JP2018526505A - Pullable flexible ultra-phophophobic film, method for producing the same, and method for non-destructive transfer of droplets - Google Patents

Pullable flexible ultra-phophophobic film, method for producing the same, and method for non-destructive transfer of droplets Download PDF

Info

Publication number
JP2018526505A
JP2018526505A JP2018509529A JP2018509529A JP2018526505A JP 2018526505 A JP2018526505 A JP 2018526505A JP 2018509529 A JP2018509529 A JP 2018509529A JP 2018509529 A JP2018509529 A JP 2018509529A JP 2018526505 A JP2018526505 A JP 2018526505A
Authority
JP
Japan
Prior art keywords
film
micro
nanostructure
overhanging
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018509529A
Other languages
Japanese (ja)
Other versions
JP6619873B2 (en
Inventor
智偉 王
智偉 王
天准 呉
天准 呉
磊 王
磊 王
麗芳 袁
麗芳 袁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Publication of JP2018526505A publication Critical patent/JP2018526505A/en
Application granted granted Critical
Publication of JP6619873B2 publication Critical patent/JP6619873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明は、引張り可能な可撓超疎液性フィルム、その製造方法及び液滴の非破壊性移動方法を提供する。オーバーハングマイクロ・ナノ構造を有するテンプレートに対しフッ素化修飾を行い、硬化性弾性材料を流れ込み、硬化性弾性材料をオリジナルテンプレートから剥離し、マイクロ・ナノ構造を有する中間体を得る。中間体上にプラスチックエマルジョンをスピンコートし、硬化させ、硬化したフィルムを剥離し、フッ素化修飾を行い、引張り可能な可撓超疎液性フィルムを得る。該超疎液性フィルムは、概ねいかなる液体に対しても良好な低ぬれ特性を示し、良好な柔軟性と引張り性とを有し、表面の引張り、湾曲などの操作によって局所の固液接触面積と曲率とを変化させることができ、表面の液滴に対する粘着力を調節して液滴の非破壊性移動を実現できる。引張り可能な可撓超疎液性表面を利用した液滴操作と非破壊性移動とを実現する方法を更に提供する。The present invention provides a pullable flexible ultra-phophophobic film, a method for producing the film, and a non-destructive transfer method for droplets. A template having an overhanging micro / nano structure is subjected to fluorination modification, a curable elastic material is poured into the template, and the curable elastic material is peeled from the original template to obtain an intermediate having a micro / nano structure. A plastic emulsion is spin-coated on the intermediate, cured, the cured film is peeled off, and fluorinated modification is performed to obtain a flexible ultra-liquidphobic film that can be pulled. The super lyophobic film exhibits good low wetting characteristics for almost any liquid, has good flexibility and tensile properties, and has a local solid-liquid contact area by operations such as surface tension and curvature. And the curvature can be changed, and the non-destructive movement of the droplet can be realized by adjusting the adhesion of the surface to the droplet. There is further provided a method for realizing droplet manipulation and non-destructive transfer utilizing a pullable flexible ultra-phobic surface.

Description

本発明は、引張り可能な可撓超疎液性フィルム、その製造方法及び液滴の非破壊性移動方法に関し、微小液滴操作制御の技術分野に属する。   The present invention relates to a pullable flexible ultra-phophophobic film, a manufacturing method thereof, and a non-destructive transfer method of droplets, and belongs to the technical field of micro droplet operation control.

近年、表面上で液滴を操作する平面マイクロ流体チップは、大きな関心を集めている。平面マイクロ流体チップは、従来のチャネルマイクロ流体チップに比べ、チャネルマイクロ流体チップのような小型化、集積化、試薬消費量が少ない、及び分析速度が速いなどの利点に加えて、例えば、液滴に直接な接触が容易であること、固体サンプルの取り扱い及び液滴アレイの生成に便利であること、固体粒子及び気泡によるマイクロチャネルの目詰まりの恐れがないことなどの、チャネルマイクロ流体チップの備えていない利点を多く持っている。   In recent years, planar microfluidic chips that manipulate droplets on surfaces have gained great interest. The planar microfluidic chip has advantages such as downsizing, integration, low reagent consumption, and high analysis speed as compared with the conventional channel microfluidic chip. Equipped with a channel microfluidic chip, such as easy direct contact with the sample, convenient for handling solid samples and generating droplet arrays, and no risk of clogging of the microchannels due to solid particles and bubbles Not have a lot of benefits.

しかしながら、従来の連続流体により駆動されるチャネルマイクロ流体チップに比べ、現在の表面マイクロ流体チップは、効果的な液滴操作方法がまだ不十分である。近年、一部の光制御、電磁場制御、機械的振動制御及び音場励起制御などの表面微小液滴操作技術の開発により、チャネルマイクロ流体技術の欠点の一部が克服されたが、これらの液滴操作技術は、液滴の成分、マイクロ流体液滴サンプルの伝送経路及び方向などが大きく制限される。現在、主流となっている平面液滴操作方法は、エレクトロウェッティングによって液滴の運動を駆動させ、基板に電極アレイを埋め込み、異なる電極に交互に電圧を印加し、液滴を駆動するものである。電極アレイの埋め込み及び高い駆動電圧が要求されるため、システム集積が困難である。   However, compared with conventional channel microfluidic chips driven by continuous fluids, current surface microfluidic chips still lack effective droplet manipulation methods. In recent years, the development of surface microdroplet manipulation techniques such as some light control, electromagnetic field control, mechanical vibration control and sound field excitation control has overcome some of the shortcomings of channel microfluidic technology. Drop manipulation techniques are severely limited in droplet composition, microfluidic droplet sample transmission path and direction, and the like. Currently, the mainstream plane droplet operation method is to drive the droplet by driving the droplet movement by electrowetting, embedding an electrode array on the substrate, and alternately applying a voltage to different electrodes. is there. System integration is difficult because the electrode array is embedded and a high drive voltage is required.

本発明は、上記のような技術的課題を解決するために、引張り可能な可撓超疎液性フィルム及びその製造方法を提供することを目的とするものである。当該フィルムを利用することによって、液滴の非破壊性移動を実現することができる。   In order to solve the technical problems as described above, it is an object of the present invention to provide a flexible super lyophobic film that can be pulled and a method for producing the same. By using the film, non-destructive movement of droplets can be realized.

また、本発明は、前記引張り可能な可撓超疎液性フィルムを使用した液滴の非破壊性移動方法を提供することを目的とするものでもある。当該方法を利用することによって、任意の成分及び大きさの微小液滴の伝送を実現でき、微小液滴に対する処理を一切することなく、従来の微小液滴操作制御技術にある欠点を克服でき、微小液滴操作制御技術の適用範囲を広げることができる。   Another object of the present invention is to provide a non-destructive transfer method of droplets using the pullable flexible ultra-phophophobic film. By utilizing this method, it is possible to realize transmission of microdroplets of arbitrary components and sizes, and to overcome the drawbacks of conventional microdroplet operation control technology without any processing on microdroplets, The application range of the micro droplet operation control technology can be expanded.

上記の目的を達成するためには、本発明は、引張り可能な可撓超疎液性フィルムの製造方法を提供する。該製造方法のプロセスは、図1に示されたように、具体的には、
(1)オーバーハングマイクロ・ナノ構造を有するテンプレートに対しフッ素化修飾を行い、硬化性弾性材料を流れ込むステップ、
(2)硬化した後に、前記硬化性弾性材料をオリジナルテンプレートから剥離し、オーバーハングマイクロ・ナノ構造に対応するマイクロ・ナノ構造を有する中間体を得るステップ、
(3)前記中間体のオーバーハングマイクロ・ナノ構造に対応するマイクロ・ナノ構造を有する層の表面にプラスチックエマルジョンをスピンコートするステップ、
(4)スピンコートされたプラスチックエマルジョンを硬化させ、フィルムを形成するステップ、及び
(5)硬化したフィルムを剥離し、フッ素化修飾を行い、前記引張り可能な可撓超疎液性フィルムを得るステップ
を含む。
In order to achieve the above object, the present invention provides a method for producing a pullable flexible ultra-phobic film. As shown in FIG. 1, specifically, the process of the manufacturing method is as follows.
(1) A step of performing fluorination modification on a template having an overhanging micro / nano structure and flowing a curable elastic material;
(2) after curing, peeling the curable elastic material from the original template to obtain an intermediate having a micro-nano structure corresponding to an overhanging micro-nano structure;
(3) spin-coating a plastic emulsion on the surface of the layer having a micro / nano structure corresponding to the overhanging micro / nano structure of the intermediate;
(4) a step of curing the spin-coated plastic emulsion to form a film; and (5) a step of peeling the cured film and performing fluorination modification to obtain the pullable flexible ultra-phophophobic film. including.

前記製造方法において、オーバーハングマイクロ・ナノ構造を有する超疎液性表面テンプレートは、ドライエッチングにより作製されてもよく、又はウェットエッチングによりシリコン基板上に作製されてもよい。好ましくは、前記オーバーハングマイクロ・ナノ構造は、T形、逆台形、球状、釘状、傘状又はキノコ状などである。   In the manufacturing method, the super-lyophobic surface template having an overhanging micro / nano structure may be produced by dry etching or may be produced on a silicon substrate by wet etching. Preferably, the overhanging micro / nanostructure is T-shaped, inverted trapezoidal, spherical, nail-shaped, umbrella-shaped or mushroom-shaped.

前記製造方法において、好ましくは、ステップ(1)において、前記フッ素化修飾は、
オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面を化学気相蒸着プロセスによって加熱処理して、プラズマ状態のフッ化炭素化合物ガス源でオーバーハングマイクロ・ナノ構造の各々の方向に蒸着を行い、オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップ、或いは
単分子自己組織化プロセスによってオリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面において化学反応を起こさせ、オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップを含み、
より好ましくは、前記疎水処理に用いられた試薬(即ち、フッ化炭素化合物)は、トリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、及びパーフルオロデシルトリクロロシラン(PFTS)などの低表面エネルギーのフッ素含有試薬の1種又は複数種の組み合わせを含む。
In the production method, preferably, in step (1), the fluorination modification is performed by:
The surface of the overhanging micro / nanostructure of the original template is heat-treated by a chemical vapor deposition process, and deposition is performed in each direction of the overhanging micro / nanostructure with a fluorocarbon compound gas source in a plasma state. Create a hydrophobic fluorocarbon coating on the surface of the micro / nanostructure, or cause a chemical reaction on the surface of the overhanging micro / nanostructure of the original template by a single molecule self-assembly process. Producing a hydrophobic fluorocarbon compound coating on the surface of the nanostructure;
More preferably, the reagent used for the hydrophobic treatment (that is, the fluorocarbon compound) is a low surface energy such as trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), and perfluorodecyltrichlorosilane (PFTS). Or a combination of a plurality of fluorine-containing reagents.

前記製造方法において、好ましくは、ステップ(1)において、前記硬化性弾性材料は、ポリジメチルシロキサン、エチレン−プロピレン−ジエン三元共重合ゴム、ニトリル・ブタジエン・ゴム、シスポリブタジエンゴム、及びクロロプレン・ゴムの1種又は複数種の組み合わせを含む。   In the manufacturing method, preferably, in step (1), the curable elastic material is polydimethylsiloxane, ethylene-propylene-diene terpolymer rubber, nitrile-butadiene rubber, cis-polybutadiene rubber, and chloroprene rubber. 1 type or the combination of 2 or more types is included.

前記製造方法において、ステップ(2)と(4)において、成膜方法は、低温硬化であってもよく、硬化温度は、典型的に5℃未満である。   In the manufacturing method, in steps (2) and (4), the film forming method may be low temperature curing, and the curing temperature is typically less than 5 ° C.

前記製造方法において、好ましくは、プラスチックエマルジョンをスピンコートする際にスピンコーターの回転数を制御し、異なる回転数で厚さの異なる超疎液性フィルムを得ることとなる。ステップ(3)において、前記スピンコートの回転数を50rpm〜2000rpmとなるように制御する。   In the above production method, preferably, the spin coater is rotated at the time of spin coating with the plastic emulsion to obtain super-lyophobic films having different thicknesses at different rotational speeds. In step (3), the rotational speed of the spin coating is controlled to be 50 rpm to 2000 rpm.

前記製造方法において、好ましくは、ステップ(3)において、前記プラスチックエマルジョンがEVAエマルジョン又はポリプロピレンエマルジョンなどである。   In the manufacturing method, preferably, in step (3), the plastic emulsion is an EVA emulsion or a polypropylene emulsion.

前記製造方法において、好ましくは、ステップ(5)において、前記フッ素化修飾は、
オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面を化学気相蒸着プロセスによって加熱処理して、プラズマ状態のフッ化炭素化合物ガス源でオーバーハングマイクロ・ナノ構造の各々の方向に蒸着を行い、オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップ、或いは
単分子自己組織化プロセスによってオリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面において化学反応を起こさせ、オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップを含み、
より好ましくは、前記フッ素化修飾に用いられた試薬(即ち、フッ化炭素化合物)は、トリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、及びパーフルオロデシルトリクロロシラン(PFTS)などの低表面エネルギーのフッ素含有試薬の1種又は複数種の組み合わせを含む。
In the production method, preferably, in step (5), the fluorination modification is performed by:
The surface of the overhanging micro / nanostructure of the original template is heat-treated by a chemical vapor deposition process, and deposition is performed in each direction of the overhanging micro / nanostructure with a fluorocarbon compound gas source in a plasma state. Create a hydrophobic fluorocarbon coating on the surface of the micro / nanostructure, or cause a chemical reaction on the surface of the overhanging micro / nanostructure of the original template by a single molecule self-assembly process. Producing a hydrophobic fluorocarbon compound coating on the surface of the nanostructure;
More preferably, the reagent (ie, fluorocarbon compound) used for the fluorination modification is a low surface such as trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), and perfluorodecyltrichlorosilane (PFTS). Includes one or more combinations of energetic fluorine-containing reagents.

また、本発明は、前記製造方法により製造された引張り可能な可撓超疎液性フィルムを提供する。該引張り可能な可撓超疎液性フィルムは、優れた可撓性及び引張り性を有し、大きく湾曲する又は引っ張ることができる。   Moreover, this invention provides the flexible super-liquidphobic film which can be pulled | pulled manufactured by the said manufacturing method. The pullable flexible ultra-lyophobic film has excellent flexibility and tensile properties and can be bent or pulled greatly.

また、本発明は、
液滴を前記引張り可能な可撓超疎液性フィルムの表面に置くステップ1、
もう一枚の引張り可能な可撓超疎液性フィルムの表面を前記液滴に接触させることで、前記液滴を捕獲して移動させるステップ2、及び
マイクロ・ナノ構造のピッチを増加させ、固液接触面積を減らし、前記液滴を前記引張り可能な可撓超疎液性フィルムの表面から落下させ、移動を終了するステップ3を含む液滴の非破壊性移動方法を提供する。
The present invention also provides:
Placing a droplet on the surface of the pullable flexible ultra-phophophobic film 1;
The surface of another pullable flexible ultraphobic film is brought into contact with the droplet to capture and move the droplet, and to increase the pitch of the micro / nanostructure and A liquid non-destructive transfer method comprising the step 3 of reducing the liquid contact area, dropping the liquid drop from the surface of the pullable flexible ultra-phophophobic film, and terminating the movement is provided.

該方法は、外部からの、例えば光、電磁場、機械的振動及び音場励起などのエネルギーをインプットすることなく、液滴の非破壊性移動を実現できる。更に、液滴の成分、マイクロ流体液滴サンプルの伝送経路及び方向などについても特に限定することなく、どの液滴に対しても有効である。   The method can realize non-destructive movement of a droplet without inputting external energy such as light, electromagnetic field, mechanical vibration and sound field excitation. Furthermore, the composition of the droplet, the transmission path and direction of the microfluidic droplet sample are not particularly limited, and the present invention is effective for any droplet.

本発明により提供される液滴の非破壊性移動は、各種異なる種類及び特性の液滴又はそれらの混合物に適用される。好ましくは、前記液滴は、種類及び特性が異なる液滴、異なる液滴の混合物若しくは液滴と固体粒子との混合物を含む。より好ましくは、前記液体は、水溶液、牛乳、血液、血漿、及び生化学試薬のうちの1種又は複数種の組み合わせを含む。   The non-destructive transfer of droplets provided by the present invention applies to a variety of different types and properties of droplets or mixtures thereof. Preferably, the droplets include droplets of different types and characteristics, a mixture of different droplets or a mixture of droplets and solid particles. More preferably, the liquid includes one or more combinations of aqueous solutions, milk, blood, plasma, and biochemical reagents.

前記移動方法において、移動の過程には、超疎液性フィルムが良好な柔軟性と良好な引張り性とを有する特徴を利用して、引っ張ることによって液滴と表面との接触面積及び粘着力を変化させ、液滴の非破壊性移動を実現することができる。また、湾曲することによって表面の曲率を減少させ、液滴と表面との接触面積及び粘着力を低減させて、液滴の非破壊性移動を実現することもできる。即ち、好ましくは、ステップ3において、前記引張り可能な可撓超疎液性フィルムを引っ張る又は湾曲することによってマイクロ・ナノ構造のピッチの増加を実現することができる。   In the moving method, in the moving process, by utilizing the characteristics that the super-lyophobic film has good flexibility and good tensile property, the contact area and adhesive force between the droplet and the surface are reduced by pulling. It can be changed to achieve non-destructive movement of the droplets. In addition, the curvature of the surface can be reduced by bending, the contact area between the droplet and the surface and the adhesive force can be reduced, and non-destructive movement of the droplet can be realized. That is, preferably, in step 3, an increase in the pitch of the micro-nano structure can be realized by pulling or bending the pullable flexible ultra-lyophobic film.

いかなる液体に対しても低ぬれ性、低粘着特性を示す超疎液性表面は、表面マイクロ流体液滴操作に理想的である。本発明は、微小電気機械システム(MEMS)加工技術に基づき、特殊なオーバーハング微小構造による超疎液性表面材料を開発した。該表面は、概ねいかなる液体に対しても良好な低ぬれ特性を示すだけでなく、良好な柔軟性と引張り可能な特性とを有するため、表面の引張り、湾曲などの操作によって局所の固液接触面積と曲率とを変化させることができ、表面の液滴に対する粘着力を調節して液滴の非破壊性伝送を実現できる。   A super-lyophobic surface that exhibits low wettability and low adhesion properties to any liquid is ideal for surface microfluidic droplet manipulation. The present invention has developed a super-lyophobic surface material with a special overhanging microstructure based on micro-electromechanical system (MEMS) processing technology. The surface not only exhibits good low wetting properties to almost any liquid, but also has good flexibility and pullable properties, so that the surface solid-liquid contact can be achieved by operations such as surface pulling and bending. The area and the curvature can be changed, and the non-destructive transmission of the droplet can be realized by adjusting the adhesion force of the surface to the droplet.

本発明の技術内容は、ダブルソフトコピープロセスと低表面エネルギー処理とを組み合わせることにより、表面のマイクロ・ナノ構造が制御可能であり、低ぬれ特性に優れた超疎液性表面を得た。該超疎液性表面の良好な柔軟性及び引張り性を利用し、表面の引張り、湾曲などの操作によって局所の固液接触面積と曲率とを変化させることができ、表面の液滴に対する粘着力を調節して液滴の非破壊性移動及び伝送を実現できる。本発明の技術内容は、従来の微小液滴操作制御技術の欠点を克服し、微小液滴に対する処理を一切することなく、任意の成分及び大きさの微小液滴の伝送を実現でき、微小液滴操作制御技術の適用範囲を広げることができる。   The technical content of the present invention is to combine a double soft copy process and low surface energy treatment to control the surface micro / nano structure, and to obtain a super-lyophobic surface with excellent low wetting characteristics. Utilizing the good flexibility and tensile properties of the super-liquidphobic surface, the local solid-liquid contact area and curvature can be changed by operations such as surface tension and curvature, and the adhesive force to the surface droplets Can be adjusted to achieve non-destructive movement and transmission of the droplets. The technical content of the present invention overcomes the drawbacks of the conventional microdroplet manipulation control technology and can realize the transmission of microdroplets of any component and size without any processing on the microdroplets. The application range of the droplet operation control technology can be expanded.

本発明にかかる引張り可能な可撓超疎液性表面の製造プロセスの概略図である。1 is a schematic view of a process for producing a pullable flexible ultra-lyophobic surface according to the present invention. FIG. 本発明にかかる引張り可能な可撓超疎液性表面による液滴操作の概略図である。FIG. 3 is a schematic diagram of droplet manipulation with a pullable flexible ultra-lyophobic surface according to the present invention. 本発明にかかる引張り可能な可撓超疎液性表面による実際の液滴操作の過程を示す図である。It is a figure which shows the process of the actual droplet operation by the pullable flexible super lyophobic surface concerning this invention.

本発明の構成要件、目的及び有益な効果をより明確に把握するためには、本発明の技術内容を以下に詳細に説明するが、本発明の実施可能な範囲を限定するものであると理解されるべきではない。
<実施例1>
In order to more clearly grasp the configuration requirements, purpose, and beneficial effects of the present invention, the technical contents of the present invention will be described in detail below, but it is understood that the scope of the present invention is limited. Should not be done.
<Example 1>

本実施例は、引張り可能な可撓超疎液性フィルムの製造方法を提供するものであり、以下のステップを含む。
(1)T型マイクロ・ナノ構造を有するオリジナルテンプレートを洗浄し、干燥させた後に、ホットプレート上に置いた。ホットプレートの温度は、150℃に設定した。テンプレートの隣に清潔なスライドガラスを一枚置いておき、3分間予熱した。パーフルオロデシルトリクロロシラン(PFTS)を取り出し、使い捨てピペットを用いてホットプレート上のスライドに2滴を滴下し、ガラスディッシュでホットプレート上のオリジナルテンプレートの表面を被せた。最も高い疎水効果を得るために、ホットプレートで4分間加熱した。
(2)被せたガラスディッシュを外し、予め調製した硬化性弾性材料であるポリジメチルシロキサン(PDMS)を培養皿に注ぎ、80℃の真空乾燥器に入れて、真空雰囲気で2時間焼成し、硬化性弾性材料PDMSを硬化させた。硬化性弾性材料PDMSを剥離した後に、表面にT型マイクロ・ナノ構造を有する中間体が得られた。
(3)表面にT型マイクロ・ナノ構造を有するPDMS中間体を、微小構造面を上にするようにスピンコーターにセットして、液状EVAエマルジョンを中間体の表面に流れ込み、回転数を50rpm〜2000rpmの範囲とし、所望の厚さに応じて異なるスピンコート速度を設定することができ、例えば100rpmの場合、厚さが約160μmであり、300rpmの場合、厚さが約80μmである。
(4)スピンコートした後のEVAエマルジョンをPDMS中間体とともに取り出し、−4℃以下の低温雰囲気に置いて硬化させた。硬化時間はEVAエマルジョンの厚さに従って増加する。硬化後、T型マイクロ・ナノ構造を持つPDMS中間体から剥離し、表面にT型マイクロ・ナノ構造を有するEVAフィルムが得られた。
(5)T型マイクロ・ナノ構造を有するEVAフィルムを、その両端が支えられて吊るすようにホットプレートにセットした。ホットプレートの温度は、70℃に設定した。フィルムの隣に清潔なスライドガラスを一枚置いておき、3分間予熱した。使い捨てピペットを用いてパーフルオロデシルトリクロロシラン(PFTS)をホットプレート上のスライドガラスに数滴を滴下し、ガラスディッシュでホットプレートを上から被せた。最も高い疎水効果を得るために、ホットプレートで30分間加熱し、引張り可能な可撓超疎液性フィルムが得られた。
<実施例2>
The present embodiment provides a method for producing a pullable flexible ultra-phobic film and includes the following steps.
(1) The original template having a T-type micro / nano structure was washed and dried, and then placed on a hot plate. The temperature of the hot plate was set to 150 ° C. A clean glass slide was placed next to the template and preheated for 3 minutes. Perfluorodecyltrichlorosilane (PFTS) was removed, 2 drops were dropped on a slide on a hot plate using a disposable pipette, and the surface of the original template on the hot plate was covered with a glass dish. In order to obtain the highest hydrophobic effect, it was heated on a hot plate for 4 minutes.
(2) Remove the covered glass dish, pour polydimethylsiloxane (PDMS), which is a curable elastic material prepared in advance, into a culture dish, place in a vacuum dryer at 80 ° C., and bake in a vacuum atmosphere for 2 hours to cure. The elastic elastic material PDMS was cured. After peeling off the curable elastic material PDMS, an intermediate having a T-type micro / nano structure on the surface was obtained.
(3) A PDMS intermediate having a T-type micro / nano structure on the surface is set on a spin coater so that the microstructure surface is facing up, and a liquid EVA emulsion is poured into the surface of the intermediate, and the rotational speed is 50 rpm to In the range of 2000 rpm, different spin coating speeds can be set according to the desired thickness. For example, at 100 rpm, the thickness is about 160 μm, and at 300 rpm, the thickness is about 80 μm.
(4) The EVA emulsion after spin coating was taken out together with the PDMS intermediate, and cured in a low temperature atmosphere of −4 ° C. or lower. Curing time increases with EVA emulsion thickness. After curing, the film was peeled from the PDMS intermediate having a T-type micro / nano structure, and an EVA film having a T-type micro / nano structure on the surface was obtained.
(5) An EVA film having a T-type micro / nano structure was set on a hot plate so that both ends were supported and suspended. The temperature of the hot plate was set to 70 ° C. A clean glass slide was placed next to the film and preheated for 3 minutes. Using a disposable pipette, several drops of perfluorodecyltrichlorosilane (PFTS) were dropped on a slide glass on a hot plate, and the hot plate was covered from above with a glass dish. In order to obtain the highest hydrophobic effect, the film was heated on a hot plate for 30 minutes to obtain a flexible ultra-liquidphobic film that can be pulled.
<Example 2>

本実施例は液滴の非破壊性移動方法を提供する。図2に示される過程のように、本実施例において、実施例1で作製された超疎液性表面の良好な柔軟性と良好な引張り性とを有する特徴を利用して液滴操作及び非破壊性移動を行うことができる。具体的には、該方法は、以下のステップを含む。
まず、液滴22を超疎液性フィルム23に置くこと。
つぎに、実施例1で作製された可撓透明超疎液性フィルム21を操作し、超疎液性フィルム23から液滴を捕獲すること。
最後に、超疎液性フィルム21を引っ張ってフィルムの液滴に対する粘着力を低減させ、液滴22をフィルムから落下させ、非破壊的に他の任意の表面に移動させること。
<実施例3>
This example provides a non-destructive transfer method for droplets. As in the process shown in FIG. 2, in this example, droplet operation and non-utilization are performed using the characteristics of the super lyophobic surface produced in Example 1 having good flexibility and good tensile properties. Destructive transfer can be performed. Specifically, the method includes the following steps.
First, the droplet 22 is placed on the super-lyophobic film 23.
Next, the flexible transparent super lyophobic film 21 produced in Example 1 is operated to capture droplets from the super lyophobic film 23.
Finally, pulling the super lyophobic film 21 to reduce the adhesion of the film to the droplets, dropping the droplets 22 from the film and moving them nondestructively to any other surface.
<Example 3>

本実施例は他の液滴の非破壊性移送方法を提供する。本実施例において、実施例1で作製された超疎液性表面の良好な柔軟性と良好な引張り性とを有する特徴を利用して液滴操作及び非破壊性移動を行うことができる。具体的には、該方法は、以下のステップを含む。
まず、液滴22を超疎液性フィルム23に置くこと。
つぎに、実施例1で作製された可撓透明超疎液性フィルム21を操作し、超疎液性フィルム23から液滴を捕獲すること。
最後に、超疎液性フィルム21を湾曲させることにより、フィルムと液滴との接触部の局所の曲率を変化させ、フィルムの液滴に対する粘着力を低減させ、液滴22をフィルムから落下させ、非破壊的に他の任意の表面に移動させること。
This embodiment provides another non-destructive transfer method for droplets. In this example, droplet manipulation and non-destructive transfer can be performed using the characteristics of the super-lyophobic surface produced in Example 1 having good flexibility and good tensile properties. Specifically, the method includes the following steps.
First, the droplet 22 is placed on the super-lyophobic film 23.
Next, the flexible transparent super lyophobic film 21 produced in Example 1 is operated to capture droplets from the super lyophobic film 23.
Finally, by curving the super lyophobic film 21, the local curvature of the contact portion between the film and the droplet is changed, the adhesive force of the film to the droplet is reduced, and the droplet 22 is dropped from the film. Move to any other surface, non-destructively.

図3は、本発明にかかる引張り可能な可撓超疎液性表面によって実際に液滴を操作し、液滴の非破壊性移動を実現する操作過程を示す図である。図3から、本発明により提供される技術を採用することによって、液滴の非破壊性伝送を効果的に実現できることが分かる。   FIG. 3 is a diagram showing an operation process in which a droplet is actually manipulated by the pullable flexible super-lyophobic surface according to the present invention to realize non-destructive movement of the droplet. FIG. 3 shows that non-destructive transmission of droplets can be effectively realized by employing the technique provided by the present invention.

Claims (10)

(1)オーバーハングマイクロ・ナノ構造を有するテンプレートに対しフッ素化修飾を行い、硬化性弾性材料を流れ込むステップ、
(2)硬化した後に、前記硬化性弾性材料をオリジナルテンプレートから剥離し、前記オーバーハングマイクロ・ナノ構造に対応するマイクロ・ナノ構造を有する中間体を得るステップ、
(3)前記中間体の前記オーバーハングマイクロ・ナノ構造に対応するマイクロ・ナノ構造を有する層の表面にプラスチックエマルジョンをスピンコートするステップ、
(4)スピンコートされたプラスチックエマルジョンを硬化させ、フィルムを形成するステップ、及び
(5)硬化した前記フィルムを剥離し、フッ素化修飾を行い、前記引張り可能な可撓超疎液性フィルムを得るステップ
を含む、引張り可能な可撓超疎液性フィルムの製造方法。
(1) A step of performing fluorination modification on a template having an overhanging micro / nano structure and flowing a curable elastic material;
(2) after curing, peeling the curable elastic material from the original template to obtain an intermediate having a micro-nano structure corresponding to the overhanging micro-nano structure;
(3) spin-coating a plastic emulsion on the surface of a layer having a micro-nanostructure corresponding to the overhanging micro-nanostructure of the intermediate;
(4) curing the spin-coated plastic emulsion to form a film; and (5) peeling the cured film and performing fluorination modification to obtain the pullable flexible ultra-phophophobic film. A method for producing a pullable flexible ultra-liquidphobic film comprising the steps of:
前記オーバーハングマイクロ・ナノ構造が、T形、逆台形、球状、釘状、傘状又はキノコ状である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the overhanging micro / nanostructure is T-shaped, inverted trapezoidal, spherical, nail-shaped, umbrella-shaped or mushroom-shaped. ステップ(1)において、前記フッ素化修飾は、
前記オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面を化学気相蒸着プロセスによって加熱処理して、プラズマ状態のフッ化炭素化合物ガス源でオーバーハングマイクロ・ナノ構造の各々の方向に蒸着を行い、前記オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップ、或いは
単分子自己組織化プロセスによって前記オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面において化学反応を起こさせ、前記オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップを含み、
前記フッ素化修飾に用いられた試薬は、トリメチルクロロシラン、ヘキサメチルジシラザン、及びパーフルオロデシルトリクロロシランの1種又は複数種の組み合わせを含むことが好ましい、請求項1に記載の製造方法。
In step (1), the fluorination modification comprises
The surface of the overhanging micro / nanostructure of the original template is heat-treated by a chemical vapor deposition process, and vapor deposition is performed in each direction of the overhanging micro / nanostructure with a fluorocarbon compound gas source in a plasma state. Generating a hydrophobic fluorocarbon compound coating on the surface of the overhanging micro / nanostructure, or causing a chemical reaction on the surface of the overhanging micro / nanostructure of the original template by a single molecule self-assembly process, Producing a hydrophobic fluorocarbon compound coating on the surface of the overhanging micro-nanostructure,
The manufacturing method according to claim 1, wherein the reagent used for the fluorination modification preferably includes one or a combination of trimethylchlorosilane, hexamethyldisilazane, and perfluorodecyltrichlorosilane.
ステップ(1)において、前記硬化性弾性材料が、ポリジメチルシロキサン、エチレン−プロピレン−ジエン三元共重合ゴム、ニトリル・ブタジエン・ゴム、シスポリブタジエンゴム、及びクロロプレン・ゴムの1種又は複数種の組み合わせを含む、請求項1に記載の製造方法。   In step (1), the curable elastic material is a combination of one or more of polydimethylsiloxane, ethylene-propylene-diene terpolymer rubber, nitrile butadiene rubber, cis polybutadiene rubber, and chloroprene rubber. The manufacturing method of Claim 1 containing this. ステップ(3)において、前記スピンコートの回転数を50rpm〜2000rpmとなるように制御する、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which controls the rotation speed of the said spin coat so that it may become 50 rpm-2000 rpm in step (3). ステップ(3)において、前記プラスチックエマルジョンが、EVAエマルジョン又はポリプロピレンエマルジョンである、請求項1又は5に記載の製造方法。   The production method according to claim 1 or 5, wherein in step (3), the plastic emulsion is an EVA emulsion or a polypropylene emulsion. ステップ(5)において、前記フッ素化修飾は、
前記オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面を化学気相蒸着プロセスによって加熱処理して、プラズマ状態のフッ化炭素化合物ガス源でオーバーハングマイクロ・ナノ構造の各々の方向に蒸着を行い、前記オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップ、或いは
単分子自己組織化プロセスによって前記オリジナルテンプレートのオーバーハングマイクロ・ナノ構造の表面において化学反応を起こさせ、前記オーバーハングマイクロ・ナノ構造の表面に疎水性のフッ化炭素化合物コーティングを生成するステップを含み、
前記フッ素化修飾に用いられた試薬は、トリメチルクロロシラン、ヘキサメチルジシラザン、及びパーフルオロデシルトリクロロシランの1種又は複数種の組み合わせを含むことが好ましい、請求項1に記載の製造方法。
In step (5), the fluorination modification comprises
The surface of the overhanging micro / nanostructure of the original template is heat-treated by a chemical vapor deposition process, and vapor deposition is performed in each direction of the overhanging micro / nanostructure with a fluorocarbon compound gas source in a plasma state. Generating a hydrophobic fluorocarbon compound coating on the surface of the overhanging micro / nanostructure, or causing a chemical reaction on the surface of the overhanging micro / nanostructure of the original template by a single molecule self-assembly process, Producing a hydrophobic fluorocarbon compound coating on the surface of the overhanging micro-nanostructure,
The manufacturing method according to claim 1, wherein the reagent used for the fluorination modification preferably includes one or a combination of trimethylchlorosilane, hexamethyldisilazane, and perfluorodecyltrichlorosilane.
請求項1〜7の何れか1項に記載の製造方法により製造された、引張り可能な可撓超疎液性フィルム。   A flexible ultra-liquidphobic film that can be pulled and manufactured by the manufacturing method according to claim 1. 液滴を請求項8に記載の引張り可能な可撓超疎液性フィルムの表面に置くステップ1、
もう一枚の請求項8に記載の引張り可能な可撓超疎液性フィルムの表面を前記液滴に接触させることで、前記液滴を捕獲して移動させるステップ2、及び
マイクロ・ナノ構造のピッチを増加させ、固液接触面積を減らして、前記液滴を前記引張り可能な可撓超疎液性フィルムの表面から落下させ、移動を終了するステップ3を含み、
前記液滴は、種類及び特性の異なる液滴、異なる液滴の混合物若しくは液滴と固体粒子との混合物を含むことが好ましく、水溶液、牛乳、血液、血漿、及び生化学試薬の1種又は複数種の組み合わせを含むことがより好ましい、液滴の非破壊性移動方法。
Placing the droplet on the surface of the pullable flexible ultra-phophophobic film according to claim 8,
Step 2 of capturing and moving the droplet by contacting the surface of the pullable flexible ultra-phophophobic film according to claim 8 with the droplet; and Including increasing the pitch, reducing the solid-liquid contact area, dropping the droplets from the surface of the pullable flexible ultraphobic film and terminating the movement,
Preferably, the droplets include droplets of different types and characteristics, a mixture of different droplets or a mixture of droplets and solid particles, and one or more of aqueous solutions, milk, blood, plasma, and biochemical reagents. A non-destructive transfer method of droplets, more preferably including a combination of species.
前記ステップ3において、前記引張り可能な可撓超疎液性フィルムを引っ張る又は湾曲することによってマイクロ・ナノ構造のピッチを増加させる、請求項9に記載の方法。   10. The method of claim 9, wherein in step 3, the pitch of the micro / nanostructure is increased by pulling or bending the pullable flexible ultra-phobic film.
JP2018509529A 2015-08-20 2015-12-25 Pullable flexible ultra-phophophobic film, method for producing the same, and method for non-destructive transfer of droplets Active JP6619873B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510514081.1A CN105085952B (en) 2015-08-20 2015-08-20 Stretchable flexible super lyophoby film and preparation method and the lossless transfer method of drop
CN201510514081.1 2015-08-20
PCT/CN2015/098935 WO2017028449A1 (en) 2015-08-20 2015-12-25 Stretchable flexible super-lyophobic film, preparation method, and liquid-drop nondestructive transfer method

Publications (2)

Publication Number Publication Date
JP2018526505A true JP2018526505A (en) 2018-09-13
JP6619873B2 JP6619873B2 (en) 2019-12-11

Family

ID=54567340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018509529A Active JP6619873B2 (en) 2015-08-20 2015-12-25 Pullable flexible ultra-phophophobic film, method for producing the same, and method for non-destructive transfer of droplets

Country Status (3)

Country Link
JP (1) JP6619873B2 (en)
CN (1) CN105085952B (en)
WO (1) WO2017028449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140864A (en) * 2021-03-15 2022-09-29 シャープ株式会社 Air layer holding structure, waterproof sheet, antifouling sheet, drain pan and indoor unit of air conditioner

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085952B (en) * 2015-08-20 2018-02-06 中国科学院深圳先进技术研究院 Stretchable flexible super lyophoby film and preparation method and the lossless transfer method of drop
CN105923599B (en) * 2016-06-07 2017-04-19 西安交通大学 Dry adhesive composite structure based on gas actuation and production technology
CN106756777B (en) * 2016-11-28 2019-07-16 山东大学 A kind of method and application by strain regulation wrinkled surface hydrophilic and hydrophobic reversible transition
CN107159072B (en) * 2017-05-10 2019-03-19 浙江工业大学 A kind of regulatable drop drives the preparation method of microreactor certainly
CN109987578A (en) * 2019-04-09 2019-07-09 电子科技大学 A method of constructing single concave inward structure on micro-column sublist face
CN111208122A (en) * 2020-01-09 2020-05-29 量准(上海)医疗器械有限公司 Plasma colorimetric device for chemical biological assay analysis
CN114348956B (en) * 2020-10-13 2024-08-27 南京中兴软件有限责任公司 Microdevice transfer apparatus, microdevice transfer method, and computer-readable storage medium
CN112718028B (en) * 2020-12-24 2022-11-01 深圳先进技术研究院 Light-operated liquid drop motion material and preparation method and application thereof
CN113293094B (en) * 2021-05-28 2023-02-03 武汉大学 Hand-held device for nondestructive pick-up and transfer of liquid drops and operation method
CN113441099B (en) * 2021-06-28 2022-05-06 北京理工大学 Nondestructive transfer liquid drop surface, preparation method and nondestructive transfer liquid drop method
CN113578406A (en) * 2021-09-07 2021-11-02 北京航空航天大学 Microcolumn surface for droplet transfer, method for producing microcolumn surface, and droplet transfer method
CN113830727B (en) * 2021-09-09 2024-05-24 中国人民解放军军事科学院国防科技创新研究院 Transfer method of micro-nano piece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500095A (en) * 1988-06-20 1991-01-10 ビーエスジー,インコーポレーテッド Photochromic polymer membrane
JP2010000719A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Film-like replica mold, its manufacturing method, and manufacturing method of film product having fine uneven structure
US20120052241A1 (en) * 2009-02-17 2012-03-01 The Board Of Trustees Of The University Of Illinoi S Flexible Microstructured Superhydrophobic Materials
CN103466539A (en) * 2013-08-29 2013-12-25 中国科学院深圳先进技术研究院 Super-lyophobic surface and preparation method thereof
JP2014076556A (en) * 2012-10-09 2014-05-01 Mitsubishi Rayon Co Ltd Article having fine rugged structure, and method for producing the article
EP2871206A1 (en) * 2013-08-02 2015-05-13 LG Chem, Ltd. Anti-fingerprint films and electrical and electronic apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195682B (en) * 2007-12-21 2010-09-29 中国科学院长春应用化学研究所 Method for producing flexible transparent polyimide film material
CN101942638B (en) * 2010-09-30 2012-03-21 中国科学院宁波材料技术与工程研究所 Preparation method of bionic controllable adhesive hydrophobic gold surface
CN102863638B (en) * 2011-07-08 2015-10-28 中国科学院理化技术研究所 Based on TiO2Low-temperature preparation method of organic/inorganic composite photocatalytic flexible film
JP6280035B2 (en) * 2011-08-30 2018-02-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Aqueous polymer emulsions for opaque film and coating applications
CN103569950A (en) * 2013-10-11 2014-02-12 中国科学院深圳先进技术研究院 Preparation method of super-lyophobic surface
CN105085952B (en) * 2015-08-20 2018-02-06 中国科学院深圳先进技术研究院 Stretchable flexible super lyophoby film and preparation method and the lossless transfer method of drop

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500095A (en) * 1988-06-20 1991-01-10 ビーエスジー,インコーポレーテッド Photochromic polymer membrane
US5015416A (en) * 1988-06-20 1991-05-14 Nelson Wasserman Photochromic polymeric membrane
JP2010000719A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Film-like replica mold, its manufacturing method, and manufacturing method of film product having fine uneven structure
US20120052241A1 (en) * 2009-02-17 2012-03-01 The Board Of Trustees Of The University Of Illinoi S Flexible Microstructured Superhydrophobic Materials
JP2012517910A (en) * 2009-02-17 2012-08-09 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Microstructured superhydrophobic material with flexibility
JP2014076556A (en) * 2012-10-09 2014-05-01 Mitsubishi Rayon Co Ltd Article having fine rugged structure, and method for producing the article
EP2871206A1 (en) * 2013-08-02 2015-05-13 LG Chem, Ltd. Anti-fingerprint films and electrical and electronic apparatus
JP2016531172A (en) * 2013-08-02 2016-10-06 エルジー・ケム・リミテッド Fingerprint-resistant film and electrical / electronic device
CN103466539A (en) * 2013-08-29 2013-12-25 中国科学院深圳先进技术研究院 Super-lyophobic surface and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140864A (en) * 2021-03-15 2022-09-29 シャープ株式会社 Air layer holding structure, waterproof sheet, antifouling sheet, drain pan and indoor unit of air conditioner

Also Published As

Publication number Publication date
CN105085952B (en) 2018-02-06
WO2017028449A1 (en) 2017-02-23
CN105085952A (en) 2015-11-25
JP6619873B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6619873B2 (en) Pullable flexible ultra-phophophobic film, method for producing the same, and method for non-destructive transfer of droplets
Wang et al. Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets
Liu et al. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings
CN111874896B (en) Method for accurately transferring two-dimensional material and application thereof
CN103080197B (en) The polymer substrate with hyaloid surface and the chip be made up of described polymer substrate
CN105334553B (en) Magnetic control fabricating method of microlens array based on PDMS magnetic nano-particle laminated films
CN106644189A (en) Flexible pressure sensor and preparation method therefor
Lau et al. Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates
KR102389946B1 (en) Coating method using particle alignment
WO2008032128A1 (en) Bonding technique
Li et al. Directional transportation on microplate-arrayed surfaces driven via a magnetic field
CN101000290B (en) Sample enrichment chip, manufacturing method
Liu et al. A mechanical hand-like functional surface capable of efficiently grasping and non-destructively releasing droplets
Li et al. Enhanced movement of two-component droplets on a wedge-shaped Ag/Cu surface by a wettability gradient
JP2011504960A (en) Low temperature bonding method for substrate having at least one surface including SU-8 layer
Son et al. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces
Li et al. Triple-Bioinspired Shape Memory Microcavities with Strong and Switchable Adhesion
US20070148588A1 (en) Methods of releasing photoresist film from substrate and bonding photoresist film with second substrate
CN1683443A (en) Chip simply non-reversion binding method using poly dimethyl siloxanes as substrate material
Lim et al. A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor
Reidy et al. Transparency of PDMS based microfluidic devices under temperature gradients
Gadre et al. An integrated BioMEMS fabrication technology
KR101489188B1 (en) Substrate surface treatment method for bonding substrates and method for bonding substrates
CN113441099B (en) Nondestructive transfer liquid drop surface, preparation method and nondestructive transfer liquid drop method
Joyce et al. Single layer thin photoresist soft etch mask for MEMS applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190906

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250