JP2019002570A - Vibration motor - Google Patents

Vibration motor Download PDF

Info

Publication number
JP2019002570A
JP2019002570A JP2018183669A JP2018183669A JP2019002570A JP 2019002570 A JP2019002570 A JP 2019002570A JP 2018183669 A JP2018183669 A JP 2018183669A JP 2018183669 A JP2018183669 A JP 2018183669A JP 2019002570 A JP2019002570 A JP 2019002570A
Authority
JP
Japan
Prior art keywords
powder
sintered
bearing
vibration motor
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018183669A
Other languages
Japanese (ja)
Other versions
JP6816079B2 (en
Inventor
容敬 伊藤
Yasutaka Ito
容敬 伊藤
洋介 須貝
Yosuke Sugai
洋介 須貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of JP2019002570A publication Critical patent/JP2019002570A/en
Application granted granted Critical
Publication of JP6816079B2 publication Critical patent/JP6816079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a vibration motor capable of stably exhibiting high rotation performance over a long period.SOLUTION: A vibration motor 1 comprises: a shaft 3; a motor part M configured to rotationally drive the shaft 3; a sintered bearing 4 having a bearing surface 4a on an inner periphery, and rotatably supporting the shaft 3; a weight W provided in the shaft 3; and a cylinder housing 2 press-fitting and fixing the sintered bearing 4 to an inner periphery, wherein the shaft 3 is affected by the weight W to eccentrically rotate to a center of the bearing, thereby generating vibration. The sintered bearing 4 comprises a sintered body mainly composed of iron and containing copper of 10-30 mass%, and has radial crushing strength of 300 MPa or more.SELECTED DRAWING: Figure 1

Description

本発明は、振動モータに関する。   The present invention relates to a vibration motor.

振動モータとは、例えば携帯電話等の携帯端末において、電話の着信やメールの受信等を報知するバイブレータとして機能するものであり、例えば錘(偏心錘)が取り付けられた軸をモータ部で回転させることにより、携帯端末全体を振動させ得る構造となっている。このような構造を採用した振動モータとして、軸を焼結軸受(焼結含油軸受)で支持するようにしたものがある(例えば、特許文献1,2)。   The vibration motor functions as a vibrator for notifying incoming calls or mails in a portable terminal such as a cellular phone. For example, the motor unit rotates a shaft to which a weight (eccentric weight) is attached. Thus, the entire mobile terminal can be vibrated. As a vibration motor adopting such a structure, there is one in which a shaft is supported by a sintered bearing (sintered oil-impregnated bearing) (for example, Patent Documents 1 and 2).

図1に、焼結軸受を使用した振動モータの一構成例の要部を模式的に示す。図示例の振動モータ1では、モータ部Mの軸方向両側に突出させた軸3の両側を、内周に軸受面4aを有する円筒状の焼結軸受4(41,42)で回転自在に支持している。軸3の一端には錘Wが設けられている。錘W側の焼結軸受41は錘Wとモータ部Mの間に配置されており、この焼結軸受41は、錘Wと反対側の焼結軸受42よりも軸方向寸法(軸受面4aの面積)が大きくなっている。二つの焼結軸受4(41,42)は、何れもハウジング2の内周に固定されている。この振動モータ1において、モータ部Mに通電され、軸3が回転すると、錘Wの影響を受けて軸3が軸受面4aの全面に沿って振れ回りながら回転する。すなわち、この振動モータ1において、軸3は、その中心Oaを軸受中心(焼結軸受4の中心Ob)に対してあらゆる方向に偏心させた状態で回転する(図2参照)。   FIG. 1 schematically shows a main part of a configuration example of a vibration motor using a sintered bearing. In the vibration motor 1 of the illustrated example, both sides of the shaft 3 protruding from both sides in the axial direction of the motor part M are rotatably supported by cylindrical sintered bearings 4 (41, 42) having bearing surfaces 4a on the inner periphery. doing. A weight W is provided at one end of the shaft 3. The sintered bearing 41 on the weight W side is disposed between the weight W and the motor unit M, and the sintered bearing 41 has an axial dimension (of the bearing surface 4a) than the sintered bearing 42 on the opposite side to the weight W. Area) is increasing. The two sintered bearings 4 (41, 42) are both fixed to the inner periphery of the housing 2. In the vibration motor 1, when the motor unit M is energized and the shaft 3 rotates, the shaft 3 rotates while swinging along the entire surface of the bearing surface 4 a under the influence of the weight W. That is, in this vibration motor 1, the shaft 3 rotates with its center Oa decentered in all directions with respect to the bearing center (center Ob of the sintered bearing 4) (see FIG. 2).

特開2001−178100号公報JP 2001-178100 A 特開2008−99355号公報JP 2008-99355 A 特許第3613569号Japanese Patent No. 3613569

近年、いわゆるスマートフォン等への搭載を考慮して、振動モータにはさらなる小型化が要請されている。振動モータを小型化した場合、モータパワーの増大には限界がある。そのような状況下でも所定の振動性能を確保するために、モータを高速回転化(10000rpm以上)し、あるいはアンバランス荷重を増大させることで対処しようとしており、焼結軸受の使用条件は一層過酷化する傾向にある。すなわち、振動モータでは、上述のとおり、軸が焼結軸受の軸受面全面に沿って振れ回ること、またアンバランス荷重により軸受面が軸に頻繁に叩かれる(軸受面に軸が頻繁に衝突する)ことなどから、焼結軸受の使用条件は通常用途の焼結軸受(例えば、スピンドルモータ用の焼結軸受)よりもただでさえ過酷であり、軸受面が摩耗し易い。そのため、所望の振動性能を確保するためにモータを高速回転化等すると、軸受面の摩耗が一層促進されることになり、回転変動が大きくなる。   In recent years, vibration motors are required to be further downsized in consideration of mounting on so-called smartphones. When the vibration motor is downsized, there is a limit to the increase in motor power. Even in such a situation, in order to ensure the predetermined vibration performance, we are trying to cope with it by rotating the motor at a high speed (10000 rpm or more) or increasing the unbalanced load. It tends to become. That is, in the vibration motor, as described above, the shaft swings along the entire bearing surface of the sintered bearing, and the bearing surface is frequently hit by the unbalanced load (the shaft frequently collides with the bearing surface). Therefore, the use conditions of the sintered bearing are even more severe than the sintered bearing for normal use (for example, a sintered bearing for a spindle motor), and the bearing surface is easily worn. Therefore, if the motor is rotated at a high speed in order to ensure the desired vibration performance, the wear of the bearing surface is further promoted, and the rotational fluctuation becomes large.

また、所望の回転性能を発揮可能とするには、焼結軸受単体での軸受面精度のみならず、焼結軸受をハウジングの内周に固定した状態での軸受面精度も重要である。すなわち、焼結軸受の機械的強度(特に圧環強度)が不足していると、例えば焼結軸受をハウジングの内周に圧入を伴って挿入した際に、軸受面がハウジングの内周面形状に倣って変形し易くなる。焼結軸受の軸受面が変形した場合でも、サイジング等の形状修正加工を追加的に施せば軸受面を所定形状・精度に仕上げることができるが、加工工程が追加される分、製造コストが増大する。   In addition, not only the bearing surface accuracy of the sintered bearing alone but also the bearing surface accuracy in a state where the sintered bearing is fixed to the inner periphery of the housing are important in order to be able to exhibit the desired rotational performance. In other words, if the sintered bearing has insufficient mechanical strength (particularly the crushing strength), for example, when the sintered bearing is inserted into the inner periphery of the housing with press fitting, the bearing surface becomes the inner peripheral shape of the housing. It becomes easy to follow and deform. Even if the bearing surface of a sintered bearing is deformed, additional shape correction processing such as sizing can be used to finish the bearing surface to the specified shape and accuracy. To do.

また、特に携帯電話等の携帯端末で使用される振動モータには、携帯端末の落下に伴って大きな衝撃値が付加された場合でも、簡単に回転不能とならないような高い耐衝撃性が求められる。   In particular, vibration motors used in mobile terminals such as mobile phones are required to have high impact resistance so that they cannot be easily rotated even when a large impact value is applied when the mobile terminal is dropped. .

そこで、本発明は、高い回転性能を長期間に亘って安定的に発揮することのできる振動モータを低コストに提供することを目的とする。   Accordingly, an object of the present invention is to provide a vibration motor that can stably exhibit high rotational performance over a long period of time at a low cost.

上記の目的を達成するために創案された本発明は、軸と、軸を回転駆動させるモータ部と、内周に軸受面を有し、軸を回転自在に支持する焼結軸受と、軸に設けられた錘と、焼結軸受を内周に圧入固定したハウジングとを備え、錘で軸を軸受中心に対して偏心回転させることにより振動が発生する振動モータであって、焼結軸受が、鉄を主成分とし、その次に銅を多く含む焼結体からなり、かつ300MPa以上の圧環強度を有することを特徴とする。   Invented to achieve the above object, the present invention includes a shaft, a motor unit that rotationally drives the shaft, a sintered bearing that has a bearing surface on the inner periphery and rotatably supports the shaft, and a shaft. A vibration motor that includes a provided weight and a housing in which a sintered bearing is press-fitted and fixed to the inner periphery, and generates vibration by rotating the shaft eccentrically with respect to the center of the bearing with the weight. It is made of a sintered body containing iron as a main component and then containing a large amount of copper, and has a crushing strength of 300 MPa or more.

上記のように、本発明に係る振動モータでは、安価でありながら機械的強度に優れる鉄を主成分とし、軸との初期なじみ性等の摺動特性に優れた銅をその次に多く含む焼結体(鉄銅系の焼結体)からなる焼結軸受が使用される。このように、焼結軸受として、比較的安価でありながら、高強度で軸受面の耐摩耗性に優れたものが使用されるので、モータを高速回転化し、あるいはアンバランス荷重を増大させた場合であっても、特段のコスト増を招来することなく高い回転性能を確保することができる。特に、圧環強度が300MPa以上の焼結軸受が使用されるので、焼結軸受をハウジング内周に圧入固定した場合でも、圧入に伴って軸受面が変形し、軸受面の真円度や円筒度などが低下するのを可及的に防止することができる。そのため、ハウジング内周に固定された焼結軸受に対し、軸受面を所定形状・精度に仕上げるための加工を追加的に実行する必要がなくなる。逆を言えば、簡便な固定手段である圧入を、ハウジングに対する焼結軸受の固定手段として問題なく採用することができる。また、焼結軸受が300MPa以上の圧環強度を有していれば、振動モータを組み込んだ携帯端末が落下等し、振動モータ(焼結軸受)に大きな衝撃値が付加された場合でも、軸受面が変形等するのを可及的に防止することができる。以上から、本発明によれば、高い回転性能を長期間に亘って安定的に発揮することのできる振動モータを低コストに提供することができる。   As described above, in the vibration motor according to the present invention, the main component is iron, which is inexpensive but has excellent mechanical strength, and the next most is copper, which has excellent sliding characteristics such as initial conformability with the shaft. A sintered bearing made of a bonded body (iron-copper-based sintered body) is used. In this way, sintered bearings that are relatively inexpensive but have high strength and excellent wear resistance on the bearing surface are used. Therefore, when the motor is rotated at a high speed or the unbalance load is increased. Even so, high rotational performance can be ensured without incurring a particular increase in cost. In particular, since sintered bearings with a pressure ring strength of 300 MPa or more are used, even when the sintered bearing is press-fitted and fixed to the inner periphery of the housing, the bearing surface is deformed with the press-fitting, and the roundness and cylindricity of the bearing surface are reduced. Etc. can be prevented as much as possible. Therefore, it is not necessary to additionally perform processing for finishing the bearing surface with a predetermined shape and accuracy with respect to the sintered bearing fixed to the inner periphery of the housing. In other words, press fitting, which is a simple fixing means, can be adopted without any problem as a fixing means for the sintered bearing to the housing. In addition, if the sintered bearing has a crushing strength of 300 MPa or more, even if the mobile terminal incorporating the vibration motor falls, even if a large impact value is added to the vibration motor (sintered bearing), the bearing surface Can be prevented from being deformed as much as possible. As described above, according to the present invention, it is possible to provide a low-cost vibration motor that can stably exhibit high rotational performance over a long period of time.

鉄を主成分とし、その次に銅を多く含む焼結体からなる焼結軸受は、例えば上記特許文献3に記載されているように、鉄粉に対し10質量%以上30質量%未満の銅を被覆してなり、粒度を80メッシュ以下とした銅被覆鉄粉を圧粉・焼結することによって得ることができる。しかしながら、本発明者らが検証したところ、特許文献3に記載の焼結軸受を振動モータに使用した場合には、回転変動が大きくなることが明らかになった。これは、銅被覆鉄粉を圧粉・焼結して得られた焼結軸受では、鉄相(鉄組織)と銅相(銅組織)間のネック強度が低いため、軸受面が早期に摩耗したことに原因の一つがあると考えられる。   A sintered bearing made of a sintered body containing iron as a main component and then containing a large amount of copper, for example, as described in Patent Document 3 above, has a copper content of 10% by mass or more and less than 30% by mass with respect to iron powder. Can be obtained by compacting and sintering copper-coated iron powder having a particle size of 80 mesh or less. However, the present inventors have verified that when the sintered bearing described in Patent Document 3 is used for a vibration motor, the rotational fluctuation becomes large. This is because sintered bearings obtained by compacting and sintering copper-coated iron powder have low neck strength between the iron phase (iron structure) and the copper phase (copper structure), so the bearing surface wears out early. It is thought that there is one cause.

そこで、本発明では、焼結軸受として、鉄粉に銅粉を部分拡散させてなる部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉とを含む原料粉末を成形し、焼結した焼結体を使用することとした。   Therefore, in the present invention, as a sintered bearing, a raw material powder containing a partial diffusion alloy powder obtained by partially diffusing copper powder into iron powder, a low melting point metal powder, and a solid lubricant powder is molded and sintered. A sintered body was used.

部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、銅被覆鉄粉を使用する場合よりも焼結後の鉄組織と銅組織の間で高いネック強度が得られる。また、上記の構成によれば、成形後の焼結により、圧粉体に含まれる低融点金属粉が溶融する。低融点金属は銅に対して高いぬれ性を持つので、液相焼結により、隣り合う部分拡散合金粉の鉄組織と銅組織、あるいは銅組織同士を強固に結合させることができる。また、個々の部分拡散合金粉のうち、鉄粉の表面に銅粉の一部が拡散することでFe−Cu合金が形成された部分には、溶融した低融点金属が拡散していくため、鉄組織と銅組織間のネック強度が一層高まる。これらのことから、焼結温度を低融点金属粉が溶融する温度(例えば700〜900℃)に設定した低温焼結でも軸受面の耐摩耗性に優れ、かつ300MPa以上の圧環強度を有する高強度の焼結体(焼結軸受)を確実に得ることが可能となる。そして、軸受面の耐摩耗性が向上すれば、振動モータの回転変動を防止することができる。なお、この場合、原料粉末に含める部分拡散合金粉として、平均粒径5μm以上20μm未満の銅粉が鉄粉に部分拡散し、かつ銅を10〜30質量%含有するものを使用するのが好ましい。   In the partial diffusion alloy powder, since a part of the copper powder is diffused in the iron powder, a higher neck strength is obtained between the sintered iron structure and the copper structure than when the copper-coated iron powder is used. Moreover, according to said structure, the low melting metal powder contained in a green compact fuse | melts by sintering after shaping | molding. Since the low melting point metal has high wettability with respect to copper, the iron structure and the copper structure of adjacent partial diffusion alloy powders, or the copper structures can be firmly bonded by liquid phase sintering. In addition, among the individual partial diffusion alloy powders, the melted low melting point metal diffuses into the part where the Fe-Cu alloy is formed by diffusing a part of the copper powder on the surface of the iron powder, The neck strength between the iron and copper structures is further increased. From these facts, high strength has excellent crushing strength of 300 MPa or more with excellent wear resistance of the bearing surface even at low temperature sintering where the sintering temperature is set to a temperature at which the low melting point metal powder is melted (for example, 700 to 900 ° C.). It becomes possible to reliably obtain a sintered body (sintered bearing). And if the abrasion resistance of a bearing surface improves, rotation fluctuation of a vibration motor can be prevented. In this case, as the partial diffusion alloy powder to be included in the raw material powder, it is preferable to use a copper powder having an average particle size of 5 μm or more and less than 20 μm that partially diffuses in the iron powder and contains 10 to 30% by mass of copper. .

本発明者らが鋭意検討を重ねた結果、原料粉末中に平均粒径106μmを超える大粒径の部分拡散合金粉が含まれていると、焼結体の内部に粗大気孔が形成され易く、その結果、必要とされる軸受面の耐摩耗性や圧環強度等を確保できない場合があることが判明した。従って、部分拡散合金粉は、平均粒度145メッシュ以下(平均粒径106μm以下)のものを使用するのが好ましい。このような合金粉を使用することで、焼結後の金属組織(多孔質組織)が均一化され、多孔質組織中での粗大気孔の発生が抑制された焼結体を安定的に得ることができる。これにより、軸受面の耐摩耗性や軸受の圧環強度が一層向上した焼結軸受を安定的に得ることが可能となる。   As a result of repeated extensive studies by the present inventors, if the raw material powder contains a partially diffused alloy powder having a large particle size exceeding the average particle size of 106 μm, rough air holes are easily formed inside the sintered body, As a result, it has been found that there are cases in which the required wear resistance of the bearing surface, the crushing strength, and the like cannot be ensured. Accordingly, it is preferable to use a partially diffused alloy powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less). By using such an alloy powder, it is possible to stably obtain a sintered body in which the sintered metal structure (porous structure) is homogenized and the generation of coarse air holes in the porous structure is suppressed. Can do. Thereby, it becomes possible to stably obtain a sintered bearing in which the wear resistance of the bearing surface and the crushing strength of the bearing are further improved.

上記の焼結軸受は、低融点金属粉として錫粉、固体潤滑剤粉として黒鉛粉を使用した原料粉末から得ることができる。この場合、焼結軸受は、Cuを10〜30質量%、Snを0.5〜3.0質量%、Cを0.3〜1.5質量%含有し、残部を鉄および不可避的不純物とした焼結体で構成することができる。この構成では、ニッケル(Ni)やモリブデン(Mo)等の高価な材料を使用していないので、機械的強度および軸受面の耐摩耗性が高められた焼結軸受を低コストに得ることができる。そのため、回転変動が生じ難い高回転性能の振動モータを低コストに提供することができる。   The sintered bearing can be obtained from a raw material powder using tin powder as the low melting point metal powder and graphite powder as the solid lubricant powder. In this case, the sintered bearing contains 10 to 30% by mass of Cu, 0.5 to 3.0% by mass of Sn and 0.3 to 1.5% by mass of C, with the balance being iron and inevitable impurities. It can comprise with the sintered compact. In this configuration, since an expensive material such as nickel (Ni) or molybdenum (Mo) is not used, a sintered bearing with improved mechanical strength and wear resistance of the bearing surface can be obtained at low cost. . Therefore, it is possible to provide a low-cost vibration motor with high rotational performance that hardly causes rotational fluctuation.

焼結体の鉄組織を、軟質なフェライト相を主体として構成すれば、軸受面の軸に対する攻撃性を弱くすることができるので、軸の摩耗を抑制することが可能となる。フェライト相を主体とした鉄組織は、例えば鉄と炭素(黒鉛)が反応しない900℃以下の温度で圧粉体を焼結することで得ることができる。   If the iron structure of the sintered body is mainly composed of a soft ferrite phase, the aggressiveness of the bearing surface against the shaft can be weakened, so that shaft wear can be suppressed. An iron structure mainly composed of a ferrite phase can be obtained, for example, by sintering a green compact at a temperature of 900 ° C. or less at which iron and carbon (graphite) do not react.

フェライト相を主体とする鉄組織には、その全てをフェライト相とした組織の他、フェライト相の粒界にフェライト相よりも硬質のパーライト相を存在させたような鉄組織も含まれる。このように、フェライト相の粒界にパーライト相を形成することで、鉄組織をフェライト相だけで構成する場合と比べ、軸受面の耐摩耗性を向上させることができる。軸の摩耗抑制と軸受面の耐摩耗性向上とを両立させるには、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合を、それぞれ、80〜95%および5〜20%とする(αFe:γFe=80〜95%:5〜20%)のが好適である。なお、上記の割合は、例えば、焼結体の任意断面におけるフェライト相およびパーライト相それぞれの面積比率で求めることができる。   The iron structure mainly composed of the ferrite phase includes an iron structure in which a pearlite phase harder than the ferrite phase is present at the grain boundary of the ferrite phase in addition to a structure in which all of the ferrite phase is formed as a ferrite phase. Thus, by forming a pearlite phase at the grain boundary of the ferrite phase, it is possible to improve the wear resistance of the bearing surface as compared with the case where the iron structure is composed only of the ferrite phase. In order to achieve both suppression of shaft wear and improvement in wear resistance of the bearing surface, the proportions of the ferrite phase (αFe) and pearlite phase (γFe) in the iron structure are 80 to 95% and 5 to 20%, respectively. (ΑFe: γFe = 80 to 95%: 5 to 20%) is preferable. In addition, said ratio can be calculated | required by the area ratio of each of the ferrite phase and the pearlite phase in the arbitrary cross sections of a sintered compact, for example.

部分拡散合金粉(Fe−Cu部分拡散合金粉)を構成する鉄粉としては、還元鉄粉を使用することができる。鉄粉としては、還元鉄粉以外にも、例えばアトマイズ鉄粉を使用することもできるが、還元鉄粉は内部気孔を有する海綿状(多孔質状)をなすことから、アトマイズ鉄粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体強度を高めることができ、圧粉体の欠けや割れの発生を防止することができる。また、還元鉄粉は、上記のとおり海綿状をなすことから、アトマイズ鉄粉に比べて保油性に優れる利点も有する。   As iron powder constituting the partial diffusion alloy powder (Fe—Cu partial diffusion alloy powder), reduced iron powder can be used. As the iron powder, for example, atomized iron powder can be used in addition to the reduced iron powder. However, since the reduced iron powder has a spongy shape (porous shape) having internal pores, it is compared with the atomized iron powder. The powder is soft and excellent in compression moldability. Therefore, the green compact strength can be increased even at low density, and chipping and cracking of the green compact can be prevented. Moreover, since reduced iron powder makes a spongy shape as described above, it also has an advantage of superior oil retention as compared with atomized iron powder.

上記構成において、焼結体の表層部の気孔率、特に軸受面を含む表層部の気孔率は5〜20%とするのが好ましい。なお、ここでいう表層部とは、表面から深さ100μmに至るまでの領域である。   In the above configuration, the porosity of the surface layer portion of the sintered body, particularly the porosity of the surface layer portion including the bearing surface is preferably 5 to 20%. Here, the surface layer portion is a region from the surface to a depth of 100 μm.

焼結軸受は、焼結体の内部気孔に潤滑油を含浸させたいわゆる焼結含油軸受とすることができ、この場合、潤滑油としては、40℃の動粘度が10〜50mm2/sの範囲内にあるものが好ましく使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体に含浸させる油としては、40℃の動粘度が10〜50mm2/sの範囲内にある油(潤滑油)を基油とした液状グリースを採用しても良い。 The sintered bearing can be a so-called sintered oil-impregnated bearing in which the internal pores of the sintered body are impregnated with lubricating oil. In this case, the lubricating oil has a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s. Those within the range are preferably used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap. As the oil impregnated into the sintered body, liquid grease based on oil (lubricating oil) having a kinematic viscosity at 40 ° C. within the range of 10 to 50 mm 2 / s may be employed.

上記構成の振動モータにおいて、焼結軸受はモータ部の軸方向両側に配置することができる。この場合、モータ部の軸方向両側に配置した焼結軸受のうち、一方側の焼結軸受を錘とモータ部の間に配置し、かつこの一方側の焼結軸受の軸方向寸法を、他方側の焼結軸受の軸方向寸法よりも大きくすることができる。このようにすれば、上記一方側の焼結軸受の軸受面面積を大きく設定することができるので、相対的に大きなアンバランス荷重が作用する錘に近接した側において軸支能力を高めることができる。その一方、相対的に小さなアンバランス荷重が作用する上記他方側の焼結軸受では、その軸受面面積を小さく設定することができるので、振動モータ全体としての回転トルクの増大を抑制することができる。   In the vibration motor configured as described above, the sintered bearings can be disposed on both sides of the motor portion in the axial direction. In this case, among the sintered bearings arranged on both sides in the axial direction of the motor part, the sintered bearing on one side is arranged between the weight and the motor part, and the axial dimension of the sintered bearing on one side is set to the other side. It can be larger than the axial dimension of the side sintered bearing. In this way, since the bearing surface area of the sintered bearing on the one side can be set large, the bearing capacity can be increased on the side close to the weight on which a relatively large unbalance load acts. . On the other hand, in the sintered bearing on the other side on which a relatively small unbalance load acts, the bearing surface area can be set small, so that an increase in rotational torque as the whole vibration motor can be suppressed. .

以上に示すように、本発明によれば、モータを高速回転化し、あるいはアンバランス荷重を増大させた場合であっても、高い回転性能を長期間に亘って安定的に発揮することのできる振動モータを低コストに提供することができる。   As described above, according to the present invention, even when the motor is rotated at a high speed or the unbalance load is increased, the vibration capable of stably exhibiting high rotational performance over a long period of time. A motor can be provided at low cost.

本発明の一実施形態に係る振動モータの要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the vibration motor which concerns on one Embodiment of this invention. 図1中のA−A線矢視拡大断面図であり、軸が回転する様子を模式的に示す図である。It is an AA arrow expanded sectional view in FIG. 1, and is a figure which shows a mode that an axis | shaft rotates. 図2中のX部の顕微鏡写真である。It is a microscope picture of the X section in FIG. 部分拡散合金粉を模式的に示す図である。It is a figure which shows a partial diffusion alloy powder typically. 成形工程を示す概略断面図である。It is a schematic sectional drawing which shows a formation process. 成形工程を示す概略断面図である。It is a schematic sectional drawing which shows a formation process. 圧粉体の一部を概念的に示す図である。It is a figure which shows a part of green compact conceptually. 焼結体の金属組織を模式的に示す図である。It is a figure which shows typically the metal structure of a sintered compact. 従来技術に係る焼結軸受の軸受面付近の顕微鏡写真である。It is a microscope picture of the bearing surface vicinity of the sintered bearing which concerns on a prior art.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施形態に係る振動モータを、図1を援用して説明する。図示例の振動モータ1は、軸3と、図示しないロータマグネットおよびステータコイル等を有し、軸3を10000rpm以上の回転数で回転駆動させ得るモータ部Mと、モータ部Mの軸方向両側に配置され、内周に軸受面4aを有するリング状の焼結軸受4(41,42)と、金属又は樹脂材料で略円筒状に形成され、内周にモータ部Mおよび焼結軸受4(41,42)を保持した円筒状のハウジング2とを備える。軸3は、ステンレス鋼等の金属材料で形成され、ここでは直径2mm以下(好ましくは1.0mm以下)のものが使用される。軸3の一端には錘Wが一体又は別体に設けられており、本実施形態の錘Wは、その中心を軸3の中心に対して偏心させるようにして軸3の一端に取り付け固定されている。また、焼結軸受4(41,42)は、ハウジング2の内周に圧入固定されている。軸3の外周面3aと焼結軸受4の軸受面4aとの間に形成される隙間(軸受隙間)の隙間幅は、例えば片側(半径値)で4μm程度に設定されている。焼結軸受4の内部気孔には、40℃の動粘度が10〜50mm2/sの範囲内にある潤滑油が含浸されている。焼結軸受4の内部気孔には、上記の潤滑油に替えて、40℃の動粘度が10〜50mm2/sの範囲内にある油(潤滑油)を基油としたグリースを含浸させても良い。 A vibration motor according to an embodiment of the present invention will be described with reference to FIG. The vibration motor 1 in the illustrated example has a shaft 3, a rotor magnet and a stator coil (not shown), and the like. A motor unit M that can rotate the shaft 3 at a rotational speed of 10,000 rpm or more, and both sides of the motor unit M in the axial direction. The ring-shaped sintered bearing 4 (41, 42) which is disposed and has a bearing surface 4a on the inner periphery, is formed in a substantially cylindrical shape with a metal or resin material, and the motor part M and the sintered bearing 4 (41 on the inner periphery) , 42) and a cylindrical housing 2. The shaft 3 is formed of a metal material such as stainless steel, and a shaft having a diameter of 2 mm or less (preferably 1.0 mm or less) is used here. A weight W is integrally or separately provided at one end of the shaft 3, and the weight W according to the present embodiment is attached and fixed to one end of the shaft 3 so that its center is eccentric with respect to the center of the shaft 3. ing. The sintered bearing 4 (41, 42) is press-fitted and fixed to the inner periphery of the housing 2. The gap width of the gap (bearing gap) formed between the outer peripheral surface 3a of the shaft 3 and the bearing surface 4a of the sintered bearing 4 is set to about 4 μm on one side (radius value), for example. The internal pores of the sintered bearing 4 are impregnated with a lubricating oil having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s. The internal pores of the sintered bearing 4 are impregnated with grease based on oil (lubricating oil) having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s instead of the above lubricating oil. Also good.

以上の構成を有する振動モータ1において、モータ部Mに通電され、軸3が回転駆動されると、焼結軸受4の内部気孔に保持された潤滑油が温度上昇に伴って軸受面4aに滲み出す。この滲み出した潤滑油によって、対向する軸3の外周面3aと焼結軸受4の軸受面4aとの間の軸受隙間に油膜が形成され、軸3が焼結軸受4によって回転自在に支持される。なお、軸3は、その一端に偏心固定された錘Wの影響を受けることにより、軸受面4aの全面に沿って振れ回りながら回転する。すなわち、軸3は、図2に示すように、その中心Oaを焼結軸受4(41,42)の中心Obに対してあらゆる方向に偏心させた状態で回転する。これに伴い、モータ部Mに振動が生じ、この振動がモータ部Mを内周に保持したハウジング2(モータの躯体)に伝わることにより、振動モータ1が全体として振動する。   In the vibration motor 1 having the above configuration, when the motor unit M is energized and the shaft 3 is driven to rotate, the lubricating oil held in the internal pores of the sintered bearing 4 oozes into the bearing surface 4a as the temperature rises. put out. The oil that has oozed out forms an oil film in the bearing gap between the outer peripheral surface 3a of the opposed shaft 3 and the bearing surface 4a of the sintered bearing 4, and the shaft 3 is rotatably supported by the sintered bearing 4. The The shaft 3 rotates while swinging along the entire surface of the bearing surface 4a due to the influence of the weight W eccentrically fixed at one end thereof. That is, as shown in FIG. 2, the shaft 3 rotates with its center Oa decentered in all directions with respect to the center Ob of the sintered bearing 4 (41, 42). Along with this, vibration is generated in the motor unit M, and this vibration is transmitted to the housing 2 (motor housing) holding the motor unit M on the inner periphery, whereby the vibration motor 1 vibrates as a whole.

本実施形態では、二つの焼結軸受41,42の軸方向寸法(軸受面4aの面積)および径方向の厚さを相互に異ならせている。具体的には、錘Wに近い側の焼結軸受41(錘Wとモータ部Mの間に配置された焼結軸受41)の軸受面4aの面積を、錘Wから遠い側の焼結軸受42の軸受面4aの面積よりも大きく設定している。これは、錘Wに近い側では、錘Wから遠い側よりも大きなアンバランス荷重が軸3に作用するため、軸受面4aの面積拡大を通じて軸3の支持能力向上を図る一方、錘Wから遠い側では、錘Wに近い側ほどの支持能力を必要としないため、軸受面4aの面積を小さくして低トルク化を図るためである。なお、同一の焼結軸受4をモータ部Mの軸方向両側に配置し、これら2つの焼結軸受4で軸3を回転自在に支持するようにしても構わない。   In the present embodiment, the axial dimensions (the area of the bearing surface 4a) and the radial thickness of the two sintered bearings 41 and 42 are different from each other. Specifically, the area of the bearing surface 4a of the sintered bearing 41 on the side close to the weight W (sintered bearing 41 arranged between the weight W and the motor part M) is set to the sintered bearing on the side far from the weight W. 42 is set to be larger than the area of the bearing surface 4a. This is because, on the side closer to the weight W, a larger unbalance load acts on the shaft 3 than on the side farther from the weight W, so that the support capability of the shaft 3 is improved through the expansion of the area of the bearing surface 4a, while far from the weight W. This is because, on the side, the support capability closer to the weight W is not required, so the area of the bearing surface 4a is reduced to reduce the torque. The same sintered bearing 4 may be disposed on both sides in the axial direction of the motor part M, and the shaft 3 may be rotatably supported by these two sintered bearings 4.

図示は省略しているが、焼結軸受4の内部気孔に含浸させた潤滑油がハウジング2の外部に漏れ出し、あるいは飛散するのを防止するため、振動モータ1にはハウジング2の開口部をシールするシール部材を設けても良い。   Although not shown, in order to prevent the lubricating oil impregnated in the internal pores of the sintered bearing 4 from leaking to the outside of the housing 2 or scattering, the vibration motor 1 has an opening in the housing 2. A sealing member for sealing may be provided.

以上で説明した焼結軸受4は、鉄を主成分とし、その次に銅を多く含む(Cu:10〜30質量%)鉄銅系の焼結体からなり、かつ300MPa以上の圧環強度を有する。このような焼結軸受4(焼結体)は、主に(A)原料粉末生成工程、(B)成形工程、および(C)焼結工程、を順に経て製造される。以下、上記(A)〜(C)の各工程について詳細に説明する。なお、二つの焼結軸受4(41,42)は、軸受面4aの面積が相互に異なるだけで、その他の構造は実質的に同一であり、同じ製造工程を経て製造される。   The sintered bearing 4 described above is composed of an iron-copper-based sintered body containing iron as a main component and then containing a large amount of copper (Cu: 10 to 30% by mass), and has a crushing strength of 300 MPa or more. . Such a sintered bearing 4 (sintered body) is mainly manufactured through (A) a raw material powder production step, (B) a forming step, and (C) a sintering step in this order. Hereinafter, each process of said (A)-(C) is demonstrated in detail. The two sintered bearings 4 (41, 42) are manufactured through the same manufacturing process except that the areas of the bearing surfaces 4a are different from each other and the other structures are substantially the same.

(A)原料粉末混合工程
この工程では、後述する複数種の粉末を混合することにより、焼結軸受4の作製用材料である原料粉末を均一化する。本実施形態で使用する原料粉末は、部分拡散合金粉を主原料とし、これに低融点金属粉および固体潤滑剤粉を配合した混合粉末である。この原料粉末には、必要に応じて各種成形潤滑剤(例えば、離型性向上のための潤滑剤)を添加しても良い。以下、上記の各粉末について詳細に述べる。
(A) Raw Material Powder Mixing Step In this step, the raw material powder that is a material for producing the sintered bearing 4 is made uniform by mixing a plurality of types of powders described later. The raw material powder used in the present embodiment is a mixed powder in which a partial diffusion alloy powder is used as a main raw material, and a low melting point metal powder and a solid lubricant powder are blended therein. Various molding lubricants (for example, a lubricant for improving releasability) may be added to the raw material powder as necessary. Hereinafter, each of the above powders will be described in detail.

[部分拡散合金粉]
図4に示すように、部分拡散合金粉11としては、鉄粉12の表面に銅粉13を部分拡散させたFe−Cu部分拡散合金粉が使用され、本実施形態では、鉄粉12の表面に、鉄粉12よりも平均粒径が小さい多数の銅粉13を部分拡散させたFe−Cu部分拡散合金粉が使用される。この部分拡散合金粉11の拡散部分はFe−Cu合金を形成しており、図4中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11は、145メッシュの篩の網目は通過可能な粒子、すなわち平均粒度145メッシュ以下(平均粒径106μm以下)の粒子のみが使用される。
[Partial diffusion alloy powder]
As shown in FIG. 4, as the partial diffusion alloy powder 11, Fe—Cu partial diffusion alloy powder in which copper powder 13 is partially diffused on the surface of iron powder 12 is used. In this embodiment, the surface of iron powder 12 is used. Moreover, Fe-Cu partial diffusion alloy powder obtained by partially diffusing a large number of copper powders 13 having an average particle size smaller than that of the iron powder 12 is used. The diffusion portion of the partial diffusion alloy powder 11 forms an Fe—Cu alloy, and as shown in the partial enlarged view in FIG. 4, the alloy portion has an arrangement in which iron atoms 12 a and copper atoms 13 a are bonded to each other. Having a crystal structure. As the partial diffusion alloy powder 11, only particles having an average particle size of 145 mesh or less (average particle size of 106 μm or less) that can pass through the mesh of a 145 mesh screen are used.

なお、粉末はその粒径が小さくなるほど見掛密度が下がり、浮遊し易くなる。そのため、原料粉末中に小粒径の部分拡散合金粉11が多く含まれていると、後述する成形工程において成形金型(キャビティ)に対する原料粉末の充填性が低下し、所定形状・密度の圧粉体を安定的に得ることが難しくなる。具体的には、粒径45μm以下の粒子を25質量%以上含んだ部分拡散合金粉11を使用した場合に、上記の問題が生じ易くなることを本発明者らは見出した。従って、部分拡散合金粉11としては、平均粒度145メッシュ以下(平均粒径106μm以下)で、かつ平均粒度350メッシュ(平均粒径45μm)以下の粒子を25質量%以上含まないものを選択使用するのが望ましい。平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる(以下に述べる粉末の平均粒径も同様の方法で測定することができる)。   In addition, an apparent density falls and the powder tends to float, so that the particle size becomes small. For this reason, if the raw material powder contains a large amount of the partially diffused alloy powder 11 having a small particle size, the filling ability of the raw material powder into the molding die (cavity) is lowered in the molding process described later, and the pressure of a predetermined shape and density It becomes difficult to obtain powder stably. Specifically, the present inventors have found that the above problem is likely to occur when the partial diffusion alloy powder 11 containing 25% by mass or more of particles having a particle size of 45 μm or less is used. Therefore, as the partial diffusion alloy powder 11, one having an average particle size of 145 mesh or less (average particle size of 106 μm or less) and not containing 25% by mass or more of particles having an average particle size of 350 mesh (average particle size of 45 μm) or less is selectively used. Is desirable. The average particle size is determined by irradiating a particle group with laser light, and calculating the particle size distribution from the intensity distribution pattern of diffraction / scattered light emitted from the particle group. (The average particle size of the powder described below can also be measured by the same method).

上記の部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。還元鉄粉は、球形に近似した不規則形状で、かつ内部気孔を有する海綿状(多孔質状)であるから、海綿鉄粉とも称される。使用する鉄粉12は、平均粒径20μm〜106μmのものが好ましく、平均粒径38μm〜75μmのものが一層好ましい。   As the iron powder 12 constituting the partial diffusion alloy powder 11, known iron powders such as reduced iron powder and atomized iron powder can be used, but reduced iron powder is used in the present embodiment. The reduced iron powder has an irregular shape that approximates a spherical shape and has a sponge shape (porous shape) having internal pores, and is also referred to as sponge iron powder. The iron powder 12 used preferably has an average particle size of 20 μm to 106 μm, and more preferably an average particle size of 38 μm to 75 μm.

また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。銅粉13としては、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上20μm以下(好ましくは20μm未満)のものが使用される。なお、個々の部分拡散合金粉11におけるCuの割合は10〜30質量%(好ましくは22〜26質量%)であり、後述する焼結工程で得られる焼結体4”における銅の含有量(厳密には、焼結体4”がSnやCを含まないとした場合における銅の含有量)と同じである。つまり、本実施形態において、原料粉末には単体の銅粉や鉄粉を配合しない。原料粉末には、単体の銅粉や鉄粉を配合しても構わないが、単体の銅粉を配合すると、軸受面4aの耐摩耗性向上(軸受面4aの高強度化)を図ることが難しくなる。そのため、例えば軸3が回転するのに伴って軸受面4aに軸3が衝突した際などに、軸受面4aに圧痕(凹み)が形成され易くなる。また、単体の鉄粉を配合すると、所望の圧環強度を有する焼結体4”(焼結軸受4)を得ることが難しくなる。従って、原料粉末には、単体の銅粉や鉄粉を配合しないのが好ましい。   Moreover, as the copper powder 13 which comprises the partial diffusion alloy powder 11, the irregular-shaped and dendritic copper powder currently used widely can be used widely, for example, electrolytic copper powder, atomized copper powder, etc. are used. In the present embodiment, an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used. As the copper powder 13, one having a smaller particle diameter than the iron powder 12 is used, and specifically, one having an average particle diameter of 5 μm or more and 20 μm or less (preferably less than 20 μm) is used. In addition, the ratio of Cu in each partial diffusion alloy powder 11 is 10 to 30% by mass (preferably 22 to 26% by mass), and the content of copper in the sintered body 4 ″ obtained in the sintering step described later ( Strictly speaking, this is the same as the copper content in the case where the sintered body 4 ″ does not contain Sn or C. That is, in this embodiment, no single copper powder or iron powder is blended in the raw material powder. The raw material powder may contain a single piece of copper powder or iron powder, but if a single piece of copper powder is added, the wear resistance of the bearing surface 4a can be improved (the strength of the bearing surface 4a is increased). It becomes difficult. Therefore, for example, when the shaft 3 collides with the bearing surface 4a as the shaft 3 rotates, an indentation (dent) is easily formed on the bearing surface 4a. Further, when a single iron powder is blended, it becomes difficult to obtain a sintered body 4 ″ (sintered bearing 4) having a desired crushing strength. Therefore, a single copper powder or iron powder is blended into the raw material powder. Preferably not.

[低融点金属粉]
低融点金属粉としては、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。本実施形態では、これらの中でも銅と鉄に拡散し易く(相性が良く)、単粉で使用できる錫粉14(図6参照)、特にアトマイズ錫粉を使用する。錫粉(アトマイズ錫粉)14としては、平均粒径5〜63μmのものが好ましく使用され、平均粒径20〜45μmのものが一層好ましく使用される。
[Low melting point metal powder]
As the low melting point metal powder, a metal powder having a melting point of 700 ° C. or less, for example, a powder of tin, zinc, phosphorus or the like is used. In this embodiment, among these, tin powder 14 (see FIG. 6), which is easily diffused into copper and iron (good compatibility) and can be used as a single powder, particularly atomized tin powder is used. As the tin powder (atomized tin powder) 14, one having an average particle diameter of 5 to 63 μm is preferably used, and one having an average particle diameter of 20 to 45 μm is more preferably used.

[固体潤滑剤]
固体潤滑剤としては、黒鉛、二硫化モリブデン等の粉末を一種又は二種以上使用することができる。本実施形態では、コストを考えて黒鉛粉、特に鱗片状黒鉛粉を使用する。
[Solid lubricant]
As the solid lubricant, one or more powders such as graphite and molybdenum disulfide can be used. In the present embodiment, graphite powder, particularly scaly graphite powder is used in consideration of cost.

(B)成形工程
成形工程では、図5(a)(b)に示すような成形金型20を使用して上記の原料粉末10を圧縮することにより、図1等に示す焼結軸受4に近似した形状(略完成品形状)の圧粉体4’を得る。成形金型20は、主要な構成として、同軸配置されたコア21、上下パンチ22,23およびダイ24を有する。成形金型20は、例えばカム式成形プレス機のダイセットにセットされる。
(B) Molding Step In the molding step, the raw material powder 10 is compressed using a molding die 20 as shown in FIGS. 5A and 5B, so that the sintered bearing 4 shown in FIG. A green compact 4 ′ having an approximate shape (substantially finished product shape) is obtained. The molding die 20 has a core 21, upper and lower punches 22 and 23, and a die 24 that are coaxially arranged as main components. The molding die 20 is set in a die set of a cam type molding press, for example.

上記構成の成形金型20において、コア21、下パンチ23およびダイ24で画成されるキャビティ25内に原料粉末10を充填してから、上パンチ22を下パンチ23に対して相対的に接近移動させ、原料粉末10を適当な加圧力(成形すべき圧粉体の形状や大きさに応じて設定される)で圧縮すると、圧粉体4’が成形される。そして、上パンチ22を上昇移動させると共に下パンチ23を上昇移動させ、圧粉体4’をキャビティ25外に抜き出す。図6に模式的に示すように、圧粉体4’では、部分拡散合金粉11、錫粉14および黒鉛粉(図示せず)が均一に分散している。本実施形態で使用している部分拡散合金粉11は、鉄粉12として還元鉄粉を使用しているため、アトマイズ鉄粉を使用した部分拡散合金粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体4’の強度を高めることができ、圧粉体4’の欠けや割れの発生を防止することができる。   In the molding die 20 having the above-described configuration, the raw powder 10 is filled in the cavity 25 defined by the core 21, the lower punch 23 and the die 24, and then the upper punch 22 is moved closer to the lower punch 23. When the raw material powder 10 is moved and compressed with an appropriate pressing force (set according to the shape and size of the green compact to be molded), the green compact 4 ′ is formed. Then, the upper punch 22 is moved up and the lower punch 23 is moved up, and the green compact 4 ′ is extracted out of the cavity 25. As schematically shown in FIG. 6, in the green compact 4 ′, the partial diffusion alloy powder 11, tin powder 14, and graphite powder (not shown) are uniformly dispersed. Since the partial diffusion alloy powder 11 used in the present embodiment uses reduced iron powder as the iron powder 12, the powder is softer than the partial diffusion alloy powder using atomized iron powder, and the compression moldability is improved. Excellent. Therefore, the strength of the green compact 4 ′ can be increased even at a low density, and chipping or cracking of the green compact 4 ′ can be prevented.

(C)焼結工程
焼結工程では、圧粉体4’を焼結し、焼結体を得る。焼結条件は、黒鉛(黒鉛粉)に含まれる炭素が鉄と反応しない(炭素の拡散が生じない)条件とする。鉄−炭素の平衡状態では、723℃に変態点があり、これを超えると鉄と炭素の反応が開始されて鉄組織中にパーライト相(γFe)が生成されるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相(γFe)が生成される。パーライト相(γFe)は高硬度(HV300以上)で相手材に対する攻撃性が強いため、焼結軸受4の鉄組織中に過剰にパーライト相(γFe)が存在すると、軸3の摩耗を進行させるおそれがある。また、一般的な焼結軸受の製造工程では、ブタン、プロパン等の液化石油ガスと空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)の雰囲気下で圧粉体を加熱・焼結させる場合が多い。しかしながら、吸熱型ガスでは炭素が拡散して圧粉体の表面を硬化させるおそれがあり、上記同様の問題が生じ易くなる。
(C) Sintering step In the sintering step, the green compact 4 'is sintered to obtain a sintered body. The sintering conditions are such that carbon contained in graphite (graphite powder) does not react with iron (carbon does not diffuse). In the iron-carbon equilibrium state, there is a transformation point at 723 ° C., and when this is exceeded, the reaction between iron and carbon is initiated and a pearlite phase (γFe) is produced in the iron structure. After that, the reaction between carbon (graphite) and iron begins, and a pearlite phase (γFe) is generated. Since the pearlite phase (γFe) has high hardness (HV300 or more) and is highly aggressive against the mating material, if the pearlite phase (γFe) is excessively present in the iron structure of the sintered bearing 4, the wear of the shaft 3 may be advanced. There is. In a general sintered bearing manufacturing process, green compacts are heated in an atmosphere of endothermic gas (RX gas), which is a mixture of liquefied petroleum gas such as butane and propane and air, and pyrolyzed with Ni catalyst.・ It is often sintered. However, in the endothermic gas, carbon may diffuse and the surface of the green compact may be cured, and the same problem as described above is likely to occur.

以上の観点から、圧粉体4’は900℃以下、具体的には800℃(好ましくは820℃)以上880℃以下で加熱する(低温焼結)。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。このような焼結条件であれば、原料粉末で炭素と鉄の反応が生じず、従って、焼結後の鉄組織は全て軟質のフェライト相(HV200以下)となる。原料粉末に流体潤滑材等の各種成形潤滑剤を含めていた場合、成形潤滑剤は焼結に伴って揮散する。   From the above viewpoint, the green compact 4 ′ is heated at 900 ° C. or lower, specifically 800 ° C. (preferably 820 ° C.) or higher and 880 ° C. or lower (low temperature sintering). The sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. Under such sintering conditions, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase (HV200 or less). When various molding lubricants such as a fluid lubricant are included in the raw material powder, the molding lubricant volatilizes with sintering.

鉄組織は、その全てをフェライト相(αFe)で形成する他、図7に示すように、フェライト相αFeとパーライト相γFeの二相組織にすることもできる。これにより、フェライト相αFeよりも硬質のパーライト相γFeが軸受面4aの耐摩耗性向上に寄与し、高面圧下での軸受面4aの摩耗を抑制して軸受寿命を向上させることができる。但し、パーライト相γFeの存在割合が過剰となり、フェライト相αFeと同等の割合になると、パーライトによる軸3に対する攻撃性が増して軸3が摩耗しやすくなる。これを防止するため、図7に示すように、パーライト相γFeはフェライト相αFeの粒界に存在(点在)する程度に抑える。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界の双方を意味する。鉄組織をフェライト相αFeとパーライト相γFeの二相組織で形成する場合、鉄組織に占めるフェライト相αFeおよびパーライト相γFeの割合は、焼結体の任意断面における面積比で、それぞれ、80〜95%および5〜20%(αFe:γFe=80〜95%:5〜20%)程度とするのが望ましい。これにより、軸3の摩耗抑制と軸受面の耐摩耗性向上とを両立させることができる。   In addition to forming the entire iron structure with a ferrite phase (αFe), as shown in FIG. 7, the iron structure can also be a two-phase structure of a ferrite phase αFe and a pearlite phase γFe. Thereby, the pearlite phase γFe harder than the ferrite phase αFe contributes to the improvement of the wear resistance of the bearing surface 4a, and the wear of the bearing surface 4a under high surface pressure can be suppressed to improve the bearing life. However, if the pearlite phase γFe is present in an excessive proportion and becomes equal to the ferrite phase αFe, the aggressiveness of the pearlite against the shaft 3 increases and the shaft 3 is likely to wear. In order to prevent this, as shown in FIG. 7, the pearlite phase γFe is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase αFe. The term “grain boundary” as used herein means both a grain boundary formed between powder particles and a crystal grain boundary formed in the powder particle. When the iron structure is formed of a two-phase structure of a ferrite phase αFe and a pearlite phase γFe, the ratio of the ferrite phase αFe and the pearlite phase γFe in the iron structure is an area ratio in an arbitrary cross section of the sintered body. % And 5 to 20% (αFe: γFe = 80 to 95%: 5 to 20%) are desirable. Thereby, the wear suppression of the shaft 3 and the improvement of the wear resistance of the bearing surface can both be achieved.

パーライト相γFeの析出量は、主に焼結温度と雰囲気ガスに依存する。従って、上記のようにパーライト相γFeをフェライト相αFeの粒界に存在させるためには、焼結温度を820℃〜900℃程度に上げ、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相γFeを形成することができる。なお、上記のとおり、900℃を超える温度で圧粉体4’を焼結すると、黒鉛(炭素)が鉄と反応してパーライト相γFeが形成されるので、圧粉体4’は900℃以下で焼結するのが好ましい。   The precipitation amount of the pearlite phase γFe mainly depends on the sintering temperature and the atmospheric gas. Therefore, in order for the pearlite phase γFe to be present at the grain boundary of the ferrite phase αFe as described above, the sintering temperature is raised to about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, such as natural gas, Sintering is performed using an endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase γFe can be formed. As described above, when the green compact 4 ′ is sintered at a temperature exceeding 900 ° C., graphite (carbon) reacts with iron to form a pearlite phase γFe. Is preferably sintered.

焼結後、焼結体4”にサイジングを施し、焼結体4"を仕上がり形状・寸法に仕上げた後、この焼結体4”の内部気孔に真空含浸等の手法で潤滑油を含浸させると、図1に示す焼結軸受4が完成する。焼結体4”の内部気孔に含浸させる潤滑油は、上述のとおり低粘度のもの、具体的には40℃の動粘度が10〜50mm2/sの潤滑油(例えば合成炭化水素系潤滑油)が使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体4”の内部気孔には、上記の潤滑油に替えて、40℃の動粘度が10〜50mm2/sの潤滑油を基油としたグリースを含浸させても良い。また、サイジングは必要に応じて施せば足り、必ずしも施す必要はない。 After sintering, the sintered body 4 ″ is sized, and the sintered body 4 ″ is finished to a finished shape and size, and then the internal pores of the sintered body 4 ″ are impregnated with a lubricating oil by a method such as vacuum impregnation. 1 is completed. The lubricating oil impregnated in the internal pores of the sintered body 4 ″ has a low viscosity as described above, specifically, a kinematic viscosity at 40 ° C. is 10 to 50 mm. A 2 / s lubricating oil (for example, a synthetic hydrocarbon-based lubricating oil) is used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap. The internal pores of the sintered body 4 ″ may be impregnated with grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s instead of the above lubricating oil. It is sufficient to apply sizing as necessary, and it is not always necessary.

以上のようにして得られた焼結体4”(焼結軸受4)は、Cuを10〜30質量%(好ましくは22〜26質量%)、Snを0.5〜3.0質量%(好ましくは1.0〜3.0質量%)、Cを0.3〜1.5質量%(好ましくは0.5〜1.0質量%)含有し、残部が鉄および不可避的不純物からなる。そして、圧粉体4’の焼結温度を銅の融点(1083℃)よりも遥かに低温の900℃以下とした上記の焼結条件であれば、圧粉体4’に含まれる(部分拡散合金粉11を構成する)銅粉13は溶融せず、従って、焼結に伴って銅が鉄(鉄組織)中に拡散しない。そのため、焼結体4”の表面(軸受面4a)には青銅相を含む適量の銅組織が形成されている。また、軸受面4aには遊離黒鉛も露出している。そのため、軸3との初期なじみ性が良好で、軸受面4aの摩擦係数も小さいものとなる。原料粉末に占める錫粉の配合割合を増やせば焼結体4”の機械的強度が高まるが、Snの量が過剰となると粗大気孔が増えるため、上記の配合割合(Cuの配合割合に対して10%程度の配合割合)としている。   The sintered body 4 ″ (sintered bearing 4) obtained as described above has Cu of 10 to 30% by mass (preferably 22 to 26% by mass) and Sn of 0.5 to 3.0% by mass ( Preferably it is 1.0-3.0 mass%), C contains 0.3-1.5 mass% (preferably 0.5-1.0 mass%), and the balance consists of iron and inevitable impurities. And if it is said sintering conditions which made sintering temperature of green compact 4 '900 degrees C or less far lower than melting | fusing point (1083 degreeC) of copper, it is contained in green compact 4' (partial diffusion) The copper powder 13 (which constitutes the alloy powder 11) does not melt, and therefore, copper does not diffuse into the iron (iron structure) during sintering. Therefore, the surface of the sintered body 4 ″ (bearing surface 4a) An appropriate amount of copper structure containing a bronze phase is formed. Further, free graphite is also exposed on the bearing surface 4a. Therefore, the initial conformability with the shaft 3 is good, and the friction coefficient of the bearing surface 4a is small. Increasing the proportion of tin powder in the raw material powder increases the mechanical strength of the sintered body 4 ″. However, if the amount of Sn becomes excessive, the number of coarse air holes increases, so the above proportion (relative to the proportion of Cu) The blending ratio is about 10%).

焼結体4”には、鉄を主成分とする鉄組織および銅からなる銅組織が形成される。本実施形態では、原料粉末に鉄粉単体や銅粉単体が添加されておらず、添加されているにしても微量であるので、焼結体4”の全ての鉄組織および銅組織が部分拡散合金粉11を主体として形成される。部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、焼結後の鉄組織と銅組織の間で高いネック強度を得ることができる。また、焼結時には、圧粉体4’中の錫粉14が溶融し、部分拡散合金粉11に含まれる銅粉13の表面を濡らす。これに伴い、液相焼結が進行し、図7に示すように、隣り合う部分拡散合金粉11の鉄組織と銅組織、あるいは銅組織同士を結合する青銅相(Cu−Sn)16が形成される。また、個々の部分拡散合金粉11のうち、鉄粉12の表面に銅粉13の一部が拡散してFe−Cu合金が形成された部分には、溶融したSnが拡散してFe−Cu−Sn合金(合金相)17が形成されるため、焼結体4”を構成する鉄組織と銅組織間のネック強度が一層高くなる。そのため、上述したような低温条件での焼結でも高い圧環強度、具体的には300MPa以上の圧環強度を得ることができる。また、軸受面4aを硬くして軸受面4aの耐摩耗性を向上させることもできる。なお、図7においては、フェライト相αFeやパーライト相γFeなどを色の濃淡で表現している。具体的には、フェライト相αFe→青銅相16→Fe−Cu―Sn合金17→パーライト相γFeの順に色を濃くしている。   In the sintered body 4 ″, an iron structure mainly composed of iron and a copper structure composed of copper are formed. In the present embodiment, the iron powder alone or the copper powder alone is not added to the raw material powder. However, since the amount is very small, all the iron structure and copper structure of the sintered body 4 ″ are formed mainly of the partial diffusion alloy powder 11. In the partial diffusion alloy powder, since a part of the copper powder is diffused in the iron powder, a high neck strength can be obtained between the sintered iron structure and the copper structure. Further, at the time of sintering, the tin powder 14 in the green compact 4 ′ melts and wets the surface of the copper powder 13 included in the partial diffusion alloy powder 11. Along with this, liquid phase sintering proceeds, and as shown in FIG. 7, an iron structure and a copper structure of adjacent partial diffusion alloy powder 11, or a bronze phase (Cu—Sn) 16 that bonds the copper structures to each other is formed. Is done. In addition, among the individual partial diffusion alloy powders 11, molten Sn is diffused and Fe—Cu is diffused in a part where a part of the copper powder 13 is diffused on the surface of the iron powder 12 to form an Fe—Cu alloy. Since the -Sn alloy (alloy phase) 17 is formed, the neck strength between the iron structure and the copper structure constituting the sintered body 4 "is further increased. Therefore, it is high even in the sintering under the low temperature condition as described above. The crushing strength, specifically, the crushing strength of 300 MPa or more can be obtained, and the bearing surface 4a can be hardened to improve the wear resistance of the bearing surface 4a. αFe, pearlite phase γFe, etc. are represented by shades of color, specifically, the colors are darkened in the order of ferrite phase αFe → bronze phase 16 → Fe—Cu—Sn alloy 17 → pearlite phase γFe.

また、部分拡散合金粉11として、平均粒度145メッシュ以下(平均粒径106μm以下)の粉末を使用しているので、焼結体4”の組織を均一化して粗大気孔の生成を防止することができる。そのため、焼結体4”を高密度化して圧環強度や軸受面4aの耐摩耗性をさらに高めることができる。   In addition, since the powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less) is used as the partial diffusion alloy powder 11, the structure of the sintered body 4 ″ can be made uniform to prevent the formation of rough atmospheric pores. Therefore, the sintered body 4 ″ can be densified to further enhance the crushing strength and the wear resistance of the bearing surface 4a.

以上に示すように、本実施形態の焼結体4”は300MPa以上の圧環強度を有しており、この圧環強度の値は、既存の銅鉄系焼結体のそれに比べて2倍以上の値である。また、本実施形態の焼結体4”の密度は6.8±0.3g/cm3となり、既存の銅鉄系焼結体の密度(6.6g/cm3程度)よりも高密度となる。既存の銅鉄系焼結体でも圧粉体の成形工程で高圧縮することで高密度化することは可能であるが、このようにすると、内部の流体潤滑剤が焼結時に燃焼できずにガス化するため、表層部の気孔が粗大化してしまう。本発明では圧粉体の成形時に高圧縮する必要はなく、そのような不具合を防止することができる。 As described above, the sintered body 4 ″ of this embodiment has a crushing strength of 300 MPa or more, and the value of this crushing strength is more than twice that of an existing copper-iron-based sintered body. the value. Further, from the density of the sintered body 4 "of the present embodiment is 6.8 ± 0.3g / cm 3, and the density of the existing copper iron-based sintered body (about 6.6 g / cm 3) Will also be dense. Even existing copper-iron-based sintered bodies can be densified by high compression in the green compact molding process, but this will prevent the internal fluid lubricant from burning during sintering. Because of gasification, the pores in the surface layer portion become coarse. In the present invention, it is not necessary to perform high compression at the time of forming the green compact, and such a problem can be prevented.

このように焼結体4”を高密度化させる一方で、含油率を15vol%以上にすることができ、既存の銅鉄系焼結軸受と同程度の含油率を確保できる。これは、主に部分拡散合金粉11を構成する鉄粉12として、海綿状をなし、保油性に優れた還元鉄粉を使用していることに由来する。この場合、焼結体4”に含浸させた潤滑油は、焼結組織の粒子間に形成された気孔だけでなく、還元鉄粉が有する気孔にも保持される。   Thus, while densifying the sintered body 4 ″, the oil content can be increased to 15 vol% or more, and an oil content comparable to that of an existing copper-iron sintered bearing can be secured. This is because the iron powder 12 constituting the partial diffusion alloy powder 11 is spongy and uses reduced iron powder excellent in oil retaining property. In this case, lubrication impregnated in the sintered body 4 ″ The oil is held not only in the pores formed between the particles of the sintered structure, but also in the pores of the reduced iron powder.

粗大気孔は特に焼結体4”の表層部(焼結体表面から深さ100μmに至るまでの領域)で生じやすいが、以上のようにして得られた焼結体4”であれば、上記のように表層部における粗大気孔の発生を防止して表層部の高密度化を図ることができる。具体的には、表層部の気孔率を、5〜20%にすることができる。この気孔率は、例えば焼結体4”の任意断面における気孔部の面積比率を画像解析することで求めることができる。   The coarse air holes are particularly likely to occur in the surface layer portion (region from the sintered body surface to a depth of 100 μm) of the sintered body 4 ″, but if the sintered body 4 ″ obtained as described above is used, As described above, it is possible to prevent the formation of rough air holes in the surface layer portion and increase the density of the surface layer portion. Specifically, the porosity of the surface layer portion can be 5 to 20%. This porosity can be obtained, for example, by image analysis of the area ratio of the pores in an arbitrary cross section of the sintered body 4 ″.

このように表層部が高密度化されることで軸受面4aの表面開孔率も小さくなる。具体的には、軸受面4aの表面開孔率を5%以上20%以下の範囲内に設定することができる。なお、表面開孔率が5%を下回ると、軸受隙間に必要十分量の潤滑油を滲み出させることが難しくなり、焼結軸受としてのメリットを得ることができない。   As the surface layer portion is densified in this way, the surface area ratio of the bearing surface 4a is also reduced. Specifically, the surface area ratio of the bearing surface 4a can be set within a range of 5% to 20%. When the surface open area ratio is less than 5%, it becomes difficult to exude a necessary and sufficient amount of lubricating oil into the bearing gap, and the merit as a sintered bearing cannot be obtained.

また、この焼結体4”を得るための原料粉末として、鉄粉12の表面に銅粉13を部分拡散させた部分拡散合金粉11を主原料としたものを使用しているため、既存の鉄銅系焼結軸受で問題となる銅の偏析を防止することができる。また、この焼結体4”であれば、NiやMo等の高価な金属粉末を使用することなく機械的強度を向上させることができるので、焼結軸受4の低コスト化も達成される。   In addition, as the raw material powder for obtaining this sintered body 4 ″, since the main raw material is the partial diffusion alloy powder 11 in which the copper powder 13 is partially diffused on the surface of the iron powder 12, the existing powder is used. It is possible to prevent segregation of copper, which is a problem with ferrous copper-based sintered bearings. In addition, with this sintered body 4 ″, mechanical strength can be increased without using expensive metal powders such as Ni and Mo. Since it can improve, the cost reduction of the sintered bearing 4 is also achieved.

以上で説明したように、本発明に係る振動モータ1で使用する焼結軸受4は高い圧環強度(300MPa以上の圧環強度)を有するため、図1に示すようにハウジング2の内周に圧入固定した場合でも、軸受面4aがハウジング2の内周面形状に倣って変形することがなく、固定後も軸受面4aの真円度や円筒度等を安定的に維持することができる。そのため、ハウジング2の内周に焼結軸受4を圧入固定した後、軸受面4aを適正形状・精度に仕上げるためにサイジング等の形状修正加工を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を得ることができる。また、焼結軸受4が300MPa以上の圧環強度を有していれば、焼結軸受4を組み込んだ振動モータ1(ひいては振動モータ1を備えた携帯端末等)が落下等することにより軸受面4aに大きな衝撃値が付加された場合でも、軸受面4aの変形を可及的に防止することができる。   As described above, since the sintered bearing 4 used in the vibration motor 1 according to the present invention has high crushing strength (crushing strength of 300 MPa or more), it is press-fitted and fixed to the inner periphery of the housing 2 as shown in FIG. Even in this case, the bearing surface 4a does not deform following the shape of the inner peripheral surface of the housing 2, and the roundness, cylindricity, and the like of the bearing surface 4a can be stably maintained even after fixing. Therefore, after press-fitting and fixing the sintered bearing 4 to the inner periphery of the housing 2, a desired roundness can be obtained without additionally performing shape correction processing such as sizing in order to finish the bearing surface 4a with an appropriate shape and accuracy. (For example, roundness of 3 μm or less) can be obtained. Further, if the sintered bearing 4 has a crushing strength of 300 MPa or more, the vibration motor 1 incorporating the sintered bearing 4 (and thus a portable terminal equipped with the vibration motor 1) will drop, and the bearing surface 4a. Even when a large impact value is added to the bearing surface 4a, deformation of the bearing surface 4a can be prevented as much as possible.

また、以上で述べたように、(1)焼結軸受4を構成する焼結体4”が鉄を主成分とし、しかもその多孔質組織における鉄組織と銅組織間のネック強度、および銅組織同士のネック強度が高いために軸受面4aが高硬度化されていること、(2)焼結軸受4は、粗大気孔が少ない均一で緻密な多孔質組織を有すること、(3)軸受面4aに銅組織(青銅相)や遊離黒鉛が露出していること、などの種々の要因により、軸受面4aは高い耐摩耗性を有する。そのため、軸受面4aの全面に沿って軸3が振れ回り、あるいは軸3が軸受面4aに頻繁に衝突したとしても、軸受面4aの摩耗や損傷が抑えられる。従って、本発明によれば、高い回転性能を長期間に亘って発揮することのできる振動モータ1を低コストに提供することができる。   Further, as described above, (1) the sintered body 4 ″ constituting the sintered bearing 4 is mainly composed of iron, and the neck strength between the iron structure and the copper structure in the porous structure, and the copper structure. The bearing surface 4a has a high hardness due to the high neck strength between them, (2) the sintered bearing 4 has a uniform and dense porous structure with few rough air holes, and (3) the bearing surface 4a. Due to various factors such as the exposed copper structure (bronze phase) and free graphite, the bearing surface 4a has high wear resistance, so that the shaft 3 swings along the entire surface of the bearing surface 4a. Alternatively, even if the shaft 3 frequently collides with the bearing surface 4a, the wear and damage of the bearing surface 4a can be suppressed.According to the present invention, vibration capable of exhibiting high rotational performance over a long period of time is achieved. The motor 1 can be provided at low cost.

ここで、参考までに、特許文献1に記載の技術手段に係る焼結軸受(以下、「銅被覆鉄粉軸受」という)の表層部の顕微鏡写真を図8に示す。図8と、本実施形態に係る振動モータ1で使用している焼結軸受4の表層部の顕微鏡写真(図3参照)とを比較すると、本実施形態に係る焼結軸受4は、銅被覆鉄粉軸受に比べて表層部の多孔質組織が緻密であることが理解される。実際、本実施形態に係る焼結軸受4の表層部の気孔率は13.6%だったのに対し、銅被覆鉄粉軸受の表層部の気孔率は25.5%程度であった。このような差を生じた要因として、銅被覆鉄粉では鉄粉に銅膜が密着しているにすぎず、鉄組織と銅組織の間のネック強度が不足していることが挙げられる。   Here, for reference, a micrograph of a surface layer portion of a sintered bearing (hereinafter referred to as “copper-coated iron powder bearing”) according to the technical means described in Patent Document 1 is shown in FIG. Comparing FIG. 8 with a micrograph (see FIG. 3) of the surface layer portion of the sintered bearing 4 used in the vibration motor 1 according to the present embodiment, the sintered bearing 4 according to the present embodiment is copper-coated. It is understood that the porous structure of the surface layer is denser than that of the iron powder bearing. Actually, the porosity of the surface layer portion of the sintered bearing 4 according to the present embodiment was 13.6%, whereas the porosity of the surface layer portion of the copper-coated iron powder bearing was about 25.5%. As a factor causing such a difference, copper-coated iron powder only has a copper film in close contact with the iron powder, and the neck strength between the iron structure and the copper structure is insufficient.

以上、本発明の一実施形態に係る振動モータ1について説明を行ったが、本発明の実施の形態は上述のものに限られない。   The vibration motor 1 according to one embodiment of the present invention has been described above, but the embodiment of the present invention is not limited to the above-described one.

例えば、焼結軸受4の鉄組織や銅組織の全てを部分拡散合金粉だけで形成する場合を説明したが、原料粉末に単体鉄粉および単体銅粉のうちどちらか一方または双方を添加し、鉄組織や銅組織の一部を単体鉄粉や単体銅粉で形成することもできる。この場合、最低限の耐摩耗性、強度、および摺動特性を確保するため、原料粉末における部分拡散合金粉の割合は50質量%以上にするのが好ましい。また、この場合、原料粉末中の固体潤滑剤粉の配合割合は0.3〜1.5質量%が適量である。さらに原料粉末における低融点金属粉の配合割合は0.5〜5.0質量%とする。この配合割合は原料粉末中における銅粉の総量(部分拡散合金粉中の銅粉と別途添加された単体銅粉の和)の10質量%程度に設定するのが好ましい。原料粉末の残部が単体鉄粉もしくは単体銅粉(あるいは双方の単体粉)、および不可避的不純物で形成されることになる。   For example, the case where all of the iron structure and the copper structure of the sintered bearing 4 are formed only by the partial diffusion alloy powder has been described, but one or both of the simple iron powder and the simple copper powder are added to the raw material powder, A part of the iron structure or copper structure can also be formed of simple iron powder or simple copper powder. In this case, in order to ensure the minimum wear resistance, strength, and sliding characteristics, the proportion of the partial diffusion alloy powder in the raw material powder is preferably 50% by mass or more. Further, in this case, the blending ratio of the solid lubricant powder in the raw material powder is 0.3 to 1.5% by mass. Furthermore, the blending ratio of the low melting point metal powder in the raw material powder is 0.5 to 5.0 mass%. This blending ratio is preferably set to about 10% by mass of the total amount of copper powder in the raw material powder (the sum of the copper powder in the partial diffusion alloy powder and the single copper powder added separately). The remainder of the raw material powder is formed of simple iron powder or simple copper powder (or simple powders of both) and inevitable impurities.

かかる構成では、単体鉄粉や単体銅粉の配合量を変更することにより、部分拡散合金粉を使用することで得られる耐摩耗性、高強度、および良好な摺動特性を維持しつつ、軸受特性を調整することが可能となる。例えば単体鉄粉を添加すれば、部分拡散合金粉の使用量減による低コスト化を図りつつ軸受の耐摩耗性を高めることができ、単体銅粉を添加すれば摺動特性をさらに改善することができる。そのため、各種用途に適合した焼結軸受の開発コストを低廉化することができ、焼結軸受の多品種少量生産にも対応可能となる。   In such a configuration, the bearing amount is maintained while maintaining the wear resistance, high strength, and good sliding characteristics obtained by using the partial diffusion alloy powder by changing the blending amount of the single iron powder and the single copper powder. The characteristics can be adjusted. For example, the addition of single iron powder can increase the wear resistance of the bearing while reducing the cost by reducing the amount of partially diffused alloy powder, and the addition of single copper powder can further improve the sliding characteristics. Can do. As a result, the development cost of sintered bearings suitable for various applications can be reduced, and it is possible to cope with the production of various types of sintered bearings in small quantities.

また、圧粉体4’を圧縮成形する際には、成形金型20および原料粉末10の少なくとも一方を加熱した状態で圧粉体4’を圧縮成形する、いわゆる温間成形法や、成形金型20の成形面(キャビティ25の画成面)に潤滑剤を塗布した状態で圧粉体4’を圧縮成形する金型潤滑成形法を採用しても良い。このような方法を採用すれば、圧粉体4’を一層精度良く成形することができる。   Further, when the green compact 4 ′ is compression-molded, a so-called warm molding method in which at least one of the molding die 20 and the raw material powder 10 is heated and the green compact 4 ′ is compression-molded, A die lubrication molding method may be employed in which the green compact 4 ′ is compression molded in a state where a lubricant is applied to the molding surface of the mold 20 (the defined surface of the cavity 25). By adopting such a method, the green compact 4 ′ can be molded with higher accuracy.

さらに、軸受隙間を介して対向する焼結軸受4の軸受面4aあるいは軸3の外周面3aには、動圧溝等の動圧発生部を設けることもできる。このようにすれば、軸受隙間に形成される油膜の剛性を高めることができるので回転精度を一層高めることができる。   Furthermore, a dynamic pressure generating portion such as a dynamic pressure groove can be provided on the bearing surface 4a of the sintered bearing 4 or the outer peripheral surface 3a of the shaft 3 opposed via the bearing gap. In this way, since the rigidity of the oil film formed in the bearing gap can be increased, the rotational accuracy can be further increased.

1 振動モータ
2 ハウジング
3 軸
4 焼結軸受
4’ 圧粉体
4” 焼結体
4a 軸受面
10 原料粉末
11 部分拡散合金粉
12 鉄粉
13 銅粉
14 錫粉(低融点金属粉)
16 青銅相
17 Fe−Cu−Sn合金
20 成形金型
αFe フェライト相
γFe パーライト相
M モータ部
W 錘
DESCRIPTION OF SYMBOLS 1 Vibration motor 2 Housing 3 Shaft 4 Sintered bearing 4 'Compact 4 "Sintered body 4a Bearing surface 10 Raw material powder 11 Partially diffused alloy powder 12 Iron powder 13 Copper powder 14 Tin powder (low melting point metal powder)
16 Bronze phase 17 Fe-Cu-Sn alloy 20 Molding die αFe Ferrite phase γFe Pearlite phase M Motor part W Weight

Claims (11)

軸と、軸を回転駆動させるモータ部と、内周に軸受面を有し、軸を回転自在に支持する焼結軸受と、軸に設けられた錘と、焼結軸受を内周に圧入固定したハウジングとを備え、錘で軸を軸受中心に対して偏心回転させることにより振動が発生する振動モータであって、
焼結軸受が、鉄を主成分とし、その次に銅を多く含む焼結体からなり、かつ300MPa以上の圧環強度を有することを特徴とする振動モータ。
A shaft, a motor unit that rotationally drives the shaft, a sintered bearing that has a bearing surface on the inner periphery and rotatably supports the shaft, a weight provided on the shaft, and a sintered bearing that is press-fitted and fixed to the inner periphery A vibration motor that generates vibration by rotating the shaft eccentrically with respect to the bearing center with a weight,
A vibration motor, wherein the sintered bearing is made of a sintered body containing iron as a main component and then containing a large amount of copper, and has a crushing strength of 300 MPa or more.
焼結軸受が、鉄粉に銅粉を部分拡散させてなる部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉とを含む原料粉末を成形し、焼結した焼結体からなる請求項1記載の振動モータ。   The sintered bearing is formed of a sintered body obtained by forming and sintering a raw material powder including a partially diffused alloy powder obtained by partially diffusing copper powder in iron powder, a low melting point metal powder, and a solid lubricant powder. The vibration motor according to Item 1. 部分拡散合金粉の鉄粉として還元鉄粉が使用された請求項2に記載の振動モータ。   The vibration motor according to claim 2, wherein reduced iron powder is used as the iron powder of the partial diffusion alloy powder. 平均粒径106μm以下の部分拡散合金粉を使用した請求項2または3に記載の振動モータ。   The vibration motor according to claim 2 or 3, wherein a partial diffusion alloy powder having an average particle size of 106 µm or less is used. 低融点金属粉として錫粉、固体潤滑剤粉として黒鉛粉が使用され、
焼結軸受が、Cuを10〜30質量%、Snを0.5〜3.0質量%、Cを0.3〜1.5質量%含有し、残部を鉄および不可避的不純物とした焼結体からなる請求項2〜4何れか1項に記載の振動モータ。
Tin powder is used as the low melting point metal powder, and graphite powder is used as the solid lubricant powder.
Sintered bearing containing 10 to 30% by mass of Cu, 0.5 to 3.0% by mass of Sn, 0.3 to 1.5% by mass of C, the balance being iron and inevitable impurities The vibration motor according to any one of claims 2 to 4, comprising a body.
焼結体の鉄組織がフェライト相を主体としている請求項1〜5何れか1項に記載の振動モータ。   The vibration motor according to any one of claims 1 to 5, wherein the iron structure of the sintered body is mainly composed of a ferrite phase. 焼結体の鉄組織をフェライト相と、フェライト相の粒界に存在するパーライト相とで構成した請求項1〜6何れか1項に記載の振動モータ。   The vibration motor according to any one of claims 1 to 6, wherein the iron structure of the sintered body is composed of a ferrite phase and a pearlite phase existing at a grain boundary of the ferrite phase. 焼結体の表層部の気孔率が5〜20%である請求項1〜7の何れか一項に記載の振動モータ。   The vibration motor according to any one of claims 1 to 7, wherein the porosity of the surface layer portion of the sintered body is 5 to 20%. 焼結軸受は、焼結体に40℃の動粘度が10〜50mm2/sの潤滑油を含浸させたものである請求項1〜8の何れか一項に記載の振動モータ。 The vibration motor according to any one of claims 1 to 8, wherein the sintered bearing is obtained by impregnating a sintered body with a lubricating oil having a kinematic viscosity at 40 ° C of 10 to 50 mm 2 / s. 焼結軸受をモータ部の軸方向両側に配置した請求項1〜9の何れか一項に記載の振動モータ。   The vibration motor according to any one of claims 1 to 9, wherein the sintered bearings are disposed on both axial sides of the motor unit. モータ部の軸方向両側に配置した焼結軸受のうち、一方側の焼結軸受を錘とモータ部の間に配置し、かつ一方側の焼結軸受の軸方向寸法を、他方側の焼結軸受の軸方向寸法よりも大きくした請求項10記載の振動モータ。   Of the sintered bearings arranged on both sides in the axial direction of the motor part, the sintered bearing on one side is arranged between the weight and the motor part, and the axial dimension of the sintered bearing on one side is set to the sintering on the other side. The vibration motor according to claim 10, wherein the vibration motor is larger than an axial dimension of the bearing.
JP2018183669A 2013-03-25 2018-09-28 Vibration motor Active JP6816079B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062176 2013-03-25
JP2013062176 2013-03-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014008889A Division JP6412315B2 (en) 2013-03-25 2014-01-21 Vibration motor

Publications (2)

Publication Number Publication Date
JP2019002570A true JP2019002570A (en) 2019-01-10
JP6816079B2 JP6816079B2 (en) 2021-01-20

Family

ID=51903356

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014008889A Expired - Fee Related JP6412315B2 (en) 2013-03-25 2014-01-21 Vibration motor
JP2018183669A Active JP6816079B2 (en) 2013-03-25 2018-09-28 Vibration motor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014008889A Expired - Fee Related JP6412315B2 (en) 2013-03-25 2014-01-21 Vibration motor

Country Status (1)

Country Link
JP (2) JP6412315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031738A (en) * 2013-04-09 2019-02-28 Ntn株式会社 Production method of sintered bearing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (en) * 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
JP7024291B2 (en) * 2017-09-29 2022-02-24 昭和電工マテリアルズ株式会社 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings
WO2021171375A1 (en) * 2020-02-25 2021-09-02 昭和電工マテリアルズ株式会社 Oil-impregnated sintered bearing, oil-impregnated sintered bearing equipment, and rotating equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH0995759A (en) * 1995-09-29 1997-04-08 Heiwa Sangyo Kk Oil-impregnated sintered bearing and its production
JPH1150103A (en) * 1997-07-29 1999-02-23 Kawasaki Steel Corp Production of iron powder for powder metallurgy
JP2001003123A (en) * 1999-06-18 2001-01-09 Hitachi Powdered Metals Co Ltd Sintered alloy for oilless bearing, and its manufacture
JP2002146403A (en) * 2000-08-31 2002-05-22 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JP2003253372A (en) * 2002-02-28 2003-09-10 Jfe Steel Kk Method for manufacturing high density iron-based forged parts
JP2006233331A (en) * 2005-01-27 2006-09-07 Toyota Central Res & Dev Lab Inc Iron-based sintered alloy and manufacturing method therefor
JP2007169736A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2008099355A (en) * 2006-10-06 2008-04-24 Seiko Instruments Inc Bearing for motor and vibrating motor
JP2010077474A (en) * 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd Iron-based sintered bearing, and method for manufacturing the same
JP2010180331A (en) * 2009-02-06 2010-08-19 New Japan Chem Co Ltd Lubricating oil composition for dynamic pressure fluid bearing or for sintered, oil-impregnated bearing
JP2011127742A (en) * 2009-12-21 2011-06-30 Diamet:Kk Oil-impregnated sintered bearing and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137606B2 (en) * 1971-10-12 1976-10-16
JPH11117044A (en) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JP2001251393A (en) * 2000-03-07 2001-09-14 Shicoh Eng Co Ltd Mobile wireless communication unit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH0995759A (en) * 1995-09-29 1997-04-08 Heiwa Sangyo Kk Oil-impregnated sintered bearing and its production
JPH1150103A (en) * 1997-07-29 1999-02-23 Kawasaki Steel Corp Production of iron powder for powder metallurgy
JP2001003123A (en) * 1999-06-18 2001-01-09 Hitachi Powdered Metals Co Ltd Sintered alloy for oilless bearing, and its manufacture
JP2002146403A (en) * 2000-08-31 2002-05-22 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JP2003253372A (en) * 2002-02-28 2003-09-10 Jfe Steel Kk Method for manufacturing high density iron-based forged parts
JP2006233331A (en) * 2005-01-27 2006-09-07 Toyota Central Res & Dev Lab Inc Iron-based sintered alloy and manufacturing method therefor
JP2007169736A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2008099355A (en) * 2006-10-06 2008-04-24 Seiko Instruments Inc Bearing for motor and vibrating motor
JP2010077474A (en) * 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd Iron-based sintered bearing, and method for manufacturing the same
JP2010180331A (en) * 2009-02-06 2010-08-19 New Japan Chem Co Ltd Lubricating oil composition for dynamic pressure fluid bearing or for sintered, oil-impregnated bearing
JP2011127742A (en) * 2009-12-21 2011-06-30 Diamet:Kk Oil-impregnated sintered bearing and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031738A (en) * 2013-04-09 2019-02-28 Ntn株式会社 Production method of sintered bearing

Also Published As

Publication number Publication date
JP2014209023A (en) 2014-11-06
JP6412315B2 (en) 2018-10-24
JP6816079B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US11248653B2 (en) Sintered bearing
WO2014156856A1 (en) Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6816079B2 (en) Vibration motor
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
US20190257356A1 (en) Sintered bearing and manufacturing process therefor
JP6389038B2 (en) Sintered bearing and manufacturing method thereof
JP6038459B2 (en) Sintered bearing
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP2013159795A (en) Method for manufacturing sintered bearing
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP6038460B2 (en) Manufacturing method of sintered bearing
JP6836364B2 (en) Sintered bearings and their manufacturing methods
JP6571230B2 (en) Sintered bearing
WO2018047923A1 (en) Sintered bearing and process for producing same
JP6701319B2 (en) Sintered bearing
JP6836366B2 (en) Sintered bearings and their manufacturing methods
WO2018181706A1 (en) Sintered bearing and method for manufacturing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6816079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150