JP2018508793A5 - - Google Patents

Download PDF

Info

Publication number
JP2018508793A5
JP2018508793A5 JP2017559909A JP2017559909A JP2018508793A5 JP 2018508793 A5 JP2018508793 A5 JP 2018508793A5 JP 2017559909 A JP2017559909 A JP 2017559909A JP 2017559909 A JP2017559909 A JP 2017559909A JP 2018508793 A5 JP2018508793 A5 JP 2018508793A5
Authority
JP
Japan
Prior art keywords
fractions
dimension
fractionation
orthogonality
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017559909A
Other languages
English (en)
Japanese (ja)
Other versions
JP2018508793A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2016/052490 external-priority patent/WO2016128316A1/en
Publication of JP2018508793A publication Critical patent/JP2018508793A/ja
Publication of JP2018508793A5 publication Critical patent/JP2018508793A5/ja
Pending legal-status Critical Current

Links

JP2017559909A 2015-02-09 2016-02-05 クロマトグラフィー適用におけるスウェプトボリュームおよびデッドボリュームを最小限にするための手段および方法 Pending JP2018508793A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15154374.1 2015-02-09
EP15154374 2015-02-09
PCT/EP2016/052490 WO2016128316A1 (en) 2015-02-09 2016-02-05 Means and methods for minimizing swept and dead volumes in chromatographic applications

Publications (2)

Publication Number Publication Date
JP2018508793A JP2018508793A (ja) 2018-03-29
JP2018508793A5 true JP2018508793A5 (enExample) 2019-02-14

Family

ID=52686078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559909A Pending JP2018508793A (ja) 2015-02-09 2016-02-05 クロマトグラフィー適用におけるスウェプトボリュームおよびデッドボリュームを最小限にするための手段および方法

Country Status (8)

Country Link
US (1) US20180031528A1 (enExample)
EP (1) EP3256846A1 (enExample)
JP (1) JP2018508793A (enExample)
KR (1) KR20170110716A (enExample)
CN (1) CN107209155A (enExample)
AU (1) AU2016218072A1 (enExample)
CA (1) CA2975027A1 (enExample)
WO (1) WO2016128316A1 (enExample)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018007204A (es) 2015-12-16 2018-12-11 Gritstone Oncology Inc Identificacion, fabricacion y uso de neoantigeno.
AU2018348165B2 (en) 2017-10-10 2025-09-04 Seattle Project Corp. Neoantigen identification using hotspots
US11885815B2 (en) 2017-11-22 2024-01-30 Gritstone Bio, Inc. Reducing junction epitope presentation for neoantigens
US20190227040A1 (en) * 2018-01-22 2019-07-25 Thermo Finnigan Llc Method and Apparatus for Chromatograph Nano-Flow Fractionator
CN112034083B (zh) * 2020-07-30 2023-03-31 北京卫星制造厂有限公司 一种液相色谱泵流路超低死体积的标定方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037815Y2 (enExample) * 1984-10-05 1991-02-26
US5305788A (en) * 1992-08-13 1994-04-26 Whitey Co. Stream selector for process analyzer
FR2809490B1 (fr) * 2000-05-23 2002-11-29 Hocer Installation et procede pour la preparation automatique d'echantillons
US6748975B2 (en) * 2001-12-26 2004-06-15 Micralyne Inc. Microfluidic valve and method of manufacturing same
WO2005114168A1 (en) * 2004-05-22 2005-12-01 Agilent Technologies, Inc. Combi column
EP2491993B1 (en) * 2005-01-20 2018-10-03 Waters Technologies Corporation Methods for separating compounds
CN2859526Y (zh) * 2005-07-28 2007-01-17 上海烟草(集团)公司 一种大孔径柱到毛细柱的多维气相色谱系统
US20070117729A1 (en) * 2005-11-01 2007-05-24 Taylor Rebecca A Multi-phase personal care composition comprising a depositing perfume
WO2010072546A1 (en) * 2008-12-04 2010-07-01 Vrije Universiteit Brussel A chromatographic separation device with variable length and a method for its use
US8656955B2 (en) * 2010-05-20 2014-02-25 Bio-Rad Laboratories, Inc. Rotary column selector valve
EP2596134B1 (en) * 2010-07-23 2020-04-08 President and Fellows of Harvard College Methods of detecting diseases or conditions using phagocytic cells
CN203935755U (zh) * 2010-09-22 2014-11-12 魄金莱默保健科学有限公司 用于色谱的反冲系统和装置
GB2504622B (en) * 2011-05-26 2015-09-16 Thermo Electron Mfg Ltd Method and apparatus for improved resolution chromatography
GB2491169B (en) * 2011-05-26 2014-09-10 Thermo Electron Mfg Ltd Method and apparatus for improved resolution chromatography
WO2012170756A1 (en) * 2011-06-09 2012-12-13 Waters Technologies Corporation Reducing dispersion due to vias in planar microfluidic separation devices
HUP1100312A2 (en) * 2011-06-14 2013-01-28 Emil Dr Mincsovics Procedure and equipment for improving of performance characteristics of column chromatography separation processes
CN203060889U (zh) * 2012-12-19 2013-07-17 大连依利特分析仪器有限公司 液相色谱用全自动制备级馏分收集阀站

Similar Documents

Publication Publication Date Title
JP2018508793A5 (enExample)
Delannay et al. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications
Kalíková et al. Supercritical fluid chromatography as a tool for enantioselective separation; a review
Alvarez-Segura et al. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review
Pirok et al. Optimizing separations in online comprehensive two‐dimensional liquid chromatography
Płotka et al. Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography
Lesellier et al. The many faces of packed column supercritical fluid chromatography–A critical review
Raymond et al. Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018
Nfor et al. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents
Schuster et al. Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships
Holstein et al. Improving selectivity in multimodal chromatography using controlled pH gradient elution
Ghamat et al. Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications
Rubio et al. Multiple dual-mode countercurrent chromatography applied to chiral separations using a (S)-naproxen derivative as chiral selector
Hahn et al. Calibration‐free inverse modeling of ion‐exchange chromatography in industrial antibody purification
Li et al. The advantage of mixed-mode separation in the first dimension of comprehensive two-dimensional liquid-chromatography
Ma et al. A simple way to configure on-line two-dimensional liquid chromatography for complex sample analysis: acquisition of four-dimensional data
Franco et al. Common screening approaches for efficient analytical method development in LC and SFC on columns packed with immobilized polysaccharide-derived chiral stationary phases
Linford et al. Elevated temperatures in liquid chromatography, part III: A closer look at the van't Hoff equation
Ianni et al. Application of the “inverted chirality columns approach” for the monitoring of asymmetric synthesis protocols
Lu et al. Integrated countercurrent extraction of natural products: a combination of liquid and solid supports
McQueen et al. Optimal selection of 2D reversed-phase–reversed-phase HPLC separation techniques in bottom-up proteomics
Petersson et al. Maximization of selectivity in reversed-phase liquid chromatographic method development strategies
Russo et al. Characterization of the new CelerisTM arginine column: Retentive behaviour through a combination of chemometric tools and potential in drug analysis
Bell New chromatography columns and accessories for 2016
Bell New Chromatography Columns and Accessories for 2017