JP2018207704A - Permanent magnet type rotary electric machine and compressor using the same - Google Patents

Permanent magnet type rotary electric machine and compressor using the same Download PDF

Info

Publication number
JP2018207704A
JP2018207704A JP2017112290A JP2017112290A JP2018207704A JP 2018207704 A JP2018207704 A JP 2018207704A JP 2017112290 A JP2017112290 A JP 2017112290A JP 2017112290 A JP2017112290 A JP 2017112290A JP 2018207704 A JP2018207704 A JP 2018207704A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
axis
magnet insertion
type rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017112290A
Other languages
Japanese (ja)
Other versions
JP2018207704A5 (en
JP6518720B2 (en
Inventor
高畑 良一
Ryoichi Takahata
良一 高畑
渉 初瀬
Wataru Hatsuse
渉 初瀬
大我 渕野
Taiga Fuchino
大我 渕野
修平 新村
Shuhei Niimura
修平 新村
和行 松永
Kazuyuki Matsunaga
和行 松永
哲也 田所
Tetsuya Tadokoro
哲也 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2017112290A priority Critical patent/JP6518720B2/en
Priority to KR1020197035576A priority patent/KR20200003140A/en
Priority to CN201880033425.9A priority patent/CN110651413B/en
Priority to PCT/JP2018/002885 priority patent/WO2018225293A1/en
Publication of JP2018207704A publication Critical patent/JP2018207704A/en
Publication of JP2018207704A5 publication Critical patent/JP2018207704A5/ja
Application granted granted Critical
Publication of JP6518720B2 publication Critical patent/JP6518720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide a permanent magnet type rotary electric machine which can be controlled at high performance even in a high speed area.SOLUTION: A rotator 3 arranged on an external peripheral side of a stator, comprises: a plurality of permanent magnet insertion parts 13 that are extended to a peripheral direction of the rotator 3, and run through it in an axial direction; and a plurality of plate-like permanent magnets 14 inserted into each of the permanent magnet insertion parts 13. In the rotator 3, a concave part 11 that is a space between the adjacent permanent magnet insertion parts 13 in the peripheral direction and is concaved toward a radial direction outer side from an inner peripheral surface of the rotator 3 is formed. When a connection wire connecting a rotational center of the rotator 3 with a peripheral direction central part of the permanent magnet 14 is a d-axis, and an axis orthogonal to the d-axis at an electric angle is a q-axis, the concave part 11 is positioned on the q-axis. In addition, a notch part 17 which is separated from the permanent magnet insertion parts 13 is provided in the space between the adjacent permanent magnet insertion parts 13 in the peripheral direction. The notch part 17 is positioned at the q-axis.SELECTED DRAWING: Figure 2

Description

本発明は回転子に永久磁石を備える永久磁石式回転電機及びそれを用いた圧縮機に関する。   The present invention relates to a permanent magnet type rotating electrical machine having a permanent magnet in a rotor and a compressor using the same.

永久磁石式回転電機はエアコン、冷蔵庫、冷凍庫、あるいは食品ショーケースなどにおける圧縮機等様々な技術分野に適用されている。従来、永久磁石式回転電機においては、電機子巻線となる固定子巻線に集中巻が採用されるとともに、界磁にはネオジム磁石などの高磁束密度な永久磁石が採用され、小形・高効率化が図られている。しかしながら、小形・高効率化による出力密度の増加に伴い、鉄心の非線形磁気特性(ヒステリシス)の影響が顕著になり、集中巻の採用と相俟って、リラクタンストルクの減少、空間高調波磁束成分の増加に伴う鉄損が増大している。   Permanent magnet rotating electrical machines are applied to various technical fields such as air conditioners, refrigerators, freezers, compressors in food showcases, and the like. Conventionally, in a permanent magnet type rotating electric machine, concentrated winding is adopted for the stator winding that is an armature winding, and a permanent magnet having a high magnetic flux density such as a neodymium magnet is adopted for the field magnet. Increased efficiency. However, along with the increase in output density due to miniaturization and higher efficiency, the influence of the non-linear magnetic characteristics (hysteresis) of the iron core becomes significant. Combined with the use of concentrated winding, the reluctance torque is reduced and the spatial harmonic magnetic flux component There is an increase in iron loss accompanying this increase.

この課題を解決するために、例えば特許文献1に記載のように外転型の回転子を有する永久磁石式回転電機が提案されている。特許文献1には、回転子に埋設した永久磁石の両側面に回転子を軸方向に貫通する貫通孔を設けた技術が開示されている。特許文献1では、貫通孔で磁気抵抗が高い空気層を形成し、磁束が貫通孔を回り込んで磁路を長くすることによりリラクタンストルクを向上させている。   In order to solve this problem, a permanent magnet type rotating electrical machine having an abduction type rotor as described in Patent Document 1, for example, has been proposed. Patent Document 1 discloses a technique in which through holes that penetrate the rotor in the axial direction are provided on both side surfaces of a permanent magnet embedded in the rotor. In Patent Document 1, the reluctance torque is improved by forming an air layer having a high magnetic resistance in the through hole and extending the magnetic path by the magnetic flux flowing around the through hole.

特開2009−136075号公報JP 2009-136075 A

特許文献1に記載の技術においては、永久磁石の両側に形成した貫通孔で磁気抵抗が高い空気層を形成して磁束漏れの低下を図っている。特許文献1では、永久磁石式回転電機が1000-3000min -1といった中・低速域において高効率を得ることができるが、7000-8000min -1といった高速域においては、負荷トルクが大きい場合、あるいは電動機の電機子巻線を増加して高インダクタンスとなる場合では、トルク電流による磁束(q軸磁束)の影響が大きくなるため、電圧・電流位相が進んで力率が低下する。特に特許文献1では、貫通孔同士の間には永久磁石の磁束軸d軸と電気的に直交するq軸が通り、ここに回転子鉄心が位置しているので、貫通孔同士の間からの磁束の漏れが顕著となり、永久磁石式回転電機はインバータなどの駆動装置によって高トルク・高効率に制御できない問題が生じる。
また、永久磁石を回転子に埋設するにあたり、回転子には永久磁石が挿入される永久磁石挿入部が形成される。この永久磁石挿入部は永久磁石を挿入するため、挿入される永久磁石より若干大きい開口を形成している。永久磁石挿入部から挿入され、回転子に埋設された永久磁石は、回転子の回転に伴う加速・減速により周方向の力を受け、埋設された空間内を移動しようとする。上記特許文献1に記載のように、永久磁石の両側に貫通孔を形成した技術においては、永久磁石の周方向の移動を阻止するために永久磁石が埋設された空間内に突起等を設ける必要がある。しかしながら、特許文献1に記載の技術においては、永久磁石の荷重は突起等で受ける必要があるので、突起と永久磁石との衝突の繰り返しにより、突起あるいは磁石が破損する恐れがある。
In the technique described in Patent Document 1, an air layer having high magnetic resistance is formed by through holes formed on both sides of a permanent magnet to reduce magnetic flux leakage. In Patent Document 1, a permanent magnet type rotating electric machine can obtain high efficiency in a medium / low speed range such as 1000-3000 min −1, but in a high speed range such as 7000-8000 min −1, the load torque is large or the electric motor When the number of armature windings is increased and the inductance becomes high, the influence of the magnetic flux (q-axis magnetic flux) due to the torque current is increased, so that the voltage / current phase advances and the power factor decreases. In particular, in Patent Document 1, the q axis that is electrically orthogonal to the magnetic flux axis d axis of the permanent magnet passes between the through holes, and the rotor core is located here. Magnetic flux leakage becomes significant, and the permanent magnet type rotating electrical machine has a problem that it cannot be controlled with high torque and high efficiency by a driving device such as an inverter.
Further, when the permanent magnet is embedded in the rotor, a permanent magnet insertion portion into which the permanent magnet is inserted is formed in the rotor. Since this permanent magnet insertion part inserts a permanent magnet, an opening slightly larger than the permanent magnet to be inserted is formed. The permanent magnet inserted from the permanent magnet insertion portion and embedded in the rotor receives a circumferential force due to acceleration / deceleration accompanying the rotation of the rotor, and tries to move in the embedded space. As described in Patent Document 1, in the technique in which through holes are formed on both sides of the permanent magnet, it is necessary to provide a protrusion or the like in the space where the permanent magnet is embedded in order to prevent the permanent magnet from moving in the circumferential direction. There is. However, in the technique described in Patent Document 1, since the load of the permanent magnet needs to be received by the protrusion or the like, the protrusion or the magnet may be damaged due to repeated collision between the protrusion and the permanent magnet.

そこで本発明の目的は、高速域においても高効率に制御可能な永久磁石式回転電機及びそれを用いた圧縮機を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a permanent magnet type rotating electric machine that can be controlled with high efficiency even in a high speed region and a compressor using the same.

また、本発明の目的は、上記に加え、回転子の回転に伴う加速・減速による磁石の破損を防止することができる永久磁石式回転電機及びそれを用いた圧縮機を提供することにある。   In addition to the above, an object of the present invention is to provide a permanent magnet type rotating electrical machine capable of preventing breakage of a magnet due to acceleration / deceleration accompanying rotation of a rotor, and a compressor using the same.

上記目的を達成するために本発明の特徴とするところは、固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有する永久磁石式回転電機において、前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、前記回転子の内周面から径方向外側に向かって凹んだ凹部を形成し、前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記凹部を前記q軸上に位置させたことにある。   In order to achieve the above object, the present invention is characterized by having a stator and a rotor rotatably arranged on the outer peripheral side of the stator, the stator being radially outward from the center. A plurality of teeth provided radially and armature windings wound around the plurality of teeth, the rotor extending in a circumferential direction of the rotor and penetrating in an axial direction In the permanent magnet type rotating electrical machine having a plurality of permanent magnet insertion portions formed as described above and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portion, the rotor has a periphery of the rotor. Between the permanent magnet insertion portions adjacent to each other in a direction, forming a recess recessed radially outward from the inner peripheral surface of the rotor, and the rotational center of the rotor and the circumferential direction of the permanent magnet A line connecting the central portion is defined as a d-axis, and an axis orthogonal to the d-axis by an electrical angle is defined as a q-axis. Come is to the recesses are positioned on the q-axis.

また、本発明の特徴とするところは、固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有する永久磁石式回転電機において、前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記切欠部を前記q軸上に位置させたことにある。   Further, the present invention is characterized by having a stator and a rotor rotatably disposed on the outer peripheral side of the stator, and the stator is provided radially from the center toward the radially outer side. A plurality of teeth and an armature winding wound around the plurality of teeth, and the rotor is formed to extend in the circumferential direction of the rotor and penetrate in the axial direction. In a permanent magnet type rotating electrical machine having a plurality of permanent magnet insertion portions and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portions, the rotor is adjacent to the rotor in the circumferential direction. A line is provided between the permanent magnet insertion portions, the cutout portion being formed so as to be isolated from the permanent magnet insertion portion, and a line connecting the rotation center of the rotor and the circumferential central portion of the permanent magnet being d The notch is the q axis when the axis perpendicular to the d axis and the electrical angle is the q axis. In that is located in.

また、本発明の特徴とするところは、作動流体である気体の容積を縮小する圧縮機構と、該圧縮機構を駆動する永久磁石式回転電機とを備える圧縮機において、前記永久磁石式回転電機は、固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有し、前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、前記回転子の内周面から径方向外側に向かって凹んだ凹部を形成し、前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記凹部を前記q軸上に位置させたことにある。   In addition, a feature of the present invention is that the compressor includes a compression mechanism that reduces the volume of the gas that is the working fluid, and a permanent magnet type rotating electrical machine that drives the compression mechanism. A stator and a rotor rotatably arranged on the outer peripheral side of the stator, and the stator includes a plurality of teeth provided radially from the center toward the radially outer side, and the plurality of teeth. An armature winding wound around a tooth, and the rotor has a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction; A plurality of plate-like permanent magnets to be inserted into the magnet insertion portion, and the rotor includes a space between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor. During the rotation of the rotor, a recess that is recessed radially outward from the inner peripheral surface is formed. The line connecting the circumferential direction central portion of the permanent magnet and the d-axis, and an axis orthogonal with the d-axis and the electrical angle and the q-axis is to the recesses are positioned on the q-axis.

さらに、本発明の特徴とするところは、作動流体である気体の容積を縮小する圧縮機構と、該圧縮機構を駆動する永久磁石式回転電機とを備える圧縮機において、前記永久磁石式回転電機は、固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有し、前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記切欠部を前記q軸上に位置させたことにある。   Furthermore, a feature of the present invention is that the compressor includes a compression mechanism that reduces the volume of the gas that is the working fluid, and a permanent magnet type rotating electrical machine that drives the compression mechanism. A stator and a rotor rotatably arranged on the outer peripheral side of the stator, and the stator includes a plurality of teeth provided radially from the center toward the radially outer side, and the plurality of teeth. An armature winding wound around a tooth, and the rotor has a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction; A plurality of plate-like permanent magnets to be inserted into the magnet insertion portion, and the rotor is between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor, and the permanent magnet insertion A notch portion formed separately from the portion, and the rotation center of the rotor and the front The line connecting the circumferential direction central portion of the permanent magnet and the d-axis, and an axis orthogonal with the d-axis and the electrical angle and the q-axis is to the cutout portion was positioned on the q-axis.

本発明によれば、高速域においても高効率に制御可能な永久磁石式回転電機及びそれを用いた圧縮機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the permanent-magnet-type rotary electric machine which can be controlled highly efficiently also in a high-speed area and a compressor using the same can be provided.

また、本発明によれば、上記に加え、回転子の回転に伴う加速・減速による磁石の破損を防止することができる永久磁石式回転電機及びそれを用いた圧縮機を提供することができる。   Further, according to the present invention, in addition to the above, it is possible to provide a permanent magnet type rotating electrical machine capable of preventing breakage of a magnet due to acceleration / deceleration accompanying rotation of a rotor, and a compressor using the same.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の実施例1に係る永久磁石式回転電機の断面図である。It is sectional drawing of the permanent magnet type rotary electric machine which concerns on Example 1 of this invention. 本発明の実施例1に係る永久磁石式回転電機の回転子鉄心形状を示す断面図である。It is sectional drawing which shows the rotor core shape of the permanent magnet type rotary electric machine which concerns on Example 1 of this invention. 比較例の永久磁石式回転電機の低速・低負荷トルク時のベクトル図である。It is a vector diagram at the time of low speed and low load torque of the permanent magnet type rotating electrical machine of the comparative example. 比較例の永久磁石式回転電機の高速・高負荷トルク時のベクトル図である。It is a vector diagram at the time of high speed and high load torque of the permanent magnet type rotating electrical machine of the comparative example. 本発明の実施例1に係る永久磁石式回転電機の高速・高負荷トルク時のベクトル図である。It is a vector diagram at the time of high speed and high load torque of the permanent magnet type rotating electrical machine according to the first embodiment of the present invention. 本発明の実施例1に係る永久磁石式回転電機のトルク特性(実線)を示す。The torque characteristic (solid line) of the permanent magnet type rotary electric machine which concerns on Example 1 of this invention is shown. 本発明の実施例2に係る永久磁石式回転電機の回転子鉄心形状を示す断面図である。It is sectional drawing which shows the rotor core shape of the permanent magnet type rotary electric machine which concerns on Example 2 of this invention. 本発明の実施例3に係るである圧縮機の断面図である。It is sectional drawing of the compressor which is based on Example 3 of this invention.

以下、本発明の実施例を図1〜図7を用いて説明する。各図中において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。また、各実施例の永久磁石式回転電機は、6極の回転子と、9スロットの固定子から構成される。すなわち、回転子の極数と固定子のスロット数の比が2:3である。回転子の極数、固定子のスロット数、ならびにこれらの比は、各実施例における値に限らず、他の値でも、各実施例と同様の効果を得ることができる。例えば、回転子の極数は、4極あるいは8極や10極等としても良い。なお、各実施例における永久磁石式回転電機は、永久磁石が回転子鉄心に埋設される、いわゆる埋込磁石型の回転電機である。   Embodiments of the present invention will be described below with reference to FIGS. In each figure, the same reference numerals indicate the same constituent elements or constituent elements having similar functions. Further, the permanent magnet type rotating electric machine of each embodiment is composed of a 6-pole rotor and a 9-slot stator. That is, the ratio of the number of rotor poles to the number of stator slots is 2: 3. The number of rotor poles, the number of stator slots, and the ratio thereof are not limited to the values in each embodiment, and other values can provide the same effects as those in each embodiment. For example, the number of poles of the rotor may be 4 poles, 8 poles, 10 poles, or the like. The permanent magnet type rotating electric machine in each embodiment is a so-called embedded magnet type rotating electric machine in which a permanent magnet is embedded in a rotor core.

以下の説明において、「軸方向」とは回転子の回転軸方向を示し、「径方向」とは回転子の径方向を示し、「周方向」とは回転子の周方向を示す。   In the following description, “axial direction” indicates the rotational axis direction of the rotor, “radial direction” indicates the radial direction of the rotor, and “circumferential direction” indicates the circumferential direction of the rotor.

図1は、本発明の実施例1に係る永久磁石式回転電機の断面図である。本断面図は、回転軸に垂直な方向の断面を示す(後述する図2、6も同様)。なお、本実施例1は、永久磁石式同期電動機として動作する。   FIG. 1 is a cross-sectional view of a permanent magnet type rotating electrical machine according to a first embodiment of the present invention. This sectional view shows a section in a direction perpendicular to the rotation axis (the same applies to FIGS. 2 and 6 described later). The first embodiment operates as a permanent magnet type synchronous motor.

図1に示すように、永久磁石式回転電機1は、固定子2と、固定子2の外周側に所定のギャップ(空隙)を介して回転可能に配置された回転子3から構成されている。この回転子3にはシャフトの固定部を具備した回転子支持部材(図示せず)が設けられている。固定子2は、固定子鉄心6が軸方向に積層され、円環状のコアバック5と、コアバック5から径方向外側へ向けて突出する複数のティース4を備えている。複数のティース4は周方向に沿って略等間隔に配列されている。周方向に隣合うティース4間にはスロット7が形成され、ティース4を取り囲むように集中巻の電機子巻線8が巻装されている。すなわち、電機子巻線8は、固定子2の中心から径方向外側に向かって放射状に配置される複数のティース4の軸心周りに巻装され、周方向に、三相巻線のU相巻線8a、V相巻線8b、W相巻線8cが相互に空隙を介して配置される。   As shown in FIG. 1, the permanent magnet type rotating electrical machine 1 includes a stator 2 and a rotor 3 that is rotatably arranged on the outer peripheral side of the stator 2 via a predetermined gap (gap). . The rotor 3 is provided with a rotor support member (not shown) having a shaft fixing portion. The stator 2 includes a stator core 6 that is laminated in the axial direction, and includes an annular core back 5 and a plurality of teeth 4 that protrude radially outward from the core back 5. The plurality of teeth 4 are arranged at substantially equal intervals along the circumferential direction. Slots 7 are formed between adjacent teeth 4 in the circumferential direction, and concentrated winding armature windings 8 are wound so as to surround the teeth 4. That is, the armature winding 8 is wound around the axial centers of a plurality of teeth 4 that are radially arranged from the center of the stator 2 radially outward, and in the circumferential direction, the U-phase of the three-phase winding Winding 8a, V-phase winding 8b, and W-phase winding 8c are arranged with a gap therebetween.

ここで、本実施例1の永久磁石式回転電機1は、回転子3の極数が6極、固定子2のスロット数が9スロットであるから、スロットピッチは電気角で120度である。また、固定子2の中心部に、円柱状のシャフト(図示せず)を貫通するシャフト孔15が形成されている。   Here, in the permanent magnet type rotating electrical machine 1 of the first embodiment, since the rotor 3 has 6 poles and the stator 2 has 9 slots, the slot pitch is 120 degrees in electrical angle. A shaft hole 15 that penetrates a cylindrical shaft (not shown) is formed at the center of the stator 2.

本実施例1の永久磁石式回転電機1においては、三相巻線8a〜8cからなる電機子巻線8に三相交流電流を流すと、回転磁界が発生する。この回転磁界によって永久磁石14および回転子鉄心12に働く電磁力により、回転子3が回転する。   In the permanent magnet type rotating electrical machine 1 of the first embodiment, when a three-phase alternating current is passed through the armature winding 8 composed of the three-phase windings 8a to 8c, a rotating magnetic field is generated. The rotor 3 is rotated by the electromagnetic force acting on the permanent magnet 14 and the rotor core 12 by the rotating magnetic field.

なお、永久磁石式回転電機1が動作する時に固定子鉄心6および回転子鉄心12に発生する渦電流損などの鉄損を低減するために、固定子鉄心6および回転子鉄心12は、珪素鋼板などの磁性鋼板からなる薄板を複数積層した積層体によって構成することが好ましい。   In order to reduce iron loss such as eddy current loss generated in the stator core 6 and the rotor core 12 when the permanent magnet type rotating electrical machine 1 is operated, the stator core 6 and the rotor core 12 are made of silicon steel plates. It is preferable to comprise a laminated body in which a plurality of thin plates made of magnetic steel plates are laminated.

図2は本実施例1による永久磁石式回転電機1の回転子鉄心形状を示す断面図である。図2において、回転子3は、回転子鉄心12が積層されて構成される。回転子鉄心12内の内周側表面の近傍には、回転子3の周方向に延び、かつ軸方向に貫通して形成された(断面が細長い長方形状)永久磁石挿入部13が複数(本実施例1では極数分である6個)形成されている。   FIG. 2 is a cross-sectional view showing the rotor core shape of the permanent magnet type rotating electrical machine 1 according to the first embodiment. In FIG. 2, the rotor 3 is configured by laminating a rotor core 12. In the vicinity of the inner peripheral surface of the rotor core 12, there are a plurality of permanent magnet insertion portions 13 that extend in the circumferential direction of the rotor 3 and penetrate in the axial direction (a rectangular shape with a long cross section). In the first embodiment, the number is 6).

複数の永久磁石挿入部13には、それぞれ、磁石材料、例えば希土類のネオジムからなる、平板状の永久磁石14が挿入される。永久磁石挿入部13は、永久磁石14より若干大きく形成されており、永久磁石14の外周は回転子鉄心12で覆われる。永久磁石14は回転子3の回転に伴う加速・減速により、永久磁石挿入部13の隙間を移動するが、周囲を回転子鉄心12で覆われているので、永久磁石14に作用する荷重は永久磁石挿入部13内の回転子鉄心12の面で受けることになる。このため、回転子鉄心12自体に亀裂等が入る恐れもない。また、永久磁石14も永久磁石挿入部13内の回転子鉄心12の面に当接するので、永久磁石14が破損する恐れもない。   Flat permanent magnets 14 made of a magnet material, for example, rare earth neodymium, are inserted into the plurality of permanent magnet insertion portions 13. The permanent magnet insertion portion 13 is formed slightly larger than the permanent magnet 14, and the outer periphery of the permanent magnet 14 is covered with the rotor core 12. The permanent magnet 14 moves through the gap of the permanent magnet insertion portion 13 due to acceleration / deceleration accompanying the rotation of the rotor 3. However, since the periphery is covered with the rotor core 12, the load acting on the permanent magnet 14 is permanent. It is received by the surface of the rotor core 12 in the magnet insertion part 13. For this reason, there is no possibility of cracks or the like in the rotor core 12 itself. Moreover, since the permanent magnet 14 also contacts the surface of the rotor core 12 in the permanent magnet insertion portion 13, there is no possibility that the permanent magnet 14 is damaged.

ここで、図2の回転子3の断面において、永久磁石14の磁極がつくる磁束の方向、つまり永久磁石14の長手方向中心(断面中央)と回転中心Oとを結ぶ仮想軸をd軸(磁束軸)と定義し、d軸と電気的に、すなわち、電気角で直交する軸(永久磁石間の軸)をq軸と定義する。   Here, in the cross section of the rotor 3 in FIG. 2, the direction of the magnetic flux generated by the magnetic poles of the permanent magnet 14, that is, the virtual axis connecting the longitudinal center (cross section center) of the permanent magnet 14 and the rotation center O is the d axis (magnetic flux). Axis), and an axis that is electrically perpendicular to the d-axis, that is, an electrical angle (axis between permanent magnets), is defined as a q-axis.

図2において、回転子鉄心12には、一磁極当たり一枚の永久磁石14が設けられている。永久磁石14の断面形状は、永久磁石挿入部13と同様に細長い長方形状であり、その長手方向はd軸に対して幾何的に直角方向に伸びている。   In FIG. 2, the rotor core 12 is provided with one permanent magnet 14 per magnetic pole. The cross-sectional shape of the permanent magnet 14 is an elongated rectangular shape like the permanent magnet insertion portion 13, and its longitudinal direction extends in a direction perpendicular to the d-axis geometrically.

回転子3の回転子鉄心12には、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)のq軸上において、回転子の内周面から径方向外側に向かって凹んだ凹部11が設けられている。この凹部11はq軸上に位置しており、後述するようにq軸磁束を抑制する。また、回転子3、すなわち、回転子鉄心12は、凹部11よりも内周側に位置し、固定子2のティース4とのギャップ長(隙間)が最短のg1となる内周部と、ギャップ長がg1よりも長いg2となる内周部とを有している。   The rotor core 12 of the rotor 3 is recessed outwardly in the radial direction from the inner peripheral surface of the rotor on the q axis between adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14). A recess 11 is provided. The recess 11 is located on the q axis and suppresses the q axis magnetic flux as will be described later. Further, the rotor 3, that is, the rotor core 12 is positioned on the inner peripheral side with respect to the recess 11, and the inner peripheral portion where the gap length (gap) between the stator 2 and the teeth 4 is the shortest g 1, and the gap And an inner peripheral portion whose length is g2 longer than g1.

次に凹部11の構成について説明する。凹部11は、永久磁石14の周方向長さ方向と平行に沿う二つの直線部11b、11cと、二つの直線部11b、11cの回転子内周側端部を結ぶ曲線部11aとを有している。このように凹部11に曲線部11aを設けることで、高速域において回転子遠心力に伴う応力の影響を緩和することができる。本実施例の凹部11においては曲線部11aは二つの直線部11b、11cと滑らかに接続される。これにより、凹部11内における回転子遠心力に伴う応力の集中が緩和されるので、遠心力に対する回転子の強度が向上する。   Next, the configuration of the recess 11 will be described. The recess 11 has two straight portions 11b and 11c that are parallel to the circumferential length direction of the permanent magnet 14, and a curved portion 11a that connects the end portions of the two straight portions 11b and 11c on the rotor inner peripheral side. ing. Thus, by providing the curved part 11a in the recessed part 11, the influence of the stress accompanying a rotor centrifugal force can be relieved in a high speed region. In the concave portion 11 of this embodiment, the curved portion 11a is smoothly connected to the two straight portions 11b and 11c. As a result, stress concentration associated with the rotor centrifugal force in the recess 11 is alleviated, so that the strength of the rotor against the centrifugal force is improved.

回転子3の回転中心Oの周りにおいて、回転子3の一つの磁極を構成する永久磁石14の内周側磁極面の端部間の角度をθp1、凹部11の二つの直線部11b、11cの回転子外周側の各端部間(曲線部11a)の角度をθp2とする場合、θp1およびθp2は、θp2/θp1≦0.5の関係を満たすように設定される。   Around the rotation center O of the rotor 3, the angle between the end portions of the inner peripheral side magnetic pole surface of the permanent magnet 14 constituting one magnetic pole of the rotor 3 is θp1, and the two linear portions 11b and 11c of the recess 11 are When the angle between the end portions (curve portion 11a) on the outer periphery side of the rotor is θp2, θp1 and θp2 are set so as to satisfy the relationship θp2 / θp1 ≦ 0.5.

ここで、本実施例においては、上記のように、集中巻の巻線を有する固定子におけるスロットピッチが電気角で120°である。また、1磁極当たり1.5スロット(=9スロット/6極)であるから、q軸間の角度は電気角で180°である。このため、電気角で、120°≦θp1<180°、0°<θp2≦60°である。したがって、0<θp2/θp1≦0.5(=60°/120°)である。本実施例では下限値を0.18とし、0.18≦θp2/θp1≦0.5の関係を満たすように設定している。   Here, in the present embodiment, as described above, the slot pitch in the stator having concentrated windings is 120 ° in electrical angle. Further, since there are 1.5 slots per magnetic pole (= 9 slots / 6 poles), the angle between the q axes is 180 ° in electrical angle. Therefore, the electrical angle is 120 ° ≦ θp1 <180 ° and 0 ° <θp2 ≦ 60 °. Therefore, 0 <θp2 / θp1 ≦ 0.5 (= 60 ° / 120 °). In this embodiment, the lower limit value is set to 0.18, and is set so as to satisfy the relationship of 0.18 ≦ θp2 / θp1 ≦ 0.5.

さらに、本発明の検討によれば、本実施例のように曲線部を有する凹部11が設けられる回転子の場合、0.18≦θp2/θp1とすることにより、後述する図5に示すように、q軸磁束の抑制による高速域における実質的なトルク向上効果が得られる。   Further, according to the examination of the present invention, in the case of the rotor provided with the concave portion 11 having the curved portion as in the present embodiment, by setting 0.18 ≦ θp2 / θp1, as shown in FIG. Thus, a substantial torque improvement effect in the high speed range can be obtained by suppressing the q-axis magnetic flux.

本実施例1の回転子3の回転子鉄心12には、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)において、回転子の内周面から径方向外側に向かって凹んだ凹部11が設けている。そして、q軸上に凹部11を位置させている。この凹部11により空気層が形成され、この空気層により磁気抵抗が高くなるため、周方向に隣合う永久磁石挿入部13(永久磁石14)同士の間において磁束が通過し難くなる。このため、永久磁石14同士の間からの漏れ磁束を低減するとともに、q軸磁束の影響を抑制することができ、誘導起電力と電機子電流との相互作用によって生じる高調波磁束を低減できる。すなわち、凹部11により、電機子反作用が抑制され、機内磁束の高調波成分が低減される。   The rotor core 12 of the rotor 3 of the first embodiment is recessed from the inner peripheral surface of the rotor toward the radially outer side between the adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14). A recess 11 is provided. And the recessed part 11 is located on the q-axis. Since the air layer is formed by the recess 11 and the magnetic resistance is increased by the air layer, it is difficult for the magnetic flux to pass between the permanent magnet insertion portions 13 (permanent magnets 14) adjacent in the circumferential direction. For this reason, the leakage magnetic flux from between the permanent magnets 14 can be reduced, the influence of the q-axis magnetic flux can be suppressed, and the harmonic magnetic flux generated by the interaction between the induced electromotive force and the armature current can be reduced. That is, the recess 11 suppresses the armature reaction and reduces the harmonic component of the in-machine magnetic flux.

次に、本実施例1の効果を更に高める構成について説明する。回転子3は、周方向に隣合う永久磁石挿入部13(永久磁石14)同士の間であって、永久磁石挿入部13とは隔離されて形成された切欠部17を備えている。この切欠部17は回転子を軸方向に貫通している。   Next, a configuration for further enhancing the effect of the first embodiment will be described. The rotor 3 includes a notch portion 17 formed between the permanent magnet insertion portions 13 (permanent magnets 14) adjacent to each other in the circumferential direction and isolated from the permanent magnet insertion portion 13. This notch 17 penetrates the rotor in the axial direction.

この切欠部17により空気層が形成され、この空気層により磁気抵抗が高くなるため、周方向に隣合う永久磁石挿入部13(永久磁石14)同士の間において磁束が通過し難くなる。そして、q軸上に切欠部17を位置させている。このため、永久磁石14同士の間からの漏れ磁束を低減するとともに、q軸磁束の影響を抑制することができ、誘導起電力と電機子電流との相互作用によって生じる高調波磁束を低減できる。すなわち、切欠部17により、電機子反作用が抑制され、機内磁束の高調波成分が低減される。また、永久磁石挿入部13に埋設された永久磁石14の外周は回転子鉄心12で覆われるので、回転子3の回転に伴う加速・減速により、永久磁石挿入部13の隙間を永久磁石14が移動しても、回転子鉄心12自体に亀裂等が入る恐れもなく、また、永久磁石14も永久磁石14が破損する恐れもない。   An air layer is formed by the notches 17 and the magnetic resistance is increased by the air layer. Therefore, it is difficult for magnetic flux to pass between the permanent magnet insertion portions 13 (permanent magnets 14) adjacent in the circumferential direction. And the notch part 17 is located on the q-axis. For this reason, the leakage magnetic flux from between the permanent magnets 14 can be reduced, the influence of the q-axis magnetic flux can be suppressed, and the harmonic magnetic flux generated by the interaction between the induced electromotive force and the armature current can be reduced. That is, the notch portion 17 suppresses the armature reaction and reduces the harmonic component of the in-machine magnetic flux. Further, since the outer periphery of the permanent magnet 14 embedded in the permanent magnet insertion portion 13 is covered with the rotor core 12, the permanent magnet 14 passes through the gap of the permanent magnet insertion portion 13 due to acceleration / deceleration accompanying the rotation of the rotor 3. Even if it moves, there is no fear of cracks or the like in the rotor core 12 itself, and neither the permanent magnet 14 nor the permanent magnet 14 is damaged.

図3aおよび図3bは、従来発明による比較例である永久磁石式回転電機のベクトル図である。なお、図3aは低速・低負荷トルク時であり、図3bは高速・高負荷トルク時である。図3a、図3bのベクトル図は、永久磁石式回転電機を制御するためのd−q軸座標系を用いており、本座標系のd軸方向は、回転子のd軸方向(図2参照)としている。   3a and 3b are vector diagrams of a permanent magnet type rotating electrical machine which is a comparative example according to the conventional invention. Note that FIG. 3A shows a low speed / low load torque, and FIG. 3B shows a high speed / high load torque. The vector diagrams of FIGS. 3a and 3b use the dq axis coordinate system for controlling the permanent magnet type rotating electrical machine, and the d axis direction of this coordinate system is the d axis direction of the rotor (see FIG. 2). ).

図3a、図3bにおいて、Φmは永久磁石14による回転子のd軸方向の磁束を示す。ΦdおよびΦqは、本座標系において、それぞれ、固定子巻線に流れる電機子電流I1のd軸成分およびq軸成分による磁束、すなわち、d軸磁束およびq軸磁束を示す。Φ1は、永久磁石による磁束Φmと電機子電流I1による磁束(Φd、Φq)からなる永久磁石式回転電機全体の磁束、すなわち、主磁束を示す。また、Emは無負荷時の誘起電圧を示す。V1は、固定子巻線の端子電圧を示し、主磁束Φ1に対して位相差が90°である。また、V1は、誘起電圧Emと、電機子電流I1のd軸成分およびq軸成分による電圧降下(ωΦd、ωΦq:ωはインバータの出力角周波数)との合成ベクトルによって表わされる。   3A and 3B, Φm represents a magnetic flux in the d-axis direction of the rotor by the permanent magnet 14. In the present coordinate system, Φd and Φq indicate the magnetic flux due to the d-axis component and the q-axis component of the armature current I1 flowing through the stator winding, that is, the d-axis magnetic flux and the q-axis magnetic flux, respectively. Φ1 indicates the magnetic flux of the entire permanent magnet type rotating electric machine, that is, the main magnetic flux, which is composed of the magnetic flux Φm by the permanent magnet and the magnetic flux (Φd, Φq) by the armature current I1. Em represents an induced voltage at no load. V1 indicates the terminal voltage of the stator winding, and the phase difference is 90 ° with respect to the main magnetic flux Φ1. V1 is represented by a combined vector of the induced voltage Em and a voltage drop (ωΦd, ωΦq: ω is an output angular frequency of the inverter) due to the d-axis component and the q-axis component of the armature current I1.

図3aに示すように、低速・低負荷トルク時では、電機子電流I1およびそのq軸成分は小さいためにq軸磁束が小さいので、主磁束Φ1と永久磁石の磁束Φmの位相差が小さい。このため、特許文献1の方式でも力率が比較的高くなり、高い効率で所望のトルクが得られる。   As shown in FIG. 3a, at the time of low speed and low load torque, since the armature current I1 and its q-axis component are small and the q-axis magnetic flux is small, the phase difference between the main magnetic flux Φ1 and the magnetic flux Φm of the permanent magnet is small. For this reason, even in the method of Patent Document 1, the power factor becomes relatively high, and a desired torque can be obtained with high efficiency.

しかしながら、図3bに示すように、高速・高負荷トルク時では、電機子電流I1およびそのq軸磁束が大きくなるので、主磁束Φ1とΦmの位相差が大きくなる。このため、力率が低下し、電機子電流I1を増やした割には、トルクが大きくならず、効率が低下する。   However, as shown in FIG. 3b, at high speed and high load torque, the armature current I1 and its q-axis magnetic flux increase, so the phase difference between the main magnetic fluxes Φ1 and Φm increases. For this reason, although a power factor falls and the armature current I1 is increased, a torque does not become large and efficiency falls.

図4は、本実施例1の永久磁石式回転電機のベクトル図である。図4は、高速・高負荷トルク時であり、破線で示すベクトル(Φ1’、I1’、V1’)が実施例1の永久磁石式回転電機のベクトルである。本実施例1の効果を分かり易くするため、図3bに示した比較例のベクトル図を併記している。   FIG. 4 is a vector diagram of the permanent magnet type rotating electric machine according to the first embodiment. FIG. 4 shows the vectors of the permanent magnet type rotating electrical machine of the first embodiment when the high speed and high load torque are applied, and the vectors (Φ1 ′, I1 ′, V1 ′) shown by broken lines. In order to facilitate understanding of the effect of the first embodiment, the vector diagram of the comparative example shown in FIG.

図4に示すように、本実施例においては、回転子3に凹部11ならびに切欠部17を設けることにより、回転子のq軸方向における磁気抵抗が増大するため、電機子電流I1を大きくした場合のq軸磁束Φqの影響を抑制できる。このため、高速・高負荷トルク時でも、力率の低下が抑制され、比較的高い効率を維持しながら所望のトルクが得られる。   As shown in FIG. 4, in this embodiment, when the rotor 3 is provided with the recess 11 and the notch 17 to increase the magnetic resistance in the q-axis direction of the rotor, the armature current I1 is increased. The influence of the q-axis magnetic flux Φq can be suppressed. For this reason, even at the time of high speed and high load torque, a decrease in the power factor is suppressed, and a desired torque can be obtained while maintaining a relatively high efficiency.

ここで、本実施例1におけるq軸方向の磁気抵抗を増やす手段、すなわち、q軸磁束を低減する手段である凹部11の構成や切欠部17について、さらに具体的に説明する。   Here, the configuration of the recess 11 and the cutout portion 17 which are means for increasing the magnetic resistance in the q-axis direction, that is, means for reducing the q-axis magnetic flux in the first embodiment will be described more specifically.

図2に示すように、回転子3がq軸上に形成される凹部11の径方向の内周側端部と、固定子2のティース4とのギャップ長g2は、d軸側のギャップ長g1より大きくなるように設定される。すなわち、回転子3の内周において凹部11は、固定子2のティース4とのギャップ長が最短のg1となる部位と、g1よりも長いギャップ長のg2となる部位と、を有している。また、凹部11は、図2に示すように、永久磁石14の周方向の長さ方向に平行な二つの直線部(11b、11c)と、これら直線部の回転子内周側の各端部を結ぶ曲線部(11a)とを有する。このようにして、回転子3の内周部が構成される。   As shown in FIG. 2, the gap length g <b> 2 between the radially inner end of the recess 11 in which the rotor 3 is formed on the q-axis and the teeth 4 of the stator 2 is the gap length on the d-axis side. It is set to be larger than g1. That is, in the inner periphery of the rotor 3, the recess 11 has a portion where the gap length with the teeth 4 of the stator 2 is the shortest g1 and a portion where the gap length is longer than g1 and g2. . Further, as shown in FIG. 2, the recess 11 includes two straight portions (11 b and 11 c) parallel to the circumferential length direction of the permanent magnet 14, and end portions on the rotor inner peripheral side of these straight portions. And a curved portion (11a) connecting the two. In this way, the inner periphery of the rotor 3 is configured.

さらに、凹部11において、隣合う永久磁石14の間に回転方向に沿うように位置する内周側の曲線部11aと、その内周側の曲線部11aの回転方向の側端部から回転方向側に広がるように位置する略直線状の回転方向側の直線部11bと、内周側の曲線部11aの反回転方向側の端部から反回転方向側に広がるように位置する略直線状の反回転方向側の直線部11cとが接続する。すなわち、凹部11の曲線部11aの中央部と回転中心Oとの距離が、永久磁石14と回転中心Oとの距離よりも長い。これにより、q軸磁束が低減される。なお、ここでは時計周りを回転方向として説明したが、反時計周りに回転する回転子3であっても構わない。このような凹部11と前述した切欠部17により、永久磁石14の磁束をd軸近傍に集めることができる。   Furthermore, in the recessed part 11, the curved part 11a of the inner peripheral side located so that it may follow a rotation direction between the adjacent permanent magnets 14, and the rotation direction side from the edge part of the rotation direction of the curved part 11a of the inner peripheral side A linear portion 11b on the substantially linear rotational direction side that extends so as to extend in the direction opposite to the end portion on the anti-rotational direction side of the curved portion 11a on the inner peripheral side, and a substantially linear anti-linear portion located so as to spread in the counter rotational direction side. The straight portion 11c on the rotation direction side is connected. That is, the distance between the central portion of the curved portion 11 a of the recess 11 and the rotation center O is longer than the distance between the permanent magnet 14 and the rotation center O. Thereby, q-axis magnetic flux is reduced. Although the clockwise direction is described here as the rotation direction, the rotor 3 may rotate counterclockwise. By such a recess 11 and the notch 17 described above, the magnetic flux of the permanent magnet 14 can be collected in the vicinity of the d-axis.

なお、本実施例においては、凹部11を永久磁石14の周方向の長さ方向と平行な二つの直線部(11b、11c)と、各直線部の回転子内周側の端部を結ぶ曲線部とで構成するが、これに限定されず、凹部11の内周側から外周側に向かうにつれて左右に広がる形状であればよい。   In the present embodiment, the concave portion 11 is a curve connecting two linear portions (11b, 11c) parallel to the circumferential length direction of the permanent magnet 14 and the end portion of each linear portion on the rotor inner peripheral side. Although it is comprised by a part, it is not limited to this, What is necessary is just the shape which spreads right and left as it goes to the outer peripheral side from the inner peripheral side of the recessed part 11.

上述したように、回転子3の一つの磁極を構成する永久磁石14の内周側磁極面の端部間の角度θp1と、凹部11の二つの直線部11b、11cの回転子内周側の各端部間の角度θp2とを、0.18≦θp2/θp1≦0.5となる様に設定し、永久磁石挿入部13(永久磁石14)の側面において、回転子3を軸方向に貫通する切欠部17を形成することにより、q軸の磁気抵抗を増やすことが可能となる。このため、図4に示すように、電圧(V1’)と電流(I1’)の位相差、ならびに主磁束Φ1と永久磁石の磁束Φmの位相差が低減される。これにより、高速域において、高トルクが得られる。また、永久磁石式回転電機のインダクタンスが大きい場合、電機子反作用の影響による力率低下を抑制することができる。その結果、トルクの低下を抑制しつつ、永久磁石式回転電機の小形・高効率化が可能となる。   As described above, the angle θp1 between the end portions of the inner peripheral side magnetic pole surface of the permanent magnet 14 constituting one magnetic pole of the rotor 3, and the two linear portions 11b and 11c of the recess 11 on the inner peripheral side of the rotor. The angle θp2 between the end portions is set to satisfy 0.18 ≦ θp2 / θp1 ≦ 0.5, and the rotor 3 is penetrated in the axial direction on the side surface of the permanent magnet insertion portion 13 (permanent magnet 14). It is possible to increase the q-axis magnetic resistance by forming the notch 17 to be formed. Therefore, as shown in FIG. 4, the phase difference between the voltage (V1 ') and the current (I1') and the phase difference between the main magnetic flux Φ1 and the magnetic flux Φm of the permanent magnet are reduced. Thereby, a high torque is obtained in a high speed region. Further, when the inductance of the permanent magnet type rotating electrical machine is large, it is possible to suppress a power factor decrease due to the influence of the armature reaction. As a result, it is possible to reduce the size and increase the efficiency of the permanent magnet type rotating electrical machine while suppressing a decrease in torque.

図5は、本実施例1の永久磁石式回転電機のトルク特性(実線)を示す。縦軸および横軸は、それぞれトルクおよび電機子電流である。ただし、定格電流を1P.U.とし、また、定格電流を流した際での本実施例1のトルク(高速域のトルク)を1P.U.としている。なお、比較例として従来発明による永久磁石式回転電機のトルク特性を破線で示す。図5に示すように、本実施例1の永久磁石式回転電機のトルクは、従来発明による比較例よりも大きくなり、特に高速域において大きくなっている。   FIG. 5 shows the torque characteristics (solid line) of the permanent magnet type rotating electrical machine of the first embodiment. The vertical axis and the horizontal axis are torque and armature current, respectively. However, the rated current is 1P. U. In addition, the torque (high-speed torque) of Example 1 when the rated current is passed is 1 P.V. U. It is said. As a comparative example, the torque characteristics of a permanent magnet type rotating electrical machine according to the conventional invention are indicated by broken lines. As shown in FIG. 5, the torque of the permanent magnet type rotating electric machine of the first embodiment is larger than that of the comparative example according to the conventional invention, and is particularly large in the high speed range.

本実施例1によれば、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)において、回転子3の内周面から径方向外側に向かって凹んだ凹部11が設け、この凹部11をq軸上に位置させているので、電機子反作用の影響による力率低下が抑制され、高速域でのトルク低下を抑制することができる。このため、永久磁石式回転電機の高効率化や小型化が可能になる。   According to the first embodiment, a recess 11 that is recessed radially outward from the inner peripheral surface of the rotor 3 is provided between adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14). Since the recess 11 is positioned on the q-axis, the power factor decrease due to the influence of the armature reaction is suppressed, and the torque decrease in the high speed range can be suppressed. For this reason, the permanent magnet type rotating electrical machine can be made highly efficient and downsized.

また、本実施例1によれば、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)において、永久磁石挿入部13とは隔離されて形成された切欠部17を設け、この切切欠部17をq軸上に位置させているので、電機子反作用の影響による力率低下が抑制され、高速域でのトルク低下を抑制することができる。このため、永久磁石式回転電機の高効率化や小型化が可能になる。   In addition, according to the first embodiment, a notch portion 17 is provided between the adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14), and is formed so as to be isolated from the permanent magnet insertion portion 13. Since the notch 17 is positioned on the q-axis, the power factor decrease due to the influence of the armature reaction is suppressed, and the torque decrease in the high speed region can be suppressed. For this reason, the permanent magnet type rotating electrical machine can be made highly efficient and downsized.

以上説明した本実施例1では、回転子3に凹部11及び切欠部17の両方を設けているが、凹部11あるいは切欠部17の何れか一方を設けるようにしても良い。   In the first embodiment described above, the rotor 3 is provided with both the recess 11 and the notch 17, but either the recess 11 or the notch 17 may be provided.

図6は、本発明の実施例2に係る永久磁石式回転電機の回転子鉄心形状の断面図である。   FIG. 6 is a cross-sectional view of the rotor core shape of the permanent magnet type rotating electric machine according to the second embodiment of the present invention.

図6において、図2と参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。以下、主に、実施例1とは異なる点について説明する。   In FIG. 6, the same reference numerals as those in FIG. 2 indicate the same constituent elements or constituent elements having similar functions. Hereinafter, points different from the first embodiment will be mainly described.

本実施例2は、実施例1(図2)と異なり、回転子3の磁極一極あたり2枚の永久磁石を備えている。実施例1のように永久磁石を用いる場合、渦電流による熱損失が問題となる。特に、高回転を行う場合、磁石に加わる変動磁場の周波数や変動幅も増加し、それに伴い熱損失も増加する。この渦電流のよる発熱損失を低減するために、本実施例では永久磁石挿入部13に埋設される永久磁石14を分割して配置している(14a、14b)。分割された永久磁石14a、14bは個々の磁石に鎖交する磁束が減少する。そのため分割された個々の永久磁石14a、14bの渦電流密度が減少し、総量としての渦電流損失が減少する。   In the second embodiment, unlike the first embodiment (FIG. 2), two permanent magnets are provided for each magnetic pole of the rotor 3. When a permanent magnet is used as in the first embodiment, heat loss due to eddy current becomes a problem. In particular, when performing high rotation, the frequency and fluctuation range of the fluctuating magnetic field applied to the magnet increase, and the heat loss increases accordingly. In order to reduce the heat loss due to this eddy current, the permanent magnet 14 embedded in the permanent magnet insertion portion 13 is divided and arranged in this embodiment (14a, 14b). In the divided permanent magnets 14a and 14b, the magnetic flux linked to the individual magnets is reduced. Therefore, the eddy current density of each of the divided permanent magnets 14a and 14b is reduced, and the eddy current loss as a total amount is reduced.

本実施例2によれば、永久磁石挿入部13に埋設される永久磁石14(14a、14b)を分割して配置しているので、渦電流による損失を低減することができる。   According to the second embodiment, since the permanent magnets 14 (14a, 14b) embedded in the permanent magnet insertion portion 13 are divided and arranged, loss due to eddy current can be reduced.

また、本実施例2によれば、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)において、回転子3の内周面から径方向外側に向かって凹んだ凹部11が設け、この凹部11をq軸上に位置させているので、電機子反作用の影響による力率低下が抑制され、高速域でのトルク低下を抑制することができる。   In addition, according to the second embodiment, the concave portion 11 is provided between the adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14). Since the recess 11 is positioned on the q-axis, the power factor decrease due to the influence of the armature reaction is suppressed, and the torque decrease in the high speed range can be suppressed.

さらに本実施例2によれば、隣合う永久磁石挿入部13同士の間(永久磁石14の極間)において、永久磁石挿入部13とは隔離されて形成された切欠部17を設け、この切切欠部17をq軸上に位置させているので、電機子反作用の影響による力率低下が抑制され、高速域でのトルク低下を抑制することができる。このため、永久磁石式回転電機の高効率化や小型化が可能になる。   Furthermore, according to the second embodiment, a notch portion 17 is provided between the adjacent permanent magnet insertion portions 13 (between the poles of the permanent magnet 14), and is formed so as to be isolated from the permanent magnet insertion portion 13. Since the notch 17 is positioned on the q-axis, the power factor decrease due to the influence of the armature reaction is suppressed, and the torque decrease in the high speed range can be suppressed. For this reason, the permanent magnet type rotating electrical machine can be made highly efficient and downsized.

このように永久磁石14を分割して配置した回転子構造においても電機子反作用の影響による力率低下を改善することができ、トルクの低下を抑制し、小形・高効率にできることはいうまでもない。   Even in the rotor structure in which the permanent magnets 14 are divided and arranged as described above, it is possible to improve the power factor reduction due to the influence of the armature reaction, suppress the torque reduction, and reduce the size and increase the efficiency. Absent.

以上説明した本実施例2では、回転子3に凹部11及び切欠部17の両方を設けているが、凹部11あるいは切欠部17の何れか一方を設けるようにしても良い。   In the second embodiment described above, the rotor 3 is provided with both the recess 11 and the notch 17, but either the recess 11 or the notch 17 may be provided.

次に実施例1及び2の永久磁石式回転電機をスクロール圧縮機に適用して例について、図7を用いて説明する。図7は、本発明の実施例3に係る圧縮機の断面図である。   Next, an example in which the permanent magnet type rotating electrical machines of the first and second embodiments are applied to a scroll compressor will be described with reference to FIG. FIG. 7 is a cross-sectional view of a compressor according to Embodiment 3 of the present invention.

図7において、円筒状の圧縮容器69内には、固定スクロール部材60の端板61に直立する渦巻状ラップ62と、旋回スクロール部材63の端板64に直立する渦巻状ラップ65とが互いに噛み合う圧縮機構を備え、永久磁石式回転電機により旋回スクロール部材63がクランク軸72を介して旋回運動することによって圧縮動作が行われる。この永久磁石式回転電機として、本発明の実施例1または実施例2が適用される。   In FIG. 7, a spiral wrap 62 standing upright on the end plate 61 of the fixed scroll member 60 and a spiral wrap 65 standing upright on the end plate 64 of the orbiting scroll member 63 mesh with each other in the cylindrical compression container 69. A compression mechanism is provided, and the orbiting scroll member 63 orbits through the crankshaft 72 by a permanent magnet type rotating electrical machine to perform the compression operation. Example 1 or Example 2 of the present invention is applied as this permanent magnet type rotating electrical machine.

また、固定スクロール部材60および旋回スクロール部材63によって形成される圧縮室66a〜66bのうち、最も外径側に位置している圧縮室は、旋回運動に伴って固定スクロール部材60、旋回スクロール部材63の中心に向かって移動し、容積が次第に縮小する。圧縮室66a、66bが固定スクロール部材60、旋回スクロール部材63の中心近傍に達すると、両圧縮室内の作動流体である圧縮ガスは圧縮室66と連通した吐出口67から吐出される。吐出された圧縮ガスは固定スクロール部材60およびフレーム68に設けられたガス通路(図示せず)を通ってフレーム68下部の圧縮容器69内に至り、圧縮容器69の側壁に設けられ、吐出パイプ70から圧縮機外に排出される。   Of the compression chambers 66 a to 66 b formed by the fixed scroll member 60 and the orbiting scroll member 63, the compression chamber located on the outermost side is the fixed scroll member 60 and the orbiting scroll member 63 along with the orbiting motion. The volume gradually decreases. When the compression chambers 66 a and 66 b reach the vicinity of the center of the fixed scroll member 60 and the orbiting scroll member 63, the compressed gas that is the working fluid in both the compression chambers is discharged from the discharge port 67 communicating with the compression chamber 66. The discharged compressed gas passes through a gas passage (not shown) provided in the fixed scroll member 60 and the frame 68 and reaches the compression container 69 below the frame 68, and is provided on the side wall of the compression container 69. From the compressor.

また、圧縮機を駆動する永久磁石式回転電機は、別置のインバータ(図示せず)によって制御され、圧縮動作に適した回転速度で回転する。ここで、永久磁石式回転電機は固定子2と回転子3から構成され、クランク軸72は、実施例1、2におけるシャフト孔15に取付けられる。永久磁石式回転電機によってクランク軸72が回転すると、旋回スクロール部材63は、自転せずに、クランク軸72の上部における所定の偏心量を半径とする旋回公転運動を行う。クランク軸72の内部には、油孔74が設けられ、クランク軸72の回転に伴って圧縮容器69の下部にある油溜め部73の潤滑油が油孔74を介してすべり軸受75へ供給される。このような圧縮機に、上述の実施例1、2のうちのいずれかの永久磁石式回転電機を適用することより、圧縮機の効率向上が図られ、省エネ化が可能となる。   Moreover, the permanent magnet type rotating electrical machine that drives the compressor is controlled by a separate inverter (not shown) and rotates at a rotation speed suitable for the compression operation. Here, the permanent magnet type rotating electrical machine includes the stator 2 and the rotor 3, and the crankshaft 72 is attached to the shaft hole 15 in the first and second embodiments. When the crankshaft 72 is rotated by the permanent magnet type rotating electrical machine, the orbiting scroll member 63 does not rotate, but performs orbiting and revolving motion having a predetermined eccentric amount at the upper portion of the crankshaft 72 as a radius. An oil hole 74 is provided in the crankshaft 72, and as the crankshaft 72 rotates, the lubricating oil in the oil reservoir 73 at the lower part of the compression container 69 is supplied to the slide bearing 75 through the oil hole 74. The By applying the permanent magnet type rotating electric machine according to any one of the first and second embodiments described above to such a compressor, the efficiency of the compressor can be improved and energy saving can be achieved.

ところで、現在の家庭用および業務用のエアコンでは、圧縮容器69内にR410A冷媒が封入されているものが多く、永久磁石式回転電機の周囲温度は80℃以上となることが多い。今後、地球温暖化係数がより小さいR32冷媒の採用が進むと永久磁石式回転電機の周囲温度はさらに上昇する。永久磁石14、特にネオジム磁石は、高温になると残留磁束密度が低下し、同一出力を確保するために電機子電流が増加することから、前述の実施例1または実施例2の永久磁石式回転電機を適用することで、効率低下を抑えることができる。本実施例3では、スクロール圧縮機に前述の実施例1または実施例2の永久磁石式回転電機を適用する例を説明したが、本実施例3を提供するにあたり、冷媒の種類が制限されるものではない。また、圧縮機の種類として、本実施例3ではスクロール圧縮機の例で説明したが、ロ−タリ圧縮機、レシプロ圧縮機などの他の圧縮機構を有する圧縮機に適用することも可能である。   By the way, in many current home and commercial air conditioners, the R410A refrigerant is sealed in the compression container 69, and the ambient temperature of the permanent magnet type rotating electric machine is often 80 ° C. or more. In the future, the ambient temperature of the permanent magnet type rotating electrical machine further rises as the adoption of R32 refrigerant having a smaller global warming potential progresses. The permanent magnet 14, particularly a neodymium magnet, has a residual magnetic flux density that decreases at a high temperature, and an armature current increases to ensure the same output. Therefore, the permanent magnet type rotating electric machine according to the first or second embodiment described above. By applying, efficiency reduction can be suppressed. In the third embodiment, the example in which the permanent magnet type rotating electric machine of the first embodiment or the second embodiment described above is applied to the scroll compressor has been described. However, in providing the third embodiment, the type of refrigerant is limited. It is not a thing. Further, as the type of the compressor, the example of the scroll compressor has been described in the third embodiment, but the present invention can also be applied to a compressor having other compression mechanisms such as a rotary compressor and a reciprocating compressor. .

本実施例3によれば、小形・高効率な永久磁石式回転電機を適用することにより、省エネ化が可能な圧縮機を実現できる。また、実施例1、2の永久磁石式回転電機を適用することにより、圧縮機の高速運転が可能になるなど、運転範囲を広げることができる。   According to the third embodiment, a compressor capable of saving energy can be realized by applying a small and highly efficient permanent magnet type rotating electrical machine. In addition, by applying the permanent magnet type rotating electric machine according to the first and second embodiments, the operating range can be expanded such that the compressor can be operated at high speed.

さらに、HeやR32などの冷媒においては、R22、R407C、R410Aなどの冷媒と比べて、圧縮機における隙間からの漏れが大きく、特に低速運転時には、循環量に対する漏れの比率が大きくなるため、効率が低下する。低循環量(低速運転)時の効率向上のためには、圧縮機構部を小形化し、同じ循環量を得るために回転数を上げることで、漏れ損失を低減させることが有効である。さらに、最大循環量を確保するために最大回転数も上げることが好ましい。これに対し、上述の実施例1及び2の永久磁石式回転電機1を圧縮機に適用することで、最大トルクおよび最大回転数を大きくすることが可能となり、かつ高速域での損失低減が可能となるため、HeやR32等の冷媒を用いる際に効率を向上することができる。   Furthermore, in refrigerants such as He and R32, leakage from gaps in the compressor is larger than refrigerants such as R22, R407C, and R410A, and the ratio of leakage to the circulation rate is large particularly during low-speed operation. Decreases. In order to improve the efficiency at the time of low circulation (low speed operation), it is effective to reduce the leakage loss by downsizing the compression mechanism and increasing the rotational speed to obtain the same circulation. Furthermore, it is preferable to increase the maximum rotational speed in order to ensure the maximum circulation amount. On the other hand, by applying the permanent magnet type rotating electrical machine 1 of the first and second embodiments described above to the compressor, it is possible to increase the maximum torque and the maximum number of rotations, and to reduce the loss in the high speed range. Therefore, the efficiency can be improved when a refrigerant such as He or R32 is used.

上述のように、実施例1または実施例2の永久磁石式回転電機を圧縮機に適用することにより、圧縮機の効率を向上することができる。   As described above, the efficiency of the compressor can be improved by applying the permanent magnet type rotating electric machine of the first embodiment or the second embodiment to the compressor.

なお、本発明は前述した実施例1〜3に限定されるものではなく、様々な変形例が含まれる。前述した実施例1〜3は本発明を分かりやすく説明するために詳細に説明したものであり、本発明を実現するにあたり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例1〜3の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。   In addition, this invention is not limited to Example 1-3 mentioned above, Various modifications are included. The above-described first to third embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described above. Moreover, it is possible to add / delete / replace other configurations for a part of the configurations of the first to third embodiments.

1…永久磁石式回転電機
2…固定子
3…回転子
4…ティース
5…コアバック
6…固定子鉄心
7…スロット
8a、8b、8c…電機子巻線
11…凹部
12…回転子鉄心
13…永久磁石挿入部
14…永久磁石
15…シャフト孔
17…切欠部
60…固定スクロール部材
61、64…端板
62、65…渦巻状ラップ
63…旋回スクロール部材
66a、66b…圧縮室
67…吐出口
68…フレーム
69…圧縮容器
70…吐出パイプ
72…クランク軸
73…油溜め部
74…油孔
75…すべり軸受
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotary electric machine 2 ... Stator 3 ... Rotor 4 ... Teeth 5 ... Core back 6 ... Stator core 7 ... Slots 8a, 8b, 8c ... Armature winding 11 ... Recess 12 ... Rotor core 13 ... Permanent magnet insertion portion 14 Permanent magnet 15 Shaft hole 17 Notch portion 60 Fixed scroll members 61 and 64 End plates 62 and 65 Spiral wrap 63 Orbiting scroll members 66a and 66b Compression chamber 67 Discharge port 68 ... Frame 69 ... Compression container 70 ... Discharge pipe 72 ... Crankshaft 73 ... Oil reservoir 74 ... Oil hole 75 ... Sliding bearing

Claims (10)

固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、
前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、
前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有する永久磁石式回転電機において、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、前記回転子の内周面から径方向外側に向かって凹んだ凹部を形成し、
前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記凹部を前記q軸上に位置させたことを特徴とする永久磁石式回転電機。
A stator, and a rotor rotatably arranged on the outer peripheral side of the stator,
The stator includes a plurality of teeth provided radially from the center radially outward, and armature windings wound around the plurality of teeth.
The rotor includes a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction, and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portion. In the permanent magnet type rotating electrical machine having
The rotor is formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor, and a concave portion that is recessed radially outward from the inner circumferential surface of the rotor,
When the line connecting the rotation center of the rotor and the central portion in the circumferential direction of the permanent magnet is the d-axis, and the axis orthogonal to the d-axis in terms of electrical angle is the q-axis, the recess is positioned on the q-axis. A permanent magnet type rotating electrical machine characterized by being made.
請求項1において、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、該切欠部を前記q軸上に位置させたことを特徴とする永久磁石式回転電機。
In claim 1,
The rotor includes a notch portion formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor and separated from the permanent magnet insertion portion. A permanent magnet type rotating electrical machine characterized by being positioned on the q-axis.
請求項1又は2において、
前記凹部は、前記回転子の周方向に隣合う前記永久磁石挿入部の周方向にそれぞれ形成された二つ直線部と、該二つの直線部の間に形成された曲線部から構成されたことを特徴とする永久磁石式回転電機。
In claim 1 or 2,
The concave portion is composed of two linear portions formed in the circumferential direction of the permanent magnet insertion portion adjacent to the circumferential direction of the rotor, and a curved portion formed between the two linear portions. Permanent magnet type rotating electrical machine characterized by
請求項3において、
前記永久磁石の内周側の磁極面の端部間の角度θp1とし、前記二つの直線部の回転子内周側の端部間の角度θp2とした時、θp2/θp1≦0.5となる関係を有することを特徴とする永久磁石式回転電機。
In claim 3,
When the angle θp1 between the ends of the magnetic pole surface on the inner peripheral side of the permanent magnet and the angle θp2 between the ends on the inner peripheral side of the two linear portions are set, θp2 / θp1 ≦ 0.5. A permanent magnet type rotating electrical machine characterized by having a relationship.
請求項3又は4において、
前記凹部は、前記二つの直線部の間隔が前記回転子の外周側から前記回転子の内周側へ向かって広がっていることを特徴とする永久磁石式回転電機。
In claim 3 or 4,
The permanent magnet-type rotating electrical machine, wherein the recess has an interval between the two linear portions that extends from the outer peripheral side of the rotor toward the inner peripheral side of the rotor.
固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、
前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、
前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有する永久磁石式回転電機において、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、
前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記切欠部を前記q軸上に位置させたことを特徴とする永久磁石式回転電機。
A stator, and a rotor rotatably arranged on the outer peripheral side of the stator,
The stator includes a plurality of teeth provided radially from the center radially outward, and armature windings wound around the plurality of teeth.
The rotor includes a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction, and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portion. In the permanent magnet type rotating electrical machine having
The rotor includes a notch portion formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor and separated from the permanent magnet insertion portion,
When a line connecting the rotation center of the rotor and the central portion in the circumferential direction of the permanent magnet is a d-axis, and an axis orthogonal to the d-axis in terms of electrical angle is a q-axis, the notch is on the q-axis. A permanent magnet type rotating electrical machine characterized by being positioned.
請求項1乃至6の何れかにおいて、
前記永久磁石挿入部に挿入される前記永久磁石は分割して埋設されたことを特徴とする永久磁石式回転電機。
In any one of Claims 1 thru | or 6,
The permanent magnet type rotating electrical machine, wherein the permanent magnet inserted into the permanent magnet insertion portion is embedded in a divided manner.
作動流体である気体の容積を縮小する圧縮機構と、該圧縮機構を駆動する永久磁石式回転電機とを備える圧縮機において、
前記永久磁石式回転電機は、
固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、
前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、
前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有し、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、前記回転子の内周面から径方向外側に向かって凹んだ凹部を形成し、
前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記凹部を前記q軸上に位置させたことを特徴とする圧縮機。
In a compressor comprising a compression mechanism that reduces the volume of gas that is a working fluid, and a permanent magnet type rotating electrical machine that drives the compression mechanism,
The permanent magnet type rotating electrical machine is:
A stator, and a rotor rotatably arranged on the outer peripheral side of the stator,
The stator includes a plurality of teeth provided radially from the center radially outward, and armature windings wound around the plurality of teeth.
The rotor includes a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction, and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portion. Have
The rotor is formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor, and a concave portion that is recessed radially outward from the inner circumferential surface of the rotor,
When the line connecting the rotation center of the rotor and the central portion in the circumferential direction of the permanent magnet is the d-axis, and the axis orthogonal to the d-axis in terms of electrical angle is the q-axis, the recess is positioned on the q-axis. A compressor characterized by having been made.
請求項8において、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、該切欠部を前記q軸上に位置させたことを特徴とする圧縮機。
In claim 8,
The rotor includes a notch portion formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor and separated from the permanent magnet insertion portion. A compressor characterized by being positioned on the q-axis.
作動流体である気体の容積を縮小する圧縮機構と、該圧縮機構を駆動する永久磁石式回転電機とを備える圧縮機において、
前記永久磁石式回転電機は、
固定子と、該固定子の外周側に回転可能に配置された回転子とを有し、
前記固定子は中心から径方向外側に向かって放射状に設けられた複数のティースと、該複数のティースに巻装された電機子巻線とを有し、
前記回転子には、該回転子の周方向に延び、かつ軸方向に貫通して形成された複数の永久磁石挿入部と、該永久磁石挿入部に挿入される板状の複数の永久磁石とを有し、
前記回転子には、該回転子の周方向に隣合う前記永久磁石挿入部同士の間であって、該永久磁石挿入部とは隔離されて形成された切欠部を備え、
前記回転子の回転中心と前記永久磁石の周方向中央部とを結ぶ線をd軸とし、該d軸と電気角で直交する軸をq軸としたとき、前記切欠部を前記q軸上に位置させたことを特徴とする圧縮機。
In a compressor comprising a compression mechanism that reduces the volume of gas that is a working fluid, and a permanent magnet type rotating electrical machine that drives the compression mechanism,
The permanent magnet type rotating electrical machine is:
A stator, and a rotor rotatably arranged on the outer peripheral side of the stator,
The stator includes a plurality of teeth provided radially from the center radially outward, and armature windings wound around the plurality of teeth.
The rotor includes a plurality of permanent magnet insertion portions formed extending in the circumferential direction of the rotor and penetrating in the axial direction, and a plurality of plate-like permanent magnets inserted into the permanent magnet insertion portion. Have
The rotor includes a notch portion formed between the permanent magnet insertion portions adjacent to each other in the circumferential direction of the rotor and separated from the permanent magnet insertion portion,
When a line connecting the rotation center of the rotor and the central portion in the circumferential direction of the permanent magnet is a d-axis, and an axis orthogonal to the d-axis in terms of electrical angle is a q-axis, the notch is on the q-axis. A compressor characterized by being positioned.
JP2017112290A 2017-06-07 2017-06-07 Permanent magnet type rotary electric machine and compressor using the same Active JP6518720B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017112290A JP6518720B2 (en) 2017-06-07 2017-06-07 Permanent magnet type rotary electric machine and compressor using the same
KR1020197035576A KR20200003140A (en) 2017-06-07 2018-01-30 Permanent magnet rotary electric machine and compressor using it
CN201880033425.9A CN110651413B (en) 2017-06-07 2018-01-30 Permanent magnet type rotating electrical machine and compressor using the same
PCT/JP2018/002885 WO2018225293A1 (en) 2017-06-07 2018-01-30 Permanent magnet rotating electric machine and compressor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112290A JP6518720B2 (en) 2017-06-07 2017-06-07 Permanent magnet type rotary electric machine and compressor using the same

Publications (3)

Publication Number Publication Date
JP2018207704A true JP2018207704A (en) 2018-12-27
JP2018207704A5 JP2018207704A5 (en) 2019-04-25
JP6518720B2 JP6518720B2 (en) 2019-05-22

Family

ID=64566683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112290A Active JP6518720B2 (en) 2017-06-07 2017-06-07 Permanent magnet type rotary electric machine and compressor using the same

Country Status (4)

Country Link
JP (1) JP6518720B2 (en)
KR (1) KR20200003140A (en)
CN (1) CN110651413B (en)
WO (1) WO2018225293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3465502B1 (en) 2016-05-26 2024-04-10 Becton, Dickinson and Company Molecular label counting adjustment methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146586A (en) * 1997-11-04 1999-05-28 Railway Technical Res Inst Permanent magnet motor
JP3063451U (en) * 1998-10-26 1999-11-05 株式会社ヒノ・カンパニー Hermetic refrigerator motor
JP2007244026A (en) * 2006-03-06 2007-09-20 Daikin Ind Ltd Rotary electric machine
WO2007123057A1 (en) * 2006-04-17 2007-11-01 Panasonic Corporation Motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136075A (en) 2007-11-29 2009-06-18 Hiroshi Shimizu Outer rotor motor
JP5490559B2 (en) * 2010-02-16 2014-05-14 日立オートモティブシステムズ株式会社 Rotor and rotating electric machine using the rotor
JP6002625B2 (en) * 2013-04-26 2016-10-05 株式会社日立産機システム Permanent magnet synchronous machine and compressor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146586A (en) * 1997-11-04 1999-05-28 Railway Technical Res Inst Permanent magnet motor
JP3063451U (en) * 1998-10-26 1999-11-05 株式会社ヒノ・カンパニー Hermetic refrigerator motor
JP2007244026A (en) * 2006-03-06 2007-09-20 Daikin Ind Ltd Rotary electric machine
WO2007123057A1 (en) * 2006-04-17 2007-11-01 Panasonic Corporation Motor

Also Published As

Publication number Publication date
WO2018225293A1 (en) 2018-12-13
CN110651413A (en) 2020-01-03
CN110651413B (en) 2021-06-29
JP6518720B2 (en) 2019-05-22
KR20200003140A (en) 2020-01-08

Similar Documents

Publication Publication Date Title
TWI569560B (en) A permanent magnet type rotating machine, and a compressor using the same
JP5401204B2 (en) Self-starting permanent magnet synchronous motor, and compressor and refrigeration cycle using the same
JP6118227B2 (en) Permanent magnet rotating electric machine and compressor using the same
TWI500239B (en) Permanent magnetic synchronous motors and compressors using them
JP2007181305A (en) Permanent magnet type synchronous motor and compressor using the same
JP2007074898A (en) Permanent magnet type rotary electric machine and compressor using same
JP2008245439A (en) Electric motor and compressor using same
CN109923757B (en) Permanent magnet type rotating electrical machine and compressor using the same
WO2018128006A1 (en) Permanent magnet-type rotary electric machine and compressor using same
JP2012080713A (en) Permanent magnet-type rotary electric machine and compressor using the same
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
WO2018225293A1 (en) Permanent magnet rotating electric machine and compressor using same
JP2016100927A (en) Permanent magnet type rotary electric machine and compressor using the same
JP7126551B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP2017055583A (en) Permanent magnet type rotary electrical machine and compressor using the same
JP6223568B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
CN111953166B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP6416449B1 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2014166016A (en) Permanent magnet synchronous machine and compressor using the same
JP2010035329A (en) Rotor, electric motor using the same and compressor
JP2006149158A (en) Permanent magnet type rotary electric machine and compressor using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6518720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150