JP2018510603A - Circuit device with transformer with center tap and output voltage measurement - Google Patents

Circuit device with transformer with center tap and output voltage measurement Download PDF

Info

Publication number
JP2018510603A
JP2018510603A JP2017547504A JP2017547504A JP2018510603A JP 2018510603 A JP2018510603 A JP 2018510603A JP 2017547504 A JP2017547504 A JP 2017547504A JP 2017547504 A JP2017547504 A JP 2017547504A JP 2018510603 A JP2018510603 A JP 2018510603A
Authority
JP
Japan
Prior art keywords
voltage
transformer
output
circuit
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017547504A
Other languages
Japanese (ja)
Other versions
JP6527952B2 (en
Inventor
マーゲル・クリスティアン
ムシル・フランツ・ペーター
エベール・ローベルト
シュタインマウラー・フリードリヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fronius International GmbH
Original Assignee
Fronius International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fronius International GmbH filed Critical Fronius International GmbH
Publication of JP2018510603A publication Critical patent/JP2018510603A/en
Application granted granted Critical
Publication of JP6527952B2 publication Critical patent/JP6527952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/005Circuits for altering the indicating characteristic, e.g. making it non-linear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/20AC or DC potentiometric measuring arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10174Diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

2次側の出力電圧の電圧測定をセンタータップ付きの変圧器を有する回路装置8内で簡単に可能にするため、測定点Pを2つの抵抗R3,R4間に形成するように、直列に接続された少なくとも2つの抵抗R3,R4が、前記変圧比Tの2次側の2つの外部端子A1,A2間に接続されていること、及び、前記出力電圧UAに対応する、測定点Pと第2出力端子13との間の電圧UPを測定する電圧計Vが設けられていることが提唱されている。(図4)In order to enable voltage measurement of the output voltage on the secondary side easily in the circuit device 8 having a transformer with a center tap, the measurement point P is connected in series so as to be formed between the two resistors R3 and R4. The at least two resistors R3 and R4 connected between the two external terminals A1 and A2 on the secondary side of the transformation ratio T and the measurement point P and the second corresponding to the output voltage UA It is proposed that a voltmeter V for measuring the voltage UP between the two output terminals 13 is provided. (Fig. 4)

Description

本発明は、センタータップ付きの少なくとも1つの変圧器を有する回路装置に関する。この場合、当該変圧器の2次側の中心点が、第1出力線を介して第1出力端子に接続されていて、当該変圧器の2次側の2つの外部端子が、それぞれ1つの電気スイッチング素子を介して接続されていて、第2出力端子を有する第2出力線に接続されていて、当該第1出力端子と当該第2出力端子との間に発生する当該回路装置の出力電圧を測定するために電圧計に接続されている。この場合、直列に接続された少なくとも2つの抵抗が、1つの測定点を当該両抵抗間に形成するために、当該変圧器の当該2次側の当該両外部端子間に接続されている。   The present invention relates to a circuit device having at least one transformer with a center tap. In this case, the center point on the secondary side of the transformer is connected to the first output terminal via the first output line, and the two external terminals on the secondary side of the transformer each have one electrical The output voltage of the circuit device generated between the first output terminal and the second output terminal is connected to a second output line having a second output terminal. Connected to a voltmeter to measure. In this case, at least two resistors connected in series are connected between the two external terminals on the secondary side of the transformer in order to form one measurement point between the two resistors.

例えば、DC−DCコンバータ、スイッチングコンバータ、共振形スイッチングコンバータ等のような整流器では、多くの場合に、2次側のセンタータップ付きの変圧器が使用される。当該整流器に対する一例は、図1に示されているような周知の共振形コンバータとしての整流器1である。当該共振形コンバータの場合、共振回路が、インダクタLとコンデンサCと当該変圧器の2次側とによって構成される。当該共振形コンバータは、入力部Uにパルスパターンを印加されることによって共振される。当該パルスパターンは、例えば(図1に示されていない)周知のスイッチング装置とPWM制御装置とによって実現され得る。当該共振は、変圧器Tを介して伝達され、その2次側で整流される。 For example, in a rectifier such as a DC-DC converter, a switching converter, a resonant switching converter, etc., a transformer with a center tap on the secondary side is often used. An example for the rectifier is a rectifier 1 as a well-known resonant converter as shown in FIG. For the resonant converter, the resonant circuit is constituted by the secondary side of the inductor L R and a capacitor C R and the transformer. The resonant converter is resonated by applying a pulse pattern to the input unit U E. The pulse pattern can be realized, for example, by a well-known switching device (not shown in FIG. 1) and a PWM controller. The resonance is transmitted via the transformer T and rectified on its secondary side.

このような整流器1の出力電圧Uを調整するためには、一般に、出力電圧Uの測定が必要である。特に、例えば溶接電源の場合のような高い出力電力クラスに適応させる場合、大きい電流が、2次側で通電する。整流器1の2次側の複数の回路部品が、通常は、例えば(図2中のような)プリント回路基板等のような回路基板3上に配置されている。しかし、これらの回路部品は、(特に非常に大きい電流又は電圧の場合は)銅線によって接続されてもよい。当該非常に大きい電流又は電圧の場合に、回路基板3の大きい銅断面積を必要とするであろう当該回路基板3を経由させないで、整流器1の通電用の正の出力線2を配線する必要がある場合、図2に示されているように、当該正の出力線2は、通常は、独立した導線として外側に配線され、電圧計4が出力電圧Uを測定するために実装されている回路基板3を経由させないで配線される。しかし、当該配線は、正の出力線2を追加の接続線5経由で回路基板3に接続することを必要とさせる。このため、コネクタ6が、回路基板3に配置される。接続線5が、このコネクタ6に接続される。しかし、当該追加の接続線5及び回路基板3の当該コネクタ6は、当該電気モジュールの経費も当然に増大させる。当該経費の増大は、銅線を使用する場合にも同様に当てはまる。何故なら、この場合にも、2つの出力端子間の電圧を測定する従来の技術にしたがって、接続線5が、正の出力線2を当該電圧計に接続するために必要であるからである。 In order to adjust the output voltage U A of such rectifiers 1 is generally necessary to measure the output voltage U A. In particular, when adapting to a high output power class, for example in the case of a welding power source, a large current is energized on the secondary side. A plurality of circuit components on the secondary side of the rectifier 1 are usually arranged on a circuit board 3 such as a printed circuit board (as in FIG. 2). However, these circuit components may be connected by copper wire (especially for very large currents or voltages). In the case of such a very large current or voltage, the positive output line 2 for energizing the rectifier 1 must be routed without going through the circuit board 3 which would require a large copper cross-sectional area of the circuit board 3 If there is, as shown in FIG. 2, the output line 2 of the positive, typically, is wired to the outside as an independent conductor, are mounted to the voltmeter 4 measures the output voltage U a It is wired without going through the existing circuit board 3. However, this wiring requires that the positive output line 2 be connected to the circuit board 3 via the additional connection line 5. For this reason, the connector 6 is disposed on the circuit board 3. A connection line 5 is connected to this connector 6. However, the additional connection line 5 and the connector 6 of the circuit board 3 naturally increase the cost of the electrical module. The increase in expenses is equally applicable when using copper wire. This is because, in this case, the connecting line 5 is necessary to connect the positive output line 2 to the voltmeter according to the conventional technique of measuring the voltage between the two output terminals.

しかも、接続線5が、経時と共に剥離し得り、又は、組み立て時に、接続線5を回路基板3又は正の出力線2に接続したことが完全に忘却され得る。一般に、両者は、稼働用の出力電圧Uの測定値を必要とする、調整される整流器1の故障を引き起こす。特に、接続線5の断絶時に、ダイオードD1,D2を破壊し得る過電圧が、当該ダイオードD1,D2に印加し得る。それ故に、誤差原因を構成するこの追加の接続線5を省略することが望ましい。 Moreover, the connection line 5 can be peeled off over time, or it can be completely forgotten that the connection line 5 is connected to the circuit board 3 or the positive output line 2 during assembly. In general, both require a measurement of the output voltage U A for operation, causing failure of the rectifier 1 to be adjusted. In particular, when the connection line 5 is disconnected, an overvoltage that can destroy the diodes D1 and D2 can be applied to the diodes D1 and D2. Therefore, it is desirable to omit this additional connection line 5 that constitutes an error source.

米国特許出願公開第4,164,016号明細書は、センタータップ付きの変圧器を示す。当該変圧器の場合、測定点が、2つの抵抗によって、2次側の外部端子と外部端子との間に提供される。当該測定点と当該中心点との間の電圧が測定される。このため、当該中心点へ向かう接続線がさらに必要になる。   U.S. Pat. No. 4,164,016 shows a transformer with a center tap. In the case of the transformer, the measurement point is provided between the external terminal on the secondary side and the external terminal by two resistors. The voltage between the measurement point and the center point is measured. For this reason, the connection line which goes to the said center point is further needed.

当該従来の技術の問題が、センタータップ付きの変圧器を有する共振形コンバータとしての整流器の具体例に基づいて説明されているものの、このことは、一般に、2次側の出力電圧がセンタータップで測定される当該センタータップ付きの変圧器を有するあらゆる回路装置に対して成立する。センタータップ付きの変圧器は、例えば全波整流器又は同期整流器でも使用される。   Although the prior art problem has been described based on a specific example of a rectifier as a resonant converter having a transformer with a center tap, this generally means that the output voltage on the secondary side is a center tap. This holds true for any circuit device having a transformer with the center tap to be measured. A transformer with a center tap is also used, for example, in a full-wave rectifier or a synchronous rectifier.

米国特許出願公開第4,164,016号明細書US Patent Application Publication No. 4,164,016

それ故に、本発明の課題は、回路技術的な経費を増大させることなしに、2次側の出力電圧の簡単で且つ確実な電圧測定を可能にする、センタータップ付きの変圧器を有する回路装置を提供することにある。   It is therefore an object of the present invention to provide a circuit arrangement with a center-tapped transformer that allows a simple and reliable voltage measurement of the output voltage on the secondary side without increasing circuit engineering costs. Is to provide.

本発明によれば、この課題は、出力電圧に相当する測定点と第2出力端子との間の電圧を測定する電圧計が設けられていることによって解決される。測定点が、直列に接続された2つの抵抗によって提供される。当該出力電圧に対応する電圧が、当該第2出力端子に対向する当該測定点に印加される。したがって、当該出力電圧に対応する電圧、すなわち出力電圧を簡単に測定できるようにするためには、当該両抵抗が配置されるだけでよい。第1出力端子と回路基板との間又は第1出力端子と電圧計との間の接続線は、もはや必要でない。   According to the present invention, this problem is solved by providing a voltmeter that measures the voltage between the measurement point corresponding to the output voltage and the second output terminal. The measurement point is provided by two resistors connected in series. A voltage corresponding to the output voltage is applied to the measurement point facing the second output terminal. Therefore, in order to easily measure the voltage corresponding to the output voltage, that is, the output voltage, both the resistors need only be arranged. A connection line between the first output terminal and the circuit board or between the first output terminal and the voltmeter is no longer necessary.

好適な構成では、電気回路部品と2つの抵抗とが、少なくとも1つの回路基板、特にプリント回路基板上に配置されている。このとき、第1出力線を回路基板に接続するために、例えば接続コネクタとして、安全対策を当該回路基板で講じる必要がなくなる。その結果、回路技術的な経費が減少する。   In a preferred configuration, the electrical circuit component and the two resistors are arranged on at least one circuit board, in particular a printed circuit board. At this time, in order to connect the first output line to the circuit board, it is not necessary to take safety measures on the circuit board, for example, as a connection connector. As a result, circuit engineering costs are reduced.

少なくとも1つの別の抵抗が、測定点と第2出力端子との間に接続されている場合、電圧計の入力側の電圧範囲が、構成されている分圧器に起因して減少され得る。すなわち、当該電圧計は、より小さい測定電圧に有益に仕様設計され得る。   If at least one further resistance is connected between the measuring point and the second output terminal, the voltage range on the input side of the voltmeter can be reduced due to the configured voltage divider. That is, the voltmeter can be beneficially designed for smaller measurement voltages.

本発明の回路装置は、特に好ましくは共振回路を有する共振形コンバータの場合に、特に溶接電源として使用される。何故なら、溶接電源では、出力電圧の測定が当該出力電圧を調整するために重要であるからである。   The circuit device of the present invention is particularly preferably used as a welding power source in the case of a resonant converter having a resonant circuit. This is because, in a welding power source, measurement of the output voltage is important for adjusting the output voltage.

しかし、出力側の付加回路7(図3)を有する共振形コンバータの調整が有益であるように、無負荷運転中の(すなわち、接続されている負荷なしの)出力電圧Uが、Cによって構成された共振回路に起因して増大するという特性を、例えば直並列共振形コンバータのような特定の共振形コンバータが有する。特に溶接電源の場合、無負荷運転中でも、特定の電圧Uを維持することが望ましい。このため、当該共振形コンバータは、その無負荷運転中にパルス動作される。このため、電圧パルスが、所定の期間に当該共振形コンバータの入力部Uに印加される。当該共振形コンバータによって生成された共振が、2次側のコンデンサC3をダイオードD3によって充電する。当該コンデンサC3は、電圧パルスが印加されない期間中に抵抗R1によって放電される。それ故に、平均出力電圧Uが、当該共振形コンバータの出力部に発生する。当該平均出力電圧Uは、入力部の電圧パルスを希望するレベルに保持することによって維持され得る。当該共振形コンバータの通常動作では、当該付加回路7は影響を及ぼさない。それにもかかわらず、コンデンサC3は、最大出力電圧Uと最大パルス周波数とに仕様設計される必要があり、それ故にこれに応じて大きく寸法決めする必要がある。その結果、相当するスペースが、回路基板3上に必要になる。しかし、この回路も、この付加回路7が配置されている回路基板3に正の出力線2を接続するために、当然に接続線5を必要とする。接続線5が省略されても、それにもかかわらず、当該共振形コンバータの無負荷運転中の出力電圧Uが、希望する電圧レベルに調整され得ることが保証されなければならない。 However, the output voltage U A during no-load operation (ie, without a connected load) becomes C P so that adjustment of the resonant converter with the additional circuit 7 on the output side (FIG. 3) is beneficial. Certain resonant converters, such as series-parallel resonant converters, have the property of increasing due to the resonant circuit formed by Particularly in the case of welding power source, even during no-load operation, it is desirable to maintain a certain voltage U A. For this reason, the resonant converter is pulsed during its no-load operation. For this reason, a voltage pulse is applied to the input unit U E of the resonant converter for a predetermined period. The resonance generated by the resonant converter charges the secondary capacitor C3 with the diode D3. The capacitor C3 is discharged by the resistor R1 during a period in which no voltage pulse is applied. Therefore, the average output voltage U A is generated at the output of the resonant converter. The average output voltage U A can be maintained by holding the level to the desired voltage pulse of the input unit. In the normal operation of the resonant converter, the additional circuit 7 has no effect. Nevertheless, the capacitor C3 is required to be the design specification to the maximum output voltage U A and a maximum pulse frequency, it is necessary to decide therefore larger size accordingly. As a result, a corresponding space is required on the circuit board 3. However, this circuit naturally requires the connection line 5 in order to connect the positive output line 2 to the circuit board 3 on which the additional circuit 7 is arranged. Be connection line 5 is omitted, nevertheless, the output voltage U A in no-load operation of the resonant converter is, it must be ensured that the same may be adjusted to the desired voltage level.

それ故に、本発明の別の課題は、共振形コンバータの無負荷運転中の出力電圧が、本発明の回路装置によって、上記の回路技術的な問題を回避しつつ、簡単な付加回路を用いて、希望する値に希望する値に調整又は設定され得ることを保証することである。   Therefore, another problem of the present invention is that the output voltage during no-load operation of the resonant converter is reduced by using a simple additional circuit while avoiding the above circuit technical problem by the circuit device of the present invention. Ensuring that the desired value can be adjusted or set to the desired value.

本発明によれば、この別の課題は、それぞれ1つのコンデンサが、2次側の複数の電気回路部品に対して並列に接続されていることによって、共振形コンバータに対して解決される。この場合、当該複数のコンデンサは、通常動作中に(すなわち、接続されている負荷を有する動作中に)専ら半周期ごとに電流を通電し、それ故に従来の技術による回路のときよりも遥かに小さく寸法決めされ得る。したがって、配置し得る回路基板も、より小さく構成され得、従来は必要であった第1出力端子と当該回路基板との間の接続線が省略され得る。   According to the invention, this further problem is solved for a resonant converter by each having one capacitor connected in parallel to a plurality of electrical circuit components on the secondary side. In this case, the capacitors are energized exclusively every half cycle during normal operation (ie during operation with a connected load) and are therefore far more than in prior art circuits. Can be sized small. Therefore, the circuit board that can be arranged can also be configured smaller, and the connection line between the first output terminal and the circuit board, which has been necessary in the past, can be omitted.

以下に、本発明を、例示的で、概略的で且つ非限定的な本発明の好適な構成を示す図1〜7を参照して詳しく説明する。   In the following, the present invention will be described in detail with reference to FIGS. 1 to 7, which illustrate exemplary, schematic and non-limiting preferred configurations of the invention.

従来の技術による一般的な共振型コンバータを示す。1 shows a general resonant converter according to the prior art. センタータップ付き変圧器に接続された従来の技術において一般的な電圧計を示す。1 shows a voltmeter common in the prior art connected to a transformer with a center tap. 無負荷運転中の直並列共振形コンバータの出力電圧を調整するための従来の技術において一般的な付加回路を示す。An additional circuit common in the prior art for adjusting the output voltage of a series-parallel resonant converter during no-load operation is shown. センタータップ付き変圧器と本発明の出力電圧を測定する電圧計とを有する回路装置を示す。1 shows a circuit device having a transformer with a center tap and a voltmeter for measuring the output voltage of the present invention. 無負荷運転の電圧を調整するための本発明の2次側回路を有する直並列共振形コンバータを示す。1 shows a series-parallel resonant converter having a secondary circuit of the present invention for adjusting the voltage of no-load operation. 無負荷運転中に直並列共振形コンバータで発生する電圧経時変化を示す。Fig. 3 shows voltage aging that occurs in a series-parallel resonant converter during no-load operation. 電圧を測定するための本発明の測定装置と、無負荷運転中に出力電圧を調整するための2次側回路とを有する直並列共振形コンバータを示す。1 shows a series-parallel resonant converter having a measuring device of the present invention for measuring voltage and a secondary circuit for adjusting output voltage during no-load operation.

図4は、2次側のセンタータップ付の変圧器Tを有する回路装置を示す。少なくとも3つの端子である中心点M用の1つの端子と2次側の巻線の端部の2つの端子とが、当該センタータップ付の変圧器Tの2次側に存在する。これらの端子は、外部端子A1,A2と呼ばれる。   FIG. 4 shows a circuit device having a transformer T with a center tap on the secondary side. There are at least three terminals for the center point M and two terminals at the end of the secondary winding on the secondary side of the transformer T with the center tap. These terminals are called external terminals A1 and A2.

しかし、留意すべきは、一般に、(図5に示されているように)2次側の巻線と1次側の巻線とがそれぞれ直列に接続されている、共通のコアを有する2つ以上の変圧器巻線の使用も、本発明で意図するセンタータップ付の変圧器と解釈される。この場合、並列に接続された複数の1次巻線と直列に接続された複数の2次巻線とを有する独立した複数の変圧器も属されている。このとき、直列に接続された2つの巻線間の電気接続部分が、中心点Mに相当する。第1出力線10が、この中心点Mに接続され得る。   However, it should be noted that in general, two having a common core (as shown in FIG. 5) with a secondary winding and a primary winding connected in series, respectively. The use of the above-described transformer winding is also interpreted as a center-tapped transformer intended in the present invention. In this case, a plurality of independent transformers having a plurality of primary windings connected in parallel and a plurality of secondary windings connected in series also belong. At this time, an electrical connection portion between two windings connected in series corresponds to the center point M. The first output line 10 can be connected to this center point M.

2次側の中心点Mは、第1出力端子12、ここでは正極として、第1出力線10、ここでは正の出力線を介して外部に向かって配線されている。しかしながら、この場合は、当該出力線10は、例えばプリント回路基板のような回路基板3を経由して配線されるのではなくて、導線として外部に向かって直接に配線される。当該両外部端子又は直列に接続されていない2次側の端子A1,A2はそれぞれ、スイッチング素子S1,S2の第1端子に向かって周知の方法で配線されている。これらのスイッチング素子S1,S2のそれぞれの第2端子が、互いに接続されていて、整流器の第2出力端子13、ここでは負極を構成する。当該第2出力端子13、ここでは負極は、第2出力線、ここでは負の出力線によって外部に向かって配線されている。   The center point M on the secondary side is wired outward as the first output terminal 12, here the positive electrode, via the first output line 10, here the positive output line. However, in this case, the output line 10 is not directly routed through the circuit board 3 such as a printed circuit board, but is directly wired to the outside as a conducting wire. The both external terminals or secondary terminals A1 and A2 that are not connected in series are wired in a known manner toward the first terminals of the switching elements S1 and S2, respectively. The second terminals of the switching elements S1 and S2 are connected to each other to form a second output terminal 13 of the rectifier, here a negative electrode. The second output terminal 13, here the negative electrode, is wired to the outside by a second output line, here a negative output line.

ダイオード式の受動スイッチング素子が、電気スイッチング素子S1,S2として使用される場合、周知の全波整流器が得られる。能動スイッチング素子、例えば半導体スイッチ、例えばMOSFETが、電気スイッチング素子S1,S2として使用される場合、周知の同期整流器が得られる。全波整流器及び同期整流器の機能は、十分に周知であり、本発明にとって重要でないので、ここではこれらの整流器を詳しく説明しない。   When diode-type passive switching elements are used as the electrical switching elements S1, S2, a well-known full-wave rectifier is obtained. When an active switching element, for example a semiconductor switch, for example a MOSFET, is used as the electrical switching element S1, S2, a well-known synchronous rectifier is obtained. Since the functions of full wave rectifiers and synchronous rectifiers are well known and not important to the present invention, these rectifiers will not be described in detail here.

スイッチング素子S1,S2は、回路基板3上に従来の方法で配置されている。明らかに、当該回路基板3は分離して構成されてもよい。特に能動スイッチング素子S1,S2の場合は、大抵は、能動スイッチング素子S1,S2を有するパワーユニットが、独立した回路基板3上に配置される。出力電圧Uを測定するための電気測定装置14が、電圧を測定するための回路基板3上に配置されている。しかし、2次側のこれらのスイッチング素子S1,S2は、銅線によって互いに接続されてもよい。回路基板3と銅線との組み合わせとしての2次側の回路装置も考えられる。例えば、当該出力電圧Uを測定するための測定装置14が、回路基板3上に配置され、残りのスイッチング素子が、銅線によって接続されてもよい。 The switching elements S1 and S2 are arranged on the circuit board 3 by a conventional method. Obviously, the circuit board 3 may be configured separately. Particularly in the case of the active switching elements S1 and S2, in most cases, the power unit having the active switching elements S1 and S2 is disposed on the independent circuit board 3. Electrical measurement device 14 for measuring the output voltage U A, are arranged on the circuit board 3 for measuring the voltage. However, these switching elements S1 and S2 on the secondary side may be connected to each other by a copper wire. A secondary side circuit device as a combination of the circuit board 3 and the copper wire is also conceivable. For example, measuring device 14 for measuring the output voltage U A is disposed on the circuit board 3, and the remaining switching element may be connected by a copper wire.

当該出力電圧Uを測定するためのこの測定装置14は、主に、変圧器Tの2次側の2つの外部端子A1,A2間に直列に接続されている2つの抵抗R3,R4から成る。これにより、測定点Pが、当該両抵抗R3,R4間に形成される。中心点Mに印加する出力電圧Uに対応する電圧Uが、第2出力端子13に対向するこの測定点Pで発生する。この測定点Pのこの電圧Uは、任意の電圧計Vによって測定され得、アナログ又はデジタルの測定値MWとして提供され得る。例えば、当該電圧計は、演算増幅器を有する増幅回路として構成され得る。この場合、この増幅回路の出力が、アナログ・デジタル変換器内でデジタル化され、デジタル測定値MWとして外部に出力されている。 The measuring device 14 for measuring the output voltage U A is mainly composed of the transformer two external terminals of the secondary side of T A1, A2 between the two are connected in series resistors R3, R4 . As a result, a measurement point P is formed between the resistors R3 and R4. Voltage U P corresponding to the output voltage U A applied to the center point M is generated at the measuring point P to be opposed to the second output terminal 13. The The voltage U P of the measuring point P may be measured by any of the voltmeter V, it may be provided as an analog or digital measurement value MW. For example, the voltmeter can be configured as an amplifier circuit having an operational amplifier. In this case, the output of the amplifier circuit is digitized in an analog / digital converter and output to the outside as a digital measurement value MW.

両抵抗R3,R4が等しい場合、測定点Pの電圧Uは、中心点Mの出力電圧U、すなわち図示された実施の形態では第1出力端子12の電圧に一致する。抵抗R3,R4が等しくない場合、抵抗R3,R4の比に相当する電圧が発生する。したがって、双方の場合には、図4に示されているように、第2出力端子13に対する測定点Pの電圧Uが測定されることによって、出力電圧Uが、測定点Pで測定され得る。 If the resistors R3, R4 are equal, the voltage U P of the measuring point P, the output voltage U A of the center point M, namely the illustrated embodiment matches the voltage of the first output terminal 12. When the resistors R3 and R4 are not equal, a voltage corresponding to the ratio of the resistors R3 and R4 is generated. Accordingly, the both cases, as shown in Figure 4, by the voltage U P of the measuring point P to the second output terminal 13 is measured, the output voltage U A is measured at the measurement point P obtain.

測定点Pの電圧Uは直接に測定され得るが、分圧器による測定も考えられる。当該分圧器による測定は、減少した入力範囲を有する電圧計Vの使用を可能にする。これにより、回路技術的な簡略化が達成可能である。このため、図4に示されているように、分圧器が、追加の抵抗R2によって測定点Pと第2出力端子13との間に構成され得る。この場合、当該R2は、測定点Pの抵抗R3,R4と協働して電圧Uの対応する減少を引き起こす。しかし、当該電圧Uは、依然として出力電圧Uに比例する。電圧計Vが、さらに一層小さい入力電圧を必要とする場合、当該電圧計Vをその入力電圧範囲に適合させるため、周知の方法で、抵抗R2が、適切な比で2つの抵抗に分割され得る。 Voltage U P of the measuring point P may be measured directly, but the measurement is also considered by the voltage divider. The measurement with the voltage divider allows the use of a voltmeter V having a reduced input range. Thereby, simplification in circuit technology can be achieved. Therefore, as shown in FIG. 4, a voltage divider can be configured between the measurement point P and the second output terminal 13 by an additional resistor R2. In this case, the R2 causes a corresponding decrease in the voltage U P in cooperation with resistors R3, R4 of the measurement point P. However, the voltage U P is still proportional to the output voltage U A. If the voltmeter V requires a much smaller input voltage, the resistor R2 can be divided into two resistors in an appropriate ratio in a well-known manner to adapt the voltmeter V to its input voltage range. .

したがって、出力電圧Uの電圧測定用の本発明の測定装置14を用いることで、第1出力線10を回路基板3経由で配線すること、又は、従来の技術のように、第1出力端子10を、追加の接続線5を介して回路基板3又は電圧計Vに接続することがもはや必要でない。 Accordingly, by using the measuring apparatus 14 of the present invention for the voltage measurement of the output voltage U A, to interconnect the first output line 10 via the circuit board 3, or, as in the prior art, the first output terminal It is no longer necessary to connect 10 to the circuit board 3 or the voltmeter V via an additional connection line 5.

図5は、インダクタLと共振コンデンサCと変圧器Tの1次側とから成る1次側の直列共振回路と、共振コンデンサCと変圧器Tの2次側と当該2次側の(電気スイッチング素子S1,S2としてダイオードD1,D2を有する)全波整流器とから成る2次側の並列共振回路とを有する直並列共振形コンバータとしての整流器1を示す。この場合、当該1次側が、完全に図示されていない。特に、図示された入力電圧Uを生成するための、それ自体周知の電気回路が図示されていない。しかし、明らかに、当該1次側の共振回路は、知られているように、共振コンデンサCが例えば変圧器Tの1次側に対して並列に接続されている並列共振回路として構成されてもよい。また、当該共振回路は、周知の方法で、当該2次側と違うように構成されてもよく、又は全く構成されなくてもよい。また、当然に、ダイオードD1,D2が、逆極性にされてもよく、又は異なる電気スイッチング素子S1,S2と置換されてもよい。 5, the primary-side consisting of the inductor L R and a resonant capacitor C R and the primary side of the transformer T and the series resonant circuit, the secondary side and the secondary side resonance capacitor C P and the transformer T 1 shows a rectifier 1 as a series-parallel resonant converter having a secondary parallel resonant circuit comprising a full-wave rectifier (having diodes D1, D2 as electrical switching elements S1, S2). In this case, the primary side is not completely illustrated. In particular, an electrical circuit known per se for generating the illustrated input voltage U E is not shown. However, obviously, the resonant circuit of the primary side, as is known, is configured as a parallel resonant circuit connected in parallel to the primary side of the resonant capacitor C R, for example, a transformer T Also good. Also, the resonance circuit may be configured differently from the secondary side by a well-known method, or may not be configured at all. Naturally, the diodes D1, D2 may be of opposite polarity or may be replaced with different electrical switching elements S1, S2.

出力電圧Uを無負荷運転中に希望する値に保持するため、それぞれ少なくとも1つのコンデンサC1,C2が、電気スイッチング素子S1,S2、ここではダイオードD1,D2に対して並列に接続される。したがって、関連する上記の全ての利点と共に、無負荷電圧を調整するための2次側回路15に対しても、第1出力線10と回路基板3との間の独立した接続部分が不要であるという効果がさらに得られる。 For holding a value to the desired output voltage U A in no-load operation, at least one capacitor C1, C2 respectively, electrical switching devices S1, S2, here are connected in parallel to the diode D1, D2. Therefore, in addition to all the above-mentioned related advantages, an independent connection portion between the first output line 10 and the circuit board 3 is not required for the secondary side circuit 15 for adjusting the no-load voltage. Further effects can be obtained.

望ましい出力電圧Uが、無負荷運転中に共振形コンバータ1で保持されなければならない。このため、1次側の共振回路を起動させる電圧インパルスUが、所定の期間tに変圧器Tの1次側に印加される。当該起動は、変圧器Tの2次側の共振を引き起こす。コンデンサC1,C2に印加する電圧も、無負荷運転中に出力電圧Uのレベルを中心にして共振する。これにより、コンデンサC1,C2が、当該起動中に1次側で期間t内に充電される。また、当該充電は、出力電圧Uの当該無負荷運転の電圧を増大させる。その後に、当該1次側の起動が、第2期間tに遮断される。当該コンデンサC1,C2が、この期間内に放電する。このため、図5に示されているように、放電抵抗R5,R6が設けられてもよい。放電抵抗R5,R6がなくても、当該コンデンサC1,C2は、それらの自己放電特性にしたがって放電する。(図7に示されているように)2次側回路15が、出力電圧Uを測定するための測定装置14と一緒に実装されている場合、当該測定装置14の抵抗R2,R3,R4が、同時に放電抵抗として使用される。出力部の当該無負荷運転の電圧Uが、当該コンデンサC1,C2の放電中に低下する。したがって、平均出力電圧Uが、当該無負荷運転中に当該出力部で発生する。したがって、当該出力電圧Uは、電圧インパルスUとパルス周波数と期間t,tとを希望する値に設定することによって保持され得る。(接続されている負荷を有する)通常動作中には、この2次側回路15は影響を及ぼさない。例えば、無負荷運転中に直並列共振形コンバータで発生する電圧経時変化が、図6に概略的に示されている。 Desired output voltage U A, must be maintained in resonant converter 1 during no-load operation. For this reason, a voltage impulse U E that activates the primary-side resonance circuit is applied to the primary side of the transformer T during a predetermined period t 1 . The start-up causes resonance on the secondary side of the transformer T. Voltage applied to the capacitor C1, C2 is also resonates around the level of the output voltage U A in no-load operation. Thereby, the capacitors C1, C2 are charged in the period t 1 in the primary side during the startup. Further, the charge increases the voltage of the no-load operation of the output voltage U A. Then, activation of the primary side is shut off during the second period t 2. The capacitors C1 and C2 are discharged within this period. For this reason, as shown in FIG. 5, discharge resistors R5 and R6 may be provided. Even without the discharge resistors R5 and R6, the capacitors C1 and C2 discharge according to their self-discharge characteristics. (As shown in Figure 7) the secondary circuit 15, the output voltage if implemented with the measurement device 14 for measuring the U A, the resistance of the measuring device 14 R2, R3, R4 Are simultaneously used as discharge resistors. Voltage U A of the no-load operation of the output section is lowered during the discharge of the capacitor C1, C2. Therefore, the average output voltage U A is generated in the output section in the no-load operation. Therefore, the output voltage U A can be held by setting the voltage impulse U E , the pulse frequency, and the periods t 1 and t 2 to desired values. During normal operation (with connected load), this secondary circuit 15 has no effect. For example, voltage aging that occurs in a series-parallel resonant converter during no-load operation is schematically shown in FIG.

この場合、2次側回路15の両コンデンサC1,C2は、従来の技術による既存の回路(図3)におけるコンデンサC3よりも小さく寸法決めされ得る。したがって、回路基板3上のスペースも節減され得る。しかも、回路基板3の熱負荷も削減され得る。その結果、回路基板3も縮小され得る。   In this case, both capacitors C1, C2 of the secondary circuit 15 can be sized smaller than the capacitor C3 in the existing circuit (FIG. 3) according to the prior art. Therefore, the space on the circuit board 3 can also be saved. In addition, the thermal load on the circuit board 3 can be reduced. As a result, the circuit board 3 can also be reduced.

しかし、当該より小さい静電容量値C1,C2は、無負荷運転中の出力電圧Uをより速く低下させることも引き起こす。このことは、特に溶接電源での使用に対して有益である。何故なら、これにより、発生し得る最大電圧が、溶接の終了後により速く低下するからである。 However, a small capacitance value C1 than the, C2 also causes lowering faster output voltage U A in no-load operation. This is particularly beneficial for use with welding power sources. This is because this causes the maximum voltage that can be generated to drop faster after the end of the weld.

電圧を測定するための測定装置14と、無負荷運転中の出力電圧Uを調整するための2次側回路15とは、全波整流器を有する共振形コンバータ1に基づいて図7に示されているように、当然に、組み合わせられてもよい。このような組み合わせは、非常に有益である。何故なら、無負荷運転中の出力電圧U(無負荷運転電圧)も、当該出力電圧Uに対応する測定点Pの電圧Uを測定することによって希望する値に調整され得るか、又は、当該無負荷運転電圧の希望する値が保証され得るからである。 A measuring device 14 for measuring the voltage, and the secondary circuit 15 for adjusting the output voltage U A in no-load operation, shown in Figure 7 based on the resonant converter 1 having a full-wave rectifier As a matter of course, they may be combined. Such a combination is very beneficial. Because the output voltage U A in no-load operation (no-load operation voltage) also, or may be adjusted to the desired value by measuring the voltage U P of the measuring point P corresponding to the output voltage U A, or This is because the desired value of the no-load operating voltage can be guaranteed.

1 整流器
2 正の出力線
3 回路基板
4 電圧計
5 接続線
6 コネクタ
7 付加回路
8 回路装置
10 第1出力線
11 第2出力線
12 第1出力端子
13 第2出力端子
14 電気測定装置
15 2次側回路
T 変圧器
A1 外部端子
A2 外部端子
M 中心点
S1 電気スイッチング素子
S2 電気スイッチング素子
R2 抵抗
R3 抵抗
R4 抵抗
R5 放電抵抗
R6 放電抵抗
V 電圧計
MW 測定値
P 測定点
測定点の電圧
インダクタ
共振コンデンサ
共振コンデンサ
C1 コンデンサ
C2 コンデンサ
C3 コンデンサ
D1 ダイオード
D2 ダイオード
D3 ダイオード
入力部、電圧インパルス
出力電圧
DESCRIPTION OF SYMBOLS 1 Rectifier 2 Positive output line 3 Circuit board 4 Voltmeter 5 Connection line 6 Connector 7 Additional circuit 8 Circuit apparatus 10 1st output line 11 2nd output line 12 1st output terminal 13 2nd output terminal 14 Electrical measuring apparatus 15 2 Secondary circuit T Transformer A1 External terminal A2 External terminal M Center point S1 Electrical switching element S2 Electrical switching element R2 Resistance R3 Resistance R4 Resistance R5 Discharge resistance R6 Discharge resistance V Voltmeter MW Measurement value P Measurement point UP Voltage at the P measurement point L R inductor C R resonant capacitor C P resonance capacitor C1 capacitor C2 capacitor C3 capacitor D1 diode D2 diode D3 diode U E input unit, the voltage impulses U A output voltage

Claims (7)

センタータップ付の少なくとも1つの変圧器(T)と、第1出力端子(12)と第2出力端子(13)との間に発生する回路装置(8)の出力電圧(U)を測定するための測定装置(14)とを有する当該回路装置であって、
前記変圧器の2次側の中心点(M)が、第1出力線(10)を介して第1出力端子(12)に接続されていて、前記変圧器(T)の前記2次側の2つの外部端子(A1,A2)が、それぞれ1つの電気スイッチング素子(S1,S2)を介して接続されていて、第2出力端子(13)を有する第2出力線(11)に接続されていて、
直列に接続された少なくとも2つの抵抗(R3,R4)が、測定点(P)を当該両抵抗(R3,R4)間に形成するために、前記変圧器(T)の前記2次側の前記2つの外部端子(A1,A2)間に接続されている当該回路装置において、
前記出力電圧(U)に対応する、測定点(P)と第2出力端子(13)との間の電圧(U)を測定する電圧計(V)が設けられていることを特徴とする回路装置。
The output voltage (U A ) of the circuit device (8) generated between at least one transformer (T) with a center tap and between the first output terminal (12) and the second output terminal (13) is measured. A circuit device having a measuring device (14) for
The center point (M) on the secondary side of the transformer is connected to the first output terminal (12) via the first output line (10), and the secondary side center point of the transformer (T) Two external terminals (A1, A2) are connected to each other via one electrical switching element (S1, S2), and are connected to a second output line (11) having a second output terminal (13). And
The at least two resistors (R3, R4) connected in series form the measurement point (P) between the resistors (R3, R4) so that the secondary side of the transformer (T) In the circuit device connected between the two external terminals (A1, A2),
And characterized in that corresponding to the output voltage (U A), the voltage between the measurement point (P) and the second output terminal (13) a voltage meter for measuring the (U P) (V) is provided Circuit device to do.
前記電気スイッチング素子(S1,S2)と前記2つの抵抗(R3,R4)とが、少なくとも1つの回路基板(3)上に、特に1つのプリント回路基板上に配置されていることを特徴とする請求項1に記載の回路装置。   The electrical switching elements (S1, S2) and the two resistors (R3, R4) are arranged on at least one circuit board (3), in particular on one printed circuit board. The circuit device according to claim 1. 前記電気スイッチング素子(S1,S2)と前記2つの抵抗(R3,R4)とが、共通の1つの回路基板(3)上に、特に共通の1つのプリント回路基板上に配置されていることを特徴とする請求項1に記載の回路装置。   The electrical switching elements (S1, S2) and the two resistors (R3, R4) are arranged on a common circuit board (3), in particular on a common printed circuit board. The circuit device according to claim 1, characterized in that: 少なくとも1つの別の抵抗(R2)が、測定点(P)と前記第2出力端子(13)との間に接続されていることを特徴とする請求項1に記載の回路装置。   2. A circuit arrangement according to claim 1, characterized in that at least one further resistor (R2) is connected between the measuring point (P) and the second output terminal (13). 共振回路と請求項1〜4のいずれか1項に記載の回路装置(8)とを有する共振形コンバータ。   A resonant converter comprising a resonant circuit and a circuit device (8) according to any one of claims 1-4. それぞれ少なくとも1つのコンデンサ(C1,C2)が、前記電気スイッチング素子(S1,S2)に対して並列に接続されていることを特徴とする請求項5に記載の共振形コンバータ。   Resonant converter according to claim 5, characterized in that at least one capacitor (C1, C2) is respectively connected in parallel to the electrical switching element (S1, S2). 中心点(M)に接続されている第1出力端子(12)とそれぞれ1つの電気スイッチング素子(S1,S2)を介して変圧器(T)の2次側の2つの外部端子(A1,A2)に接続されている第2出力端子(13)との間の出力電圧(U)を測定するための方法であって、
直列に接続された少なくとも2つの抵抗(R3,R4)間の測定点(P)が、当該両端子(A1,A2)間に形成される当該方法において、
前記出力電圧(U)に対応する、測定点(P)と第2出力端子(13)との間の電圧(U)が測定されることを特徴とする方法。
Two external terminals (A1, A2) on the secondary side of the transformer (T) via a first output terminal (12) connected to the center point (M) and one electrical switching element (S1, S2), respectively. ) For measuring the output voltage (U A ) between the second output terminal (13) connected to
In the method, wherein a measurement point (P) between at least two resistors (R3, R4) connected in series is formed between the two terminals (A1, A2),
A method in which a voltage (UP) between a measurement point (P) and a second output terminal (13) corresponding to the output voltage ( UA ) is measured.
JP2017547504A 2015-03-09 2016-03-01 Circuit arrangement with transformer with center tap and measurement of output voltage Active JP6527952B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA50186/2015 2015-03-09
ATA50186/2015A AT516903B1 (en) 2015-03-09 2015-03-09 Circuit arrangement with transformer with center tap and measurement of the output voltage
PCT/EP2016/054325 WO2016142217A1 (en) 2015-03-09 2016-03-01 Circuit assembly having a transformer with centre tapping and measuring of the output voltage

Publications (2)

Publication Number Publication Date
JP2018510603A true JP2018510603A (en) 2018-04-12
JP6527952B2 JP6527952B2 (en) 2019-06-12

Family

ID=55446805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547504A Active JP6527952B2 (en) 2015-03-09 2016-03-01 Circuit arrangement with transformer with center tap and measurement of output voltage

Country Status (7)

Country Link
US (1) US10379142B2 (en)
EP (1) EP3269031B1 (en)
JP (1) JP6527952B2 (en)
CN (1) CN107431436B (en)
AT (1) AT516903B1 (en)
PL (1) PL3269031T3 (en)
WO (1) WO2016142217A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11027357B2 (en) * 2017-07-28 2021-06-08 Illinois Tool Works Inc. Methods and apparatus to provide welding power
CN112867928A (en) * 2018-07-17 2021-05-28 哈勃股份有限公司 Voltage collector for power distribution system device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362900A (en) * 1962-10-17 1968-01-09 Hull Protectors Inc System for cathodically protecting a structure
JP2003319656A (en) * 2002-04-18 2003-11-07 Densei Lambda Kk Switching power supply device
JP2009106029A (en) * 2007-10-22 2009-05-14 Rohm Co Ltd Circuit and method for controlling capacitor charging circuit, and capacitor charging circuit, and electronic equipment using the same
JP2010130758A (en) * 2008-11-26 2010-06-10 Toyota Industries Corp Power conversion apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240529A (en) 1975-09-27 1977-03-29 Hodogaya Chem Co Ltd Preparation of metal complex dye
DE2849170B1 (en) * 1978-11-13 1980-02-28 Beluk Gmbh Circuit arrangement for measuring the power factor cos upsilon
US4164016A (en) * 1978-11-13 1979-08-07 Esb Incorporated Current sensing system
US5406051A (en) * 1993-04-29 1995-04-11 Electric Power Research Institute Welding machine with a high frequency converter
KR0144540B1 (en) * 1994-08-25 1998-10-01 김광호 Surge protection circuit of smps
EP0817149B1 (en) * 1996-06-28 1999-05-12 Endress + Hauser Wetzer GmbH + Co. KG Circuit for transmitting a measurement current from an intrinsically safe sensor to a non-intrinsical area
JPH1198837A (en) * 1997-09-24 1999-04-09 Sansha Electric Mfg Co Ltd Dc power source apparatus
JP5240529B2 (en) * 2005-08-31 2013-07-17 Tdk株式会社 Switching power supply
CN100431250C (en) * 2007-01-15 2008-11-05 南京航空航天大学 Isolated DC transducer of side edge clamp
TW200910750A (en) * 2007-08-17 2009-03-01 Murata Manufacturing Co Switching power supply device
CN201219239Y (en) * 2008-06-18 2009-04-08 合肥同智科技发展有限公司 Low power-input high-power-output start power supply
JP5088386B2 (en) * 2010-01-29 2012-12-05 株式会社村田製作所 Switching power supply
CN101895201B (en) * 2010-07-23 2015-06-10 中兴通讯股份有限公司 LLC (Logical Link Control) series resonance converter and drive method thereof
CN202940733U (en) * 2012-11-09 2013-05-15 联合汽车电子有限公司 Direct current insulation buck converter and matrix voltage detection circuit thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362900A (en) * 1962-10-17 1968-01-09 Hull Protectors Inc System for cathodically protecting a structure
JP2003319656A (en) * 2002-04-18 2003-11-07 Densei Lambda Kk Switching power supply device
JP2009106029A (en) * 2007-10-22 2009-05-14 Rohm Co Ltd Circuit and method for controlling capacitor charging circuit, and capacitor charging circuit, and electronic equipment using the same
JP2010130758A (en) * 2008-11-26 2010-06-10 Toyota Industries Corp Power conversion apparatus

Also Published As

Publication number Publication date
CN107431436B (en) 2022-03-01
AT516903B1 (en) 2020-10-15
AT516903A1 (en) 2016-09-15
PL3269031T3 (en) 2019-05-31
WO2016142217A1 (en) 2016-09-15
US20180246145A1 (en) 2018-08-30
EP3269031A1 (en) 2018-01-17
CN107431436A (en) 2017-12-01
EP3269031B1 (en) 2018-12-12
US10379142B2 (en) 2019-08-13
JP6527952B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US9160225B2 (en) High voltage inverter device
US10734944B2 (en) Inverter having grid disconnection point and insulation resistance measurement and method for measuring an insulation resistance
JP2019129549A (en) Switching power supply and direct-current power supply
US9729043B2 (en) Power conversion apparatus and protection method thereof while feedback current signal being abnormal
JP2009201246A (en) Dc-dc converter and voltage detector using the same
CN106575924B (en) Electric power conversion system
JP6527952B2 (en) Circuit arrangement with transformer with center tap and measurement of output voltage
CN109245508B (en) Electronic device
US9350251B2 (en) Power conversion apparatus and over power protection method thereof
JP6807855B2 (en) Resonant converter with transformer with center tap
KR101964292B1 (en) Device for producing direct current load power supply
US9912218B2 (en) Potential definition of input lines of an inverter
EP2804303B1 (en) Switching power supply circuit
JP5753815B2 (en) Switching power supply
WO2018025560A1 (en) High-voltage generating device, and x-ray high-voltage generator in which same is used
JP5827463B2 (en) Switching power supply
CN108270211B (en) Bidirectional power supply device with parallel protection and method thereof
RU2604662C1 (en) Redundant dc voltage power supply source
EP3010134B1 (en) Single-phase photovoltaic inverter
JP2010016962A (en) Switching electric power unit
JP6919765B2 (en) Power converter and power generation system
JP6146739B2 (en) DC high voltage power supply
JP6735846B2 (en) Power supply circuit device
JP2017022839A (en) Automatic voltage regulator
JP5860511B2 (en) Switching power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250