JP2018521576A - 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法 - Google Patents

流体の体積流と相互作用するmemsトランスデューサおよびその製造方法 Download PDF

Info

Publication number
JP2018521576A
JP2018521576A JP2017565061A JP2017565061A JP2018521576A JP 2018521576 A JP2018521576 A JP 2018521576A JP 2017565061 A JP2017565061 A JP 2017565061A JP 2017565061 A JP2017565061 A JP 2017565061A JP 2018521576 A JP2018521576 A JP 2018521576A
Authority
JP
Japan
Prior art keywords
transducer
mems
mems transducer
deformable element
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017565061A
Other languages
English (en)
Other versions
JP6668385B2 (ja
Inventor
ハラルド・シェンク
ホルガー・コンラド
マテュー・ガウデト
クラウス・シマンズ
ゼルギウ・ランガ
ベルトゥ・カイザー
Original Assignee
フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン filed Critical フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン
Publication of JP2018521576A publication Critical patent/JP2018521576A/ja
Application granted granted Critical
Publication of JP6668385B2 publication Critical patent/JP6668385B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R15/00Magnetostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/002Transducers other than those covered by groups H04R9/00 - H04R21/00 using electrothermic-effect transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/036Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/054Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0172Flexible holders not provided for in B81B2203/0154 - B81B2203/0163
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/019Suspended structures, i.e. structures allowing a movement characterized by their profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/051Translation according to an axis parallel to the substrate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

流体の体積流と相互作用するMEMSトランスデューサは、キャビティを備える基板と、キャビティ内で基板に接続され、横運動方向に沿って変形可能な変形可能要素を備える電気機械トランスデューサとを含み、横運動方向に沿った変形可能要素の変形と、流体の体積流とは因果関係にある。

Description

本発明は、例えばMEMSスピーカ、MEMSマイクロフォン、またはMEMSポンプなどの、流体の体積流と相互作用するためのMEMSトランスデューサに関する。さらに、本発明は、MEMSトランスデューサの製造方法に関する。さらに、本発明は、MEMSベースの電気音響トランスデューサに関する。
小型化に加えて、MEMS技術(MEMS〜微小電気機械システム)の1つの焦点は、特に、中量および大量での構成要素の費用対効果の高い製造可能性についての見込みにある。電気音響MEMSスピーカは、現在、それほど商品化されていない。わずかな例外を除いて、MEMSスピーカは、選択される物理的動作原理によって準静的または共振的に偏向される膜からなる。偏向は、印加される電気信号(電流または電圧)に、線形的または非線形的に依存する。この信号は、膜の偏向の時間的変化に伝達される時間的変化を含む。膜の往復運動は、音の形態で、簡略化のためであって限定ではなく、空気であると仮定される周囲の流体に伝達される。
いくらかの場合には、膜の作動は一方向のみで起こる。復元力は、膜が偏向されたときの機械的ばね作用によって提供される。他の場合には、作動が両方向で行われ、それによって、膜が非常に低い剛性を有することができる。
膜の作動のために、静電、圧電、電磁気、電気力学的および磁歪動作原理の使用が記載される。例えば、これらの原理に基づくMEMS音響トランスデューサの概要は、Albach,Thorsten Sven:Magnetostriktive Mikroaktoren und deren Anwendung als Mikrolautsprecher,Dissertation,Universitat Erlangen−Nurnberg(2013)(Magnetostrictive micro−actuators and their application as micro−loudspeakers,dissertation,University of Erlangen−Nuremberg (2013))に見出すことができる。
静電的に動作されるトランスデューサは、異なる電位に関与する2つの平面電極の間に生じる力に基づいている。最も単純な場合、この構成は平板キャパシタに対応し、平板の1つは可動に懸架されている。実際には、可動電極は、音響短絡を回避するために膜として具体化される。電圧を印加すると、膜は対電極の方向に座屈する。特定の実施形態では、膜は、いわゆるタッチモードで動作される。この場合、膜は、たとえばRoberts,Robert C.et al.:Electrostatically Driven Touch−Mode Poly−SiC Microspeaker,Sensors,IEEE 2007 (2007),p.284−287.に記載されているように、短絡を回避するために薄い絶縁体層が被着された下部電極に接触する。この場合、接触面積は、印加される電圧の大きさによって決定され、したがって、この電圧の時間経過に従って時間的に変化する。このようにして生成され得る振動は、音を発生させるのに役立つ。従来の静電構造では、膜は原則として電極の方向に引き寄せられるのみであり得る。復元力は、膜の剛性によって少なくとも部分的に決定され得、聴覚音域内のより高い周波数も伝達できるように十分に高くなければならない。
他方、電圧が与えられると、膜の偏向は剛性が増大するにつれて減少し得る。この問題を回避するために、Kim,H. et al.:Bi−directional Electrostatic Microspeaker with Two Large−Deflection Flexible Membranes Actuated by Single/Dual Electrodes,Sensors,IEEE 2005 (2005),p.89−92.に記載されているように、上部電極および下部電極によって駆動され、したがって両方向に偏向され得る非常に柔らかい膜による手法が開発された。合計で、このスピーカは、マイクロポンプと同様に、入口と出口とを含み、それ以外は閉じられているキャビティの内部に懸架された2つのこのような膜を使用する。
圧電式に動作するトランスデューサは逆圧電効果を使用する。印加された電圧は、固体中に機械的応力をもたらす。MEMS技術では、PZT(チタン酸ジルコン酸鉛)、AlN(窒化アルミニウム)またはZnO(酸化亜鉛)のような材料が典型的に使用される。通常、これらの材料は機能層として膜上に被着され、機能層に印加される電圧に応じて膜が偏向され得るか、または振動するように励起されるように構成される。圧電機能層の欠点は、動作がヒステリシスなしに実行され得ないという事実である。さらに、セラミック機能層を組み込むことは複雑であり、CMOS互換性(CMOS=相補型金属酸化膜半導体)の欠如に起因して、PZTおよびZnOを使用する場合、厳密な汚染制御または別個のクリーンルーム領域においてしか可能でない。
電磁的に動作するトランスデューサは、軟磁性材料が運動磁場(勾配)に曝される力効果に基づいている。この原理を実現するには、軟磁性材料に加えて、磁場の局所勾配を電流によって時間的に制御することができる永久磁石およびコイルが必要である。例えば、軟磁性材料は膜に組み込まれる。他のすべての構成要素は、例えばRehder,J.;Rombach,P.;Hansen,O.:Magnetic flux generator for balanced membrane loudspeaker.In:Sensors and Actuators A:Physical 97(2002),Nr.8,p.61−67.に記載されているように、組み立て中に提供される。この構造はかさばり、複雑であり、多い量に関して有意な様式でスケーラブルではないと考えられる。
電気力学的に動作するトランスデューサは、ローレンツ力を使用する。この方法は巨視的なスピーカでは非常に普及しており、一部のMEMSスピーカでも使用されている。磁場が、永久磁石によって生成される。電流を流すコイルが磁場内に配置される。通常、コイルは金属層を堆積して構造化することによって膜に一体化され、組み立て中に外部構成要素として永久磁石が追加される。MEMS技術を使用してすべての構成要素を統合することに関する複雑さおよび限界は、電磁的に動作するトランスデューサの場合のように、同様に大きな欠点である。
磁歪動作式トランスデューサは、磁場が印加されたときの機能層の収縮または膨張に基づく。例えば、Vanadium Permendur(登録商標)は正の磁歪であり、すなわち磁場が印加されると膨張する。適切な構造では、この収縮を、膜振動を発生させるために使用することができる。Albach,Thorsten Sven:Magnetostriktive Mikroaktoren und deren Anwendung als Mikrolautsprecher,Dissertation,Universitat Erlangen−Nurnberg(2013)(Magnetostrictive micro−actuators and their application as micro−loudspeakers,dissertation,University of Erlangen−Nuremberg (2013))において、クロム接着層を介してSiO(二酸化ケイ素)上に堆積されたVanadium Permendur(Fe49Co49)が磁歪機能層として使用される。外部磁場は、電気めっきされた銅によって実現される超小型平面コイルによって提供される。統合の複雑さおよび限界に関して、上記の両方の動作原理と同様の欠点が留意されなければならない。
振動するように励起され得る膜を使用するという共通の特徴を有する上記の古典的で最も広く使用される変形は、その後、古典的な膜の原理の特定の欠点に起因して調査されたある程度の改変によって補われている。
可撓性膜はまた、聴覚音域においてより高いモードを含む場合があり、したがって、音響品質(歪み係数)を減少させる寄生振動をもたらす可能性がある。Albach,Thorsten Sven:Magnetostriktive Mikroaktoren und deren Anwendung als Mikrolautsprecher,Dissertation,Universitat Erlangen−Nurnberg(2013)(Magnetostrictive micro−actuators and their application as micro−loudspeakers,dissertation,University of Erlangen−Nuremberg (2013))を参照されたい。したがって、この効果を回避または低減するために、はるかに高い剛性を有するプレートが使用される。このようなプレートは、音響短絡を回避することもできる非常に柔らかいサスペンションを介してチップに接続されている。Neri,F.;Di Fazio,F.;Crescenzi,R.;Balucani,M.:A novel micromachined loudspeaker topology.In:61 st Conf.on Electronic Components and Technology,ECTC,IEEE 2011 (2011),p.1221−1227.を参照されたい。
別の変形は、上述の磁歪トランスデューサと共に使用される区分化された膜を提供する。これは、機能層が2つの方向に収縮または膨張するという問題に対する特別なトポグラフィ的解決法に相当する。具体的には、この構造は、いくつかの偏向可能屈曲バーからなる。Albach,Thorsten Sven:Magnetostriktive Mikroaktoren und deren Anwendung als Mikrolautsprecher,Dissertation,Universitat Erlangen−Nurnberg(2013)(Magnetostrictive micro−actuators and their application as micro−loudspeakers,dissertation,University of Erlangen−Nuremberg (2013))によれば、この構成は、3μm以下のバーの距離にわたって音響的に閉鎖されていると考えることができる。これに応じて共振周波数およびバー間の距離に関して個々のバーを寸法決めすることによって、比較的高い音響帯域幅を達成することができ、音響レベルの経過を振動周波数の関数として適合または最適化することができる。
Neumann,J.J.,Gabriel,K.J.:CMOS−MEMS Acoustic Devices,in:Advanced Micro and Nanosystems,Vol.2.CMOS−MEMS.Edited by H.Baltes et al.,Wiley−VCH Verlag,Weinheim(2005).において、Neumann他は、単一の大きな膜の代わりに複数の小さな部分膜を使用する手法を追求しています。各部分膜は、準静的な偏向が聴覚音域内で生じ得るように十分に高い共振周波数を含む。特に、これはスピーカのデジタル動作を可能にする。
要約すると、統合に関して、既知の静電動作膜スピーカは、適度な駆動電圧を仮定すると、比較的小さな偏向を含むと結論付けることができる。例えば、Kim,H.et al.:Bi−directional Electrostatic Microspeaker with Two Large−Deflection Flexible Membranes Actuated by Single/Dual Electrodes,Sensors,IEEE 2005(2005),p.89−92.によるKim他の静電膜スピーカは、と参考として役立つであろう。2つの膜の各々は、2×2mmの面積を含む。上部電極と下部電極は、それぞれ7.5μmの距離をおいて取り付けられている。膜の幾何学的形状および偏向の増大に伴う膜剛性の増大に依存して、偏向は、典型的には、いわゆる引き込み効果に起因して電極距離の1/3〜1/2に制限される。より高い値の1/2を仮定すると、偏向は、それぞれ1つの方向および他の方向に7.5μm/2になる。変位された体積は、膜の最大偏向の半分の偏向を有する偏向された剛性プレートの体積に対応すると仮定することによって推定することができる。たとえば、次のようになる。
ΔV≒(2×2mm)×50%×(2×7.5μm)/2=15×10〜3mm (式1)
または
ΔV/有効面積=ΔV/A=ΔV/4mm=3.75×10〜3mm (式2)
小型膜スピーカを製造する場合、周波数の関数としての音圧の平坦な経過を達成することが一般的な問題である。達成可能な音圧は、膜の放射インピーダンスおよび速度に比例する。巨視的スケールに関しては、膜の直径は音響波長に相当する。これに関しては、放射インピーダンスが周波数に比例するということが適用される。Neumann,J.J.,Gabriel,K.J.:CMOS−MEMS Acoustic Devices,in:Advanced Micro and Nanosystems,Vol.2.CMOS−MEMS.Edited by H.Baltes et al.,Wiley−VCH Verlag,Weinheim(2005).を参照されたい。しばしば、高品質スピーカは、共振fが聴覚音域を下回るように設計されている(マルチウェイスピーカの場合、それぞれの共振周波数は対応する電気フィルタの下端周波数よりも低い)。したがって、f>>fの場合、膜の速度は1/fに比例する。全体として、音圧pの周波数依存性について、式p∝1がもたらされる。したがって、音圧曲線の完全に平坦な経過が、この(単純化された)考察をもたらす。
音源の/膜の直径が、生成されるべき音の波長よりもはるかに小さくなると、Lerch R.;Sessler,G.;Wolf,D.:Technische Akustik,Springer Verlag(2009).に記載されているように、放射インピーダンスに対して周波数からの二次依存性が仮定され得る。これは、ミリメートルの大きさの膜を有するMEMSスピーカに対して与えられる。上記のようにf>>fと仮定すると、音圧曲線の経過について依存性p∝fがもたらされる。高い周波数に対して音圧が低すぎることによって、低い周波数が再現される。準静的動作では、膜速度はfに比例する。したがって、その音圧経過について、依存性pαfがもたらされ、これは低周波数についてさらに不利になる。
したがって、高度の効率を含む改善されたMEMSトランスデューサの概念が望ましい。
したがって、本発明の目的は、高効率で流体の体積流に影響を及ぼすことができ、および/または、高効率で体積流の影響を受けることができるMEMSトランスデューサおよびその製造方法を提供することである。
この目的は、独立請求項の主題によって達成される。
本発明の核心思想は、横運動方向に沿って変形可能な要素によって、流体の体積流に効率的に影響を及ぼすことができるという事実、または、体積流が、そのような要素を特に効率的に偏向させることができるという事実によって、上記目的を解決することができることであると認識されるべきである。可能性として流体流の方向に垂直な横運動方向は、同時にチップ表面の寸法を小さくしながら、変形可能要素の広い領域が体積流と相互作用し得ることを可能にし、それによって、全体として、高い効率を有する効率的なMEMSトランスデューサデバイスが得られる。
一実施形態によれば、流体の体積流と相互作用するMEMSトランスデューサは、キャビティを備える基板と、基板に接続され、横運動方向に沿って変形可能な変形可能要素を備える電気機械トランスデューサとを含み、横運動方向に沿った変形可能要素の変形と、流体の体積流とは因果関係にある。この実施形態の利点は、変形可能要素によって影響を受けるまたは変形可能要素に影響を及ぼす体積が、大部分は横運動方向に垂直な方向および/またはチップ表面に垂直な方向に形成され、一方で同時に、小さなチップ表面を得ることができることである。
さらなる実施形態によれば、MEMSスピーカは、そのようなMEMSトランスデューサを備え、音響波または超音波を放出するように構成される。さらなる実施形態によれば、MEMSポンプは、MEMSトランスデューサを含み、それによって、流体を体積流に基づいて輸送することができる。さらなる実施形態によれば、MEMSマイクロフォンは、横運動方向に沿って変形可能な変形可能要素を有するMEMSトランスデューサを含む。これらの実施形態の利点は、小さなチップ表面を利用して高い効率を得ることができることである。
さらなる実施形態によれば、MEMSトランスデューサを製造する方法は、キャビティを備える基板を提供するステップと、横運動方向に沿って変形可能な要素を備える電気機械トランスデューサを基板に接続するステップとを含む。横運動方向に沿った変形可能要素の変形と流体の体積流とは、因果関係にある。
さらなる有利な実施形態は、従属請求項の主題である。
本発明の好適な実施形態について、添付の図面を参照して後に説明する。
一実施形態によるMEMSトランスデューサの概略斜視図である。 一実施形態による複数の電気機械トランスデューサを含むMEMSトランスデューサの概略斜視図である。 一実施形態による図2aのMEMSトランスデューサの概略上面図である。 一実施形態による、電気機械トランスデューサが変形可能要素の変形状態を含む、図2aのMEMSトランスデューサの概略斜視図である。 一実施形態によるバイモルフとして具体化された変形可能要素の概略斜視図である。 一実施形態による3つのバイモルフ構造を備える変形可能要素の概略斜視図である。 一実施形態による、偏向状態にある図4aによる変形可能要素の概略斜視図である。 一実施形態による互いに隣接して配置された2つの変形可能要素の配置の概略上面図である。 一実施形態による、電気機械トランスデューサが図2のMEMSトランスデューサと比較して異なる構成を含むMEMSトランスデューサの概略上面図である。 実施形態による、直線状に構成されたばね要素がプレート要素と変形可能要素との間に配置されている電気機械トランスデューサの概略上面図である。 一実施形態による、ばね要素が90°未満の角度で変形可能要素の偏向可能端部から配置されている電気機械トランスデューサの概略上面図である。 一実施形態による、ばね要素が90°を超える角度で配置されている電気機械トランスデューサの概略上面図である。 一実施形態による、基板が変形可能要素に隣接するばね要素を備える電気機械トランスデューサの概略上面図である。 一実施形態による、プレート要素が陥凹部を備える電気機械トランスデューサの概略上面図である。 一実施形態によるプレート要素に接続された変形可能要素の概略上面図である。 一実施形態による、変形可能要素が基板の間に固定的にクランプ締めされている構成の概略上面図である。 一実施形態による、変形可能要素が中央領域に陥凹部を備える電気機械トランスデューサの構成の概略上面図である。 第1の変形可能要素と第2の変形可能要素とが互いに平行に配置されている電気機械トランスデューサの構成の概略上面図である。 一実施形態による、変形可能要素が基板またはアンカー要素に交互に接続されたMEMSトランスデューサの概略斜視図である。 一実施形態による図8aのMEMSトランスデューサの概略上面図である。 一実施形態による偏向状態にある図8aのMEMSトランスデューサの概略斜視図である。 一実施形態による偏向状態にある図8bのMEMSトランスデューサの概略上面図である。 一実施形態による3つのMEMSトランスデューサを備えるスタックの概略斜視図である。 一実施形態による、変形可能要素が基板の面の間に配置されているMEMSトランスデューサの断面の概略透視上面図である。 一実施形態による、電気機械トランスデューサが基板の横方向に対して斜めに配置されているMEMSトランスデューサの断面の概略上面図である。 一実施形態によるポンプとして使用され得るMEMSトランスデューサの断面の概略上面図である。 例えば、MEMSポンプとして使用され得る第1の状態のMEMSトランスデューサの断面の概略上面図である。 第2の状態の図12aのMEMSトランスデューサを示す図である。 一実施形態による、横延在方向に沿って接続された2つの変形可能要素の概略図である。 一実施形態による、互いに接続され、相互層を含む2つのMEMSトランスデューサを含むスタックの概略図である。 図15は、一実施形態による接続要素を介して互いに離間して接続された2つの層を含む変形可能要素の概略側断面図である。 一実施形態による電極に隣接して配置されている変形可能要素の概略上面図である。 一実施形態によるMEMSシステムの概略ブロック回路図である。 1つの面にクランプ締めされたバー要素を有する複数の電気機械トランスデューサを備える、一実施形態によるMEMSトランスデューサの概略上面図である。 2つの面にクランプ締めされたバー要素を有する複数の電気機械トランスデューサを備える、一実施形態によるMEMSトランスデューサの概略上面図である。
本発明の実施形態が図面を参照して後で詳細に説明する前に、同一の、機能的に同一の、動作上同一の要素、物体および/または構造は、異なる図面に同一の参照番号で示されており、それによって、異なる実施形態におけるこれらの要素の説明は、交換可能であり、および/または相互に適用可能であることを指摘しておく。
続いて、MEMSトランスデューサ(MEMS=微小電気機械システム)を参照する。MEMSトランスデューサは、印加される電気量(電流、電圧、電荷など)に基づいて機械的構成要素の変化を引き起こす1つまたは複数の電気的活性構成要素を含むことができる。例えば、この変化は、機械的構成要素の変形、加熱または緊張に関係し得る。代替的または付加的に、構成要素に対する機械的影響、例えば変形、加熱または緊張が、構成要素の電気端子において検知することができる電気信号または電気情報(電圧、電流、電荷など)をもたらすことができる。一部の材料または構成要素は相互関係を含み、これは効果が相互交換可能であることを意味する。例えば、圧電材料は、逆圧電効果(印加された電気信号に基づく変形)および圧電効果(変形に基づいて電荷を与える)を含むことができる。
後述する実施形態のいくつかは、電気機械トランスデューサの変形可能要素が流体の体積流と相互作用するように構成されているという事実に関する。例えば、相互作用には、流体の運動、変位、圧縮または減圧をもたらす電気駆動信号によって引き起こされる変形可能要素の変形が含まれ得る。代替的にまたは付加的に、流体の体積流は、変形可能要素を変形させることができ、それによって、流体に関する発生、特性(圧力、流速など)または任意の他の情報(例えば、温度)を、体積流と変形可能要素との間の相互作用に基づいて得ることができる。これは、横運動方向に沿った変形可能要素の変形と流体の体積流とが、因果関係にあることを意味する。例えば、MEMSは、シリコン技術を用いて製造することができる。電気機械トランスデューサは、変形可能要素と、電極および/または電気端子などのさらなる要素とを含むことができる。変形可能要素は、横運動方向に沿って(微視的に)変形するように構成することができ、すなわち、要素または領域は、横運動方向に沿って可動とすることができる。例えば、要素または領域は、バー構造のバー端部または中心領域であってもよい。微視的に見ると、横運動方向に沿った変形可能要素の変形時に、変形可能要素の変形は、横運動方向に対して垂直に起こり得る。次に説明する実施形態は微視的考察に関する。
実施形態は、それぞれのサイズに対して、可能な限り高い音レベル、高い感度、および/または流体の流速を生成することができるシリコン製の小型のスピーカ、マイクロフォンおよび/またはポンプを提供することができる。
本発明の実施形態は、特に聴覚音域における空気伝送音を生成するために使用されてもよい。したがって、実施形態は、スピーカ、特に補聴器、ヘッドホン、ヘッドセット、携帯電話などのための小型スピーカに関する。体積流と変形可能要素の変形との間の相互因果関係はまた、スピーカにおける適用を可能にする。したがって、実施形態は、電気音響トランスデューサに関する。
図1は、MEMSトランスデューサ10の概略斜視図を示す。MEMSトランスデューサ10は、流体の体積流12と相互作用するように構成される。流体は気体(空気のような)および/または液体であってもよい。例えば、流体は、医療用溶液、薬物、技術的処理のための化学薬品などであってもよい。
MEMSトランスデューサ10は基板14を備える。基板14は、任意の材料を含むことができる。例えば、基板14は、木材、金属材料および/またはシリコン材料などの半導体材料を含むことができる。基板14はキャビティ16を含む。例えば、キャビティ16は、基板14の陥凹部または少なくとも部分的に囲まれた容積であると理解することができる。体積流12の流体は、少なくともある領域内でキャビティ16内に配置することができる。
MEMSトランスデューサ10は、電気機械トランスデューサ18を含む。電気機械トランスデューサ18は基板14に接続されている。電気機械トランスデューサ18は、横運動方向24に沿って変形可能な変形可能要素22を含む。例えば、電気機械トランスデューサ18に電気信号を印加すると、横運動方向24に沿って変形可能要素22が変形し得る。代替的にまたは付加的に、変形可能要素22に当たることによって、体積流12は、体積流12に基づく電気信号が電気機械トランスデューサ18から得られるように、変形可能要素22が変形を行うようにすることができる。すなわち、変形可能要素22の変形と体積流12とは、因果関係にある。例えば、電気機械トランスデューサ18は、少なくとも1つ、例えば2つの圧電層を含むことができ、または、当該圧電層からなることができる。両方の層が、電圧によって変形することができる。電気機械トランスデューサは、電極などのさらなる要素を含むことができる。
基板14は、体積流12がそれを通じてMEMSトランスデューサ10の周囲領域からキャビティ16内におよび/またはキャビティ16からMEMSトランスデューサ10の周囲領域に到達することができる1つまたは複数の開口26a〜dを含むことができる。変形時に変形可能要素22が行う運動は、基板14に対して面内であると理解することができる。体積流12は、例えば、体積流12のために開口26cおよび26dによって示されるように、少なくとも部分的に運動方向24に対して垂直に、キャビティ16を出入りすることができる。簡単に言えば、変形可能要素22の面内での運動は、面外の体積流12をもたらすことができ、その逆も可能である。これは、変形可能要素の横運動方向および/または湾曲が、基板に対して面内で生じ得ることを意味する。
開口26c、26dは、基板14における横運動方向24に対して垂直に配置されている。横運動方向24に沿った変形可能要素22の変形によって、変形可能要素22の少なくとも1つの領域が開口26aに向かって動くことができ、それによって、サブキャビティ28のサイズが変形に基づいて小さくなる。これに基づいて、サブキャビティ28内に位置する流体の圧力を増大させることができる。簡単に言えば、流体を圧縮することができる。これにより、流体がサブキャビティ28および/またはキャビティ16から流出することが可能になり得る。開口26dおよび26cを通して、体積流12は横運動方向24に対して垂直に得ることができる。
例えば、MEMSトランスデューサ10の基部領域は、x/y平面内に配置されてもよい。x方向および/またはy方向に垂直に配置されたz方向に沿った変形可能要素22の空間および/または高次元におけるz方向に沿ったMEMSトランスデューサ10の大きな寸法は、体積流12の増大をもたらすことができ、一方で、MEMSトランスデューサ10の基部領域は変化しないままである。サブキャビティ28のサイズが増大すると、サブキャビティ28内の流体の負圧が生じ得、その結果、横運動方向24に垂直な変形可能要素22の変形に基づいて体積流がキャビティ28および/または16に流れる。
変形可能要素は、例えば、y方向に沿って、少なくとも1μmで最大100mm、好ましくは少なくとも100μmで最大10mm、特に好ましくは少なくとも500μmで最大5mmの範囲の値を有する軸方向の延伸を含むことができる。変形可能要素22は、例えば、横運動方向24に沿って、少なくとも0.1μmで最大1000μm、好ましくは少なくとも1μmで最大100μm、特に好ましくは少なくとも5μmで最大30μmの範囲の値を有する延伸を含むことができる。変形可能要素は、例えば、横運動に垂直に配置されている横方向に沿って、例えば、z方向に沿って、少なくとも0.1μmで最大1000μm、好ましくは少なくとも1μmで最大300μm、特に好ましくは少なくとも10μmで最大100μmの範囲の値を有する延伸を含むことができる。
図2aは、複数の電気機械トランスデューサ18a〜fを含むMEMSトランスデューサ20の概略斜視図を示す。電気機械トランスデューサ18a〜fは、基板14に接続され、図1に関連して説明したように、横運動方向24に沿って変形可能な要素を各々含むことができる。
例えば、基板14は、第1の層32aと、第1のスペーサ層34aと、中間層36と、第2のスペーサ層34bと、第2の層32bとを下からこの順に備えている。さらなる実施形態によれば、1つまたは複数のさらなる層が、連続して配置された2つの層の間に配置されてもよい。さらなる実施形態によれば、層32a、32b、34a、34bおよび/または36のうちの少なくとも1つは、多層方式で構成されている。
電気機械トランスデューサ18a〜18fは、体積流12に基づいて、および/または駆動に基づいて、部分的に互いに向かって運動し、部分的に互いに外方に運動するように構成され、および/または駆動することができる。
例えば、電気機械トランスデューサ18aおよび18bは互いから外方に運動するように構成され、一方で、電気機械トランスデューサ18bおよび18cは互いに向かって運動するように構成される。サブキャビティ38a〜38cは、電気機械トランスデューサ18aと18bとの間、18cと18dとの間、および18eと18fとの間に配置され、サブキャビティ38a〜38cは、電気機械トランスデューサ18a〜18fの偏向に基づいてサイズが増大し得る。サブキャビティ42aおよび42bは、電気機械トランスデューサ18bと18cとの間、および、18dおよび18eとの間にそれぞれ配置され、それらは運動または変形に基づいてサイズが同時に縮小し得る。その後の時間間隔において、電気機械トランスデューサおよび/または偏向可能要素の変形または運動は可逆的であり得、それによって、サブキャビティ38a、38bおよび38cの体積は小さくなり、一方で、サブキャビティ42aおよび42bの体積は大きくなる。
言い換えれば、構造化層34a上に配置された下部キャップと中間層36との間のスペーサとして使用され得る構造化層、すなわちスペーサ層34aは、1つの面上で(例えば、これに限定されるものではないが、下部面上で)チップを少なくとも部分的にまたは全体的に包囲している下部キャップ(第1の層32a)上に配置され得る。そのスペーサとしての機能が全体的または部分的にスペーサ層34aの機能に対応し、同一または類似の形状を含むことができる構造化スペーサ層34bを、構造化層36上に配置することができる。MEMSトランスデューサ20またはそのキャビティは、上部キャップ、第2の層32bによってz方向に沿って部分的または全体的に囲まれてもよい。図2aは、キャビティの領域に配置された要素を示すことができるように、層32bを部分的に分割した図として示している。電気機械トランスデューサ18bおよび18c、ならびに18dおよび18eは、それぞれ、中間層36のx/y平面内に対にして配置されてもよく、このような配置は、空間方向に沿って、例えばx方向に沿って数回繰り返されてもよい。
基板は、それぞれ、複数のサブキャビティ38a〜cおよび42a〜bにそれぞれ接続された複数の開口26を備えることができ、例えば、1つの開口26が各々、1つのサブキャビティ38a〜cまたは42a〜bに接続され得る。各サブキャビティ38a〜cまたは42a〜bの容積は、横運動方向24に沿って変形可能な少なくとも1つの要素22の偏向状態によって影響され得る。第1の時間間隔または第2の時間間隔の間、隣接する部分容積は、それぞれ、サイズを相補的に増減させることができる。簡単に言えば、サブキャビティ38a〜cまたは42a〜bの部分容積はサイズが小さくなり得、一方で、サブキャビティ42a〜bおよび38a〜cの隣接する部分容積はそれぞれサイズが大きくなる。
バー構造44が、1つまたは複数の開口26の領域に配置されてもよい。バー構造44は、体積流12が1つまたは2つの方向に通過することが可能であり、一方で、キャビティ内またはキャビティ外への粒子の進入または排出が低減または回避されるように配置することができる。例えば、層32a、32b、34a、34bおよび/または36の形状は、製造プロセス中に、層を選択的に除去および/または選択的に配置または成長させることによって、影響を受け得る。例えば、バー構造44は、選択的エッチングプロセスに基づいて層34a、36および/または34bから形成することができる。さらに、キャビティ38a〜cおよび42a〜bの形状は、製造プロセス中に影響を受け得る。例えば、1つまたはいくつかの層32a、32b、34a、34bおよび/または36の壁は、例えば、変形可能要素と基板14との間の少なくともほぼ一定のおよび/または短い距離を可能にするために、電気機械トランスデューサ18a〜fの変形可能要素の運動に適合させることができる。
カバー43が、バー構造もしくはバー要素に隣接して、またはバー構造もしくはバー要素に配置されてもよい。カバー43は、キャビティ16に隣接して配置されてもよく、および/またはバー要素44によってキャビティ16から分離されてもよい。例えば、カバーは、メッシュ材料、発泡材料および/または紙材料を含むことができる。カバーは、バー構造間の距離よりも直径の小さい粒子の、キャビティ16への進入またはキャビティ16からの排出を可能にすることができる。代替的に、カバー43はまた、バー要素44を含まない開口26に隣接して、または開口26に配置されてもよい。
運動可能要素の自由端が、例えば湾曲した経路および/または円形の経路内で運動する場合、基板14は、可動端が運動する領域に平行または類似の形状を含むことができる。
図2bは、図2aのMEMSトランスデューサ20の概略上面図を示す。電気機械トランスデューサ18a〜fは、例えば、要素46a〜46cにおいて基板14に圧力嵌めまたは形状嵌合で接続することができる。例えば、電気機械トランスデューサ18a〜fの1つまたはいくつかの変形可能要素は、要素46a〜cと一体的に形成されてもよい。要素46a〜46cは、層36の平面内に配置されてもよく、または層36の一部であってもよい。電気機械トランスデューサ18a〜fの変形可能要素22の延伸は、例えば、z方向に沿った層34a、36および34bの延伸以下であり得る。これは、電気機械トランスデューサ18a〜18fの変形可能要素22が層32aおよび/または32bに対して非接触に配置され、運動可能であり得ることを意味する。代替的に、少なくとも1つの変形可能要素は、接触式に変形されてもよい。例えば、低摩擦層、すなわち低い摩擦係数を有する層を、少なくとも1つの変形可能要素と、層32aおよび/または32bのような隣接する層との間に配置することができる。低摩擦層は、壁構造49に関して説明したようなサブキャビティ間の流体分離を可能にすることができる。例えば、摩擦係数は、層32aおよび/もしくは32bまたは層34aおよび/もしくは34bの摩擦係数よりも10%、20%または50%低くてもよい。変形可能要素22と隣接する層との間の摩擦力は、変形可能要素22の変形に必要な力よりも低くてもよい。例えば、アクチュエータによって提供される力は、摩擦力の低減に基づいてより低くてもよく、その結果、アクチュエータは、あまり強力ではないように具現化され得る。代替的にまたは付加的に、体積流12に向かう変形可能要素22の感度を高めることができる。
電気機械トランスデューサ18bおよび18cは、例えばサブキャビティ42a(チャンバ)の側壁を形成する。電気機械トランスデューサ18a〜fの可動要素22は、形状嵌合で要素46a〜46cに固定することができる。変形可能要素22の偏向可能な可動端部52の間に、基板14または基板14の要素48a〜48dまでの距離を配置することができる。したがって、変形可能要素22の端部52は、自由に動くように構成されてもよい。y方向に沿った延伸に比例したx方向に沿った延伸のような寸法比、単純に言うと、バー高さに対するバー幅の比率に起因して、1つまたはいくつかの変形可能要素22は、特に横方向24に沿ってより大きく偏向可能であり得る。例えば、電気機械トランスデューサ18a〜fがアクチュエータとして構成されている場合、これらのアクチュエータは、対応する信号が印加されるとき、すなわち、例えば、変形可能要素22の端部52が屈曲経路上を運動するように湾曲しているときに、偏向可能であり得る。この経路の経過にしたがって、要素48a〜dの少なくとも1つは、変形可能要素22が偏向されても、と端部52との間の距離がほぼ一定および/または小さいままであるように構成することができる。
MEMSトランスデューサ20は、少なくとも1つの壁構造49を備えることができる。例えば、チャンバ42a〜bに関して、アクチュエータ、電気機械トランスデューサ18a〜eまたは変形可能要素の運動は、運動によってトリガされるチャンバ38a〜cを充填する流体流に起因して、隣接するチャンバへの流体機械結合が発生し得るという事実をもたらし得る。流体機械結合に基づいて、サブキャビティ42aと38bとの間に流体流57が生じ得る。この直接的な結合または流体流57を低減または回避するために、不動であるように具現化可能である1つまたはいくつかの分離壁(壁構造49)を、隣接するチャンバ対38aおよび42を分離するように配置することができる。壁構造は、例えば、層34a、36および34bから連続的に形成された対応する位置にある要素として、簡単な方法で実現することができる。例えば、このような構造は、選択的エッチングプロセス中に配置されたままであり得る。さらに、壁構造49は、MEMSトランスデューサ20の機械的安定性を増大させることができ、個々の層間の接合プロセスを単純化することができる。少なくとも1つの壁構造49は、開口を備えることができ、または全体的に連続的に設計することができ、これによって、特に、共振曲線の幅を設定するために、または一般的に、アクチュエータチャンバシステムの動的特性を設定するために、チャンバ38a〜cおよび42a〜bに流入/流出する流体に起因する減衰を選択的に変更することが可能になる。
図2bを図1とともに見ると、キャビティ16ならびに/または複数のサブキャビティ38a〜cおよび42a〜bの容積は、層32aおよび32bならびに基板14の側部領域53aおよび53bによって影響されるかまたは決定され得る。側部領域53aおよび53bは、層32aと32bの間に配置されてもよい。電気機械トランスデューサ18a〜cの変形可能要素は、少なくとも横運動方向24の部分55において、第1の層32aおよび/または32bと平行に運動を行うように構成されてもよい。これは、変形可能要素が変形してもよく、または層32aと32bとの間を運動してもよいことを意味する。
キャビティまたはサブキャビティの共振周波数は、容積の幾何学的形状、電気機械トランスデューサの駆動の周波数および/またはいくつかの変形可能要素の1つの機械的共振周波数の影響を受け得る。例えば、壁構造49、低摩擦層の構成によって、または、いくつかのMEMSトランスデューサ内の構成に基づいて、少なくとも部分的に流体的に分離された(部分)キャビティは、異なる共振周波数を含むことができ、および/または、異なる周波数で、例えば制御デバイスを用いて駆動され得る。異なる駆動周波数および/または異なる共振周波数に基づいて、マルチウェイスピーカを得ることができる。例えば、キャビティの共振周波数は、空洞共振器またはヘルムホルツ共振器の分野で使用される。
図2cは、電気機械トランスデューサ18a〜fが変形可能要素の変形状態を含む、MEMSトランスデューサ20の概略斜視図を示す。例えば、変形可能要素は、最大偏向まで偏向される。図2aの図と比較すると、変形可能要素(バー)の変形(屈曲)に基づいて、サブキャビティ42aの容積が減少している。例えば、層34aおよび34b(スペーサ)の厚さ(z方向または厚さ方向に沿った寸法)が低い場合、電気機械トランスデューサ18a〜fが動いたときの、電気機械トランスデューサ18a〜18fまたは変形可能要素を取り巻く周回流は、無視することができる。これは、電気機械トランスデューサ18a〜fと基板、例えば要素48との間の距離にも適用することができる。変形可能要素の変形に基づいて、図2aおよび図2cのサブキャビティ42aの容積差に対応し得る流体の体積、例えば空気体積は、流体流(体積流)12の形態で、MEMSトランスデューサ20の周囲領域に解放され得る。
第1のスペーサ層34aおよび第2のスペーサ層34bがそれに沿って中間層36に配置されるz方向に沿ったスペーサ層34aまたは34bの寸法は、少なくとも1nmで最大1mmの範囲、好ましくは少なくとも20nmで最大100μmの範囲、特に好ましくは少なくとも50nmで最大1μmの範囲内の値を含んでもよい。例えば、スペーサ層34aおよび34bの寸法が、z方向に沿った電気機械トランスデューサ18a〜fの寸法に比べて小さい場合、変形可能要素が変形されている間に第1の側から第2の側へ(例えば、正のx方向から負のx方向へ、またはその逆へ)電気機械的変換器18a〜fを回流する流体流57の範囲は、キャビティ内の体積流12の範囲よりも小さくてもよい。
例えば、周回流または流体流57は、電気機械トランスデューサ18a〜18fが運動する領域におけるスペーサ層34aおよび/または34bの少なくとも部分的な除去に基づいて生じ得る。簡単に言えば、電気機械トランスデューサと隣接する層との間の距離に基づいて可動要素の周りの流体流が生じ得る(流体損失)。流体流12と比較して、これらは低くすることができる。例えば、それらの流体流は、体積流の規模を値10、値15、または値20で除算した値より小さくすることができる。
電気機械トランスデューサは、対になって互いに向かって、または互いから外方に運動することができる。したがって、図2bの状態と比較して、電気機械トランスデューサ18aおよび18bは、例えば互いに対になって互いから外方に運動することができ、後続の時間間隔においては、対になって互いに向かって運動することができる。同時に、例えば、電気機械トランスデューサ18bおよび18cは、対になって互いに向かって、または互いから外方に運動することができる。トランスデューサが互いに隣接して配置されていない場合にも可能な一対の電気機械トランスデューサのこのような相補的な動きは、慣性力の完全な場合もある少なくとも部分的な補償をもたらし、それによって、振動の少ないまたはまったくない測度が、MEMSトランスデューサで得られ、および/または、MEMSトランスデューサから周囲の領域に伝達される。
言い換えれば、これまで説明したチャンバ手法の特定の特徴は、アクチュエータが対になって互いに向かって、および/または互いから外方に連続的に運動することであり得る。これは、(各チャンバ壁を制限する2つの能動的な屈曲アクチュエータを慎重に実現するとき)例えば、補聴器またはインイヤーヘッドホンとして使用されるときに邪魔になる振動がないことを意味する。
流体流12は、例えば開口26aおよび/または26bを通過することができる。開口26aおよび26bは、同じ方法で構成されてもよく、または、それぞれ隣接するサブキャビティ38aおよび42aの幾何学的形状に適合されてもよい。例えば、開口26aは、軸方向(例えば、y方向)に沿った可変断面、例えばx方向に沿った寸法を含むことができる。x方向に沿った開口26bの寸法は、MEMSトランスデューサ20の内部に向かう方向、すなわちキャビティまたはサブキャビティ42aに向かう方向に減少し得る。代替的にまたは付加的に、開口26は、軸方向yに垂直なz方向(厚さ方向)などのさらなる方向に沿って可変寸法または可変断面を含むことができる。可変断面は、キャビティ16に向かう方向においてMEMSトランスデューサ20の外側から減少してもよい。先細りの断面、すなわち、開口26の、1つまたは複数の方向xおよび/またはzに沿ってキャビティ16に向かう方向においてMEMSトランスデューサ20の外側から減少する寸法は、漏斗状開口として参照される場合がある。
漏斗状である可能性がある開口26は、インピーダンスを整合させるためのデバイスとして使用することができる。例えば、MEMSトランスデューサ20をスピーカとして使用する場合、インピーダンス整合が有利であり得る。開口26bの設計または幾何学的形状は、数センチメートルの寸法を有する巨視的スピーカと同様に実施することができる。開口26bの形状は、漏斗の外面によって実際の音響放射を規定することを可能にすることができる。例えば、開口26bは、構造化層34a、36および34b内に連続的に形成されてもよい。少なくとも1つのバー要素44を含むバーグリッド54は、バー要素44間および/またはバー要素44と隣接する基板との間の開口または間隙を備えることができる。間隙は、流体が間隙を通って流れることができるように形成されてもよい。
バーグリッド54は、MEMSトランスデューサ20のキャビティに入る粒子に対する保護を提供することができる。バーグリッド54の開口の幅、すなわちバー要素44間の距離は、流体流12が所望の程度まで流れに対して影響を受けるかまたは影響を受けないように具体化することができる。例示的または理想的には、バー要素44間の距離は、バーグリッドが多数の、またはさらにはすべての関連する粒子をフィルタリングすることができるように、MEMSトランスデューサ20内の最小スリット距離よりも小さくすることができる。例えば、スリット距離は、変形可能要素18a〜cの、層32aまたは32bまでの間の距離を表すことができる。例えば、バー要素44の間の距離は、5μm、1μm、0.1μmまたは0.05μmよりも小さくてもよい。
空間方向に沿ったバー要素44の寸法は、バー要素44が聴覚音域内、すなわち少なくとも16Hzで最大22KHzの周波数範囲内のいかなる共鳴も含まないように実施することができる。バー要素44は、MEMSトランスデューサ20の外側に、例えば、開口26aまたは26bがx方向に沿って最大寸法を有する領域において配置されるように図示されているが、1つまたは複数のバー要素はまた、開口26aまたは26bの異なる位置に、例えば開口26aおよび/または26bの先細り領域内に、配置されてもよい。
サブキャビティ42aの容積は、変形可能要素の変形によって減少させることができる。同じ時間間隔の間に、チャンバ(サブキャビティ)38aの容積が増大することができる。サブキャビティ38aは、1つまたはいくつかのバー素子44を含むバーグリッド54および/または漏斗状開口26bを介して、サブキャビティ42と同じまたは類似の方法でMEMSトランスデューサ20の周囲領域に接続されてもよい。電気機械トランスデューサ18a〜fは、互いに異なる周波数で駆動されるように構成されていてもよいし、または、互いに異なる共振周波数を含んでもよい。各サブキャビティの容積は、互いに異なる周波数で、または少なくとも部分的に同じ周波数で変化してもよい。
開口26aおよび開口26bは、空間内で対向して配置されたMEMSトランスデューサ20の壁面にまたは壁面内に配置されてもよい。例えば、流体流12は、それぞれ、サブキャビティ42aおよび38a、または複数のこのようなサブキャビティによって、開口26aまたは26bを含むそれぞれの面に吐出または吸引されてもよい。これは、流体流12が反対方向に生成され得ることを意味する。例えば、第1の時間間隔において、体積流12は、開口26aから負のy方向に放出され、サブキャビティ38a内に吸引され得る。第2の時間間隔では、これらの方向が逆になり得る。このようにして、MEMSトランスデューサ20に沿った流れの短絡を防止または排除することができる。
電気機械トランスデューサ18a〜fの変形可能要素(バー)は、外部から供給される信号に応じて湾曲するように構成することができる。
湾曲が生じる周波数は、体積流12が生成され、および/または、振動し、したがって音声周波数に影響を及ぼすかまたはこれを決定する周波数であり得る。供給される信号によって決定される振動の振幅は(1つまたはいくつかの(共振)周波数で)体積流12の振幅に影響を及ぼすかまたは決定し、したがって音レベルに影響を及ぼし得る。
また、少なくとも1つのチャンバ(キャビティまたはサブキャビティ)が感知要素として機能することができ、別のチャンバが作動要素として機能することができる。これは、MEMSトランスデューサが、感知的に変形可能な少なくとも1つの要素と、作動的に変形可能な1つの要素とを含むことができることを意味する。バーの動きが検出され、評価される。このようにして、例えば、電気機械トランスデューサ18aおよび18bはアクチュエータとして駆動することができ、一方で、電気機械トランスデューサ18cおよび/または18dは流体中の検出用のセンサとして使用することができる。静電気(容量性)、圧電性またはピエゾ抵抗性センサ素子を、検出のために組み込むことができる。そのような要素は、マイクロフォンおよび/または圧力センサとして使用されてもよい。そのような一体型マイクロフォンおよび/またはそのような圧力センサはまた、スピーカチャンバ(アクチュエータ)、または超音波発生装置チャンバ、またはポンプチャンバの特性を調整および制御するために使用することもできる。このためには、対応する電子システムを駆動回路/制御回路として利用しなければならない。
続いて、電気機械トランスデューサおよび/またはアクチュエータについてさらなる実施形態を説明する。MEMSトランスデューサ20は、偏向されていない、または作動されていない状態で、偏向されていない変形可能要素を備えるように記載されているが、状態はまた、相互に交換可能であってもよい。これは、第1の非作動状態では、変形可能要素が変形または湾曲してもよく、駆動信号に基づいて、それほど強く湾曲していない、より強く湾曲しているまたは真っ直ぐである状態に変形してもよいことを意味する。
上記の論述では、電気信号が、例えば制御デバイスによってMEMSトランスデューサ20に印加されることが説明されているが、体積流12はまた、変形可能要素の変形をもたらし得、変形は、MEMSトランスデューサ20における電気信号によって得ることができ、すなわち、MEMSトランスデューサ20はまた、センサとして構成することもできる。
続いて、変形可能要素の有利な変更携帯が参照される。1つまたはいくつかの電気機械トランスデューサは、後に説明する変形形態による変形可能要素を含むことができる。
図3は、バイモルフとして具体化された変形可能要素30の概略斜視図を示す。変形可能要素30は、第1の層56と第2の層58とを備え、これらは少なくとも定位置において、有利には全面にわたって、互いに固定接続されている。第1の層56および第2の層58は、機械的、物理的または化学的影響に基づいて様々な程度に、例えば、膨張または収縮するように変形されるように構成される。例えば、層56および58は、互いに異なる熱膨張係数を含むことができる。代替的にまたは付加的に、層56または層58は、対応する層に供給される電気信号に基づいて膨張または収縮するように構成されてもよい。例えば、この層はピエゾ材料を含むことができる。
層56および58の相互に異なる収縮または膨張は、作動方向59または59’に沿った変形可能要素30の変形をもたらし得る。作動方向は、横運動方向24と平行に配置されてもよい。作動方向は、正の電圧を印加することによって変形可能要素30がそれに沿って偏向可能な方向であってもよい。
代替的にまたは付加的に、変形可能要素30の交差収縮または交差膨張および/または層の1つの収縮または膨張に基づく、さらなる横運動方向24’に沿って変形を使用することができる。これは、変形可能要素30が、バー構造の軸方向(例えば、y方向、または面内)に沿ってそのバー構造と共に湾曲するように構成され得ることを意味する。これは、往復運動、すなわち、横運動方向24および反対の方向に沿って起こり得る。
言い換えれば、バイモルフは、2つの層からなるバーに対応することができる。例えば、これらの層は、互いに向かってある方向(例えば、垂直方向)に配置される。不動態層(例えば、層56)は、活性層(例えば、層58)に固定して接続することができる。適切な信号を印加することにより、活性層58に機械的な張力を生成することができ、層58の収縮または膨張がもたらされる。層58の長さの変化の方向は、バイモルフが横方向に1つの(収縮)方向または他の(膨張)方向に曲がるように選択することができる。
図4aは、図3に関連して説明したような、3つのバイモルフ構造30a〜fを備える変形可能要素40の概略斜視図を示す。x、y、およびz方向に沿った空間における変形可能要素40の概略的な配置が、変形可能要素40が例えばMEMSトランスデューサ10内または20に配置されるように例示的に(ただし限定的ではない)示されている。変形可能な(部分)要素30a〜cは、例えばx、yまたはz方向に沿って互いに異なる寸法を含むことができる。例えば、変形可能要素30aおよび30cは、y方向に沿って同じ延伸を含むことができる。例えば、変形可能要素30a〜cの作動方向59a〜cは、交互に配置されてもよく、または、例えば正/負/正のx方向の往復整列を含んでもよい。簡単に言えば、これは、変形可能要素30aおよび30cが同じ長さを有するように理解され得る。変形可能要素30bは、これとは異なる長さを有していてもよい。例えば、変形可能要素30bの長さは、要素30aまたは30cの同等の長さの2倍であってもよい。さらなる実施形態によれば、変形可能要素30a〜30cの間にさらなる要素、例えばばね要素を配置することもできる。
同じまたは同等の量が印加されたときに変形可能要素30a〜cが偏向される方向(電圧の符号など)は、変形可能要素40の長さに沿って交互になっていてもよい。これにより、交互に湾曲する経過が可能になる。変形可能要素40は、3つの変形可能要素30a〜cを含むように図示されているが、2つの変形可能要素または4つ以上の変形可能要素30が配置されてもよい。
図4bは、偏向状態にある変形可能要素40の概略斜視図を示す。例えば、層58a〜58cは、軸方向の進行(y方向)に沿って複数の湾曲を生じるように収縮される。
換言すれば、図3に示す3つのバーは、それらの延伸方向に互いに隣接して配置されてもよい。これは、対応する信号上の第1のバーおよび第3のバー(30aおよび30c)が第1の方向の湾曲を含み、第2のバー(30b)が他の方向の湾曲を含むように行われ得る。このようにして、図4aに示すように、信号のない伸張された形態に基づいて、図4bに示すように、対応する信号によってS字状に変形されたアクチュエータを得ることができる。信号を有するまたは有しない構成は、相互に交換可能である。したがって、変形可能要素30は、例えば、印加される信号に基づいて、変形可能要素30および/または40の湾曲の減少または直線的な延伸をもたらす所定の変更またはバイアスを含むことができる。例えば、個々のバー30a〜30cの曲率は、符号は別として同一であり、第1のバー30aおよび第3のバー30cのそれぞれの長さは、変形可能要素の全長の約4分の1に対応すると仮定することができ、中央バー30bの長さは、変形可能要素40の長さの約半分に対応する。
図4cは、サブキャビティ38が変形可能要素の間に配置されるように、互いに隣接して配置された2つの側部にクランプ締めされた2つの変形可能要素40aおよび40bの配置の概略上面図を示す。例えば、実線は、変形可能要素40aおよび40bの作動状態を示し、一方で、点線は、非作動状態を示し、製造に起因して非作動状態は任意の形状をとることができるため、この変形可能要素のこの記述は、非作動状態が、相互に交換可能であってもよい。
変形可能要素40aおよび40bは、非作動状態において湾曲を含むように形成されてもよい。さらに、変形可能要素40aおよび40bは、作動中に反転する湾曲を行う3つのセグメント30a〜1〜30c〜1および30a〜2〜30c〜2からそれぞれ形成することができる。各セグメント、例えば中央セグメント30b〜aまたは30b〜2はまた、2つ以上のセグメントから形成されてもよい。図4aおよび図4bの図と比較して、セグメント30a〜1,30b〜1および30c〜1は、互いに対しておよび他のすべてのセグメントに対して異なる長さを含むことができる。長さは、作動時に得られる所望の形状に適合可能であってもよい。S字型アクチュエータは、大きな平面充填率を達成することを可能にするだけでなく、2つの側部にクランプ締めすることもできるという大きな利点を有する。2つの側部でクランプ締めすることは、決して完全に避けることができない層の張力勾配に起因するバーの事前偏向を著しく減少させる。これにより、基板の下部および上部キャップまでの距離を非常に小さく保つことができ、に流れ/圧力損失が不均衡なほどに減少し、したがって、スピーカ、超音波トランスデューサ、マイクロフォンおよびポンプの効率が著しく向上するだけでなく、最初の段階で正しい動作が可能になり得る。さらなる実施形態によれば、変形可能要素40のうちの1つだけが、例えば、MEMSトランスデューサ10内に配置されてもよい。
図5は、一実施形態による、電気機械トランスデューサ18a〜cがMEMSトランスデューサ20と比較して変化した構成を含むMEMSトランスデューサ50の概略上面図を示す。電気機械トランスデューサ18a〜cは各々、それぞれ第1の変形可能要素22aおよび第2の変形可能要素および22b、22cおよび22d、ならびに22eおよび22fを含む。変形可能要素は、互いに対向して配置される。バー要素の偏向可能端部は、互いに向き合って配置される。変形可能要素22a〜22fが基板に接続される領域は、互いから外方に面して配置される。
電気機械トランスデューサ18a〜cは各々、それぞれ第1の変形可能要素22aおよび第2の変形可能要素および22b、22cおよび22d、ならびに22eおよび22fに接続されているプレート要素62a〜cを備える。それぞれのプレート要素62a〜62cは、それぞれの変形可能要素22a〜fの偏向可能端部に接続することができる。
変形可能要素22a〜fは、変形可能要素30もしくは40として全体的にもしくは部分的に具体化されてもよく、または異なる構成を備えてもよい。変形可能要素22aおよび22b、22cおよび22dならびに22eおよび22fの異なる網掛けはそれぞれ、それぞれの変形可能要素の変形が互いに異なることを示している。電気機械トランスデューサ18a〜18cの変形可能要素は、変形可能要素22a〜22fのそれぞれの設計とは独立して、同じ空間方向に沿って偏向可能端部の偏向を行うように構成することができる。
例えば、図5に示す偏向していない状態から、駆動によって、変形可能要素22aおよび22bの偏向可能端部の偏向が正のx方向に沿って行われるようにすることができる。さらに、変形可能要素22cおよび22dを駆動すると、それぞれの偏向可能端部の偏向が負のx方向に沿って行われるようにすることができる。これにより、駆動中にプレート要素62aおよび62bが互いに向かって運動することが可能になり、それによって、プレート要素の運動に基づいてサブキャビティ42aのサイズが縮小される。代替的にまたは付加的に、キャビティ42a内の負圧が、プレート要素62aおよび62bを互いに向かって運動させ、それによって、変形可能要素22a〜dの変形が得られる。代替的または付加的に、1つまたはいくつかの変形可能要素22a〜dが電気的に受動的であるように具体化されることも考えられる。例えば、プレート要素62aと62bの電位に基づいて、プレート要素62aと62bとの間に引力または反発力が得られ、プレート要素62aおよび62bの運動、ひいては変形可能要素22a〜dの変形ももたらされるように、1つまたは複数のプレート要素62a〜62cに電位を印加することができる。代替的にまたは付加的に、変形可能要素22c〜fならびに/またはプレート要素62bおよび62cは、変形可能要素22c〜fの変形およびサブキャビティ38aの容積の変化を得るために、同時に、または時間的にオフセットして駆動することができる。
言い換えれば、図5は、4つの屈曲バー22a〜22dおよび22c〜2fがそれぞれ、各チャンバ(キャビティ42aおよび38a)の狭窄および/または膨張に使用される、図2a〜図2cに示された構成の変形形態を示している。これは、2つの屈曲バー(変形可能要素)にそれぞれ基づいて図2a〜2cに関連して説明される。図5は非作動状態を示す。この場合、作動状態と非作動状態とは相互に交換可能である。したがって、駆動可能な各変形可能要素は、信号が印加されていないときには一般に変形され、信号に応じて変形を変化させることができ、その一部は特別な事例においては伸張(非偏向)状態を達成している。
変形可能要素22aおよび22b、ならびに22cおよび22dのような、それぞれ垂直に(例えば、y方向に沿って)対向する屈曲バーを各々、要素64aおよび64bを含む屈曲可能な隆起部を介して互いに接続することができる。このようにして得られた隆起部の中央領域には、比較的剛性の延伸部である要素66が配置され得る。それによって、剛性または可能な限り剛性であるように具体化されたプレート要素62bが、同じに配置されてもよい。対応する信号が印加されると、プレート要素62a〜62cは、サブキャビティの容積を減少および/または増大させるために、平行に互いに向かって、または互いから外方に運動することができる。プレート要素の平行運動は、限定的な場合にサブキャビティ42aの容積がこの限定的な事例においてゼロになることを可能にすることができ、これは、プレート要素62aおよび62bが互いに接触することを意味する。図2a〜cに関連して説明した構成と比較して、このような構成は、MEMSトランスデューサ20の体積流よりも著しく大きい流体の体積流を提供することができる。サブキャビティ42aの容積が減少すると、サブキャビティ38bの容積はそれに応じて、または少なくともこれに基づいて増大することができる。流体は、MEMSトランスデューサ20に関連して説明したように、開口26a、26bおよび/または26cを介して供給されてもよい。要素64aおよび64bは、ばね要素として参照される場合もある。
変形可能要素(屈曲バー)22aおよび22bは、信号が印加されたときに、それらが右(正のx方向)に向かって湾曲するように設計されてもよい。変形可能要素22aおよび22bは、信号が印加されたときに、それらが左((複数可)のx方向)に向かって湾曲するように設計されてもよい。両方のタイプのバー(変形可能要素の網掛け)は、図3または図4に関連して第1の信号を受けて湾曲し、第2の信号を受けて反対方向に湾曲するように構成することができる。この場合、バーの屈曲に起因する機械的復元力とは無関係に、チャンバ(サブキャビティ)を元のサイズに狭窄および伸長することができる。例えば、第1の信号および第2の信号は、正および負の電圧であってもよい。例えば、図3を考慮すると、層56および58はまた各々活性層であってもよく、または、層58から外方に面する側において層56にさらなる活性層が配置されてもよく、一方または他方の方向の偏向を得るために、2つの活性層は互いから別個に対処され得る。
2つの対向する変形可能要素、例えば、変形可能要素22cおよび22dと、これらに接続されたプレート要素62bとの間の容積は、屈曲バーの運動または変形に応じて変化し得る。例えば、プレート要素62は、剛性を有するように具体化されてもよい。改善された圧力補償を可能にするために、プレート要素62bをそれぞれ変形可能要素22cおよび22dに接続する変形可能要素22cおよび/もしくは22dならびに/または接続要素64および66は、局所的な流路を提供するために局所的に薄くする、すなわち、厚さを低減することができる。例えば、これは、追加の構造化またはエッチングによって行われ得る。接続要素64a、64b、および66は、T字配列で配置されてもよい。接続要素66は、要素64aおよび64bと比較して高い剛性を含むことができる。変形可能要素22cおよび22dの変形の間、要素64aおよび64bは、それぞれのプレート要素の直線運動を可能にするために、有利に変形され得る。
続いて、プレート要素62aおよび62bがそれぞれ、対向する変形可能要素22aおよび22bならびに22cおよび22dに接続されている図6a〜eに基づいて、有利な実施形態を説明する。
以下の説明は、各事例において同じ方法で設計された変形可能要素とプレート要素との接続を参照するが、異なる電気機械トランスデューサ、および/または、プレート要素に対する個々の変形可能要素の接続は、互いから別様に具体化されてもよい。以下に記載する詳細は、完全には有利ではないさらなる変形形態を説明し、それら自体で、または互いに組み合わせて、または他の有利な実施形態において実施されてもよい。
図6aは、それぞれ板要素62aと62bとの間、変形可能要素22aと22bとの間、および22cと22dとの間に直線状に構成されたばね要素68が配置されている構成の概略上面図を示す。ばね要素68は、変形可能要素22a〜dの材料もしくはプレート要素62aもしくは62bの材料から形成されてもよく、および/またはこれらの要素の1つもしくは複数と一体的に形成されてもよい。例えば、ばね要素68は、プレート要素62aまたは62bに対して直角を含むことができる。
図6bは、ばね要素68’が90°未満、例えば30°または40°の角度αで、変形可能要素の可撓性端部から配置されている代替の構成を示す。これは、図6aの構成と比較して、プレート要素62aにおける接触点の距離が増大していることを可能にし、これは、運動中のプレート要素62aの屈曲の低減をもたらし得る。
図6cは、ばね要素62aが90°未満の角度αで配置される構成を示す。例えば、これは、図6aに示される構成と比較した場合に、ばね要素68の復元力の低下をもたらし得る。
図6dは、電気機械トランスデューサ18aがそれに隣接して配置されている基板14の領域にばね要素72aまたは72bが配置されるように、または、それぞれの変形可能要素が基板14に接続されるように、図6aの構成が偏向されている構成を示す。
例えば、ばね要素72aおよび/または72bは、それぞれ基板14の陥凹部(キャビティ)74aおよび74bによって少なくとも部分的に決定されてもよい。例えば、これは、陥凹部74a、74bに起因して基板14の剛性が局所的に低減可能であり、それによって、それぞればね要素72a、72bが形成されることを意味する。陥凹部74aおよび74bは、それらが基板14内の隣接する変形要素22aおよび22cならびに22bおよび22dをそれぞれ越え延伸するように示されているが、陥凹部74aまたは74bは単に、変形可能要素に隣接して、またはいくつかの変形可能な要素に隣接して配置されてもよい。代替的に、基板14はまた、いくつかの陥凹部またはばね要素を備えていてもよい。
言い換えれば、図6dは、変形可能要素(バー)が固定された屈曲ばね(ばね要素72aおよび72b)の形態のさらなる構造が引張応力のさらなる低減をもたらすことができる構成を示す。例えば、図6eの構成に示され、陥凹部76a〜dに関連して説明されているように、このような屈曲ばね要素を剛性プレートに一体化することもできる。バーの偏向の場合、これらの要素はS字状に変形され、剛性プレートに対する引張応力を減少させることができる。
図6eは、図6dに関連して説明した構成と比較して、プレート要素62aおよび62bが、それぞれプレート要素62aおよび62bがばね要素68を介して変形可能要素に接続されている領域に隣接する陥凹部76a〜dを備える、電気機械トランスデューサ18aおよび18bの構成を示す。陥凹部76a〜dと、変形可能要素から外方に面するそれぞれプレート要素62aおよび62bの側部との間の距離は、この領域におけるそれぞれプレート要素62aおよび62bの剛性に影響を及ぼし得る。陥凹部76a〜dは、変形可能要素22a〜dに作用する復元力を減少させることができる。
言い換えれば、図6a〜図6eは、可動要素または電気機械トランスデューサの設計の変形形態を示す。これらは、例としてまたは詳細には、図5に示す要素64aまたは64bが補強材66とばね要素68に向かって合体している点で、図5に関連して説明した実施形態とは異なっている。図6aによる構成は、図面の平面(x/y平面)に垂直な軸の周りのプレート要素62aまたは62bの寄生傾斜と比較してより高い剛性を含むことができる。このことは、図6bおよび図6cによる構成にも同様に当てはまり得る。さらに、3つの構成すべてが、図5の構成と比較して、屈曲バーのより大きい偏向を可能にする。この場合、要素64aおよび/または64b(屈曲可能な隆起部)は、バーの偏向を受けて引張応力を受けることができ、この結果として、偏向が増大すると、変形可能要素のバー偏向に対する機械的抵抗が増大し得る。図6a〜図6cによる変形形態では、それぞれの接続するばね要素68が、これらの要素の対応する設計により、著しく低い機械的抵抗を表し得る屈曲によって反応し得るため、2つの変形可能要素の機械的接続は、非常により滑らかな(剛性の低い)様式で具体化することができる。
図5に関連して説明した接続要素/ばね68および/または要素/ばね64a〜bは、湾曲形状または蛇行形状を有してもよい。これにより、好ましい方向への柔軟性を向上させることが可能になる。図6dおよび図6eに関連して説明されるような構成は、引張応力の減少を可能にし、それによって、変形可能要素の効果的な硬化をもたらす。図6a〜図6eにおいて説明される構成は、入力開口26および出力開口26を無視する。これらの開口が配置されている場合、開口が配置されている領域において、基板内の陥凹部および/またはばね要素を省略することができる。代替的にまたは付加的に、少なくとも1つの陥凹部によって得られるばね要素72a、72bおよび/またはプレート要素62aもしくは62bのうちの1つ、複数または各々は、2つまたはいくつかの互いに分離され独立したばね要素に基づいて実現されてもよい。
続いて説明される図7a〜図7cは、例示的に、変形可能要素およびプレート要素の可能な構成を説明する。
図7aは、プレート要素62に接続された変形可能要素40を示す。例えば、プレート要素62は、変形可能要素40に直に配置されてもよい。
図7bは、変形可能要素40aが基板14の間に固定的にクランプ締めされ、横方向24に沿って変形されるように構成された構成を示す。変形可能要素40とプレート要素62との間に、端部が接続され得る2つのさらなる変形可能要素40bおよび40cが配置されている。これらの接続に基づいて、変形可能要素40bおよび40cは、それぞれの変形可能要素40bまたは40cの隆起部が他の変形可能要素から外方を指すように、互いに向かって整列されてもよい。例えば、変形可能要素40a〜40cはともに駆動されてもよく、または、流体の体積流にともに反応してもよく、例えば、変形可能要素40a〜40cの相互駆動は、アクチュエータが動く大きさの増大、すなわち、プレート要素62が偏向される経路のサイズの増大をもたらす。これは、少なくとも1つのさらなる変形可能要素が、変形可能要素とプレート要素との間に配置され得、さらなる変形可能要素は、変形可能要素とともに相互駆動を受けて変形要素のアクチュエータ運動を増大させるように構成される。
図7cは、変形可能要素40a〜cが、中央領域に陥凹部70aまたは70bを備え、これによって、変形可能要素40bと40cとの間の容積82の、さらなるサブキャビティ、例えば、サブキャビティ38aとの流体結合が可能になる、電気機械トランスデューサ18の構成を示している。変形可能要素40a、40bおよび/または40cは、各々、陥凹部78aおよび78bを提供するために、2つの部分で具体化されてもよい。代替的にまたは付加的に、陥凹部78aおよび78bは、それぞれ、変形可能要素40a、40bおよび40cのさらなる材料によって厚さ方向(z方向)に沿って囲まれた陥凹部として具体化されてもよい。
換言すれば、図7aは、図4による作動されているS字型屈曲バーを有する構成を示し、屈曲バーへの接続部が剛性プレートの中心に配置されている。偏向を増大するために、屈曲アクチュエータが連続的に複数回(直列に)配置され得る。図7bおよび図7cは、直列に接続された3つのS字アクチュエータの配置を概略的に示す。さらなる実施形態によれば、2つのS字アクチュエータ(変形可能要素40)または4つ以上のアクチュエータが直列に接続されてもよい。図7a〜図7cの変形可能要素の網掛けは、例えば、図4で選択された網掛けに一致するように示されている。異なる網掛けは、それぞれの部分の異なる湾曲方向を示すことができる。図7cは、S字型アクチュエータの中央に開口(陥凹部78aおよび78b)を備え、間隙(キャビティ82)の改善された換気を可能にする構成を示す。
図7dは、第1の変形可能要素40aと第2の変形可能要素40bとがy方向に沿って平行に配置されている電気機械トランスデューサの構成を示す。これにより、プレート要素62が偏向される力の効果を増大させることができる。変形可能要素の端部は、互いに接続されていてもよく、または、基板にともに配置されていてもよい。代替的に、2つまたはいくつかの変形可能要素40aおよび40bは、異なる方向、例えばz方向(厚さ方向)に沿って平行に配置されてもよい。代替的にまたは付加的に、変形可能要素の直列接続および並列接続が組み合わされてもよい。
大きな偏向または大きすぎる偏向を受けて、可動要素は別の可動要素または固定要素に衝突する可能性がある。これは固着をもたらす可能性がある。有利には、可動要素または固定要素にスペーサ要素(ボラード)を設けることができ、接触面積を著しく減少させることができ、したがって固着を低減するか、または回避することができる。いわゆるボラードの代わりに、ばね要素として構成された小さな構造を配置することができる。固着を回避することに加えて、2つの要素が当たる衝動を逆転することができ、これによってエネルギー損失を低減もしくは回避することができ、またはアクチュエータの動的性能を改善することができる。
図8aは、変形可能要素が基板、ならびに/または、基板に接続されている中間要素36および/もしくはアンカー要素84に交互に接続されたMEMSトランスデューサ80の概略斜視図を示す。例えば、変形可能要素22aは、中間層36の領域46および48の端部で基板に固定して接続され、変形可能要素40に関連して例示的に説明したように、S字状の運動を実行するように構成される。隣接して配置された変形可能要素22bは、アンカー要素84に接続されている。アンカー要素84は、変形可能要素22bの中央領域に配置され、スペーサ層34aまたは層32aにおいて変形可能要素に接続することができる。これは、基板がアンカー要素を含むことができることを意味する。
変形可能要素22aまたは22bの可動端に隣接して配置された中間層36の側壁は、それぞれ変形可能要素22aおよび22bの運動形状に基づいて成形されてもよい。
図8bは、スペーサ層34bおよび層32bが例示的に示されていないMEMSトランスデューサ80の概略上面図を示す。MEMS80は、開口26の領域にバー要素44を含む。領域48はばね要素72a〜72cを含むことができる。領域48は、例示的に、中間層36の上面図として示されている。
アンカー要素84は、変形可能要素22bおよび/または基板の層と一体的に成形されてもよい。しかし、図8に示すように、アンカー要素84は、層32aおよび32bを互いに接続するために、変形可能要素22bを越えてz方向に沿って延伸することができる。これにより、層32aおよび32bの振動感受性を低減することができる。代替的に、アンカー要素84はまた、機械的変形可能要素22bとは別の部品および/または別の材料から形成されてもよい。例えば、これに隣接して配置された変形可能要素22aは、領域48または46内の2つの側部上で、例えば、形状嵌合または圧力嵌めの様式で基板に固定的に接続される。
例えば、バー要素44の間の距離85は、1μm未満、0.1μm未満または0.05μm未満であってもよい。
アンカー要素84は、変形可能要素22bの中央領域に配置されてもよい。例えば、中央領域は、変形可能要素の幾何学的中心を含むことができる。例えば、中央領域は、変形可能要素40のバーセグメント30bであってもよい。
図8bは、偏向状態にあるMEMSトランスデューサ80の概略斜視図を示す。変形可能要素22bの外側領域は、変形可能要素22aに向かう方向に運動していてもよく、一方で、変形可能要素22aの外端の位置は、本質的に変化しないままであってもよい。変形可能要素22aの中央領域は、変形可能要素22bの方向に運動していてもよく、一方で、変形可能要素22bの中央領域の位置は、アンカー要素84に基づいて本質的に変化しないままであってもよい。
図8dは、図8cに示すような、偏向状態にあるMEMSトランスデューサ80の概略上面図を示す。図8bの図と比較すると、キャビティ42の容積は減少しており、一方で、サブキャビティ38の容積は増大している。ばね要素72aは、変形可能要素22aに入力される力の減少をもたらし得るが、ばね要素は配置されていなくてもよい。基板の開口26に隣接する第1のサブキャビティ42は、第1の電気機械トランスデューサのバー構造と第2の電気機械トランスデューサのバー構造との間、またはアクチュエータ22aと22bとの間に配置することができる。
換言すれば、図8aおよび図8bは、MEMSトランスデューサのチップ表面が非常に効率的に使用可能である変形形態の概略3D図または変形の上面図を示す。図2a〜図2cに関連して説明した基部構成と同様に、屈曲アクチュエータを専らまたは主に使用することができる、すなわち、追加の剛性プレート要素を省略することができる。図8aに示すように、チャンバ42は、2つの非偏向S字型アクチュエータ22aおよび22bによって制限される。左側(マイナスx方向)を制限するS字アクチュエータ22aは、その両端が図中の上側または下側(すなわち、y方向の正負)にある状態で、残りのデバイスに接続されていてもよい。右側を制限するSアクチュエータ22bは、ポスト(アンカー要素)84に固定されてもよい。このS字型アクチュエータの両端は自由に動くことができる。ポスト84は、上部キャップ32aおよび下部キャップ32bにそれぞれ固定的に接続されてもよい。信号が印加されると、両方のアクチュエータはS字状に屈曲する。陥凹部の影響を受ける図8aに示すばね要素72aは、引張応力を解放する役割を果たし得る。ばね要素は、図8bの紙面内で要素48の横運動方向24に沿って配置され、それによって、ばね要素72aが横運動方向24に沿って固定的にクランプ締めされる。図8に例示的に示すように、ばね要素72aは、スペーサ層34aおよび34bに基づくばね要素に対する固定接続を含み、クランプ締めすることもできる。代替的に、層34aおよび34bは、ばね要素72aがスペーサ層34aおよび/または34bと接触しないように構成することができ、したがってより高い可撓性を含むことができる。
図8cおよび図8dに示すように、S字型アクチュエータ22aの膨らんだ湾曲は、S字型アクチュエータ22aの中心がS字型アクチュエータ22bの中心にほぼ接するようにポスト84に向かって運動させることができる。同時に、S字型アクチュエータ22bの自由端は、S字型アクチュエータ22aの固定クランプに向かって運動しており、これにより、これらはまたほぼ接触する。2つのS字型アクチュエータの作動形状は、アクチュエータ42の十分に偏向すると、チャンバ42が実質的にまたはほぼ完全に閉じることができるように、ほぼ同じまたは同一であってもよい。したがって、チャンバ42の元の容積は、体積流の生成のため、またはその検出のために全体的に使用され得る。チャンバ42が容積を失うのと同じ程度に、チャンバ38は容積を得ることができ、それによって、流れに影響を及ぼす要素を十分に寸法決めすると、動力学的効果によって生じるチャンバ38と42との間の圧力差が大きすぎてアクチュエータの動きに影響するということを回避することができる。要素46および48は、アクチュエータ22bの自由端までの距離が、端部の偏向とは無関係に、小さくおよび/またはほぼ一定のままであり得るように具体化され得る。アクチュエータ22aの歪みを緩和するために、上述したように、屈曲ばね要素72aを配置することができる。
上述の実施形態は、新たな流路に配置された別のアクチュエータを含むことができる。例えば、さらなるアクチュエータは、例えば電気機械トランスデューサ18によって可能であり得るように、音を直接生成するようには機能しなくてもよく、流れ特性を可変に設定するために使用されてもよい。例えば、これを用いて、共振曲線の減衰およびひいては幅を、デバイス(MEMSトランスデューサ)の動作中の要件に応じて、個々にかつ柔軟に各チャンバに対して適合させることができる。
最初に述べた見積もりでは、従来技術による膜スピーカの有効面積当たりの体積変化(ΔV/A)は3.75μmと推定された。以下に説明するように、これは、活性領域の推定値ΔV/Aを得るために、マイクロ技術に適した寸法に基づいて、図8a〜図8cに示すMEMSトランスデューサについて再度推定することができる。このために、アクチュエータの幅(図8aのx方向)は5μmの値であると仮定することができる。ポスト84の幅はまた、5μmの値を含むことができる。チャンバ38の側壁を形成するアクチュエータの距離については(例えば、図8aおよび図8bの非偏向状態において)、10μmが想定され得る。チャンバ42の側壁を形成するアクチュエータの距離については(図8aおよび図8bの非偏向状態において)、100μmが想定され得る。活性領域のいくらの割合が体積流の生成に使用されるかを示すことができる平面ファイリングファクタFは、F=100/(5+100+5+10)=83%となる。
ΔV/Aは、ΔV/A=AxFh/A=Fhとして表すことができる。
上式において、hはチャンバの高さ(例えば、図8aのz方向)を示すことができる。簡単に言えば、アクチュエータの高さのみをこのために想定することができる。スペーサ層34aおよび34bの厚さは無視してもよい。膜スピーカの上述の3.75μmと比較すると、3.75μm/F(すなわち、4.5μm)だけのアクチュエータの高さが、活性領域当たりの同じ体積流を提供するのにすでに十分であることが明らかになる。微小機械技術で容易に製造可能な約50μmのアクチュエータ厚さhの場合、その値はすでに、MEMS膜スピーカの10倍を超える高さであり得る。
剛性プレートなしで実施されるMEMSトランスデューサ80による実施形態では、機械的要素および機械的接続の数が著しく減少することに起因して、プレート要素、および、可能性として、変形可能要素とプレート要素との間のさらなる変形可能要素を備える変形形態よりも実質的に容易に寄生振動を処理または低減することができる。図7bおよび図7cに示されるような直列のアクチュエータの接続は、より大きなストロークまたはより大きな力を達成するのに役立ち得る。
図9は、スタック90の概略斜視図を示す。スタック90は、スタック90に対するさらなるMEMSトランスデューサ80bおよび80cに接続され、スタック90内に配置されたMEMSトランスデューサ80aを含む。MEMSトランスデューサ80aならびにさらなるMEMSトランスデューサ80bおよび/または80cの電気機械トランスデューサは、ともに駆動することができる。これは、チップ表面が同じままである場合、生成または検出され得る体積流が増大することを意味する。スタック90は、MEMSトランスデューサ80a、80bおよび80cを含むように記載されているが、代替的または付加的に、他のMEMSトランスデューサ10,20および/または50が配置されてもよい。スタック90は、3つのMEMSトランスデューサを含むように記載されているが、スタック90は、2つ、4つ、5つ、6つまたはそれ以上のMEMSトランスデューサのような別の数のMEMSトランスデューサを含むこともできる。スタック90内に配置されたMEMSトランスデューサまたは隣接するMEMSトランスデューサのキャビティまたはサブキャビティは、互いに接続されてもよい。例えば、キャビティまたはサブキャビティは、個々のMEMSトランスデューサの間の層の開口を介して接続することができる。
換言すれば、シリコン技術に基づいて、ディスクまたはチップ(MEMSトランスデューサ)は、例えば、この事例においては従来の膜スピーカとは対照的に、体積流のさらなる増大をもたらすことができるように、接合方法によって積層することができる。積層する前に個々のディスクまたはチップを薄くするための技術を使用する場合、スタックの高さを低く保つことができる。例えば、そのような技術は、エッチングプロセスおよび/または研削プロセスを含むことができる。
互いに隣接して配置された層32aおよび/または32bの層厚の減少は、これらの層の一方またはさらには両方が除去される程度まで実施することができる。代替的にまたは付加的に、特定の下部キャップまたは上部キャップ(それぞれ層32aおよび32b)が省略されるように、スタック高さを減少させるための製造プロセスが実行されてもよい。例えば、スタック90は、MEMSトランスデューサ80bおよび/または80cが層32bなしで具体化されるように形成することができる。
図10は、変形可能要素22a〜dが基板14の側部の間に配置されているMEMSトランスデューサ100の断面の概略透視上面図を示す。変形可能要素22aおよび22bは、アンカー要素84aを介して間接的に接続される。これは、変形可能要素22aおよび22bmaxの端部が、可能性としてアンカー要素84aによって基板に固定的に接続され、したがって(固定的に)クランプ締めされることを意味する。これは、変形可能要素22a〜dまたはさらなる実施形態による他の変形可能要素がバー構造を含み得ることを意味する。バー構造は、第1の端部および第2の端部に固定的にクランプ締めされてもよい。変形可能要素22a〜22dまたはバー構造の端部のクランプ締めは、変形可能要素の事前偏向を(例えば、層張力勾配に起因して)低減または著しく低減することを可能にする。このように、キャップとアクチュエータとの間のスリットを、より小さくすることができ、これは、いくつかの用途の効率において大きな利点を有する。
例えば、変形可能要素22a〜22dは、それぞれ2つの側部に固定的にクランプ締めされる。固定クランプ締めは、それぞれ基板14ならびに/またはアンカー要素84aおよび84bにおける変形可能要素22aおよび/または22bの配置または生成によって得ることができる。点線88は変形可能要素22a〜dの非偏向状態を示し、一方で、実線92は偏向形状を示す。基板14の形状または要素94aおよび94bは、y方向に沿った変形可能要素22a〜dの位置決めを可能にすることができる。対になった電気機械トランスデューサ18a〜cの位置は、要素94aおよび94bに基づいて変位することができる。隣接しておよび/または対になって構成された電気機械トランスデューサ18aおよび18bは、互いに反対に変形可能であり得る。
変形可能要素22a、および可能性として対向する変形可能要素22cは、変形に基づいてサブキャビティ部分96aのサイズに影響を及ぼす、すなわち、増大または低減するように、または、体積流に基づいてサブキャビティ部分96aの変形を実行するように構成することができる。変形可能要素22b、および、可能性として反対に配置された変形可能要素22dは、サブキャビティ部分96bに影響を及ぼすように構成されてもよい。サブキャビティ部分96aおよび96bは、例えばアンカー要素84aおよび84bの領域において、互いに接続されてもよい。変形可能要素22a〜22dの変形は、変形可能要素22aおよび22c、ならびに22b、22dがそれぞれ、互いに異なる周波数で変形される、すなわち、サブキャビティ部分96a内の容積変化が、サブキャビティ部96bの容積が変更される周波数とは異なる周波数で生じるように、得ることができる。例えば、MEMSトランスデューサがスピーカとして使用される場合、周波数が異なる容積変化に基づいてサブキャビティ部分において異なる周波数が得られ得る。MEMSトランスデューサ100がマイクロフォンとして使用される場合、サブキャビティ部分96aおよび96bは、例えば、互いに異なる共振周波数を含むことができる。代替的に、MEMSトランスデューサ100が例えばさらなる周波数またはさらなる共振周波数を生成するように、さらなるサブキャビティ部分およびさらなる変形可能要素をy方向に沿って配置することができる。
代替的に、変形可能要素22aおよび22bまたは変形可能要素22cおよび22dはまた、互いに直接接続されてもよい。例えば、アンカー要素は、変形可能要素22a〜22dの変形に影響を及ぼすために、1つまたはいくつかの変形可能要素22a〜22dの中央領域に配置されてもよい。これは、変形可能要素22aおよび22bが互いに直接接続され得ることを意味する。代替的に、変形可能要素22aと22bとの間にばね要素または別の要素を配置することもできる。
MEMSトランスデューサ100は、第1の時間間隔内で、開口26から正のy方向に体積流12が得られ、続いて、第2の時間間隔内で、開口26から負のy方向に体積流12が得られるように具体化することができる。
換言すれば、図10は、可能性として排他的に、S字型のアクチュエータが配置される構成を示す。原則を強調するために、S字型アクチュエータは、図面において、作動されている(実線92)、および、作動されていない(点線88)ものとして図示され得る。作動状態および非作動状態はまた、それに応じてこれを設計することによって交換可能であってもよい。S字型アクチュエータ(変形可能要素22a〜d)は各々、一方の端部(上側)およびもう一方の端部(下側)にクランプ締めされてもよい。このために、アンカー要素84a〜bが使用されてもよい。アンカー要素84a〜bは、層34a、36および34bから形成されてもよく、層32aおよび/または32bと接続されてもよい。S字型アクチュエータの自由端と要素94aまたは94bとの間の距離は、この構成に基づいて省略されてもよい。これにより、周回流損失を少なくすることができる。ベース基板は、アクチュエータが当該ベース基板から製造され得るように処理することができ、ベース基板は層張力勾配を含むことができ、または、層張力勾配は、アクチュエータの製造中に導入されてもよい。これによって誘発される変形可能要素の偏向は、アンカー要素84aおよび/または84bの構成に基づいて低減または防止することができる。特に、2つの側部上で変形可能要素を懸架することによって、層32aまたは32bのうちの1つの方向における変形可能要素の偏向を低減または防止することができる。したがって、スペーサ層34aおよび/または34bは、より薄くすることができ、これはまた、流れ損失の減少を引き起こすことができる。各チャンバ(サブキャビティ部分96aまたは96b)は、2つのS字型アクチュエータによって制限されてもよい。図10の例では、2つのチャンバを直列に接続することができる。直列に接続されたチャンバの数は、音響特性、特にS字型アクチュエータまたはアクチュエータチャンバシステムの共振周波数を考慮に入れてチップ上に設けられた面積に基づいて選択することができ、1と大きな数、例えば4以上、6以上または11以上との間で変化し得る。
要素94aおよび94bは、任意選択的に配置されてもよく、すなわち、MEMSトランスデューサ100はまた、これらの要素なしで具体化されてもよい。例えば、電気機械トランスデューサおよび/または変形可能要素の特別な設計または駆動に起因して、アクチュエータの対応する部分が偏向されない場合、要素94aまたは94bによる基板14からの間隔を省略することができる。マルチS字型アクチュエータ(波型アクチュエータ)が具体化されてもよい。特に、バー(変形可能要素)の共振周波数は長さが増すにつれて減少するため、これはこの構成に基づいて低い共振周波数を得ることを可能にする。
図11aは、図10の構成と比較して、電気機械トランスデューサ18a〜bが基板14の横方向、例えばx方向に対して斜めに配置されたMEMSトランスデューサ110の断面の概略上面図を示す。MEMSトランスデューサ100と比較して同じy方向に沿って延伸することによって、電気機械トランスデューサ18a〜bはより長い軸方向の延伸を含む。これにより、より大きなサブキャビティ部分96aおよび/もしくは96bならびに/または直列に接続されたより多数のサブキャビティ部分もしくは変形可能要素を可能にすることができる。
変形可能要素の外側バーセグメント30aは、アンカー要素84を介してさらなる変形可能要素の外側バーセグメント30cに間接的に接続されてもよい。代替的に、バーセグメント30aおよび30cはまた、互いに直接接続されてもよい。
言い換えれば、図11aは、図10の議論と比較して、活性領域が45°回転され、使用可能なチップ表面が可能性としてより大きい範囲まで使用可能であるさらなる実施形態を示す。漏斗状開口26は、好ましくは、チップ端面に垂直に、すなわちy方向に沿って、これに対して正または負の方向に音を発することができるように設計することができる。
上記の変形可能要素の各々はまた、複数の相互接続された変形可能要素として形成されてもよい。
図11bは、例えばポンプとして使用可能なMEMSトランスデューサ110’の断面の概略上面図を示す。図11aのMEMSトランスデューサ110と比較して、サブキャビティ部分96aおよび96bは、2つの開口26aおよび26bを介してMEMSトランスデューサ110’の周囲領域に接続されてもよい。サブキャビティ部分96aおよび96bは、開口26aを介してMEMSトランスデューサ110’の第1の側部97aに接続され、開口26bを介してMEMSトランスデューサ110’の第2の側部97bに接続され得る。例えば、第1の側部97aと第2の側部97bとは、互いに対向して配置されていてもよい。代替的に、側部97aおよび97bはまた、互いに向かって一定の角度を含んでもよい。例えば、側部97aまたは97bの一方は、MEMSトランスデューサ110’の側面を含んでもよく、他方の側部97bまたは97aは、MEMSトランスデューサ110’の主面(例えば、上面または下面)を含んでもよい。
変形可能要素22a〜dの変形に基づいて、MEMSトランスデューサ110’を通って第1の側部97aから第2の側部97bへ、またはその逆に流体流を発生させることができる。例えば、変形可能要素22aおよび22cは、第1の時間間隔内で変形されてもよく、サブキャビティ部分96aの容積が減少されてもよい。第2の時間間隔内で、サブキャビティ部分96bの容積を減少されてもよい。容積の減少または増大の順序に基づいて、体積流12の方向が影響を受け得る。代替的に、いくつかのサブキャビティ部分が連続して配置されてもよく、または、1つのサブキャビティ部分のみが配置されてもよい。
簡単に言えば、ポンプの機能は、MEMSトランスデューサを通る流れの原理に従って、スピーカと同様に往復するのではなく、体積流12を発生させることによって得ることができる。MEMSトランスデューサの入口側と出口側とは、互いに反対側に配置されてもよいが、代替的にまた、互いに対して一定の角度を含んでもよく、または同じ位置で互いに局所的もしくは流体的に離間されてもよい。サブキャビティ部分96aおよび96bを含むキャビティは、基板内に開口26aおよび26bを含むことができる。電気機械トランスデューサ18aまたは18bの少なくとも1つは、流体に基づいて体積流12を提供するように構成されてもよい。例えば、電気機械トランスデューサ18aまたは18bの少なくとも1つは、電気機械トランスデューサの作動に基づいて第1の開口26aを通じてキャビティに向かって流体を搬送するように、または、作動に基づいて第2の開口26bを通じてキャビティから外方に、もしくはその逆に流体を搬送するように構成することができる。
ポンプ機能は、MEMSトランスデューサ110’に関連して説明されているが、本明細書に記載された他の実施形態が、例えばキャビティ、サブキャビティまたは少なくともサブキャビティ部分の開口の配置を適合させることによってポンプまたはマイクロポンプとして使用されてもよい。
変形可能要素22aおよび22eを同時に偏向させると、変形または偏向に反作用する負圧(代替的に正圧)が、それらの間に位置決めされる容積をもたらすことができる。この容積は、圧力補償がこの容積内で可能になるように、例えば層32aおよび/または32b内に開口を含むことができる。これにより、MEMSトランスデューサ110’の効率的な動作が可能になる。
図12aは、例えばMEMSポンプとして使用可能な第1の状態のMEMSトランスデューサ120の概略図を示す。例えば、MEMSトランスデューサ120は、バー構造を備え、基板14にクランプ締めされるか、または固定的にクランプ締めされる2つの変形可能要素22aおよび22bを備える。代替的に、MEMSトランスデューサ120はまた、変形可能要素を有して、または3つ以上の変形可能要素を有して具現化されてもよい。
図12bは、第2の状態のMEMSトランスデューサ120を示す。第1の状態から開始して、図12aに示すように、第2の状態は、少なくとも1つの変形可能要素22aおよび/または22bの変形に基づいて得ることができる。第2の状態から開始して、第1の状態は、1つまたは複数の変形可能要素の復元に基づいて得ることができる。例えば、第1の状態と比較して、サブキャビティ38は、第2の状態では変形可能要素22aと22bとの間で拡大される。第1の状態から第2の状態への移行の間、負圧がサブキャビティ38内に生じ得る。第2の状態から第1の状態への移行の間、負圧がサブキャビティ38内に生じ得る。
それぞれ変形可能要素22aおよび22と基板14との間には、それぞれサブキャビティ38の容積と相補的に容積を減少および増大することができるサブキャビティ42aおよび42bが配置されており、同じく、変形可能要素の変形に基づいて、サブキャビティ38に対して相補的にそれぞれ正圧および負圧が得られ得る。
バルブ構造85a〜fが、それぞれの開口26の領域に配置されてもよい。例えば、1つまたはいくつかのバルブ構造85a〜85fが基板14の材料から形成されてもよい。バルブ構造は、基板14の1つまたはいくつかの層と一体的に形成されてもよく、例えばエッチングプロセスによって生成されてもよい。
バルブ構造は、少なくとも1つの方向に沿って開口26を通る体積流12の通過を禁止する、すなわち、減少させる、または妨げるように構成することができる。例えば、バルブ構造85b、85dおよび85fは、それぞれのサブキャビティからの流体の排出を低減または妨げるように構成することができる。代替的にまたは付加的に、バルブ構造85b、85dおよび85fは、それぞれのサブキャビティへの流体の進入を低減または妨げるように構成することができる。1つまたはいくつかのバルブ構造85a〜85fは、受動的であるように、例えば1つの側部にクランプ締めされた屈曲バー構造として、または舌構造として構成されてもよい。代替的または付加的に、1つまたはいくつかのバルブ構造85a〜85fは、能動的であるように、例えば、電気機械トランスデューサまたは変形可能要素として構成されてもよい。簡単に言えば、バルブ構造85a〜fは、MEMSトランスデューサの他のアクチュエータ(電気機械トランスデューサ)のように作動させることができる。
例えば、バルブ構造85dは、サブキャビティ38内の負圧に基づいて体積流12をサブキャビティ38に流入させるように構成されてもよく、一方で、バルブ構造85cは同時に、サブキャビティ38への体積流12の流入を低減または妨げる。図12bに示すように、サブキャビティ38内に正圧が生じる場合、バルブ構造85cは、体積流12が正圧に基づいてサブキャビティ38から流出することを可能にするように構成されてもよく、一方で、弁構造85dは同時に、サブキャビティ38からの体積流12の排出を低減または妨げる。
バルブ構造85a、85b、ならびに85eおよび85fの機能はそれぞれ、サブキャビティ42aおよび42bのそれぞれに関して同じであっても同等であってもよい。バルブ構造85a〜fはチェックバルブとして参照されル場合もあり、例えば体積流12の好ましい方向の適合を可能にすることができる。
MEMSトランスデューサは、例えば、体積流が、第1の状態と第2の状態との間の遷移が行われる異なる時間間隔中に、同じ方向(位置y方向)に沿ってサブキャビティ38,42aおよび42bから流出するように記載されているが、体積流が別の方向、例えば負のy方向に沿って少なくとも1つのサブキャビティ38,42aまたは42bから流出するように、バルブ構造を配置することもできる。
MEMSトランスデューサは、バルブ構造85a〜fが各開口26に配置されるように記載されているが、代替的に、バルブ構造は、開口に配置されなくてもよく、または、いくつかの開口26にのみ配置されてもよい。
バルブ構造はチェックバルブとしての機能のために受動的であるように構成されてもよいが、バルブ構造はまた、能動的に形成されてもよく、これは、それらのバルブ構造が駆動され得、駆動に基づいてアクチュエータの意味でバルブの開状態または閉状態をもたらすことができることを意味する。特に、各々がサブキャビティに関連する2つのバルブ構造85aおよび85b、85cおよび85dまたは85eおよび85fは、圧力パルスが、例えば、MEMSトランスデューサに接続された制御手段によって流体流12中に生じるように駆動され得る。例えば、電気機械トランスデューサ18の作動は、サブキャビティ42a、42bの内部の流体中に正または負の圧力が生じ、その後にのみバルブ構造85a〜fの開放が駆動されるように行われてもよい。
言い換えれば、このような圧力パルスでは、短い圧力パルスによって低周波音波の近似再生を達成することもできる。これは、直列に連続して配置された、いくつかのチャンバによって、ほぼ連続的に行うことができる。同様に、これは、隣同士に並列に配置されたチャンバでも可能である。図12aは、各チャンバが、能動的であるように形成することができる、上側および下側のそれぞれのバルブを設けられている、非作動状態の例を示している。各バルブは個別に開閉することができる。また、部分的な開閉も考えられる。バルブバーは、可動側壁、すなわち変形可能要素と同じように設計または動作されてもよい。したがって、それらは、同じまたは同様のアクチュエータの原理に基づくことができる。この場合、バルブ屈曲バーはまた、両方向に運動可能であるように、または、(運動に必要な非常に小さなスリットに加えて)流体流を受けて(屈曲アクチュエータバルブによって加えられる対応する反力によって)開口を閉じるように構成されてもよい。この構造によって、各チャンバに対して個別に、方向または正/負の圧力に対して流体流を制御するための完全な柔軟性が与えられる。流体流の方向が明確である場合、バルブバーのストッパを使用することもできる(「チェックバルブ」)。
さらに言い換えれば、2つの外側チャンバ(サブキャビティ42aおよび42b)が圧縮されている間に、中央のチャンバ(サブキャビティ38)は、暗い色で示された2つのアクチュエータ(変形可能要素22aおよび22b)によって第1の状態において膨張されてもよい。チェックバルブ85dを介して第1のチャンバには、下方領域の流体が充填される。後者は、流体をチェックバルブ85aまたは85eを介して上方領域に押し込む。第2の状態では、中央チャンバが圧縮される。流体は上方領域に押し込まれる。外側チャンバは、下方領域からの流体を充填される。
図13は、変形可能要素22aおよび/または22bの横延伸方向98に沿って接続された第1の変形可能要素22aおよび第2の変形可能要素22bの概略図を示す。ばね要素102が、変形可能要素22aと変形可能要素22bとの間に配置される。ばね要素102は、変形可能要素22aおよび22bにおいて機械的に誘導される復元力を低減させることができる。例えば、ばね要素102は、方向98に垂直に配置された方向98’において低い剛性を含むことができ、空間内で方向98および98’に垂直に配置され得る方向98’’に沿って高い剛性を含むことができる。例えば、変形可能要素22aおよび22bならびにばね要素102は、MEMSトランスデューサ110内の変形可能要素22aとして配置されてもよい。
言い換えれば、適切なばね要素102は、アクチュエータのクランプ締め位置で2つの側部において、または、例えば、クランプ締め位置の間の領域内で中央にクランプ締めされたS字型アクチュエータ22a〜22dの引っ張り解放のために配置することができる。例えば、ばね要素102は、アクチュエータの中心に挿入され、所望の方向(98’)に特に可撓性であり、2つの方向(98および98’’)において剛性であり、すなわち、高いまたはより高い剛性を含む。ばね要素102は、変形可能要素22aおよび22bの偏向可能端部の間に配置されてもよい。ばね要素102は、横運動方向24に沿って、横運動方向24に垂直な方向よりも低い剛性を有することができる。
図14は、相互に接続されたMEMSトランスデューサ80’aおよびMEMSトランスデューサ80’bを含み、MEMSトランスデューサ80と比較して相互層32を備えるスタック140の概略図を示し、これは、MEMSトランスデューサ80の層32aまたは32bが除去されていることを意味する。
さらに、MEMSトランスデューサ80’aは、層32b内に開口26を備え、これは、MEMSトランスデューサ80と比較して、体積流12の放出方向または体積流12の貫入方向が垂直に傾斜していることを意味する。これは、MEMSトランスデューサのキャップ表面がスタックの外側を形成することができることを意味し、MEMSトランスデューサは、第2のMEMSトランスデューサに面する側部から外方に面するように配置されるキャップ表面内に開口を備えることができる。MEMSトランスデューサ80’aの体積流12は、MEMSトランスデューサ80’bの体積流に垂直または反対のキャビティに入り込むか、またはキャビティから出る。
膜要素104を、MEMSトランスデューサ80’aに配置することができる。膜要素104は、キャビティから膜要素104を通る体積流12の流出、または、体積流12のキャビティ16への流入が、少なくとも部分的に防止されるように配置され得る。キャビティは、MEMSトランスデューサ80’aの外側に配置され、MEMSトランスデューサ80’aと膜要素104との間に配置される領域まで延伸することができる。膜要素104の偏向は、体積流12に基づいて引き起こされ得る。例えば、膜要素104は、MEMSトランスデューサ80’aにあるフレーム構造106によって配置することができる。フレーム構造106は、MEMSトランスデューサ80’aのある面、例えば、層32bの主面に配置されてもよい。
代替的に、90°とは異なる角度による傾きを具現化してもよい。MEMSトランスデューサ80’bは、体積流12がスタック140の2つの側部にあるキャビティに流入するかまたはキャビティから出ることができるように、層32bにおけるまたは層32b内の開口を備えることができ、側部は互いに対向して配置される。
代替的にまたは付加的に、スタック140は、さらなるまたは異なるMEMSトランスデューサ、たとえばMEMSトランスデューサ20または80を備えてもよい。例えば、MEMSトランスデューサ20が、MEMSトランスデューサ80’aと80’bとの間に配置されてもよい。これにより、MEMSトランスデューサ80’aの対応する方向に垂直な方向に沿った、キャビティの内外への体積流12の流入または流出が可能になる。
換言すると、音出口開口26はまた、チップ側面ではなく、下部キャップ32aおよび/または上部キャップ32b内に取り付けられてもよい。図14は、対応する簡略図を示す。上部キャップ32b内の開口26を認識することができる。同様の開口が下部キャップ32aに配置され得るが、斜視図に基づいて認識されない場合がある。層32はまた、開口を備えることができ、これは、MEMSトランスデューサ80’aおよび80’bのキャビティ、サブキャビティおよび/またはサブキャビティ部分が互いに接続され得ることを意味する。互いの上に(z方向に沿って)垂直に延在するチャンバは、層32内の開口を介して互いに接続することができる。
減衰を適合するように、特に粒子からの保護として構成することができる1つまたは複数のバー要素(グリッドリッジ)44を含むグリッドもまた、図14に記載の変形形態において容易に実現することができる。例えば、上部キャップ32bおよび下部キャップ32aの開口26は、ウェット化学エッチングまたはドライ化学エッチングプロセスによって構成することができる。エッチングの前に、開口のエッチングと比較して適切に高い選択性を含む、付加的に施与される薄層内に、所望のグリッドを構造化することができる。開口26をエッチングするために、グリッドリッジ44のアンダーエッチングが行われ得るように、ここで、適切に高い等方性または側方アンダーエッチングを有するエッチング方法を選択することができる。例えば、グリッドはシリコン酸化物層または窒化物層内に製造することができ、キャップは深掘り反応性イオンエッチング(DRIE)によってその後構造化することができるシリコンから製造することができる。このプロセスは、マイクロメートルの範囲のアンダーエッチが達成可能となるように適合させることができる。代替的に、例えば、水酸化テトラメチルアンモニウム(TMAH)および/または水酸化カリウム(KOH)または硝酸(HNA)によるウェット化学エッチングを行うことができる。
したがって、下部キャップ32aおよび上部キャップ32bの開口を漏斗状に設計すると、音出口領域はチップ面積のより大きい割合を含むことができ、可能性として、MEMSトランスデューサ80のような、側面に出口を備えるMEMSトランスデューサと比較して、より大きく設計することができる。音響特性および減衰に関して、この選択肢はより広い設計範囲を提供する。キャップ32aおよび32b内音出口開口と、キャップ表面32aと32bとの間の側面にある音出口開口の組み合わせが、さらなる実施形態の特徴である。高度に一体化されたシステムの好ましい変形形態は、音を上方に放出するためにキャップ32b内に開口を取り付けること、および、デバイスを単純に、例えばプリント回路基板状に施与することを可能にするために、圧力補償開口を取り付けることを含むことができる。
一般に、音入口開口および/または音響出口開口26は、音響特性および/または減衰特性が選択的に適合され得るように設計され得る。原理的には、下部層32aおよび/または上部層32bもまた振動することができる。これらの要素の振動は、それぞれ介在する層34aおよび34bならびに36の適切な追加の接続要素によって、例えばアンカー要素84によって、抑制または低減することができる。抑制または低減は、聴覚音から離れた周波数領域で振動を変位させることを含むことができる。代替的にまたは付加的に、層32aおよび/または32bの振動は、音響放出を最適化するために選択的に実施されてもよく、層内の選択的な接続も用いられてもよく、さらに、層32aおよび32bの剛性または音響特性が、対応する構造化(連続的な開口または止まり穴)によって適合されてもよい。
さらに、上部キャップ32b上に膜を施与することが可能であり、これはその後、チャンバの体積流12による振動に励起される。これは、点線104によって概略的に示されている。単純な事例において、上部キャップ32b上にスペーサ106をフレームの形態で配置することができ、ここにおいて、膜104が配置または伸張される。このような膜104の製造は、既知の微小機械プロセスを用いて行うことができる。代替的に、膜104はまた、キャビティもしくはサブキャビティの内部に配置されてもよく、および/または、開口26の1つまたは一部のみを覆ってもよい。
MEMSトランスデューサ(例えば、MEMSスピーカデバイス)の上述の実施形態のいくつかについては、例えば、一部の、いくつかのまたは他のチャンバから独立して、サブキャビティまたはサブキャビティ部分内の部分体積流を生成することができるチャンバがあることが適用され得る。チャンバは、横方向および/または縦方向(横方向、例えば、図10および11参照)(垂直方向、例えば図14参照)に接続されたサブチャンバからなるように実現されてもよく、一方で、実施形態は、それらの組み合わせをも示している。そのような接続されたサブチャンバ(例えば、サブキャビティ部分94aおよび94b)は、他のチャンバから独立しているかまたはそれに依存する部分体積流を生成するために使用されてもよい。チャンバ(サブキャビティ)が互いに独立して体積流を発生させることができる事例は、モノチャンバとして参照される場合がある。いくつかのサブチャンバ(サブキャビティ部分)に基づいて体積流を生成することができるチャンバは、複合チャンバとして参照される場合がある。
上述の実施形態は、両方のタイプのチャンバを任意の方法で組み合わせることができるように変更され得る。したがって、モノチャンバのみまたは複合チャンバのみが配置される実施形態が可能である。代替的に、両方のチャンバタイプが配置される実施形態が実現されてもよい。
換言すれば、モノチャンバのみを使用する場合、全てのアクチュエータチャンバシステムの共振周波数は同一であってもよく、または、異なるように設計されてもよい。このようにして、例えば、音声放出において特定の周波数領域を、対応するモノチャンバの数を増大することによって強調することができる。特に、例えばグリッド開口、または一般的には音出口開口および/もしくは流路の寸法を定めることにより、共振周波数の対応する分布および減衰を介した共振曲線の幅によって、周波数経過(周波数の関数としての音圧レベル)の設計を達成することができる。とりわけ、周波数経過を平滑化することは、これに不可欠な役割を果たす。
空間内の体積の延伸、電気機械トランスデューサの幾何学的形状および/または電気機械トランスデューサが動作する周波数に基づいて、サブキャビティおよび/またはサブキャビティ部分は異なる周波数の体積流を放出し、および/または、体積流の特定の周波数の検出に対して最適化され得る。
さらなる実施形態では、モノチャンバのみが使用される。音出口開口は、側部にのみ配置することができる。3つのチップ/ディスク(MEMSトランスデューサ)を互いの上に積層することができる。上部チップは、第1の(例えば、高い)周波数範囲での音声放出のために最適化することができる。第2の、例えば中央のMEMSトランスデューサは、第2の周波数領域(例えば、中間周波数)に適合させることができる。第3のMEMSトランスデューサは、例えば低周波数用の第3の周波数領域に適合させることができる。これにより、3ウェイスピーカを得ることができる。3つのチャネル(3つのMEMSトランスデューサ)からなる構成はまた、高周波数用の第1の数Nのチャンバ、中間周波数用の第2の数Nのチャンバ、および低周波数用の第3の数Nを横方向に使用することによってチップ内で生じることもできる。この原理は、Nウェイシステムのために、横方向に、および積層することによって縦方向にも容易に拡張可能である。さらなる実施形態では、Nウェイシステムは、周波数がN*fである対応する高調波のフーリエ合成によって音が生成されるように設計され、fは最低周波数を表す。
これは、スタックへの少なくとも1つのさらなるMEMSトランスデューサによってMEMSトランスデューサを配置することができることを意味し、スタックは、例えば、少なくとも2つのMEMSトランスデューサを横方向(x方向など)および/または厚さ方向(z方向など)に沿って配置することによって得ることができる。代替的に、MEMSトランスデューサはまた、互いから離間して配置されてもよい。MEMSトランスデューサのキャビティおよび少なくとも1つのさらなる(第2の)MEMSトランスデューサのキャビティは、互いに異なる共振周波数を含むことができる。
作動操作において、すなわち、変形可能要素が能動的に変形されるとき、Nウェイスピーカを得ることができ、Nは、互いに異なる共振周波数を有するMEMSトランスデューサの数を表す。センサ動作では、例えば、異なるMEMSトランスデューサを用いて互いに異なる体積流の周波数範囲を検出することができる。例えば、これは、体積流のフーリエ合成を可能にする。例えば、制御デバイス128は、MEMSトランスデューサおよびさらなるMEMSトランスデューサの1つまたは複数の電気機械トランスデューサの変形可能要素の形成を検出するように構成されてもよい。制御デバイスは、電気信号に基づいてフーリエ合成(フーリエ解析)を計算し、結果を出力するように構成されてもよい。
モノチャンバを使用する上述の例はまた、複合チャンバを使用して実現されてもよく、複合チャンバの個々のサブチャンバは、同一の共振周波数を含む。
複合チャンバを使用する場合、接続されたサブチャンバは、共鳴最大値の対応する位置に起因して異なる周波数もサポートすることができる。したがって、例えば、3つのサブチャンバが3ウェイシステムを表すことができる。例えば、後部サブチャンバ(軸方向延伸に沿った第1の部分)において低周波数で変調された空気流は付加的に、中間サブチャンバ(軸方向延伸に沿った第2の部分)において中間周波数変調を受け、チャンバの前部(軸方向延伸に沿った第3の部分)において高周波数変調を受ける。
必要なストローク、すなわち、電気機械トランスデューサの偏向は、同じ音圧を発生させるために高周波数では低周波数よりも低くなり得る。したがって、高周波数に使用されるチャンバまたはサブチャンバは、チャンバを制限するより小さいチャンバ容積、またはアクチュエータ側壁のより短い距離で設計されてもよい。
動作中、駆動によって同じ周波数のチャンバ間に位相シフトが挿入され得、それによって、波面が傾斜し、表面に対して垂直に出射しない(フェーズドアレイ)。
上記および以下に示すすべての変形形態において、各チャンバは、空気が第1のチャンバに流入するとき、圧力補償のために空気が流入し、またはその逆が行われる、少なくとも1つの第2のチャンバによって取り囲まれている。特に、これらのチャンバの間に分離壁がない場合、アクチュエータはその運動を受けて一方のチャンバの容積を増大させ、他方のチャンバの容積を同時に減少させるか、またはその逆が行われるため、これは明らかである。
例えば、補聴器やインイヤー型ヘッドホンのスピーカとして使用する場合、外気(すなわち、耳の外側の)は、スピーカによって動かされないことが多い。むしろ、耳道内の容積は、例えば膜の振動だけによって周期的に変化する。これは、図示されている変形形態ではチップの上側、チップの下側またはチップの側面に位置する対応する開口を閉じた状態に保つことによって、以下に例示および提示されるすべての変形形態で生じ得る。そのためには、これらの位置におけるバーグリッドの構造化は省略する必要がある。
一般的に、またすべてのスピーカ応用分野では、バーグリッドは特定の場所で、または完全に閉じた膜で置き換えることができる。これにより、粒子感度が最大限に低減され、特に汚染されたまたは腐食性のガスおよび液体中での動作が可能になる。
以下では、屈曲アクチュエータの設計および動作に関する方策が提示されており、これは、所望の周波数応答を可能な限り例示することを可能にすることを目的とする。
屈曲アクチュエータを個々の要素に分割するいくつかの追加のばね要素を組み込むことによって、アクチュエータの実効剛性、ひいては共振周波数が低下し得る。例えば、屈曲アクチュエータを2つの要素に分割するために個々のばね要素が使用されている図15を参照する。屈曲アクチュエータが、屈曲アクチュエータの通常の寸法(例えば、幅5μm、長さ2mm、材料はシリコン)でのそのような措置なしに、kHz範囲の固有周波数を含むため、2つ以上の要素に分割することは、聴覚音の低周波範囲で共振周波数を達成するために重要である。代替的にまたは付加的に、追加の質量要素が、共振周波数を低減するために、屈曲アクチュエータ、または、場合によっては存在する剛性プレートにも選択的に設けられてもよい。このような要素は、層36を構成するときに単に提供されてもよい。付加質量Δmの動作モードは、高調波発振器のモデルを用いて説明することができる。
剛性kのばねを介して懸架されている、振幅Fの力で洞状に励振される質量mの要素の振動振幅A(ω)は、以下によって与えられる。
Figure 2018521576
この場合、ωは励起の角周波数であり、cは減衰定数である。共振器が準静的範囲内で動作する場合、振幅は質量から独立している。ω<<ωの場合、以下が適用される。
A(ω)≒F/k (式4)
このように、付加質量Δmは、固有周波数ωを最小値
ω0〜まで変化させるが、振動の振幅は変わらないままである。屈曲アクチュエータがその固有振動数の範囲内で動作されると、状況は異なって見える。ω≒ωの場合、式3の根の第1の項は第2の項に関して無視され、以下が適用される。
A(ω)≒F/(cω0〜) (式5)
ω0〜は発振器の質量の根に反比例するため、質量の増大は対応するω0〜の減少を引き起こし、ひいては振幅の増大を引き起こす。振幅の追加利得は、条件cω0〜<kの下で生じる。上では、屈曲バーが、一方向あまたは他の方向に配置または信号に従って屈曲し得るように構造化される可能性が既に述べられている。したがって、復元力は、バーを屈曲する際の機械的ばね効果によって必ずしも引き上げられる必要はない。選択されたそのような屈曲バーの剛性が低くなればなるほど、結合され得る固定エネルギーでの偏向はより高くなる。
すべての考慮事項が聴覚音域を参照しているが、超音波の生成のためのデバイスを実装することも考えられる。原理的には、アクチュエータの代わりにマイクロフォンとしてのデバイスを提供するために、位置センサ素子(例えば、ピエゾ抵抗、圧電、容量など)を有するバーを提供することも考えられる。
シリコン技術におけるMEMSスピーカの製造の核心として、既知のウーハボンディング法および深掘り反応性イオンエッチングが使用され得る。アクチュエータの製造は、選択される動作モードに依存し、最初は隠されている。この部分は、モジュール式に以下の例示的な進行に組み込むことができる。以下の論述は、側部の空気流のための開口のみを有するデバイスを参照する。
ベース材料としては、BSOI(接合シリコンオンインシュレータ)ディスクが使用される。ハンドルウェハは、MEMSスピーカデバイスの下部キャップ32aを形成する。BSOIディスクの埋め込み酸化物層は、後でスペーサ層34aとして機能することができる。BSOIディスクの活性層は、層36に対応することができる。ハンドルウェハは、500〜700μmの厚さを有してもよく、必要に応じて、場合によってはプロセスの終わりに、さらに薄くすることができる。埋め込み酸化物層は50nm〜1μmの厚さを含むことができる。BSOIディスクの活性層は、1〜300μmの厚さを含むことができる。例えば、層36は深掘り反応性イオンエッチング(DRIE)を用いて構造化されることが好ましい。この構造化の後、埋め込み酸化物層(34a)は、アクチュエータの運動領域において少なくとも局所的に除去されるか、または少なくとも薄くされる。これは、例えばBOE(干渉酸化物エッチング)を用いて湿式化学的に、または例えばガス状フッ化水素酸(HF)を用いて乾式化学的に行うことができる。アクチュエータの運動領域内のスペーサ層34aが少なくとも部分的に除去された後、低摩擦層を、例えば化学蒸着(CVD)または原子層堆積(ALD)によって堆積させることができ、これは、層34aとアクチュエータ(変形可能要素)との間のスリットを閉じるかまたは大きく低減する。代替的に、例えば米国特許第7,803,281号明細書に記載されているように、接合が行われない領域は、適切な層の堆積および構造化によりBSOIディスクを製造するためにディスクを接合する間に画定することができる。このような方法は、上部キャップおよび下部キャップに使用することができる。例えば、層34bは反応性イオンエッチング(RIE)を用いて構造化されることが好ましい。対応する図に示すように、層36および34bのすべての要素は、これらの2つの構造化によって製造される。これには、バー状グリッド構造も含まれる。
上部キャップ(層32b)には、上述した低摩擦層の堆積を用いることもできる。例えば、接合前にキャップにこれを適用することができる。スペーサ層34bは省略してもよい。例えば、材料を堆積させることによって低摩擦層を得ることができる。例えば、摩擦値は、層32a、34a、34bまたは32bの材料よりも10%、20%または50%低くすることができる。
対応するドーピングによって、層36は、導電体として使用することもできる。とりわけ、アクチュエータが異なる周波数で励起される場合には、層36の垂直方向の電気絶縁が有利である。これは、Schenk,H. et al.:A resonantly excited 2D−micro−scanning−mirror with large deflection,Sensors and Actuators A 89(2001),p.104−111.に記載されているように、例えば、いわゆる充填トレンチによって得ることができる。電気絶縁のためにオープントレンチを使用することも可能性を示す。
層は、500〜700μmの典型的または可能な厚さを有し、例えば上部キャップ32bを形成することができるシリコンディスクとして形成され得る第2のディスク上に被着され、構造化される。この層は、スペーサ層34bに対応する。好ましくは、この層の厚さは埋め込み酸化物層に対応する。スペーサ層の材料としては、第2のディスクのBSOIディスクへの接合が後に実施されることを可能にするすべての材料が利用可能である。シリコン酸化物が、好ましくはシリコン上へのシリコン酸化物の直接接合のための熱酸化物の一例として挙げられる。また、直接接合にポリシリコンを用いてもよい。さらなる代替方法は、上部キャップ32bの機能およびまたスペーサ層34bの機能がディスクから形成されるように、第2のディスクに適切なくぼみをエッチングすることである。これらのくぼみは、ディスクがこれらの位置で適切な低摩擦層で覆われているときに、少なくともアクチュエータ運動の領域で回避することができ、それによって、アクチュエータ(可動要素)とキャップ(層32aおよび/または32b)との間の距離を省略することができる。したがって、構造化のための補助層(マスキング)に加えて、第2のディスク上のさらなる層を省略することができる。これにより、シリコン上へのシリコンの直接接合も可能である。
直接接合に加えて、スペーサ層34bがポリマー材料(例えば、BCB)からなるように接着接合方法を使用することも可能である。さらに、Au〜Si共晶接合法または陽極接合法(Naイオンを含む層)も考えられるが、CMOS適合性が存在しないため、これらは好ましくない。
2つのディスクが接合された後、製造のコアがディスク化合物内で完成する。電気配線およびコンタクト、ならびに場合によっては必要な電気絶縁構造の製造については説明していない。これらの要素は、先行技術の周知の標準的な方法、例えば、AlSiCuのスパッタリングおよび構造化による伝導路の製造、酸化物の堆積および構造化による垂直絶縁、層36を完全に貫通するオープンまたは充填絶縁トレンチによる側方絶縁によって与えることができる。
側部に取り付けられた開口でデバイスを分離することは、特にバーグリッドの保護を必要とする。これは、例えば、4つの細い隆起部によってフレームの内部でデバイスをバーグリッドと接続することによって可能になる。この目的のために、下部キャップ32aおよび上部キャップ32bならびに層34a、36および36bはそれに応じて構造化されるべきである。TMAH、KOHおよびDRIEなどの異方性エッチング方法は、この構造化に特に適している。層36のDRIE構造化は、特にバーグリッドに沿った構造化のための好ましい変形形態である。隆起部は、ディスク化合物からデバイスを解放するために破壊される。例えば、これは機械的にまたはレーザ処理によって行うことができる。
分離のために下部キャップ32aを構造化するのではなく、層34a、36,34b、および32bだけを構造化することも考えられる。特に、層36は、バーグリッドの垂直方向の経過を実現するためにDRIEによって構造化されてもよい。次いで、チップ表面から、下部キャップ32aで終端するトレンチが生じる。このトレンチは、この時点で、ポリマー材料(例えば、フォトレジスト)で充填され得る。ポリマーは、その後のソーイングおよび分離プロセス中の汚れに対する保護の役割を果たす。ソーイング後、デバイスをすすぎ、洗浄して、ソースラッジを除去する。次いで、ポリマーを適切な溶媒または酸素プラズマ中で除去する。
側部開口の代わりに、上部および下部キャップの開口が使用される場合、図16の文脈で既に説明したように、製造が費やされなければならない。分離のために、ソーイング工程またはレーザ切断が可能であるように、下部開口および上部開口が、例えばホイルによって保護されてもよい。代替的に、開口はまた、分離プロセスのためにポリマー材料、例えばフォトレジストによって閉じられ、その後、溶剤または酸素プラズマ中で再び除去されてもよい。
デバイスの積層は、好ましくは、ディスク化合物中で接合方法によって実施される。電気接触は、それぞれの層36内の電気接点(ボンドパッド)によって行われてもよく、または、TSV(貫通シリコンバイア)を用いるときは、チップの底面上のいわゆるバンプをも介して行われてもよい。TSVはまた、積層された個々のチップを電気的に接続するために使用されてもよい。TSVおよびバンプはまた、積層されていないチップにも使用することができる。
バーグリッド54のより高い安定性を達成するために、スペーサ層34aおよび34bは、バー隆起部の領域において構造化されないままであり得る。
以下では、横方向屈曲アクチュエータを製造するための好ましい実施の変形形態について説明する。
原理的には、屈曲バーの作動のために、周知の静電、圧電、熱機械または電気力学的動作原理を使用することができる。
能動的な屈曲バーのない上述のデバイスの変形のいくつかについても、単純な静電動作原理を実現することができる。MEMSトランスデューサ50は、剛性プレート要素62aおよび62bが、電位差に起因して、屈曲ばねとして作用する要素64が対応する機械的反力を含むまで、互いに向かって運動するキャパシタプレートとして具体化されるか、またはキャパシタプレートを含むように具体化することができる。
代替的に、屈曲バーは、付加的に配置された固定対向電極を介して直接偏向されてもよい。力または偏向を増大させるための櫛形電極の使用もまた考えられる。
別の静電原理は、一方の側部にクランプ締めされたバーの使用に基づいており、これは、クランプ点にある電極までの距離が非常に小さく、この電極距離はクランプ点から離れるにつれて増大する。この場合、クランプ点での距離はゼロであってもよい。屈曲バーと電極との間に電圧が印加される場合、電圧の強さとバーの剛性によって決定される屈曲バーの一部が電極に絡む。本明細書に記載された原理に関して、バーと電極との間の空間は、説明したようにその容積が変化し得るチャンバ42を形成する。
そのようなアクチュエータの基本原理は、例えば、文献に記載されている。Rosa,M.A.et al.:A novel external electrode configuration for the electrostatic actuation of MEMS based devices,J.Micromech.Microeng.(2004),p.446−451.では、例えば、垂直偏向アクチュエータが提示されている。電極距離の変化は、屈曲バーの製造中に層張力を選択的に挿入することによって実現される。本願の文脈に記載されたデバイスについて、この原理によるアクチュエータは、層36をそれに応じて構造化することによって容易に実現することができる。層36の既に必要な構造化に加えて、電極と屈曲バーとの間に絶縁層が施されるべきであり、これはマイクロシステム技術の既知の方法によって容易に実現される。屈曲バーは既に構造化に起因して所望の形状を得るため、層張力の挿入は必要ではない。本明細書に記載されている様式では、アクチュエータは横方向に偏向されてもよく、したがって、上述のデバイス原理に使用されてもよい。
大量の集積およびスケーラビリティに関して、静電動作原理は、多数の利点を提供する。磁石またはコイルなどの外部構成要素は不要で、クリーンルーム、特にCMOS対応のクリーンルームのための汚染の影響を受ける材料は不要である。しかし、以前に追求された膜アプローチはいくつかの欠点を含む。これには、聴覚音域全体を単一の振動膜またはプレートで十分にカバーすることができないことが含まれる。一方、1つもしくは複数の膜を準静的に動作させる手法は、偏向を犠牲にして、したがって達成可能な体積流または達成可能な音レベルを犠牲にして、共振ブーストの欠如に起因するこの問題を解決する。後者は、以下のように、例えば、インイヤー型ヘッドホンの固定音量に関連する[11]。
Figure 2018521576
SPLは「音圧レベル」を表し、Pは標準圧力であり、ΔVはスピーカによる達成可能な音量変化であり、Prefは聴取閾値の測定値を示す基準圧力であり、これは20μPaであり、Vはインイヤー型ヘッドホンまたは補聴器の場合の聴覚路の容積であり、約2cmに相当する。
したがって、MEMSスピーカに関しては、チップ表面当たり、またはスピーカ全体の体積あたりの可能な最高の体積流を達成することが望ましい。電気力学的トランスデューサは、例えば、非常に高い膜偏向を達成することができ、したがって非常に高い体積流を達成することができる。しかしながら、必要な永久磁石に起因して、全体的な構造の体積が非常に大きい。携帯電話のスピーカでは、1次元でのスペースが急激に少なくなり、このアプローチは一般的に限定的であると考えられる。
圧電屈曲アクチュエータは、基板上への圧電層の堆積を必要とする。例えば、圧電層は、図3の層58に対応することができ、この層は、次に、例えばシリコンを含む層56に対して横方向に配置されるか、または、層56から構成される。このようなアクチュエータは、表面微細加工プロセスで製造することが可能である。
例えばKumar,V.;Sharma,N.N.:Design and Validation of Silicon−on−Insulator Based U Shaped thermal Microactuator,Int.J.Materials,Mechanics and Manufacturing,Vol.2,No.1(2014),p.86−91.に記載されているような、コールドアームおよびウォームアームの形態の横方向熱機械アクチュエータは、上述の層36のDRIE構造化において対応する幾何学的形状を考慮することによって容易に統合することができる。
熱機械アクチュエータの別の変形形態は、電流によって加熱されるバイモルフの使用である。そのようなバイモルフを製造するために、例えば、すべての側壁も被覆することができるように、酸化物層を、層36を構造化した後に適合させて堆積することができる。その後、酸化物層は、屈曲要素の1つの側壁を除くあらゆる場所で、マスキングおよびエッチングによって除去することができる。
電気力学的動作原理の使用は、両側でクランプ締めされた屈曲バーに対して実施するのが容易である。電流がバーを通って流れるか、または別個に施与された導体構造を通って流れるとき、バーは磁場中で偏向をもたらす力にさらされる。電流の方向は、所望の偏向方向に応じて個々のバーに対して選択することができる。導体経路の任意選択の製造は、標準的な表面微細加工プロセスを用いて行われる。この場合、スペーサ層34bの厚さを選択する際に、追加のトポグラフィを考慮する必要がある。
屈曲アクチュエータの好ましい実施態様は、非常に小さい電極距離の使用に基づき、したがって、低電圧で機能し動作することができる横方向静電アクチュエータである。そのような横方向アクチュエータは、例えば、欧州特許出願公開第2 264058号明細書に記載されている。この技術は、上述した屈曲アクチュエータおよびデバイス変形形態のすべてを製造することを可能にし、上述したデバイスの製造プロセスのコア部分にモジュール式に容易に組み込むことができる。
以下では、側壁、すなわち変形可能要素の運動中の周回流損失が参照される。層流を仮定すると、周回流損失、例えば、図2aのチャンバ42aからチャンバ38aへの体積流が、スペーサ層34aおよび34bが層36の厚さと比較して小さい場合、有用な体積流、すなわち、外向きまたは外側から内側へと貫通する体積流に比べて適切に低く保たれ得ることが、単純なモデルにおいて示され得る。同じことが、屈曲バーの可能な自由端における、側方制限構造までの距離にも当てはまる。後者は、両側にクランプ締めされた屈曲アクチュエータについては省略することができる。長方形のパイプを通る層流のモデルにおいてこの構成の周回流損失が計算される場合で、寸法が次のように仮定される場合、有用な体積流と関連して約3%の周回流に起因する損失が生じ得る:
屈曲アクチュエータ:長さ:1mm、高さ:30μm、幅:10μm
チャンバ:外側に向かう流れ抵抗の計算のために、50μmの平均幅が仮定された。これは、屈曲アクチュエータの大きな偏向における流れ抵抗を過小評価する。
スペーサ34aおよび34bの層厚:各0.5μm
仮定された寸法は、例としてのみ理解され、微小機械技術で容易に実現することができる。層流の仮定は、チューブの長さに対応するアクチュエータの幅が小さい(10μm超)ため、不正確である可能性がある。しかし、この仮定は、乱流が発生すると流れ抵抗が増大するため、最悪の場合の仮定である。このような乱流を動機付けるために、層36内の屈曲アクチュエータは、適切な横方向に構成された要素を備えることができる。周回流に渦を形成する構成が、適切と考えられる。代替的にまたは付加的に、チャンバに面するキャップ32aおよび32bの表面を意識的に粗くすることによって、乱流の形成を促進することができる。
図15は、離間し、接続要素116を介して互いに接続された第1の層112および第2の層114を含む変形可能要素150の概略側断面図を示し、接続要素116a〜cは、層114および層112に対して90°とは異なる角度を成して配置される。例えば、層112および114は電極を含むことができる。代替的に、電極は各々、層112および/または114に配置されてもよい。電位の印加に基づいて、反発力または引力が層112と114との間に生成され得る。引力または反発力は、要素116a〜cの変形をもたらし、それによって、クランプ締めされた端部118から外方に向く変形可能要素144の偏向可能端部122が、横運動方向24に沿って偏向可能である。
これは、変形可能要素150が、第1の層114と第2の層116とを含むことができ、スペーサ116a〜cが第1の層114と第2の層116との間に配置され得ることを意味する。スペーサ116a〜116cは、層112および114の経過に対して斜めの傾斜方向124に配置されてもよい。層112および114の間の引力は、変形可能要素150を屈曲させることができる。
変形可能要素150は、傾斜方向に沿って平坦または単純に湾曲するように構成されてもよい。代替的に、変形可能要素、または層112および/もしくは114は、例えば鋸歯状パターンに従って互いに不連続に配置された少なくとも2つの部分を含むことができる。
図16は、電極126に隣接して配置されている変形可能要素160の概略上面図を示す。変形可能要素160は、さらなる電極127を含むことができ、またはさらなる電極127とすることができる。変形可能要素160の電極126とさらなる電極127との間に印加される電位に基づいて、静電力または電気力Fを生成することができる。静電的または電気力Fに基づいて、変形可能要素160の変形が引き起こされ得る。
流速または電位、すなわち力Fの影響を受けない変形可能要素160の状態では、変形可能要素160と電極126との間の距離は、変形可能要素の軸延伸方向98に沿って変化してもよい。機械的トランスデューサまたは変形可能要素160が基板14への接続を含む領域において、距離は最小になり得る。これにより、変形可能要素160の変形の高い制御可能性が可能になる。代替的に、電極126と変形可能要素160との間の距離は、延伸方向98に沿って任意に可変または一定であってもよい。
実施形態によれば、電気機械トランスデューサは、静電トランスデューサ、圧電トランスデューサ、電磁トランスデューサ、電気力学的トランスデューサ、熱機械トランスデューサまたは磁歪トランスデューサとして構成することができる。
発生し得る力に基づいて、変形可能要素の変形が引き起こされ得るか、または変形可能要素の変形が検出または調整され得る。
図17は、MEMSデバイス80の電気力学的トランスデューサを制御し、かつ/またはMEMSデバイス80の電気力学的トランスデューサから電気信号を受信するように構成された制御デバイス128に接続されたMEMSトランスデューサ80を備えるMEMSシステム170の概略ブロック回路図を示す。
例えば、MEMSトランスデューサ80が複数の電気機械トランスデューサ18を含む場合、制御デバイス128は、第1の電気機械トランスデューサと隣接する第2の電気機械トランスデューサとが、第1の時間間隔の間に少なくとも局所的に互いに向かって運動するように、複数の電気機械トランスデューサを駆動するように構成することができる。制御デバイス128は、第1の電気機械トランスデューサおよび第1の電気機械トランスデューサに隣接して配置された第3の電気機械トランスデューサが第2の間隔の間に互いに向かって運動するように、複数の電気機械トランスデューサを駆動するように構成されてもよく、第1の電気機械トランスデューサは、第2の電気機械トランスデューサと第3の電気機械トランスデューサとの間に配置されてもよい。例えば、これは、電気機械トランスデューサ18a〜cであってもよく、電気機械トランスデューサ18bが第1の電気機械トランスデューサであってもよい。
代替的または付加的に、制御デバイス128は、変形可能要素の変形に基づいて電気信号を受信し、それを評価するように構成されてもよい。例えば、制御デバイス128は、変形の周波数または振幅を決定するように構成されてもよい。これは、システム170がセンサおよび/またはアクチュエータとして動作することができることを意味する。
例えば、システム170は、MEMSスピーカとして動作することができ、体積流12は、音響音波または超音波であってもよい。
代替的に、システム170は、MEMSポンプとして具体化されてもよい。基板のキャビティは、基板14内の第1の開口26および第2の開口26を含むことができる。電気機械トランスデューサ18は、流体に基づいて体積流12を提供するように構成されてもよい。電気機械トランスデューサは、電気機械トランスデューサ18の作動に基づいて第1の開口26を通じてキャビティに向かって流体を搬送するように、または、作動に基づいて第2の開口を通じてキャビティから外方に流体を搬送するように構成することができる。
代替的に、システム170は、MEMSマイクロフォンとして動作することができ、変形可能要素の変形に基づいて、電気機械トランスデューサ80の端子または接続された別の電気機械トランスデューサの端子において電気信号を得ることができる。変形可能要素の変形は、体積流12に基づいて引き起こされ得る。
システム170は、制御デバイス128がMEMSトランスデューサ80に接続されるように記載されているが、さらなるMEMSトランスデューサ、例えばMEMSトランスデューサ10,20,50,100または110が配置されてもよい。代替的にまたは付加的に、いくつかのMEMSトランスデューサを前述の実施形態に従って配置することもできる。代替的にまたは付加的に、MEMSトランスデューサのスタック、例えばスタック90または140が配置されてもよい。代替的または付加的に、少なくとも2つのMEMSトランスデューサを配置することができる。少なくとも第1のMEMSトランスデューサおよび第2のMEMSトランスデューサは、互いに異なる共振周波数を有するキャビティもしくはサブキャビティおよび/または電気機械トランスデューサ、例えば500Hzアクチュエータを有するチャンバ、2kHzアクチュエータを有するさらなるチャンバまたはさらなる(サブ)キャビティなど)を備えることができる。
図18は、複数の電気機械トランスデューサ18a〜18iを含むMEMSトランスデューサ180の概略上面図を示し、電気機械トランスデューサ18a〜18fは、第1のキャビティ16a内で互いに隣接して横方向にオフセットして配置され、電気機械トランスデューサ18g〜18iは、第2のキャビティ16b内で互いに隣接して横方向にオフセットして配置されている。キャビティ16aおよび16bは、基板14の図示されていない底面および/またはキャップ表面に開口を含むことができる。MEMSトランスデューサ180は、個別の電気機械トランスデューサ18a〜18iと、また、それぞれのキャビティ16aおよび16b内の電気機械トランスデューサ18a〜18fまたは18g〜18iとの両方に適用されるスピーカおよび/またはマイクロフォンとして使用されてもよい。スピーカおよび/またはマイクロフォンは、振動によって音波を放出または捕捉するように最適化されるように設計されてもよい。例えば、スピーカおよび/またはマイクロフォンは、身体の音によって情報を伝達または捕捉するために、人体に、理想的には骨の近くに配置することができる。この場合、好ましい変形形態は、すべてのアクチュエータが同じ方向に運動するものであり、これは、1つのチャンバが2つの可動壁を含む手法から独立していることを意味する。電気機械トランスデューサ18a〜18iは、一方の側部にクランプ締めされたバー要素を含む。
言い換えれば、左側のチャンバであるキャビティ16aは、好ましくは同相で振動し、音を伝えるためにチップを振動させる側方または垂直方向に可動の屈曲アクチュエータを含む。右側のチャンバであるキャビティ16bは、同じく好ましくは同位相で振動するが、それらの寸法(厚さ、長さまたは幅)により左チャンバとは異なる周波数領域を再現する、3つの横方向または垂直方向の屈曲アクチュエータを含む。
図19は、複数の電気機械トランスデューサ18a〜18iを含むMEMSトランスデューサ190の概略上面図を示し、電気機械トランスデューサ18a〜18fは、互いに隣接して横方向にオフセットして配置され、それらの各々は、隣接するキャビティ16a〜16kまたはサブキャビティを互いから離間する。電気機械トランスデューサ18a〜18iは、2つの側部にクランプ締めされたバー要素を含む。
図18および19の実施形態は、MEMSトランスデューサ180が専ら一方の側部にクランプ締めされたバー要素のみを備え、MEMSトランスデューサ190が専ら2つの側部にクランプ締めされたバー要素のみを含むように示されているが、実施形態は、各キャビティ16aおよび16bごとに、同様の電気機械トランスデューサを互いに独立して配置することができ、または異なる電気機械トランスデューサをキャビティの内部に配置することができるように、互いに任意に組み合わされてもよい。
言い換えれば、図19は図18と同じ原理を示しているが、図19の場合は2つの側部でクランプ締めされた屈曲アクチュエータが使用される。
さらなる実施形態は、MEMSトランスデューサを製造する方法を参照する。この方法は、キャビティを含む基板を提供するステップを含む。さらに、この方法は、基板とともに、横運動方向に沿って変形可能な要素を含む電気機械トランスデューサを製造するステップを含む。製造するステップは、横運動方向に沿った変形可能要素の変形と、MEMSトランスデューサから相互作用する体積流とが因果関係になるように実行される。例えば、電気機械トランスデューサを製造するステップは、基板から電気機械トランスデューサを形成することによって、例えば、エッチングプロセスおよび/または追加の層を堆積させるための堆積プロセスによって、行うことができる。
上述の実施形態は、体積流が互いに向かって運動する2つの電気機械トランスデューサによって生成され得るという事実に関連しているが、体積流はまた、例えば基板のような剛性構造に対する電気機械トランスデューサの運動に基づいて、または、当該運動と因果関係にあるように得ることもできる。これは、サブキャビティまたはサブキャビティ部分の容積が個々の電気機械トランスデューサの影響を受け得ることを意味する。
図1に関連して説明した構成と比較して、複数の湾曲を実行するように構成された、および/またはプレート要素に接続された変形可能要素を備える上述の実施形態は、大幅により大きい体積流を生成し、または、体積流に対してより敏感に反応するために使用することができる。
実施形態は、特に、可能な限り平坦な周波数応答の最も頻繁に求められる事例を可能にするために、音圧の周波数依存経過を柔軟に調整可能にすることを可能にする。
MEMSトランスデューサのできるだけ少ないチャンバで周波数依存性の音圧曲線を設計するためには、振動可能な屈曲バーの品質が低い、すなわち屈曲バーが広い共振曲線を含むことが有利である。この目的のために、バーのクランプ締めは、バーの振動が減衰材料によってさらに減衰されるように具体化されてもよい。バーのクランプ締めは、好ましくは、非結晶材料から製造される。これは、シリコン酸化物、SU8などのポリマーまたは他のレジストを含む。バー振動の減衰はまた、電気的に得ることもできる。例えば、印加される電圧による静電アクチュエータまたは圧電アクチュエータの自由なバー振動の間に、静電容量の変化に起因して周期的な交流電流が流れる。電気抵抗が適切に与えられることによって、振動の減衰をもたらす電力損失が発生する。完全な電気発振回路(すなわち、一体型または外部コイルが付加的に設けられている)も可能である。減衰は、屈曲バーに追加の構造を実現することによっても得られ得、これは、チャンバを出入りして流れる際の流体に対する大きな流れ抵抗を表す。
特に、低周波を生成または検出するために低共振周波数を表現するために、屈曲バーの質量を増大させることが有利であり得る。剛性を著しく増大させないためには、最大の振動振幅の領域に付加的な構造を取り付けることが好ましい。1つの側部にクランプ締めされたバーの場合、最良の位置、または最も大きな振動振幅の領域は、屈曲バーの端部である。2つの側部にクランプ締めされたバーの場合、これはバーの中心である。
言い換えれば、本発明の発見は、はシリコンチップ内に形成され得るチャンバ、すなわちサブキャビティまたはサブキャビティ部分の圧縮または膨張によって、体積流が生成されるか、または検出され得るという事実に基づく。各チャンバには、例えば空気などの流体が流入または流出することができる入口または出口が設けられてもよい。チャンバは、固定されたキャップによって横運動方向に垂直な方向に沿って(例えば、上部および下部に)閉じられてもよい。各チャンバの側壁の少なくとも1つは可動または変形可能に構成され、このチャンバ内で容積が減少または増大するようにアクチュエータによって変位されてもよい。
MEMSトランスデューサの上述の実施形態は、明瞭化のために図面には示されていない電気接続、ボンドパッドなどを備えてもよい。
上述の実施形態は、少なくとも2つのキャビティまたはサブキャビティの異なる共振周波数に基づいて得られ得るマルチウェイスピーカまたはNウェイスピーカに関する。電気機械トランスデューサおよびキャビティまたはサブキャビティは、音圧レベル(SPL)が少なくとも部分的に共振周波数の関数となるように、すなわち、いくつかのアクチュエータチャンバが異なる周波数経過を含むことができるように、互いにマッチングされてもよい(SPL=f(周波数))。これは、変形可能要素の変形に基づいて、およびサブキャビティに基づいて得られる音圧レベルの値が、それぞれのサブキャビティから流れ出る、またはサブキャビティに流入する体積流の周波数への接続を含むことを意味する。接続は関数として表すことができ、関数は、例えば、線形であってもよく、例えば、SPL=x*周波数+bであり、xおよびbは変数である。代替的に、関数はまた非線形であってもよく、例えば二次関数、指数関数、根関数に基づく関数であってもよい。機能的接続は、異なるMEMSトランスデューサ内に配置された異なるサブキャビティまたはキャビティに容易に転移され得る。したがって、体積流の周波数は、流体内の圧力の周波数依存経過を表すことができる。
MEMSトランスデューサのシリコンチップは、それぞれの用途に適合した形状を含むように、ウェハレベルでの製造中に得られるディスクボンドから設計されてもよく、解放されてもよい。例えば、スピーカおよび補聴器またはインイヤー型ヘッドホンとしての用途では、チップは円形であるように、またはディスク上のシリコン領域の使用により適した六角形であるように設計することができる。
いくつかの態様は、デバイスの文脈内で説明されているが、上記態様は、対応する方法の説明も表しているため、デバイスのブロックまたは構成要素は、対応する方法ステップまたは方法ステップの特徴として理解されるべきであることは理解されたい。それと同様に、方法ステップの文脈内でまたは方法ステップとして記載されている態様は、対応するデバイスの特徴の対応するブロックまたは詳細の記述をも表す。
上述の実施形態は、本発明の原理の例示を表しているに過ぎない。当業者は、本明細書に記載された構成および詳細の変更および変形を諒解するであろうことは理解されたい。このため、本発明は、本明細書および実施形態の議論によってここに提示された特定の詳細ではなく、添付の特許請求の範囲によってのみ限定されることが意図されている。

Claims (77)

  1. 流体の体積流(12)と相互作用するMEMSトランスデューサであって、キャビティ(16)を備える基板(14)と、前記キャビティ(16)内で前記基板(14)に接続され、横運動方向(24)に沿って変形可能な変形可能要素(22;22a〜f;30;40;150;160)を備える電気機械トランスデューサ(18;18a〜f)と、を含み、
    前記横運動方向(24)に沿った前記変形可能要素(22;22a〜f;30;40;150;160)の変形と前記流体の前記体積流(12)とが因果関係にある、MEMSトランスデューサ。
  2. 前記電気機械トランスデューサ(18;18a〜f)は、電気的駆動(129a)に応答して、前記キャビティ(16)内の前記流体の運動を因果的に引き起こし、および/または、前記キャビティ(16)内の流体の運動に応答して、電気的信号(129b)を因果的に提供するように構成されている、請求項1に記載のMEMSトランスデューサ。
  3. 前記MEMSトランスデューサは、前記基板(14)に接続されており、各々が前記横運動方向(24)に沿って変形可能な要素(22;22a〜f;30;40;150;160)を備える第1の電気機械トランスデューサおよび第2の電気機械トランスデューサ(18b〜e)を備え、前記要素は、前記横運動方向(24)に沿って変形されるように構成されており、前記第1の電気機械トランスデューサ(18b、18d)および前記第2の電気機械トランスデューサ(18c、18e)は、第1の時間間隔の間は互いに向かって運動し、第2の時間間隔の間は互いから外方に運動するように構成されており、前記第1の電気機械トランスデューサ(18b、18d)と前記第2の電気機械トランスデューサ(18c、18e)との間のサブキャビティ(42a、42b)の容積は、前記第1の時間間隔と前記第2の時間間隔との間で可変である、請求項1〜2のいずれか一項に記載のMEMSトランスデューサ。
  4. 前記MEMSトランスデューサは、前記基板(14)に接続されており、各々が前記横運動方向(24)に沿って変形可能な要素(22;22a〜f;30;40;150;160)を備える複数の電気機械トランスデューサ(18;18a〜f)を備え、第1の電気機械トランスデューサ(18b、18d)と第2の電気機械トランスデューサ(18c、18e)との間に第1のサブキャビティ(42a、42b)が配置されており、前記第2の電気機械トランスデューサ(18b、18d)と第3の電気機械トランスデューサ(18a、18c)との間に第2のサブキャビティ(38a、38b)が配置されており、前記第1の電気機械トランスデューサおよび前記第2の電気機械トランスデューサ(18b、18d)は、第1の周波数で前記第1のサブキャビティの容積を変化させるように構成されており、前記第1の電気機械トランスデューサ(18b、18d)および前記第3の電気機械トランスデューサ(18a、18c)は、第2の周波数で前記第2のサブキャビティの容積を変化させるように構成されている、請求項1〜3のいずれか一項に記載のMEMSトランスデューサ。
  5. 前記体積流(12)および前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形は、前記第1のサブキャビティ(42a、42b)および前記第2のサブキャビティ(38a、38b)の容積の変化と因果関係を有する、請求項4に記載のMEMSトランスデューサ。
  6. 前記第1のサブキャビティ(42a、42b)と前記第2のサブキャビティ(38a、38b)との間に配置され、前記前記第1のサブキャビティ(42a、42b)と前記第2のサブキャビティ(38a、38b)との間の流体結合を少なくとも部分的に低減するように構成された壁構造(49)を備える、請求項4または5に記載のMEMSトランスデューサ。
  7. 前記第1の電気機械トランスデューサ(18b、18d)、前記第2の電気機械トランスデューサ(18c、18e)および前記第3の電気機械トランスデューサ(18a、18c)の前記変形可能要素(22;22a〜f;30;40;150;160)は、それぞれ第1の端部および第2の端部を備えるバーアクチュエータ(30)を含み、前記第1の電気機械トランスデューサ(18b、18d)の前記バーアクチュエータ(30)は、前記第1の端部および前記第2の端部において前記基板(14)に接続されており、前記第2の電気機械トランスデューサ(18c、18e)または前記第3の電気機械トランスデューサ(18a、18c)の前記バーアクチュエータは、前記バーアクチュエータの中央領域において前記基板(14)に接続されている、請求項4〜6のいずれか一項に記載のMEMSトランスデューサ。
  8. 前記基板(14)は、前記キャビティ(16)の複数のサブキャビティ(42a〜b、38a〜c)に接続された複数の開口(26)を備え、各キャビティ(42a〜b、38a〜c)の容積は、前記横運動方向(24)に沿って変形可能な少なくとも1つの要素(22;22a〜f;30;40;150;160)の偏向状態の影響を受け、サブキャビティ(42a〜b、38a〜c)の隣接する2つの部分容積は、前記第1の時間間隔または前記第2の時間間隔中にサイズが相補的に増大または減少することができる、請求項4〜7のいずれか一項に記載のMEMSトランスデューサ。
  9. 前記基板(14)は、前記キャビティ(16)の複数のサブキャビティ(42a〜b、38a〜c)に接続された複数の開口(26)を備え、各キャビティ(42a〜b、38a〜c)の容積は、前記横運動方向(24)に沿って変形可能な少なくとも1つの要素(22;22a〜f;30;40;150;160)の偏向状態の影響を受け、前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形に基づいて、および、前記サブキャビティ(42a〜b、38a〜c)に基づいて得られる音圧レベルの値は、関数として表すことができる、それぞれの前記サブキャビティ(42a〜b、38a〜c)を出入りする前記体積流(12)の周波数との接続を含む、請求項4〜7のいずれか一項に記載のMEMSトランスデューサ。
  10. 前記体積流(12)の前記周波数は、前記流体内の圧力の周波数依存経過を表す、請求項9に記載のMEMSトランスデューサ。
  11. 前記基板(14)の開口(26)に隣接する第1のサブキャビティ(42a、42b)は、前記第1の電気機械トランスデューサ(18b、18d)の前記バー構造(30)と、前記第2の電気機械トランスデューサ(18c、18e)の前記バー構造(30)との間に配置される、請求項1〜10のいずれか一項に記載のMEMSトランスデューサ。
  12. 前記第1の電気機械トランスデューサの第1の変形可能要素(22;22a〜f;30;40;150;160)、および、前記第2の電気機械トランスデューサの第2の変形可能要素は、前記基板(14)に対して面内に湾曲するように構成されているバー構造(30)を含む、請求項1〜11のいずれか一項に記載のMEMSトランスデューサ。
  13. 前記変形可能要素(22;22a〜f;30;40;150;160)は、能動的に形成され、前記体積流と相互作用するように構成され、または、前記第1の変形可能要素(22;22a〜f;30;40;150;160)に接続され、剛性であるように構成されているプレート要素(62;62a〜c)が、前記体積流と相互作用するように構成されている、請求項1〜12のいずれか一項に記載のMEMSトランスデューサ。
  14. 前記電気機械トランスデューサ(18;18a〜f)は、各々が第2のサブキャビティ部分(96a、96b)の容積にそれぞれ影響を及ぼすように構成されている、前記電気機械トランスデューサ(18;18a〜f)の軸方向(y)において少なくとも間接的に接続された複数の変形可能要素(22;22a〜f;30;40;150;160)を含む、請求項1〜13のいずれか一項に記載のMEMSトランスデューサ。
  15. 前記電気機械トランスデューサ(18;18a〜f)は、電気的駆動(129a)に応答して、前記第1のサブキャビティ部分(96a)および前記第2のサブキャビティ部分(96b)内の前記流体の運動を因果的に引き起こすように構成されており、前記変形可能要素(22;22a〜f;30;40;150;160)は、互いに異なる周波数で前記第1のサブキャビティ部分(96a)および前記第2のサブキャビティ部分(96b)の容積を変化させるように構成されている、請求項14に記載のMEMSトランスデューサ。
  16. 前記キャビティ(16)の容積は、第1の層(32a)、第2の層(32b)、ならびに第1の側部領域(53a)および第2の側部領域(53b)によって影響され、前記第1の領域と前記第2の領域との間に配置され、前記第1の側部領域(53a)および前記第2の側部領域(53b)は、前記第1の層(32a)と前記第2の層(32b)との間に配置され、前記変形可能要素(22;22a〜f;30;40;150;160)は、少なくとも1つの部分において前記第1の層(32a)または前記第2の層(32b)に平行な運動を実行する(55)ように構成されている、請求項1〜15のいずれか一項に記載のMEMSトランスデューサ。
  17. 前記変形可能要素(22;22a〜f;30;40;150;160)が前記第1の層(32a)および前記第2の層(32b)に対して非接触に配置されており、または、前記変形可能要素(22;22a〜f;30;40;150;160)と前記第1の層(32a)または前記第2の層(32b)との間に低摩擦層が配置されている、請求項16に記載のMEMSトランスデューサ。
  18. 前記MEMSトランスデューサは、層スタックを含み、前記層スタックは、前記第1の層(32a)と、中間層(36)と、前記第1の層(32a)と前記中間層(36)との間に配置されている第1のスペーサ層(34b)と、前記第2の層(32b)と、前記中間層(36)と前記第2の層(32b)との間に配置されている第2のスペーサ層(34b)とを備え、前記変形可能要素(22;22a〜f;30;40;150;160)は、前記中間層(36)に接続されている、請求項16または17に記載のMEMSトランスデューサ。
  19. 前記第1のスペーサ層および前記第2のスペーサ層(34a、34b)は、それに沿って前記第1のスペーサ層および前記第2のスペーサ層(34a、34b)が前記中間層(36)に配置される方向(z)に沿った寸法を含み、前記寸法は、少なくとも1nmで最大1mmの範囲、好ましくは少なくとも20nmで最大100μmの範囲、特に好ましくは少なくとも50nmで最大1μmの範囲内の値を含む、請求項18に記載のMEMSトランスデューサ。
  20. 前記変形可能要素(22;22a〜f;30;40;150;160)が変形している間に、前記電気機械トランスデューサ(18;18a〜18f)の第1の側部から第2の側部へ前記電気機械トランスデューサ(18;18a〜18f)を回流する流体流(57)の延伸は、前記キャビティ(16)内の前記体積流(12)の延伸よりも小さい、請求項1〜19のいずれか一項に記載のMEMSトランスデューサ。
  21. 前記電気機械トランスデューサ(18;18a〜18f)を回流する前記流体流(57)の前記延伸は、前記体積流(12)の前記延伸を値10で除算した延伸以下である、請求項20に記載のMEMSトランスデューサ。
  22. 前記変形可能要素(22;22a〜f;30;40;150;160)は、前記横運動方向(24)に沿って、および、反対方向に沿って変形されるように構成される、請求項1〜21のいずれか一項に記載のMEMSトランスデューサ。
  23. 前記変形可能要素(22;22a〜f;30;40;150;160)が、バー構造(30)を含み、前記基板に対して面内に湾曲するように構成されている、請求項1〜22のいずれか一項に記載のMEMSトランスデューサ。
  24. 前記変形可能要素(22;22a〜f;30;40;150;160)は、前記変形可能要素(22;22a〜f;30;40;150;160)が電圧を印加することによって偏向可能である作動方向(59,59’)を含むバイモルフとして構成されている、請求項1〜23のいずれか一項に記載のMEMSトランスデューサ。
  25. 前記変形可能要素(22;22a〜f;30;40;150;160)は、この順に配置された第1のバーセグメント(30a)、第2のバーセグメント(30b)および第3のバーセグメント(30c)であって、軸方向(y)に沿って前記順序で配置されており、各々が反対向きの作動方向(59a〜c)を含む、バーセグメントを備える、請求項24に記載のMEMSトランスデューサ。
  26. 前記電気機械トランスデューサ(18;18a〜f)は、第1の変形可能要素および第2の変形可能要素(22;22a〜f;30;40;150;160)を含み、前記第1の変形可能要素(22;22a〜f;30;40;150;160)の外側バーセグメント(30a、30c)および前記第2の変形可能要素(22;22a〜f;30;40;150;160)の外側バーセグメント(30a、30c)は、少なくとも間接的に互いに接続されている、請求項25に記載のMEMSトランスデューサ。
  27. 前記変形可能要素は、互いに直列に接続された少なくとも3つのバーセグメント(30a〜c)を含み、少なくとも第1のバー要素、第2のバー要素および第3のバー要素(30a、30b、30c)は、反対向きの作動方向(59a〜c)を含み、異なるバー長さを含む、請求項1〜26に記載のMEMSトランスデューサ。
  28. 前記変形可能要素が2つの側部にクランプ締めされる、請求項27に記載のMEMSトランスデューサ。
  29. 前記基板(14)がアンカー要素(84)を備え、前記変形可能要素(22;22a〜f;30;40;150;160)は、前記変形可能要素(22;22a〜f;30;40;150;160)の軸延伸方向(y)の中央領域(30b)において、前記アンカー要素(84)に接続されており、または、前記変形可能要素(22;22a〜f;30;40;150;160)は、前記アンカー要素(84)を介して外側バーセグメント(30a、30c)においてさらなる変形可能要素に接続されている、請求項1〜28のいずれか一項に記載のMMESトランスデューサ。
  30. 前記変形可能要素(22;150)は第1の層(112)および第2の層(114)を備え、前記第1の層(112)と前記第2の層(114)との間にスペーサ(116a〜c)が配置されており、前記第1の層(112)と前記第2の層(114)とは、前記スペーサ(116a〜c)を介して接続されており、前記スペーサ(116a〜c)は、前記第1の層(112)と前記第2の層(114)の経過(124)に対して斜めの傾斜方向に配置されており、前記第1の層(112)と前記第2の層(114)との間の引力(F)は、前記変形可能要素(22;22a〜f;30;40;150;160)の屈曲を引き起こす、請求項1〜29のいずれか一項に記載のMEMSトランスデューサ。
  31. 前記変形可能要素(22;22a〜f;30;40;150;160)は、バー構造を含み、前記バー構造は、第1の端部および第2の端部において固定的にクランプ締めされる、請求項1〜30のいずれか一項に記載のMEMSトランスデューサ。
  32. 前記電気機械トランスデューサ(18;18a〜f)が、静電トランスデューサ、圧電トランスデューサ、電磁トランスデューサ、電気力学的トランスデューサ、熱機械トランスデューサまたは磁歪トランスデューサとして形成されている、請求項1〜31のいずれか一項に記載のMEMSトランスデューサ。
  33. 前記電気機械トランスデューサ(18;18a〜f)は、静電トランスデューサとして形成され、前記MEMSトランスデューサは、前記変形可能要素(22;160)の軸方向(98)に沿って延伸する第1の電極(126)をさらに備え、前記変形可能要素(22;160)は第2の電極(127)をさらに備え、前記第1の電極(126)と前記第2の電極(127)との間に電位を印加して、前記第1の電極(126)と前記第2の電極(127)との間に静電力(F)を発生させることができ、前記変形可能要素(22;160)は、前記静電力(F)に基づいて前記横運動方向(24)に沿って前記変形を実行するように構成されている、請求項32に記載のMEMSトランスデューサ。
  34. 前記体積流(12)または前記電位に影響されない前記変形可能要素(22;160)の状態において、前記変形可能要素(22;160)と前記第1の電極(126)との間の距離は、前記変形可能要素(22;160)の前記軸方向(98)に沿って変化し、前記距離は、前記電気機械トランスデューサ(18;18a〜f)が前記基板(14)への接続を含む領域における最小距離を含む、請求項33に記載のMEMSトランスデューサ。
  35. 前記電気機械トランスデューサ(18;18a〜f)は、第1の変形可能要素(22;22a〜f;30;40;150;160)と、第2の変形可能要素(22;22a〜f;30;40;150;160)と、プレート要素(62;62a〜c)とを備え、前記変形可能要素(22;22a〜f;30;40;150;160)は、前記横運動方向(24)に沿って変形されるように構成されており、前記第1の変形可能要素(22;22a〜f;30;40;150;160)および前記第2の変形可能要素(22;22a〜f;30;40;150;160)は、前記第1の変形可能要素および前記第2の変形可能要素の偏向可能端部(52)が互いに面するように配置され、前記プレート要素(62;62a〜62c)は前記偏向可能な端部(52)に接続され、前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形と前記運動方向(24)に沿った前記プレート要素(62;62a〜c)の動きとは因果関係にある、請求項1〜34のいずれか一項に記載のMEMSトランスデューサ。
  36. 前記運動方向(24)に沿ってさらなるプレート要素(62;62a〜c)が配置され、前記プレート要素(62;62a〜62c)と前記さらなるプレート要素(62;62a〜62c)との間に配置された容積(42a)が、前記体積流(12)に基づいて、または前記電気機械トランスデューサ(18;18a〜f)の作動に基づいて変更される、請求項35に記載のMEMSトランスデューサ。
  37. 前記電気機械トランスデューサ(18;18a〜f)は、第1の変形可能要素および第2の変形可能要素(22;22a〜f;30;40;150;160)を備え、前記第1の変形可能要素および前記第2の変形可能要素(22;22a〜f;30;40;150;160)は、前記第1の変形可能要素および前記第2の変形可能要素(22;22a〜f;30;40;150;160)の軸延伸方向(y)に沿って接続されており、前記第1の変形可能要素と前記第2の変形可能要素(22;22a〜f;30;40;150;160)との間にばね要素(102)が配置されている、請求項1〜36のいずれか一項に記載のMEMSトランスデューサ。
  38. 前記ばね要素(102)は、前記横運動方向(24)に沿って、前記横運動方向(24)に垂直な方向よりも低い剛性を含む、請求項37に記載のMEMSトランスデューサ。
  39. 前記電気機械トランスデューサ(18;18a〜18f)は、前記基板(14)の横主延伸方向(x)に対して斜めに配置されている、請求項1〜38のいずれか一項に記載のMEMSトランスデューサ。
  40. 前記基板(14)は、前記電気機械トランスデューサ(18;18a〜f)が前記基板(14)に接続される領域に隣接する基板ばね要素(72a〜b)を備える、請求項1〜39のいずれか一項に記載のMEMSトランスデューサ。
  41. 前記電気機械トランスデューサ(18;18a〜f)は、プレート要素(62;62a〜62c)を含み、前記プレート要素(62;62a〜62c)は、前記プレート要素(62;62a〜62c)のプレート表面が前記運動方向(24)に沿って動くように、前記横運動方向(24)に沿って動くように構成されている、請求項1〜40のいずれか一項に記載のMEMSトランスデューサ。
  42. 前記プレート要素(62;62a〜62c)は、電位に接続することができる電極を備え、前記プレート要素(62a〜62c)は、さらなる電極に対向する静電力(F)を生成するように構成されており、前記正電力(F)は、前記横運動方向(24)に沿って前記変形可能要素(22;22a〜f;30;40;150;160)の変形を引き起こし、または、前記プレート要素(62;62a〜62c)は、前記体積流(12)に基づいて前記横運動方向(24)に沿って前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形を引き起こすように構成されており、前記電位は、前記変形に基づいて影響され得る、請求項41に記載のMEMSトランスデューサ。
  43. 前記変形可能要素(22;22a〜f;30;40;150;160)と前記プレート要素(62;62a〜c)との間にばね要素(64a〜b;68)が配置されている、請求項41または42に記載のMEMSトランスデューサ。
  44. 少なくとも1つのさらなる変形可能要素(40b〜c)が、前記変形可能要素と前記プレート要素(62;62a〜b)との間に配置されており、前記さらなる変形可能要素は、前記変形可能要素(22;22a〜f;30;40;150;160)のアクチュエータ進行を増大させるように構成される、請求項41〜43のいずれか一項に記載のMEMSトランスデューサ。
  45. 前記変形可能要素(22;22a〜f;30;40;150;160)は、前記変形可能要素(22;22a〜f;30;40;150;160)の、前記プレート要素(62)から外方に面する側部状に配置されている、前記キャビティ(16)の部分容積(38a)が、前記プレート要素(62)の方向において前記変形可能要素(22;22a〜f;30;40;150;160)を通って延伸するような、開口(78a)を備える、請求項35〜44のいずれか一項に記載のMEMSトランスデューサ。
  46. 前記キャビティ(16)は、前記体積流(12)が、前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形に基づいて、前記キャビティ(16)からまたは前記キャビティ(16)へと前記横運動方向(24)に対して垂直に流れるように、前記横運動方向(24)に対して垂直に配置されている、前記基板(14)内の開口(26)を備える、請求項1〜45のいずれか一項に記載のMEMSトランスデューサ。
  47. 前記開口(26)は、前記MEMSトランスデューサの外側から前記キャビティ(16)に向かって減少する、軸方向(y)に沿って可変の断面を含む、請求項46に記載のMEMSトランスデューサ。
  48. 前記開口(26)は、前記MEMSトランスデューサの外側から前記キャビティ(16)に向かって減少する、軸方向(y)に垂直な厚さ方向(z)に沿った可変の断面を含む、請求項46または47に記載のMEMSトランスデューサ。
  49. 前記第1の変形可能要素および前記第2の変形可能要素が前記開口(26)に隣接して配置されている、請求項45〜48のいずれか一項に記載のMEMSトランスデューサ。
  50. 前記キャビティ(16)は、前記基板(14)内の開口(26)を含み、前記体積流(12)がバー要素(44)を回流するように、前記開口(26)の領域内に少なくとも1つの前記バー要素(44)が形成される、請求項1〜49のいずれか一項に記載のMEMSトランスデューサ。
  51. 前記MEMSトランスデューサは、複数のバー要素(44)を備え、隣接するバー要素(44)は互いに、5μm未満の距離(85)を含む、請求項50に記載のMEMSトランスデューサ。
  52. 前記キャビティ(16)は、前記基板(14)内の開口(26)を含み、前記開口(26)の領域内にカバー(43)が配置されている、請求項1〜51のいずれか一項に記載のMEMSトランスデューサ。
  53. 前記キャビティ(16)は、前記基板(14)内の開口(26)を含み、前記開口(26)の領域内にバルブ構造(85a〜f)が配置されており、前記バルブ構造(85a〜f)は、前記キャビティ(16)外および/または前記キャビティ(16)内への少なくとも1つの方向に沿った前記体積流(12)の前記開口の通過を減少させるように構成されている、請求項1〜52のいずれか一項に記載のMEMSトランスデューサ。
  54. 前記バルブ構造(85a〜f)が能動的に形成されている、請求項53に記載のMEMSトランスデューサ。
  55. 前記変形可能要素が能動的に形成され、前記バルブ構造(85a〜f)が前記変形可能要素と同じアクチュエータ原理に基づく、請求項54に記載のMEMSトランスデューサ。
  56. 前記流体流(12)中に圧力パルスが発生するように前記バルブ構造(85a〜f)を駆動するように構成された制御デバイスを含む、請求項54または55に記載のMEMSトランスデューサ。
  57. 前記キャビティ(16)からの前記体積流(12)の流出または前記キャビティ(16)への前記体積流(12)の流入を少なくとも部分的に阻止するように構成された膜要素(104)をさらに備え、前記体積流(12)に基づいて前記膜要素(104)の偏向が生じ得る、請求項1〜56のいずれか一項に記載のMEMSトランスデューサ。
  58. 前記キャビティ(16)は、前記基板(14)内の開口(26)を含み、前記開口(26)の領域内に前記膜要素(104)が配置されている、請求項57に記載のMEMSトランスデューサ。
  59. 請求項1〜58のいずれか一項に記載の少なくとも1つの第2のMEMSトランスデューサ(80b〜c;80’b)を有するMEMSスタック(90;140)内に配置される、請求項1〜58のいずれか1項に記載のMEMSトランスデューサ。
  60. 前記MEMSトランスデューサ(80a、80’a)および前記第2のMEMSトランスデューサ(80b〜c;80’b)の前記電気機械トランスデューサ(18;18a〜f)がともに駆動され得る、請求項59に記載のMEMSトランスデューサ。
  61. 前記MEMSトランスデューサのキャップ表面(32b)が前記スタック(140)の外側を形成し、前記MEMSトランスデューサ(80’a)は、前記第2のMEMSトランスデューサ(80’b)に面する側部から外方に面するように配置される前記キャップ表面(32b)内に開口(26)を備え、前記MEMSトランスデューサ(80’a)の前記体積流(12)は、前記第2のMEMSトランスデューサ(80’b)の前記体積流(12)に垂直または反対に前記キャビティ(16)から流出するか、または前記キャビティ(16)へと流入する、請求項59または60に記載のMEMSトランスデューサ。
  62. 前記MEMSトランスデューサ(80’a)の前記キャビティ(16)と前記第2のMEMSトランスデューサ(80’b)の前記キャビティ(16)とが互いに接続されている、請求項59〜61のいずれか一項に記載のMEMSトランスデューサ。
  63. 前記MEMSトランスデューサ(80’a)の前記キャビティ(16)および前記第2のMEMSトランスデューサ(80’b)の前記キャビティ(16)は、互いに異なる共振周波数を含む、請求項59〜62のいずれか一項に記載のMEMSトランスデューサ。
  64. 前記変形可能要素(22;22a〜f;30;40;150;160)は、少なくとも1μmで最大100mm、好ましくは少なくとも100μmで最大10mm、特に好ましくは少なくとも500μmで最大5mmの範囲内の値を含む軸方向延伸(y)を含む、請求項1〜63のいずれか一項に記載のMEMSトランスデューサ。
  65. 前記変形可能要素(22;22a〜f;30;40;150;160)は、少なくとも0.1μmで最大1000μm、好ましくは少なくとも1μmで最大100μm、特に好ましくは少なくとも5μmで最大30μmの範囲内の値を含む、前記横運動方向(24)に沿った延伸を含む、請求項1〜64のいずれか一項に記載のMEMSトランスデューサ。
  66. 前記変形可能要素(22;22a〜f;30;40;150;160)は、前記横運動方向(24)に垂直に配置されている方向(z)に沿った延伸を含み、前記延伸は、少なくとも0.1μmで最大1000μm、好ましくは少なくとも1μmで最大300μm、特に好ましくは少なくとも10μmで最大100μmの範囲内の値を含む、請求項1〜65のいずれか一項に記載のMEMSトランスデューサ。
  67. 少なくとも1つの変形可能なセンサ素子と、少なくとも1つの変形可能なアクチュエータ素子とを含む、請求項1〜66のいずれか一項に記載のMEMSトランスデューサ。
  68. 流体の体積流(12)と相互作用するMEMSトランスデューサであって、キャビティ(16)を含む基板(14)と、前記キャビティ(16)内で前記基板(14)に接続され、横運動方向(24)に沿って変形可能な要素(22;22a〜f;30;40;150;160)を備える電気機械トランスデューサ(18;18a〜f)であり、横運動方向(24)に沿った前記変形可能要素(22;22a〜f;30;40;150;160)の変形と、前記流体の前記体積流(12)とは因果関係にあり、前記横運動方向(24)は、前記基板(14)に対して面内に延伸している、電気機械トランスデューサ(18;18a〜f)と、前記横運動方向(24)に沿って変形されるように構成されている、前記基板(14)に接続されており、各々が前記横運動方向(24)に沿って変形可能な要素(22;22a〜f;30;40;150;160)を備える第1の電気機械トランスデューサおよび第2の電気機械トランスデューサ(18b〜e)であり、前記第1の電気機械トランスデューサ(18b、18d)および前記第2の電気機械トランスデューサ(18c、18e)は、第1の時間間隔の間に互いに向かって運動し、第2の時間間隔の間に互いから外方に運動するように構成されており、前記第1の電気機械トランスデューサ(18b、18d)と前記第2の電気機械トランスデューサ(18c、18e)との間のサブキャビティ(42a、42b)の容積は、前記第1の時間間隔および前記第2の時間間隔の間に可変である、第1の電気機械トランスデューサおよび第2の電気機械トランスデューサ(18b〜e)とを備え、前記第1の電気機械トランスデューサの第1の変形可能要素(22;22a〜f;30;40;150;160)、および、前記第2の電気機械トランスデューサの第2の変形可能要素はバー構造(30)を含み、前記バー構造(30)は、前記バー構造の軸方向(y)に沿って湾曲するように構成されており、前記第1の変形可能要素(22;22a〜f;30;40;150;160)は、能動的に形成され、前記体積流と相互作用するように構成されており、または、前記第1の変形可能要素(22;22a〜f;30;40;150;160)に接続されており、剛性であるように構成されているプレート要素(62;62a〜c)が、前記体積流と相互作用するように構成されている、MEMSトランスデューサ。
  69. 前記体積流(12)が音響音波または超音波である、請求項1〜68のいずれか一項に記載のMEMSトランスデューサ(10;20;50;80;80’;100;110)を有するMEMSスピーカ。
  70. 前記キャビティ(16)は、前記基板(14)内の第1の開口(26)と第2の開口(26)とを備え、前記電気機械トランスデューサ(18;18a〜f)は、前記流体に基づいて前記体積流(12)を提供し、前記電気機械トランスデューサ(18;18a〜f)の作動に基づいて前記キャビティ(16)の方向において前記第1の開口(26)を通じて前記流体を搬送し、または、前記作動に基づいて前記キャビティ(16)から外方への方向において前記第2の開口(26)を通じて前記流体を搬送するように構成されている、請求項1〜68のいずれか一項に記載のMEMSトランスデューサ(10;20;50;80;80’;100;110)を有するMEMSポンプ。
  71. 前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形に基づいて、前記電気機械トランスデューサ(18;18a〜f)の端子において電気信号(129b)を得ることができ、前記変形は前記体積流(12)に基づいて生じ得る、請求項1〜68のいずれか一項に記載のMEMSトランスデューサ(10;20;50;80;80’;100;110)を有するMEMSマイクロフォン。
  72. 請求項1〜71のいずれか一項に記載のMEMSトランスデューサ(10;20;50;80;80’;100;110)と、前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形を駆動し、または、前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形を検出するように構成された制御デバイス(128)とを備える、MEMSシステム(170)。
  73. 前記MEMSトランスデューサ(10;20;50;80;80’;100;110)は、複数の電気機械トランスデューサ(18;18a〜f)を含み、前記制御デバイス(128;(18c、18e)は、第1の電気機械トランスデューサ(18b、18d)と、隣接する第2の電気機械トランスデューサ(18c、18e)とが、第1の時間間隔の間に互いに向かって少なくとも局所的に運動するように、前記複数の電気機械トランスデューサ(18;18a〜18f)を駆動するように構成されており、前記制御デバイス(128;(18c、18e)は、前記第1の電気機械トランスデューサ(18b、18d)と、前記第1の電気機械トランスデューサ(18b、18d)に隣接して配置されている第3の電気機械トランスデューサ(18a、18c)とが、第2の時間間隔の間に互いに向かって運動するように、前記複数の電気機械トランスデューサ(18;18a〜18f)を駆動するように構成されており、前記第1の電気機械トランスデューサ(18b、18d)は、前記第2の電気機械トランスデューサ(18c、18e)と前記第3の電気機械トランスデューサ(18a、18c)との間に配置されている、請求項72に記載のMEMSシステム。
  74. 前記MEMSシステムは、少なくとも1つのさらなるMEMSトランスデューサ(10;20;50;80;80’;100;110)を含み、前記さらなるMEMSトランスデューサ(10;20;50;80;80’;100;110)の前記キャビティ(16)は、前記MEMSトランスデューサ(10,20,50;80,80’;100;110)の前記キャビティ(16)の共振周波数とは異なる共振周波数を含み、前記制御デバイスは、前記MEMSトランスデューサおよび前記さらなるMEMSトランスデューサの前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形を検出し、前記電気信号に基づいてフーリエ合成を計算するように構成される、請求項72または73に記載のMEMSシステム。
  75. 前記MEMSシステムは、少なくとも1つのさらなるMEMSトランスデューサ(10;20;50;80;80’;100;110)を含み、前記さらなるMEMSトランスデューサ(10;20;50;80;80’;100;110)の前記キャビティ(16)は、前記MEMSトランスデューサ(10,20,50;80,80’;100;110)の前記キャビティ(16)の共振周波数とは異なる共振周波数を含み、前記制御デバイスは、前記MEMSトランスデューサおよび前記さらなるMEMSトランスデューサの前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形を、互いに異なる周波数で駆動するように構成される、請求項72〜74のいずれか一項に記載のMEMSシステム。
  76. MEMSトランスデューサを製造する方法であって、キャビティ(16)を備える基板(14)を提供するステップと、前記基板(14)において前記キャビティ(16)内で、横運動方向(24)に沿って変形可能な要素(22;22a〜f;30;40;150; 160)を備える電気機械トランスデューサ(18;18a〜f)を製造するステップとを含み、結果として、前記横運動方向(24)に沿った前記変形可能要素(22;22a〜f;30;40;150;160)の前記変形と、流体の体積流(12)とが因果関係にある、方法。
  77. 前記方法は、低摩擦層を配置するステップをさらに含み、前記低摩擦層が、前記変形可能要素(22;22a〜f;30;40;150;160)と隣接する層(32a〜b)との間の領域内に配置されている、請求項76に記載の方法。
JP2017565061A 2015-06-15 2016-06-14 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法 Active JP6668385B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015210919.4 2015-06-15
DE102015210919.4A DE102015210919A1 (de) 2015-06-15 2015-06-15 MEMS-Wandler zum Interagieren mit einem Volumenstrom eines Fluids und Verfahren zum Herstellen desselben
PCT/EP2016/063611 WO2016202790A2 (de) 2015-06-15 2016-06-14 Mems-wandler zum interagieren mit einem volumenstrom eines fluids und verfahren zum herstellen desselben

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019206652A Division JP2020051428A (ja) 2015-06-15 2019-11-15 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2018521576A true JP2018521576A (ja) 2018-08-02
JP6668385B2 JP6668385B2 (ja) 2020-03-18

Family

ID=56134348

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017565061A Active JP6668385B2 (ja) 2015-06-15 2016-06-14 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法
JP2019206652A Pending JP2020051428A (ja) 2015-06-15 2019-11-15 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019206652A Pending JP2020051428A (ja) 2015-06-15 2019-11-15 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法

Country Status (7)

Country Link
US (1) US10457544B2 (ja)
EP (4) EP3878803A1 (ja)
JP (2) JP6668385B2 (ja)
KR (1) KR102036429B1 (ja)
CN (1) CN107925825B (ja)
DE (1) DE102015210919A1 (ja)
WO (1) WO2016202790A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525960A (ja) * 2019-03-21 2022-05-20 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 大きな流体的に効果的な表面を有するmems

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2987457C (en) * 2015-06-08 2020-04-07 Ihi Corporation Multilayer reactor utilizing heat exchange
DE102016225721A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Ventilvorrichtung
DE102017200308B4 (de) 2017-01-10 2021-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanische Bauelemente mit mechanischen Aktuatoren
DE102017203722B4 (de) 2017-03-07 2021-11-25 Brandenburgische Technische Universität (BTU) Cottbus-Senftenberg Mems und verfahren zum herstellen derselben
DE102017206766A1 (de) 2017-04-21 2018-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mems-wandler zum interagieren mit einem volumenstrom eines fluids und verfahren zum herstellen desselben
DE102017208911A1 (de) * 2017-05-26 2018-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Schallwandler
US10609474B2 (en) 2017-10-18 2020-03-31 xMEMS Labs, Inc. Air pulse generating element and manufacturing method thereof
US10477300B2 (en) 2017-11-05 2019-11-12 xMEMS Labs, Inc. Air pulse generating element and sound producing device
US10327060B2 (en) * 2017-11-05 2019-06-18 xMEMS Labs, Inc. Air pulse generating element and sound producing device
US10476461B2 (en) * 2017-12-20 2019-11-12 Nvf Tech Ltd Active distributed mode actuator
WO2019134146A1 (zh) * 2018-01-05 2019-07-11 深圳市沃特沃德股份有限公司 语音采集装置和家电设备
EP3527826B1 (en) 2018-02-16 2020-07-08 ams AG Pumping structure, particle detector and method for pumping
GB2571283A (en) * 2018-02-22 2019-08-28 Clifford Pooley Robert Apparatus and method for producing sound
US10425732B1 (en) 2018-04-05 2019-09-24 xMEMS Labs, Inc. Sound producing device
US10567866B1 (en) * 2018-08-17 2020-02-18 xMEMS Labs, Inc. Sound producing device and valve
US10771891B2 (en) 2018-08-19 2020-09-08 xMEMS Labs, Inc. Method for manufacturing air pulse generating element
US10484784B1 (en) * 2018-10-19 2019-11-19 xMEMS Labs, Inc. Sound producing apparatus
CN110702784A (zh) * 2019-01-30 2020-01-17 杭州超钜科技有限公司 一种基于磁电谐振检测痕量氢气的系统及方法
US10681488B1 (en) * 2019-03-03 2020-06-09 xMEMS Labs, Inc. Sound producing apparatus and sound producing system
US10863280B2 (en) * 2019-03-05 2020-12-08 xMEMS Labs, Inc. Sound producing device
US20220155159A1 (en) * 2019-03-15 2022-05-19 Massachusetts Institute Of Technology Microscale and nanoscale structured electromechanical transducers employing compliant dielectric spacers
EP3723390A1 (en) * 2019-04-09 2020-10-14 Xmems Labs, Inc. Air pulse generating element and sound producing device
DE102019205735B3 (de) 2019-04-18 2020-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Schallwandler
EP3739904A1 (de) * 2019-05-14 2020-11-18 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Akustisches biegewandlersystem und akustische vorrichtung
US10783866B1 (en) * 2019-07-07 2020-09-22 xMEMS Labs, Inc. Sound producing device
US11172310B2 (en) 2019-07-07 2021-11-09 xMEMS Labs, Inc. Sound producing device
EP3778469B1 (de) 2019-08-16 2023-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mems-bauteil, baugruppe mit dem mems-bauteil und verfahren zum betreiben des mems-bauteils
DE102019125815A1 (de) * 2019-09-25 2021-03-25 USound GmbH Schallwandlereinheit zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenbereich und/oder im Ultraschallbereich
CN114728781A (zh) 2019-11-13 2022-07-08 弗劳恩霍夫应用研究促进协会 Mems器件、包括mems器件的组件以及用于操作mems器件的方法
WO2021134686A1 (zh) * 2019-12-31 2021-07-08 瑞声声学科技(深圳)有限公司 一种mems扬声器
EP3852391B1 (de) 2020-01-17 2024-05-08 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Mems-lautsprecher mit erhöhter leistungsfähigkeit
US11043197B1 (en) * 2020-01-31 2021-06-22 xMEMS Labs, Inc. Air pulse generating element and sound producing device with virtual valve
US11438705B2 (en) * 2020-02-12 2022-09-06 xMEMS Labs, Inc. Sound producing device
US11489461B2 (en) * 2020-05-26 2022-11-01 Microsoft Technology Licensing, Llc Thin film actuator having transversely oriented structural stiffeners to increase actuator stroke
WO2022006817A1 (zh) * 2020-07-09 2022-01-13 诺思(天津)微系统有限责任公司 Mems扬声器及其制造方法
CN111885469B (zh) * 2020-07-09 2022-09-13 诺思(天津)微系统有限责任公司 Mems扬声器及其制造方法
CN117044237A (zh) * 2020-09-14 2023-11-10 弗劳恩霍夫应用研究促进协会 Mems装置、听戴式装置、mems泵、扬声器以及驱动mems装置之方法
CN114697830B (zh) * 2020-12-28 2023-06-06 华为技术有限公司 扬声器及电子设备
US11943585B2 (en) 2021-01-14 2024-03-26 xMEMS Labs, Inc. Air-pulse generating device with common mode and differential mode movement
US11445279B2 (en) * 2021-01-14 2022-09-13 xMEMS Labs, Inc. Air-pulse generating device and sound producing method thereof
US11743659B2 (en) 2021-01-14 2023-08-29 xMEMS Labs, Inc. Air-pulse generating device and sound producing method thereof
CN113163311B (zh) * 2021-04-12 2023-02-17 诺思(天津)微系统有限责任公司 Mems扬声器和电子设备
CN113286238A (zh) * 2021-04-12 2021-08-20 诺思(天津)微系统有限责任公司 Mems扬声器及其制造方法以及电子设备
EP4156712A1 (en) 2021-09-24 2023-03-29 Robert Bosch GmbH Microelectromechanical sound transducer system
NO347016B1 (en) * 2021-12-08 2023-04-11 Nordicneurolab As Audio System for MRI
CN114339552A (zh) * 2021-12-31 2022-04-12 瑞声开泰科技(武汉)有限公司 一种发声装置
DE102022200222A1 (de) 2022-01-12 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Mikro-elektromechanischer Energiewandler und entsprechendes Herstellungsverfahren sowie mikromechanisches Bauelement
EP4236367A1 (de) 2022-02-28 2023-08-30 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Korrugationen oder schwächungsbereiche auf ankerstrukturen von vertikalen mems-wandler-membranen
WO2023161469A1 (de) 2022-02-28 2023-08-31 Hahn-Schickard-Gesellschaft Für Angewandte Forschung E. V. Korrugationen oder schwächungsbereiche auf ankerstrukturen von vertikalen mems-wandler-membranen
EP4290887A1 (de) 2022-06-10 2023-12-13 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren zur herstellung einer mehrzahl von mems-wandlern mit erhöhter leistungsfähigkeit
EP4297432A1 (de) 2022-06-21 2023-12-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren zur herstellung eines mems-wandlers unter nutzung einer verstreckung eines aktuatormaterials
EP4297433A1 (en) 2022-06-24 2023-12-27 Robert Bosch GmbH Microelectromechanical acoustic pressure-generating device with improved drive
DE102022209187A1 (de) 2022-09-05 2024-03-07 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidisches Interaktionselement zur Erzeugung und/oder Erfassung eines Volumenstroms eines Fluids sowie eine akustische Vorrichtung mit einem solchen mikrofluidischen Interaktionselement
DE102022209186A1 (de) 2022-09-05 2024-03-07 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidisches Interaktionselement zur Erzeugung und/oder Erfassung eines Volumenstroms eines Fluids sowie eine akustische Vorrichtung mit einem solchen mikrofluidischen Interaktionselement
DE102022209706A1 (de) * 2022-09-15 2024-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein MEMS, Verfahren zum Herstellen eines MEMS und Verfahren zum Auslegen eines MEMS
DE102022128242A1 (de) 2022-10-25 2024-04-25 Robert Bosch Gesellschaft mit beschränkter Haftung Mikroelektromechanische Vorrichtung zur Erzeugung eines Schalldrucks
SE546029C2 (en) * 2022-12-22 2024-04-16 Myvox Ab A mems-based micro speaker device and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029936A1 (de) * 2010-06-10 2011-12-15 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonsruktur
JP2012029290A (ja) * 2010-07-22 2012-02-09 Commissariat A L'energie Atomique & Aux Energies Alternatives Memsタイプの圧力パルス発生器
DE102012223605A1 (de) * 2012-12-18 2014-06-18 Robert Bosch Gmbh MEMS-Bauelement zum Erzeugen von Druckpulsen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814150A1 (de) * 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
NO20016398D0 (no) * 2001-12-27 2001-12-27 Abb Research Ltd Mini-kraftomformer I
KR20060128042A (ko) 2004-03-05 2006-12-13 알루미나 마이크로 엘엘씨 선택식 마이크로밸브 형성 접합방법
AP2008004448A0 (en) 2005-09-30 2008-04-30 Seattle Biomedical Res Inst Plasmodium liver stage antigens
JP2007210083A (ja) * 2006-02-13 2007-08-23 Hitachi Ltd Mems素子及びその製造方法
US7903835B2 (en) * 2006-10-18 2011-03-08 The Research Foundation Of State University Of New York Miniature non-directional microphone
US8690830B2 (en) * 2010-05-26 2014-04-08 Innovative Micro Technology In-plane electromagnetic MEMS pump
WO2011158708A1 (ja) * 2010-06-17 2011-12-22 株式会社村田製作所 可変容量装置
FR2963099B1 (fr) * 2010-07-22 2013-10-04 Commissariat Energie Atomique Capteur de pression dynamique mems, en particulier pour des applications a la realisation de microphones
US8506105B2 (en) * 2010-08-25 2013-08-13 Generla Electric Company Thermal management systems for solid state lighting and other electronic systems
DE102011115560A1 (de) * 2010-10-15 2012-04-19 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Druck- und durchflusssteuersystem in einem antriebsstrang für automatikgetriebe
FR2983955B1 (fr) * 2011-12-09 2014-10-03 Openfield Capteur de pression pour fluide
JP6393930B2 (ja) * 2012-01-30 2018-09-26 俊 保坂 半導体センサー・デバイスおよびその製造方法
EP2828901B1 (en) * 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
CN103557143B (zh) * 2013-11-12 2016-03-02 苏州大学 闭环压电薄膜泵及其流量控制方法
CN103604556A (zh) * 2013-11-26 2014-02-26 无锡市纳微电子有限公司 一种流体压力传感器
DE102014225934B4 (de) * 2014-12-15 2017-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrostatisch auslenkbares mikromechanisches Bauelement und Verfahren zu seiner Herstellung
US10104478B2 (en) * 2015-11-13 2018-10-16 Infineon Technologies Ag System and method for a perpendicular electrode transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029936A1 (de) * 2010-06-10 2011-12-15 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonsruktur
JP2012029290A (ja) * 2010-07-22 2012-02-09 Commissariat A L'energie Atomique & Aux Energies Alternatives Memsタイプの圧力パルス発生器
DE102012223605A1 (de) * 2012-12-18 2014-06-18 Robert Bosch Gmbh MEMS-Bauelement zum Erzeugen von Druckpulsen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525960A (ja) * 2019-03-21 2022-05-20 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 大きな流体的に効果的な表面を有するmems
JP7331125B2 (ja) 2019-03-21 2023-08-22 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 大きな流体的に効果的な表面を有するmems

Also Published As

Publication number Publication date
JP2020051428A (ja) 2020-04-02
EP3878803A1 (de) 2021-09-15
CN107925825B (zh) 2020-06-19
EP3878804A1 (de) 2021-09-15
US10457544B2 (en) 2019-10-29
US20180179048A1 (en) 2018-06-28
KR20180030784A (ko) 2018-03-26
WO2016202790A3 (de) 2017-02-09
KR102036429B1 (ko) 2019-10-24
EP3878801A1 (de) 2021-09-15
WO2016202790A2 (de) 2016-12-22
EP3308555A2 (de) 2018-04-18
CN107925825A (zh) 2018-04-17
JP6668385B2 (ja) 2020-03-18
EP3308555B1 (de) 2021-07-07
DE102015210919A1 (de) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6668385B2 (ja) 流体の体積流と相互作用するmemsトランスデューサおよびその製造方法
US11554950B2 (en) MEMS transducer for interacting with a volume flow of a fluid, and method of producing same
JP7303121B2 (ja) マイクロメカニカル音響変換器
KR101901204B1 (ko) 펌핑 스피커를 위한 시스템 및 방법
CN107005769B (zh) 用于实现高的力及偏斜的具有微机械压电致动器的微机电系统
Shah et al. Design approaches of MEMS microphones for enhanced performance
TWI785318B (zh) 具有大流體有效表面之微機電系統(mems)
Stoppel et al. Novel membrane-less two-way MEMS loudspeaker based on piezoelectric dual-concentric actuators
JP2023511538A (ja) 改良された性能を有するmemsトランスデューサ
TW202222677A (zh) Mems裝置、近場揚聲器、聽戴式裝置、mems泵、揚聲器以及驅動mems裝置之方法
Glacer et al. Silicon microspeaker with out-of-plane displacement
Chang et al. Domain/boundary variation in cantilever array for bandwidth enhancement of PZT MEMS microspeaker
CN115484533A (zh) Mems压电扬声器
US20220380200A1 (en) Mems device, assembly comprising the mems device, and methods for operating the mems device
Tseng et al. Using Reverse-Trapezoid Cantilevers and Sealed Back-Chamber to Enhance the Performance of Mems Piezoelectric Microspeaker at Ultra-High Frequencies
CN117322013A (zh) Mems声换能器
Rufer CMOS-MEMS Electroacoustic Micro-Transducers
Joe et al. A systematic review on the research headway of piezoelectric diaphragms for micro electromechanical applications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250