1の初回の放電容量により、実施例11の容量比を求めた。
<Example 11>
The discharge capacity after repeated use of Example 11 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 10 MPa, and the capacity ratio (%) = 100 × repeated use of Example 11 The capacity ratio of Example 11 was obtained from the subsequent discharge capacity / the initial discharge capacity of Comparative Example 1.

<比較例3>
比較例1の初回の放電容量の2%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、比較例3の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例3の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例3の容量比を求めた。
<Comparative Example 3>
The discharge capacity after repeated use of Comparative Example 3 was determined in the same manner as in Example 1 except that the constant voltage charging step was performed until the capacity corresponding to 2% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × discharge capacity after repeated use of comparative example 3 / initial discharge capacity of comparative example 1 The capacity ratio of comparative example 3 was determined.

<比較例4>
比較例1の初回の放電容量の4%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、比較例4の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例4の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例4の容量比を求めた。
<Comparative example 4>
The discharge capacity after repeated use of Comparative Example 4 was determined in the same manner as in Example 1 except that the constant voltage charging step was performed until the capacity corresponding to 4% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × Discharge capacity after repeated use of Comparative Example 4 / First discharge capacity of Comparative Example 1 The capacity ratio of Comparative Example 4 was determined.

<比較例5>
比較例1の初回の放電容量の12%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、比較例5の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例5の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例5の容量比を求めた。
<Comparative Example 5>
The discharge capacity after repeated use of Comparative Example 5 was determined in the same manner as in Example 1 except that the constant voltage charging step was performed until the capacity corresponding to 12% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × discharge capacity after repeated use of Comparative Example 5 / initial discharge capacity of Comparative Example 1 The capacity ratio of Comparative Example 5 was determined.

<比較例6>
比較例1の初回の放電容量の15%に相当する容量分が増加するまで定電圧充電工程を行ったほかは、実施例1と同様にして、比較例6の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例6の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例6の容量比を求めた。
<Comparative Example 6>
The discharge capacity after repeated use of Comparative Example 6 was determined in the same manner as in Example 1 except that the constant voltage charging step was performed until the capacity corresponding to 15% of the initial discharge capacity of Comparative Example 1 increased. Capacity ratio (%) = 100 × Discharge capacity after repeated use of Comparative Example 6 / First discharge capacity of Comparative Example 1 The capacity ratio of Comparative Example 6 was determined.

<比較例7>
定電圧充電工程を行う際の温度を25℃に変更したほかは、実施例2と同様にして、比較例7の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例7の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例7の容量比を求めた。
<Comparative Example 7>
The discharge capacity after repeated use of Comparative Example 7 was determined in the same manner as in Example 2 except that the temperature during the constant voltage charging step was changed to 25 ° C., and the capacity ratio (%) = 100 × Comparative Example 7 The capacity ratio of Comparative Example 7 was obtained from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<比較例8>
定電圧充電工程を行う際の温度を35℃に変更したほかは、実施例2と同様にして、比較例8の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例8の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例8の容量比を求めた。
<Comparative Example 8>
The discharge capacity after repeated use of Comparative Example 8 was determined in the same manner as in Example 2 except that the temperature during the constant voltage charging step was changed to 35 ° C., and the capacity ratio (%) = 100 × Comparative Example 8 The capacity ratio of Comparative Example 8 was determined from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<比較例9>
定電圧充電工程を行う際の温度を70℃に変更したほかは、実施例2と同様にして、比較例9の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例9の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例9の容量比を求めた。
<Comparative Example 9>
The discharge capacity after repeated use of Comparative Example 9 was determined in the same manner as in Example 2 except that the temperature during the constant voltage charging step was changed to 70 ° C., and the capacity ratio (%) = 100 × Comparative Example 9 The capacity ratio of Comparative Example 9 was determined from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<比較例10>
定電圧充電工程を行う際の温度を80℃に変更したほかは、実施例2と同様にして、比較例10の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例10の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例10の容量比を求めた。
<Comparative Example 10>
The discharge capacity after repeated use of Comparative Example 10 was determined in the same manner as in Example 2 except that the temperature during the constant voltage charging step was changed to 80 ° C., and the capacity ratio (%) = 100 × Comparative Example 10 The capacity ratio of Comparative Example 10 was determined from the discharge capacity after repeated use / the initial discharge capacity of Comparative Example 1.

<比較例11>
定電圧充電工程で拘束圧を付与しなかった(拘束圧を0MPaとした)ほかは、実施例5と同様にして、比較例11の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例11の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例11の容量比を求めた。
<Comparative Example 11>
The discharge capacity after repeated use of Comparative Example 11 was determined in the same manner as in Example 5 except that no constraint pressure was applied in the constant voltage charging step (the constraint pressure was set to 0 MPa), and the capacity ratio (%) = The capacity ratio of Comparative Example 11 was determined from 100 × discharge capacity after repeated use of Comparative Example 11 / initial discharge capacity of Comparative Example 1.

<比較例12>
定電圧充電工程の拘束圧を12MPaに変更したほかは、実施例5と同様にして、比較例12の繰り返し使用後の放電容量を求め、容量比(%)=100×比較例12の繰り返し使用後の放電容量/比較例1の初回の放電容量により、比較例12の容量比を求めた。
<Comparative Example 12>
The discharge capacity after repeated use of Comparative Example 12 was determined in the same manner as in Example 5 except that the constraint pressure in the constant voltage charging step was changed to 12 MPa, and the capacity ratio (%) = 100 × repeated use of Comparative Example 12 The capacity ratio of Comparative Example 12 was determined from the subsequent discharge capacity / the initial discharge capacity of Comparative Example 1.

(4)結果
実施例1乃至実施例4の容量比、及び、比較例1乃至比較例6の容量比の結果を、図4に示す。上述のように、比較例1及び比較例2では定電圧充電工程を行わなかったので、比較例1及び比較例2は定電圧充電工程で増やした容量が0%であるとして、図4に結果を示した。図4に示したように、実施例1の容量比は68%、実施例2の容量比は70%、実施例3の容量比は71%であり、実施例4の容量比は71%であった。これに対し、比較例1の容量比は60%、比較例2の容量比は61%、比較例3の容量比は61%、比較例4の容量比は62%、比較例5の容量比は61%であり、比較例6の容量比は57%であった。すなわち、定電圧充電工程の終止容量を5%以上10%にした実施例1乃至実施例4は、定電圧充電工程の終止容量を5%未満にした比較例1乃至比較例4や、定電圧充電工程の終止容量が10%を超えた比較例5及び比較例6よりも、容量比が大きかった。この結果から、終止容量が5%以上10%以下である定電圧充電工程を行うことにより、サイクル特性を向上させた全固体二次電池を製造可能であることが分かった。
(4) Results FIG. 4 shows the results of the capacity ratios of Examples 1 to 4 and the capacity ratios of Comparative Examples 1 to 6. As described above, since the constant voltage charging process was not performed in Comparative Example 1 and Comparative Example 2, it was assumed that the capacity increased in the constant voltage charging process was 0% in Comparative Example 1 and Comparative Example 2, and the results are shown in FIG. showed that. As shown in FIG. 4, the capacity ratio of Example 1 is 68%, the capacity ratio of Example 2 is 70%, the capacity ratio of Example 3 is 71%, and the capacity ratio of Example 4 is 71%. there were. In contrast, the capacity ratio of Comparative Example 1 is 60%, the capacity ratio of Comparative Example 2 is 61%, the capacity ratio of Comparative Example 3 is 61%, the capacity ratio of Comparative Example 4 is 62%, and the capacity ratio of Comparative Example 5 Was 61%, and the capacity ratio of Comparative Example 6 was 57%. That is, Examples 1 to 4 in which the final capacity of the constant voltage charging process is 5% or more and 10% are compared with Comparative Examples 1 to 4 in which the final capacity of the constant voltage charging process is less than 5%, The capacity ratio was larger than those of Comparative Examples 5 and 6 in which the final capacity of the charging process exceeded 10%. From this result, it was found that an all-solid-state secondary battery with improved cycle characteristics can be manufactured by performing a constant voltage charging step with a termination capacity of 5% to 10%.

実施例2、実施例5、実施例6、及び、比較例7乃至比較例10の容量比の結果を、図5に示す。上述のように、実施例2、実施例5、実施例6、及び、比較例7乃至比較例10は、定電圧充電工程を行う際の温度が異なっていた。図5に示したように、実施例2の容量比は70%、実施例5の容量比は72%であり、実施例6の容量比は72%であった。これに対し、比較例7の容量比は61%、比較例8の容量比は62%、比較例9の容量比は55%であり、比較例10の容量比は35%であった。すなわち、定電圧充電工程の温度を40℃以上60℃以下にした実施例2、実施例5、及び、実施例6は、定電圧充電工程の温度を40℃未満にした比較例7及び比較例8や、定電圧充電工程の温度を60℃よりも高くした比較例9及び比較例10よりも、容量比が大きかった。この結果から、40℃以上60℃以下の温度環境下で定電圧充電工程を行うことにより、サイクル特性を向上させた全固体二次電池を製造可能であることが分かった。   The results of the capacity ratios of Example 2, Example 5, Example 6, and Comparative Examples 7 to 10 are shown in FIG. As described above, Example 2, Example 5, Example 6, and Comparative Examples 7 to 10 had different temperatures when performing the constant voltage charging process. As shown in FIG. 5, the capacity ratio of Example 2 was 70%, the capacity ratio of Example 5 was 72%, and the capacity ratio of Example 6 was 72%. On the other hand, the capacity ratio of Comparative Example 7 was 61%, the capacity ratio of Comparative Example 8 was 62%, the capacity ratio of Comparative Example 9 was 55%, and the capacity ratio of Comparative Example 10 was 35%. That is, Example 2, Example 5 and Example 6 in which the temperature of the constant voltage charging step was set to 40 ° C. or more and 60 ° C. or less were Comparative Example 7 and Comparative Example in which the temperature of the constant voltage charging step was less than 40 ° C. 8 and the capacity ratio was larger than those of Comparative Examples 9 and 10 in which the temperature of the constant voltage charging step was higher than 60 ° C. From this result, it was found that an all-solid-state secondary battery with improved cycle characteristics can be manufactured by performing the constant voltage charging step in a temperature environment of 40 ° C. or higher and 60 ° C. or lower.

実施例5、実施例7乃至実施例11、比較例11、及び、比較例12の容量比の結果を、図6に示す。上述のように、実施例5、実施例7乃至実施例11、比較例11、及び、比較例12は、定電圧充電工程で付与した拘束圧が異なっていた。図6に示したように、実施例5の容量比は72%、実施例7の容量比は66%、実施例8の容量比は74%、実施例9の容量比は78%、実施例10の容量比は80%であり、実施例11の容量比は80%であった。これに対し、比較例11の容量比は55%であり、比較例12の容量比は51%であった。すなわち、定電圧充電工程で付与する拘束圧を0.1MPa以上10MPa以下にした実施例5、及び、実施例7乃至実施例11は、定電圧充電工程で付与する拘束圧を0.1MPa未満にした比較例11や、定電圧充電工程で付与する拘束圧が10MPaを超えた比較例12よりも、容量比が大きかった。この結果から、拘束圧が0.1MPa以上10MPa以下である定電圧充電工程を行うことにより、サイクル特性を向上させた全固体二次電池を製造可能であることが分かった。   The results of the capacity ratios of Example 5, Examples 7 to 11, Comparative Example 11, and Comparative Example 12 are shown in FIG. As mentioned above, Example 5, Example 7 thru | or Example 11, the comparative example 11, and the comparative example 12 differed in the restraint pressure provided at the constant voltage charging process. As shown in FIG. 6, the capacity ratio of Example 5 is 72%, the capacity ratio of Example 7 is 66%, the capacity ratio of Example 8 is 74%, the capacity ratio of Example 9 is 78%, and the Example The capacity ratio of 10 was 80%, and the capacity ratio of Example 11 was 80%. On the other hand, the capacity ratio of Comparative Example 11 was 55%, and the capacity ratio of Comparative Example 12 was 51%. That is, in Example 5 and Examples 7 to 11 in which the constraining pressure applied in the constant voltage charging process is 0.1 MPa or more and 10 MPa or less, the constraining pressure applied in the constant voltage charging process is less than 0.1 MPa. The capacity ratio was larger than Comparative Example 11 and Comparative Example 12 in which the constraining pressure applied in the constant voltage charging step exceeded 10 MPa. From this result, it was found that an all-solid-state secondary battery with improved cycle characteristics can be manufactured by performing a constant voltage charging step in which the constraint pressure is 0.1 MPa or more and 10 MPa or less.

20…電池(全固体二次電池)
21…正極集電体
22…正極
23…硫化物固体電解質層
24…負極
25…負極集電体
20 ... Battery (All-solid secondary battery)
DESCRIPTION OF SYMBOLS 21 ... Positive electrode collector 22 ... Positive electrode 23 ... Sulfide solid electrolyte layer 24 ... Negative electrode 25 ... Negative electrode collector

Claims (3)

正極及び負極と、これらの間に配置された硫化物固体電解質層と、を有する電池を組み立てる組立工程と、
前記組立工程で組み立てられた前記電池について、初回の定電流定電圧充電を行う、初回充電工程と、
前記初回充電工程に続いて、前記電池について、定電圧充電を行う、定電圧充電工程と、
前記定電圧充電工程に続いて、前記電池について、初回の定電流定電圧放電を行う、初回放電工程と、
を有し、
前記定電圧充電工程は、40℃〜60℃の温度環境下で、前記電池に0.1MPa〜10MPaの拘束圧を付与しながら、定電圧充電を行う工程であり、且つ、
前記定電圧充電工程で充電される容量は、該定電圧充電工程を行うことなく初回の定電流定電圧放電を行った際に特定される電池の放電容量の5%〜10%である、
ことを特徴とする、全固体二次電池の製造方法。
An assembly step of assembling a battery having a positive electrode and a negative electrode, and a sulfide solid electrolyte layer disposed between the positive electrode and the negative electrode;
For the battery assembled in the assembly process, the first constant current constant voltage charging, an initial charging process,
Following the initial charging step, the battery is subjected to constant voltage charging, a constant voltage charging step,
Following the constant voltage charging step, for the battery, performing an initial constant current constant voltage discharge, an initial discharge step,
Have
The constant voltage charging step is a step of performing constant voltage charging while applying a constraint pressure of 0.1 MPa to 10 MPa to the battery in a temperature environment of 40 ° C. to 60 ° C., and
The capacity charged in the constant voltage charging step is 5% to 10% of the discharge capacity of the battery specified when performing the first constant current constant voltage discharge without performing the constant voltage charging step.
A method for producing an all solid state secondary battery.
前記正極に、LiNiCoMn(1−x−y)(ただし、0<x<1、0<y<1、0<x+y<1)が正極活物質として含まれることを特徴とする、請求項1に記載の全固体二次電池の製造方法。 The positive electrode includes LiNi x Co y Mn (1-xy) O 2 (where 0 <x <1, 0 <y <1, 0 <x + y <1) as a positive electrode active material, The manufacturing method of the all-solid-state secondary battery of Claim 1. 前記正極活物質の表面が、ニオブ酸リチウムで被覆されていることを特徴とする、請求項2に記載の全固体二次電池の製造方法。 The method for producing an all-solid-state secondary battery according to claim 2, wherein the surface of the positive electrode active material is coated with lithium niobate.
JP2014213357A 2014-10-20 2014-10-20 Method for manufacturing all-solid type secondary battery Pending JP2016081790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213357A JP2016081790A (en) 2014-10-20 2014-10-20 Method for manufacturing all-solid type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213357A JP2016081790A (en) 2014-10-20 2014-10-20 Method for manufacturing all-solid type secondary battery

Publications (1)

Publication Number Publication Date
JP2016081790A true JP2016081790A (en) 2016-05-16

Family

ID=55959106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213357A Pending JP2016081790A (en) 2014-10-20 2014-10-20 Method for manufacturing all-solid type secondary battery

Country Status (1)

Country Link
JP (1) JP2016081790A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery
JP2018085238A (en) * 2016-11-24 2018-05-31 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2019003901A (en) * 2017-06-19 2019-01-10 国立研究開発法人物質・材料研究機構 Negative electrode material for all solid lithium ion secondary battery, negative electrode member, and manufacturing method of all solid lithium ion secondary battery using the same
DE102018219088A1 (en) 2017-11-10 2019-05-16 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A SOLID BODY BATTERY
CN110190247A (en) * 2018-02-23 2019-08-30 丰田自动车株式会社 The manufacturing method of solid secondary battery system
JP2019192578A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Manufacturing method for all-solid battery
JP2019220353A (en) * 2018-06-20 2019-12-26 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery
JP6640434B1 (en) * 2018-08-03 2020-02-05 Jx金属株式会社 Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same
CN112510265A (en) * 2020-11-06 2021-03-16 天津力神电池股份有限公司 One-step formation hot-pressing method for improving cycle performance of soft package lithium ion battery
US11075419B2 (en) 2017-09-18 2021-07-27 Lg Chem, Ltd. Method of manufacturing pouch-shaped battery cell comprising jig grading
US11342543B2 (en) 2017-11-30 2022-05-24 Lg Energy Solution, Ltd. Apparatus and method for activating battery cell
WO2022131301A1 (en) 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery
JP2018085238A (en) * 2016-11-24 2018-05-31 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2019003901A (en) * 2017-06-19 2019-01-10 国立研究開発法人物質・材料研究機構 Negative electrode material for all solid lithium ion secondary battery, negative electrode member, and manufacturing method of all solid lithium ion secondary battery using the same
US11075419B2 (en) 2017-09-18 2021-07-27 Lg Chem, Ltd. Method of manufacturing pouch-shaped battery cell comprising jig grading
DE102018219088A1 (en) 2017-11-10 2019-05-16 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A SOLID BODY BATTERY
KR20190053803A (en) 2017-11-10 2019-05-20 도요타 지도샤(주) Method for production of all-solid-state battery
US10818975B2 (en) 2017-11-10 2020-10-27 Toyota Jidosha Kabushiki Kaisha Method for production of all-solid-state battery
US11342543B2 (en) 2017-11-30 2022-05-24 Lg Energy Solution, Ltd. Apparatus and method for activating battery cell
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same
JP7267269B2 (en) 2018-02-07 2023-05-01 エルジー エナジー ソリューション リミテッド Lithium metal secondary battery and battery module containing the same
US11145889B2 (en) 2018-02-07 2021-10-12 Lg Chem, Ltd. Lithium metal secondary battery and battery module including the same
JP2020537309A (en) * 2018-02-07 2020-12-17 エルジー・ケム・リミテッド Lithium metal secondary battery and battery module containing it
CN110190247B (en) * 2018-02-23 2022-05-17 丰田自动车株式会社 Method for manufacturing solid secondary battery system
CN110190247A (en) * 2018-02-23 2019-08-30 丰田自动车株式会社 The manufacturing method of solid secondary battery system
JP2019192578A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Manufacturing method for all-solid battery
JP2019220353A (en) * 2018-06-20 2019-12-26 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery
CN111801819A (en) * 2018-08-03 2020-10-20 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and all-solid-state lithium ion battery
WO2020026508A1 (en) * 2018-08-03 2020-02-06 Jx金属株式会社 Positive electrode active material for all-solid lithium ion battery, positive electrode for all-solid lithium ion battery, and all-solid lithium ion battery
JP6640434B1 (en) * 2018-08-03 2020-02-05 Jx金属株式会社 Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery
EP3736889A4 (en) * 2018-08-03 2021-10-13 JX Nippon Mining & Metals Corporation Positive electrode active material for all-solid lithium ion battery, positive electrode for all-solid lithium ion battery, and all-solid lithium ion battery
CN111801819B (en) * 2018-08-03 2023-04-11 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and all-solid-state lithium ion battery
CN112510265A (en) * 2020-11-06 2021-03-16 天津力神电池股份有限公司 One-step formation hot-pressing method for improving cycle performance of soft package lithium ion battery
CN112510265B (en) * 2020-11-06 2022-11-29 天津力神电池股份有限公司 One-step formation hot-pressing method for improving cycle performance of soft package lithium ion battery
WO2022131301A1 (en) 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Similar Documents

Publication Publication Date Title
JP2016081790A (en) Method for manufacturing all-solid type secondary battery
US9923197B2 (en) Composite negative active material and method of preparing the same, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
JP6409794B2 (en) Method for producing positive electrode mixture, method for producing positive electrode, and method for producing all solid lithium ion secondary battery
US9985314B2 (en) All-solid battery and method for manufacturing the same
JP5930035B2 (en) All solid state battery and manufacturing method thereof
JP6936959B2 (en) Method for manufacturing positive electrode mixture, positive electrode active material layer, all-solid-state battery and positive electrode active material layer
CN111864207B (en) All-solid battery
TWI555257B (en) All-solid battery and method for manufacturing the same
JP6127528B2 (en) Electrode, all-solid-state battery, and manufacturing method thereof
JP2016012495A (en) Lithium solid type secondary battery, and method for manufacturing the same
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
KR101497946B1 (en) Cathode active material having core-shell structure and manufacturing method therof
KR102341406B1 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
WO2020059550A1 (en) Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery
US10249880B2 (en) Method for manufacturing current collector and method for manufacturing solid battery
US20230223535A1 (en) Negative electrode and secondary battery including the same
CN111247673A (en) Composition for forming active material layer, method for producing same, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6074989B2 (en) Solid battery manufacturing method
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
JP2021103656A (en) All-solid battery and manufacturing method thereof
JP2017041392A (en) All-solid battery
JP6954224B2 (en) Manufacturing method of all-solid-state battery
Chiluwal Three-Dimensional Electrode Architectures for Beyond Lithium-Ion Batteries
CN117239222A (en) Ion conductor, all-solid-state battery, and method for manufacturing ion conductor
JP2018078076A (en) Method for manufacturing solid battery