JP2018202195A - 気道内気体流量測定装置 - Google Patents

気道内気体流量測定装置 Download PDF

Info

Publication number
JP2018202195A
JP2018202195A JP2018162170A JP2018162170A JP2018202195A JP 2018202195 A JP2018202195 A JP 2018202195A JP 2018162170 A JP2018162170 A JP 2018162170A JP 2018162170 A JP2018162170 A JP 2018162170A JP 2018202195 A JP2018202195 A JP 2018202195A
Authority
JP
Japan
Prior art keywords
gas flow
flow rate
sensor
airflow
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018162170A
Other languages
English (en)
Other versions
JP6635614B2 (ja
JP2018202195A5 (ja
Inventor
勤 川部
Tsutomu Kawabe
勤 川部
式田 光宏
Mitsuhiro Shikida
光宏 式田
充代子 松島
Miyoko Matsushima
充代子 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Publication of JP2018202195A publication Critical patent/JP2018202195A/ja
Publication of JP2018202195A5 publication Critical patent/JP2018202195A5/ja
Application granted granted Critical
Publication of JP6635614B2 publication Critical patent/JP6635614B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • A61B1/2676Bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Otolaryngology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】生体に貼着するECG電極を用いることなく、生体の心臓の拍出を表す心拍信号を容易に検出可能な心拍信号検出装置を提供する。【解決手段】波形解析制御部72により、気体流算出制御部70から出力された呼吸信号SRからその呼吸信号SRに重畳する生体10の心臓26の拍動に同期する周波数成分が抽出され、その拍動を表す心拍信号SHが出力される。その心拍信号SHを用いることにより、生体10の心臓26の拍出を表す心拍信号SHを容易に検出することができる。また、実際の心臓26の心拍出量を反映した心拍信号SHを得るので、心電誘導波形を用いる従来に比較して、心臓26の拍動の有無を高い信頼性で確認でき、救急救命現場での医療処置が速やかに行なわれ、更に、心拍数HRを変化させるだけでなく心拍出量を変化させる循環器系の薬の臨床的な評価が可能となるという効果も得られる。【選択図】図3

Description

本発明は、生体に貼着した電極を用いることなく、生体の心臓の拍出作動を反映した心拍信号を簡便に検出可能であり、さらに好適には、心臓の生理的機能の評価も可能な心拍信号検出装置に関するものである。
生体の心拍信号は、重要な生体情報である。従来では、生体に貼着した複数個のECG電極を通して得られる心電図を心拍信号として検出する心電誘導装置が用いられていた。たとえば、特許文献1および特許文献2に記載された装置がそれである。この心電図は、心電誘導波形或いはECG波形とも称されており、それに含まれるR波は極めて明瞭なパルス形状を有する特徴があるために検出が容易であり、医療現場における一般的な患者監視に際しては心拍信号の代替えとして比較的信頼性が得られている。
特開2001−198097号公報 特開2002−034943号公報
しかしながら、患者が乳幼児である場合には、皮膚が弱く、心電計測を目的として上記ECG電極を長時間皮膚に貼りつけることが難しいという問題がある他、心電誘導波形は実際の心臓の容積変化すなわち心拍出量を反映するものではなく、心電誘導波形が発生していると言っても無脈性電気活動のように必ずしも心臓の拍出が行なわれているとは限らないため、状況によっては救急救命現場では心拍信号として信頼性のあるものとして取り扱うことができないという問題があった。また、心電誘導波形を用いるだけでは、心拍数を変化させるだけでなく心拍出量を変化させる循環器系の薬の臨床的な評価が困難であるという問題もあった。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、生体に貼着するECG電極を用いることなく、生体の心臓の拍出作動、好適には拍出量をも反映した心拍信号を容易に検出できる心拍信号検出装置を提供することにある。
本発明者等は、以上の事情を背景として種々検討を重ねるうち、生体の肺に吸気される吸気量およびその肺から排気される呼気量の経時的変化を示す肺の呼吸波形すなわち換気波形を詳細に検討すると、その肺の換気波形には心拍に同期して脈動する脈動成分が重畳されている点、その脈動成分は肺の心臓の容積変化に対応するものである点を見出した。すなわち、肋骨、胸骨、胸椎で囲まれた比較的剛性の高い胸郭とその胸郭の下方開口部を塞ぐ横隔膜とにより隔絶された胸腔内には肺および心臓が収容されており、拍動による心臓の容積変化は、呼吸運動による肺の容積変化よりも小さいけれども、運動周期が短いため、肺の換気波形に明確に重畳されるので、生体の口元ならびに鼻腔を含む気道における気体流量である換気波形を検出すれば、それから心拍信号が抽出されることを見出した。本発明は、斯かる知見に基づいて成されたものである。
すなわち、本発明の要旨とするところは、(a)生体の心拍信号を検出する心拍信号検出装置であって、(b)前記生体の気管を通過する呼気および吸気の流量を検出するための気流センサと、(c)前記気流センサからの出力信号に基づいて前記生体の呼吸運動を反映する呼吸信号を出力する気体流算出制御部と、(d)前記気体流算出制御部から出力された呼吸信号からその呼吸信号に重畳する前記生体の心臓の拍動に同期する複数の周波数成分を抽出し、その複数の周波数成分から前記生体の心拍波形を示す心拍信号を出力する波形解析制御部と、(e)前記波形解析制御部により解析された心拍信号の波形に基づいて前記心臓の機能異常、或いは解剖学的異常を評価する心拍信号評価制御部とを、含むことにある。
このようにすれば、波形解析制御部により、前記気体流算出制御部から出力された呼吸信号からその呼吸信号に重畳する前記生体の心臓の拍動に同期する複数の周波数成分が抽出され、その複数の周波数成分から前記生体の心拍波形を表す心拍信号が出力される。このため、その心拍信号を用いることにより、生体に貼着するECG電極を用いることなく、生体の心臓の拍出を表す心拍信号を容易に検出することができる。すなわち、皮膚が弱く、心電計測を目的として上記ECG電極を長時間皮膚に貼りつけることが難しい乳幼児であっても、容易に心拍信号を得ることができる。また、実際の心臓の容積変化すなわち心拍出量を反映した心拍信号を得ることができるので、心電誘導波形を用いる従来に比較して、心臓の拍動の有無を高い信頼性で確認でき、救急救命現場での医療処置が速やかに行なわれ得るとともに、心拍数を変化させるだけでなく心拍出量を変化させる循環器系の薬の臨床的な評価が可能となるという効果も得られる。また、前記波形解析制御部により解析された心拍信号の波形に基づいて前記心臓の機能異常、或いは解剖学的異常を評価する心拍信号評価制御部を備えるので、心拍信号の波形が得られるだけでなく、その心拍信号の波形に基づいて前記心臓を構成する2房2室の機能異常、或いは解剖学的異常を知ることができる。この心拍信号評価制御部は、たとえば前記波形解析制御部により解析された心拍信号と予め記憶された異常評価パターンとの相関係数を算出し、その相関係数が予め設定された判定値を超えたことに基づいて前記心臓の機能異常、或いは解剖学的異常を評価する。
ここで、好適には、前記気流センサの装着場所は、前記生体の呼気および吸気の気体流を検出できる部位であれば、気管のみならず鼻孔内や生体外などいずれの部位であっても差し支えない。たとえば、前記生体の気管に挿入される気管内挿管チューブが用いられる場合は、その気管内挿管チューブまたはその気管内挿管チューブと人工呼吸器とを接続する接続管のように生体外に設けられる。また、前記生体の鼻および口を覆うように装着されたマスクや経鼻カニューラが用いられる場合には、前記気流センサは、そのマスク又は経鼻カニューラ内またはそのマスク又は経鼻カニューラと人工呼吸器との間の接続管に設けられる。
また、好適には、前記気流センサは、温度に応じて電気抵抗が変化する電気抵抗素子たとえば白金抵抗素子、又は、金抵抗素子などで構成されたヒータ素子を内面に形成した回路基材フィルムを、前記気体が流れる管内にその内壁面に沿い且つその内壁面に対して所定の空隙を隔てて装着し、通電加熱される前記ヒータの電気抵抗がその管内を流れる気体流速に応じて変化することに基づいて前記管内の気体流速を検出するものである。また、好適には、前記ヒータと前記管との間に、前記ヒータから前記管方向に伝わる熱絶縁を図るための空間が形成されている。このように構成されることにより、フレキシブルな材料で構成された管であっても、その管内壁形状に沿い且つその内壁面に対して所定の空隙を隔てて前記ヒータをその管内壁に装着しているために、気体流速を点ではなく線で検出するために、曲がりくねった配管でも流量を計測できるとともに、ヒータと管との間に熱絶縁用の空間が形成されているために、ヒータ自体の熱容量で熱に対する応答性が決まり、その結果、100ミリ秒以下の高速応答を実現できるようになる。
また、好適には、前記ヒータ素子を4抵抗素子の1つまたは2つとして含むブリッジ回路を有する気体流速計測回路を備え、前記気体流算出制御部は、前記ヒータ素子の抵抗値を反映する気体流速計測回路の出力信号と気体流速または気体流量との間の予め記憶された関係からその気体流速計測回路の出力信号に基づいて気体流速または気体流量を算出する。
また、好適には、前記波形解析制御部は、前記気体流算出制御部から出力された呼吸運動すなわち肺気量全体を反映する呼吸信号から、その呼吸信号に重畳する前記生体の心臓の拍動に由来して脈動する肺気量成分の周波数成分を除去し、前記生体の胸郭および横隔膜由来の肺気量成分を表す換気成分信号を出力する。このようにすれば、前記呼吸信号と前記心拍信号とが同時に得られるので、単一の装置で心機能を反映する呼吸心拍監視が可能となり、時間、場所、人的制約のある救急救命での医療業務を短時間に遂行できる利点がある。
また、好適には、前記波形解析制御部は、前記気体流算出制御部から出力された呼吸信号に重畳する前記生体の心臓の拍動に同期する複数の周波数成分をフーリエ変換により抽出し、その複数の周波数成分から逆フーリエ変換を用いて前記心拍信号を合成するものである。
また、好適には、(a)前記気流センサを含み、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、(b)前記可撓性シースに通される気流測定用カテーテルの先端部に一体または別体に設けられた円筒状の第1センサ基材と、(c)前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、(d)前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する前記気流センサと、(e)前記流体測定用カテーテル内を通して設けられた操作ワイヤと、(f)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットとを、含むことにある。このように構成された気道内気体流量測定装置によれば、第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムの外周面に第1ヒータ素子が形成されるとともに、流体測定用カテーテル内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第1気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、気道内の流通抵抗が小さくなり、しかも気道内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。
また、好適には、(a)前記気流センサを含み、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、(b)前記流体測定用カテーテル内を通して設けられた操作ワイヤと、(c)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、(d)前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、(e)その第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、(f)その第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する前記気流センサとを、含むことにある。このように構成された気道内気体流量測定装置によれば、第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムの外周面に第2ヒータ素子が形成されるとともに、流体測定用カテーテル内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第2気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、気道内の流通抵抗が小さくなり、しかも気管支内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。
また、好適には、(a)前記気流センサを含み、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、(b)前記気流測定用カテーテルの先端部に一体または別体に設けられた円筒状の第1センサ基材と、(c)前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、(d)前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する第1気流センサと、前記流体測定用カテーテル内を通して設けられた操作ワイヤと、(e)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、(f)前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、(g)前記第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、(h)前記第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する第2気流センサとを、含むことにある。このように構成された気道内気体流量測定装置によれば、第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムの外周面に第1ヒータ素子が形成されるとともに、第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムの外周面に第2ヒータ素子が形成され、流体測定用カテーテル内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第1気流センサおよび第2気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、気道内の流通抵抗が小さくなり、しかも気道内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。また、気道内において、拡径バスケットの両側に第1気流センサおよび第2気流センサが設けられるので、第1ヒータ素子および第2ヒータ素子のうちの気道内で気体の上流側に位置するヒータ素子を用いて気体流量を測定することにより、拡径バスケットによって乱されずかつ上流側のヒータ素子による温度ノイズのない気流を用いて一層正確に気体流量が測定される。
また、好適には、前記可撓性の第1回路基材フィルムは、スペーサを介して前記第1センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、その第1回路基材フィルムのうちの少なくとも前記第1ヒータ素子が形成されている部分と前記第1センサ基材の外周面との間に隙間が形成されている。これにより、第1回路基材フィルムに形成された前記第1ヒータ素子と前記第1センサ基材との間の断熱が高められるので、一層正確に気体流量が測定される。また、第1ヒータ素子自体の熱容量で熱に対する応答性が定まるので、高速応答が得られる。
また、好適には、前記可撓性の第2回路基材フィルムは、スペーサを介して前記第2センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、その第2回路基材フィルムのうちの少なくとも前記第2ヒータ素子が形成されている部分と前記第2センサ基材の外周面との間に隙間が形成されている。これにより、第2回路基材フィルムに形成された前記第2ヒータ素子と前記第2センサ基材との間の断熱が高められるので、一層正確に気体流量が測定される。また、第2ヒータ素子自体の熱容量で熱に対する応答性が定まるので、高速応答が得られる。
また、好適には、前記第1回路基材フィルムには、一対の前記第1ヒータ素子が形成されている。また、それら一対の第1ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路とそれら一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第1気体流速計測回路と、予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第1気体流量信号を算出する第1気体流量算出制御部とが、含まれる。この第1気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流の方向を1つの山および谷で表すので、解りやすい気管支内の気体流の方向を示す情報が得られる。また、気体流量は、流れの上流側に位置する側のヒータ素子を有するブリッジ回路の出力から算出することができる。
また、好適には、前記第2回路基材フィルムには、一対の前記第2ヒータ素子が形成されている。また、それら一対の第2ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路とそれら一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第2気体流速計測回路と、予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第2気体流量信号を算出する第2気体流量算出制御部とが、含まれる。この第2気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流の方向を1つの山および谷で表すので、解りやすい気道内の気体流の方向の情報が得られる。また、気体流量は、流れの上流側に位置する側のヒータ素子を有するブリッジ回路の出力から算出することができる。
また、好適には、(a)前記気流センサを含み、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、(b)可撓性シースに通される気流測定用カテーテルの先端部に一体的または別体に設けられた円筒状の第1センサ基材と、(c)その第1センサ基材の先端から出し入れされる操作ワイヤと、(d)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、前記拡径バスケット内において前記操作ワイヤのうち拡径バスケットの長手方向の中央部に位置する部分に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する前記気流センサとを、含む。このようにすれば、気道内の中央に気流センサが位置させられることから、気道内の流通抵抗が小さくなり、しかも気道内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。特に、気流センサが拡径バスケット内の軸方向の中央および横断面の中央に位置していて、気体流量が一層正確に測定される。
さらに、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置は、生体の心拍信号が検出される呼吸流以外の、たとえば生体の中空臓器内の気流或いは液流等の流体流量或いは流速の検出にも用いることができる。このような他用途への発明態様は、生体の臓器内流体流量測定装置として以下のように構成される。すなわち、第1の発明態様としては、(a)可撓性シースの先端部における生体臓器内の流体流量を測定するための生体臓器内流体流量測定装置であって、(b)前記可撓性シースに通される気流測定用カテーテルの先端部に一体または別体に設けられた円筒状の第1センサ基材と、(c)前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、(d)前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する気流センサと、(e)前記流体測定用カテーテル内を通して設けられた操作ワイヤと、(f)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットとを、含むことにある。このように構成された生体臓器内流体流量測定装置によれば、第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムの外周面に第1ヒータ素子が形成されるとともに、流体測定用カテーテル内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第1気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、生体の中空臓器内の流通抵抗が小さくなり、しかも生体の中空臓器内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。
また、第2の発明態様では、(a)前記気流センサを含み、可撓性シースの先端部における生体臓器内の流体流量を測定するための生体臓器内流体流量測定装置であって、(b)前記可撓性シース内を通して設けられた操作ワイヤと、(c)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、(d)前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、(e)その第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、(f)その第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する気流センサとを、含むことにある。このように構成された生体臓器内流体流量測定装置によれば、第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムの外周面に第2ヒータ素子が形成されるとともに、可撓性シース内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第2気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、生体の中空臓器内の流通抵抗が小さくなり、しかも生体の中空臓器内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。
また、第3の発明態様では、(a)可撓性シースの先端部における気道内の気体流量を測定するための生体臓器内流体流量測定装置であって、(b)前記可撓性シースの先端部に一体または別体に設けられた円筒状の第1センサ基材と、(c)前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、(d)前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する第1気流センサと、前記流体測定用カテーテル内を通して設けられた操作ワイヤと、(e)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、(f)前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、(g)前記第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、(h)前記第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する第2気流センサとを、含むことにある。このように構成された生体臓器内流体流量測定装置によれば、第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムの外周面に第1ヒータ素子が形成されるとともに、第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムの外周面に第2ヒータ素子が形成され、可撓性シース内を通る操作ワイヤが突き出し操作されることで拡径する拡径バスケットが、第1気流センサおよび第2気流センサを気道内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、生体の中空臓器内の流通抵抗が小さくなり、しかも生体の中空臓器内の粘液の滞留や詰まりが発生し難い構造であるので、流体流量が正確かつ容易に測定される。また、生体の中空臓器内において、拡径バスケットの両側に第1気流センサおよび第2気流センサが設けられるので、第1ヒータ素子および第2ヒータ素子のうちの気道内で気体の上流側に位置するヒータ素子を用いて流体流量を測定することにより、拡径バスケットによって乱されずかつ上流側のヒータ素子による温度ノイズのない流体流を用いて一層正確に流体流量が測定される。
また、上記の第1の発明態様又は第3の発明態様において、第4の発明態様では、前記可撓性の第1回路基材フィルムは、スペーサを介して前記第1センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、その第1回路基材フィルムのうちの少なくとも前記第1ヒータ素子が形成されている部分と前記第1センサ基材の外周面との間に隙間が形成されている。これにより、第1回路基材フィルムに形成された前記第1ヒータ素子と前記第1センサ基材との間の断熱が高められるので、一層正確に気体流量が測定される。また、第1ヒータ素子自体の熱容量で熱に対する応答性が定まるので、高速応答が得られる。
また、上記の第2の発明態様又は第3の発明態様において、第5の発明態様では、前記可撓性の第2回路基材フィルムは、スペーサを介して前記第2センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、その第2回路基材フィルムのうちの少なくとも前記第2ヒータ素子が形成されている部分と前記第2センサ基材の外周面との間に隙間が形成されている。これにより、第2回路基材フィルムに形成された前記第2ヒータ素子と前記第2センサ基材との間の断熱が高められるので、一層正確に気体流量が測定される。また、第2ヒータ素子自体の熱容量で熱に対する応答性が定まるので、高速応答が得られる。
また、上記の第1、第3又は第4の発明態様において、第6の発明態様では、前記第1回路基材フィルムには、一対の前記第1ヒータ素子が形成されている。また、それら一対の第1ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路とそれら一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第1気体流速計測回路と、予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第1気体流量信号を算出する第1気体流量算出制御部とが、含まれる。この第1気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流の方向を1つの山および谷で表すので、解りやすい気管支内の気体流の方向を示す情報が得られる。また、気体流量は、流れの上流側に位置する側のヒータ素子を有するブリッジ回路の出力から算出することができる。
また、上記の第2、第3又は第5の発明態様において、第7の発明態様では、前記第2回路基材フィルムには、一対の前記第2ヒータ素子が形成されている。また、それら一対の第2ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路とそれら一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第2気体流速計測回路と、予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第2気体流量信号を算出する第2気体流量算出制御部とが、含まれる。この第2気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流の方向を1つの山および谷で表すので、解りやすい気道内の気体流の方向の情報が得られる。また、気体流量は、流れの上流側に位置する側のヒータ素子を有するブリッジ回路の出力から算出することができる。
また、第8の発明態様では、(a)前記気流センサを含み、可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、(b)可撓性シースに通される気流測定用カテーテルの先端部に一体的または別体に設けられた円筒状の第1センサ基材と、(c)その第1センサ基材の先端から出し入れされる操作ワイヤと、(d)先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記流体測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、前記拡径バスケット内において前記操作ワイヤのうち拡径バスケットの長手方向の中央部に位置する部分に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する前記気流センサとを、含む。このようにすれば、気道内の中央に気流センサが位置させられることから、気道内の流通抵抗が小さくなり、しかも気道内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。特に、気流センサが拡径バスケット内の軸方向の中央および横断面の中央に位置していて、気体流量が一層正確に測定される。
生体の胸郭を説明する略図である。 図1の胸郭内に収容されている肺および心臓を示す略図である。 本発明の一実施例の心拍信号検出装置の構成とそれに含まれる電子制御装置の制御機能の要部とを説明する図である。 図3に用いられている気流センサの機械的構成を説明する斜視図である。 図4の気流センサが、生体の鼻および口を覆うマスクに設けられた例を示す斜視図である。 図4の気流センサを駆動する気体流量電気回路の構成を説明する回路図である。 図3の電子制御装置内の気体流算出制御部において予め記憶されている、前記気体流速計測回路の出力電圧と前記気流センサを通過した気体流量との予め求められた関係を説明する図である。 生体から同時期に検出された呼吸信号SR、生体の胸郭および横隔膜由来の肺気量成分を表す換気成分信号SR0、および心拍信号SHをそれぞれ示す図である。 心拍信号SHの周波数スペクトルおよびその心拍信号SHの周波数成分を示す図である。 心拍信号を構成する周波数成分から逆フーリエ変換により合成した心拍信号SHと、計測波形とを重ねて示す図である。 同時期に得られた心拍信号SHと心電図とを比較して示す図である。 図3の電子制御装置の制御作動の要部を示すフローチャートである。 本発明の他の実施例の気流センサの構成を説明する斜視図であって、図4に相当する図である。 図13の実施例のヒータ素子の温度に対する抵抗変化率の特性を示す図である。 図13の実施例の気流センサに用いられる気体流量計測回路を説明する回路図であって、図6に相当する図である。 本発明の他の実施例の気流センサであって、ヒータ素子の両側に、抵抗値変化で流量を計測する一対の検出用抵抗素子を設けた例を示す斜視図であって、図4に相当する図である。 本発明の他の実施例の気流センサであって、一対のヒータ素子と一対の温度補償素子とが設けられた例を示す斜視図であって、図4に相当する図である。 図17に示す気流センサに用いられる計測回路の一部である第1計測回路を示す回路図である。 図17、図18に示す温度補償素子を用いた気流センサの、流量に対する出力電圧特性を気体温度を変えて求めた特性を示す図である。 温度補償素子を用いない場合の、流量に対する出力電圧特性を気体温度を変えて求めた特性を示す図である。 本発明の他の実施例を含む気道内気体流量測定装置の構成、およびそれに含まれる電子制御装置の制御機能の要部を説明する図である。 生体の肺および気道を説明する略図である。 図22の気道内に挿入された気管支鏡の先端もしくは気管支鏡の縦通穴の先端から突き出されたカテーテル、および、そのカテーテルの先端部に設けられた気流センサおよび拡径バスケットを示す略図である。 図23のカテーテルの先端部に設けられた気流センサおよび拡径バスケットを拡大して説明する斜視図である。 図22の気流センサが先端部に設けられた気流測定用カテーテルから拡径バスケットを展開する作動を示す斜視図であって、(a)は気流測定用カテーテルから拡径バスケットを突き出す前の状態を示し、(b)は気流測定用カテーテルから拡径バスケットを突き出す途中の状態を示し、(c)は気流測定用カテーテルから拡径バスケットを突き出した後の状態を示している。 図24に用いられている気流センサの機械的構成を説明する斜視図である。 図25の気流センサのV−V視断面図である。 図24および図26に示されている、ヒータ素子が形成された可撓性の回路基材フィルムを展開して示す図である。 図25および図26に示されている気流センサの応答性を示す図である。 図24の気流センサのヒータ素子を含む気体流速計測回路の構成を説明する回路図である。 図30の気体流速計測回路の出力信号に基づいて求められた、気道内の気体流量を示す図である。 本発明の他の実施例の気流センサの構成を説明する斜視図であって、図24に相当する図である。 本発明の他の実施例の気流センサの構成を説明する斜視図であって、図24に相当する図である。 図33の実施例の気流センサを用いる場合の気道内気体流量測定装置の構成を説明する斜視図であって、図24に相当する図である。 本発明の他の実施例の気流センサの構成を説明する斜視図であって、図24に相当する図である。
以下、本発明の一実施例の心拍信号検出装置を、図面に基づいて詳細に説明する。
図1および図2に示すように、生体10において、肋骨12、胸骨14、胸椎16で囲まれた比較的剛性の高い胸郭18とその胸郭18の下方開口部を塞ぐ横隔膜20とにより隔絶された胸腔内には肺24および心臓26が収容されており、拍動による心臓26の容積変化は、呼吸運動による肺24の容積変化よりも小さいけれども、運動周期が短いため、肺24の換気波形に明確に重畳されるので、生体10の気管28内を通過する気体流速または気体流量である呼吸波形(換気波形)を検出すれば、それから心拍信号が抽出される点に着目した。以下、詳細に説明する。
図3は、本発明の一実施例の心拍信号検出装置30の構成、および心拍信号検出装置30に備えられた電子制御装置40の機能をそれぞれ説明する図である。心拍信号検出装置30は、生体10の気管28内に挿入された気管内挿管チューブ34に装着された気流センサ36と、気流センサ36からの信号に基づいて気流センサ36を通過する気体流量に対応する計測信号SMを出力する気体流速計測回路38と、その気体流速計測回路38から出力された計測信号SMから心臓26の容積変化を表す心拍信号SHを抽出する電子制御装置40と、電子制御装置40による信号処理結果である心拍数、心拍信号SHの波形、呼吸波形、心拍波形の評価等を表示する表示装置76とを、備えている。
図4は、気流センサ36の機械的構成の一例を示す斜視図である。気流センサ36は、図3では気管内挿管チューブ34の基部に装着されているが、生体10の気管28内を通過する気体流量を検出するものであればよいので、気管内挿管チューブ34の中間部位或いは出口や、その気管内挿管チューブ34と人工呼吸器42との間を接続するフレキシブル管や接続アダプタ内に設けられていてもよい。また、図5に示されている生体10の鼻および口を覆うマスク44や、そのマスク44と人工呼吸器42との間を接続するフレキシブル管や接続アダプタ内に設けられていてもよい。図3および図5において、人工呼吸器42は必要に応じて接続されるものであり、必ずしも設けられていなくてもよい。
図4の斜視図に示すように、気流センサ36は、気管内挿管チューブ34と人工呼吸器42とに接続可能な2層構造の円管状のケース46と、その円管状のケース46内に中心軸線方向に所定間隔を隔てて装着された一対の管状スペーサ48と、その一対の管状スペーサ48の内周面に固着されることにより、中心軸線方向の中央部が円管状のケース46の内壁面に沿い且つその内壁面に対して所定の空隙Sを隔てて装着(固定)された、パリレン樹脂、エポキシ樹脂、ポリイミド樹脂などの電気的絶縁性および可撓性を有する回路基材フィルム50と、その回路基材フィルム50の中心軸線方向の内面にホトリソグラフィーにより形成され、温度に応じて電気抵抗が変化する電気抵抗素子たとえば白金抵抗素子又は金抵抗素子で構成された一対のヒータ素子52a、52bとを、備え、通電加熱されるヒータ素子52a、52bの電気抵抗がその管内を流れる気体流量に応じて変化することに基づいて円管状のケース46内の気体流量を検出するものである。
図6は、気体流速計測回路38の一構成例であって、定温度型測定回路を示している。図6において、気体流速計測回路38は、4つの抵抗器R1、R2、R3、およびヒータ素子52a(抵抗値Rhd)から構成され、第1ブリッジ電源電圧Vs1が印加される第1ブリッジ回路56aと、第1ブリッジ回路56aの出力電圧Vout1を第1帰還増幅器59aで増幅し、その信号に応じた電流を第1トランジスタ58aにて第1ブリッジ回路56aに流す第1計測回路60aを、備えている。また、気体流速計測回路38は、4つの抵抗器R5、R6、R7、およびヒータ素子52b(抵抗値Rhu)から構成され、第2ブリッジ電源電圧Vs2が印加される第2ブリッジ回路56bと、第2ブリッジ回路56bの出力電圧Vout2を第2帰還増幅器59bで増幅し、その信号に応じた電流を第2トランジスタ58bにて第2ブリッジ回路56bに流す第2計測回路60bを、備えている。上記出力電圧Vout1および出力電圧Vout2は気流速度を表している。そして、気体流速計測回路38は、さらに、第1ブリッジ回路56aの出力電圧Vout1および第2ブリッジ回路56bの出力電圧Vout2の差電圧を増幅して出力電圧Voutを出力する差動増幅器61を備えている。上記抵抗器R3は、第1ブリッジ回路56aの平衡状態を調整する可変抵抗器であり、上記抵抗器R7は、第2ブリッジ回路56bの平衡状態を調整する可変抵抗器である。
以上のように構成された気体流速計測回路38において、第1ブリッジ回路56aの平衡状態から急に気体流速が増加すると、第1ヒータ素子52aの温度が低下してその抵抗値Rhdが減少するので、第1ブリッジ回路56aを当初の平衡状態に戻すように第1帰還増幅器59aによって第1ブリッジ電源電圧Vs1が増加させられ、第1ヒータ素子52aの温度が上昇させられ、第1ヒータ素子52aの温度が定温度に維持される。同様に、第2ブリッジ回路56bの平衡状態から急に気体流速が増加すると、第2ヒータ素子52bの温度が低下してその抵抗値Rhuが減少するので、第2ブリッジ回路56bを当初の平衡状態に戻すように帰還増幅器59bによって第2ブリッジ電源電圧Vs2が増加させられ、第2ヒータ素子52bの温度が上昇させられ、ヒータ素子52bの温度が定温度に維持される。差動増幅器61から出力される、第1ブリッジ回路56aの出力電圧Vout1および第2ブリッジ回路56bの出力電圧Vout2の差電圧を表す出力電圧Voutは、気体流速計測回路38において、一対のヒータ素子52aおよび52bにおける抵抗変化の差分を反映する信号、すなわち、気管28内の往方向および復方向の気体流の方向を表す波形となる。すなわち、1呼吸周期で1つの山および谷から成る波形として表す気体流の方向を表す信号となる。
気体流量FR(cc/min)は、たとえば図7に示す予め求められた校正曲線すなわち気体流量FR(cc/min)と出力電圧の自乗値との関係から、ヒータ素子52aおよび52bを含む第1ブリッジ回路56aおよび56bからの出力電圧Vout1および出力電圧Vout2のうち、ヒータ素子が上流側に位置するブリッジ回路から出力される出力電圧に基づいて算出される。上記出力電圧Vout1および出力電圧Vout2の一方は、気体流速計測回路38の出力電圧Voutの正負に基づいて選択される。気体流速計測回路38から出力される気体流速FS(cm/sec)を表す出力電圧Vout1および出力電圧Vout2に、予め求めた気流センサ36内の流通断面積C(定数)を乗算することで気流センサ36内を流れる気体流量FR(cc/min)が求められる。なお、図7に示す関係の横軸である気体流量に替えて、気体流速FS(cm/sec)が用いられてもよい。
図3に戻って、電子制御装置40は、予めROM或いはRAMに記憶されたプログラムをCPUが実行する形式の所謂マイクロコンピュータから構成されており、その電子制御装置40は制御機能手段として機能し、その制御機能手段は、以下の気体流算出制御部70、波形解析制御部72、および心拍信号評価制御部74を備え、信号処理結果である心拍数、心拍信号SHの波形、呼吸波形、心拍波形の評価等を表示装置76の画面に表示させる。
気体流算出制御部70は、図7に示される、気流センサ36内を流れる気体流量FR(cc/min)または気体流速FS(cm/sec)と、気体流速計測回路38の出力電圧Voutの自乗値Vout2との間の予め記憶された関係から、気体流速計測回路38から出力される出力電圧Vout(気体流速信号)に基づいて気体流量FR(cc/min)を算出し、その気体流速FSまたは気体流量FRの変化波形、すなわち呼吸運動を反映する肺気量を表す呼吸信号SRを出力する。図8の呼吸信号SRは、呼吸に同期した気体流量FRの周期的変化すなわち生体の肺24の呼吸波形を示している。
波形解析制御部72は、呼吸信号SRが表わす呼吸波形よりも高い基本周波数を有する心拍波形の周波数的特徴に基づいて、心拍波形が重畳する上記呼吸信号SRから心拍波形を示す心拍信号SHを抽出する。波形解析制御部72は、たとえば、心臓26の拍動に同期して呼吸信号SRに重畳する心拍信号SHが表す波形の周波数解析をフーリエ変換により実行して、図9に示されるようにその心拍信号SHの周波数スペクトルに現れる心拍信号SHの周波数成分である基本周波数f0、第1高調波f1、第2高調波f2、第3高調波f3を予め求め、図10に示すように、それら周波数成分から逆フーリエ変換を用いて心拍信号SHを合成する。上記呼吸信号SRに重畳する心拍信号SHは、たとえばECG波形をトリガとして採取される。図10では、このように推定された心拍信号SHと実際に計測された計測波形とが重ねて表示され、両者が良く一致している。なお、図9および図10の波形はラットから得られたものである。
また、波形解析制御部72は、気流センサ36から出力された呼吸信号SRから、その呼吸信号SRに重畳する生体10の心臓26の拍動に同期する周波数成分を除去し、すなわち心拍信号SHを除去し、生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0を出力する。波形解析制御部72は、呼吸信号SRをたとえば心拍信号SHを構成する周波数成分より低い周波数を通過させるローパスフィルタ或いはバンドパスフィルタを通過させることにより、図8に示す、呼吸心拍信号SHが重畳しない、生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0を出力する。或いは、波形解析制御部72は、気流センサ36から出力された呼吸信号SRの周波数スペクトルからそれを構成する周波数成分を抽出し、その周波数成分から逆フーリエ変換により、心拍信号SHが重畳しない、生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0を出力する。
心拍信号評価制御部74は、心拍信号SHの発生周期から生体10の心拍数HRを算出し、たとえばその心拍数HRが予め設定された基準範囲の上限値或いは下限値から外れた場合に異常判定を行ない、その心拍数HRの異常を表示装置76の画面から出力させる。また、心拍信号評価制御部74は、心拍信号SHの振幅値Aを算出し、たとえばその振幅値Aが予め設定された基準範囲の上限値或いは下限値から外れた場合に異常判定を行ない、その振幅値Aの異常を表示装置76の画面から出力させる。これにより、心拍数を変化させる変時作用を有する循環器系の薬の薬効だけでなく、心拍出量を変化させる変力作用を有する循環器系の薬の薬効を、評価できる。特に、ECG(心電図)では不可能であった心拍出量を変化させる変力作用を有する循環器系の薬の薬効を評価できる利点がある。図11は、ラットから同時に得られた心拍信号SHとECGとを比較した図である。上段の心拍信号SHのピークの丸付き数字1〜18と下段のECGのR波の丸付き数字1〜18とが好適に一致していることが示されている。
また、心拍信号評価制御部74は、波形解析制御部72により解析された心拍信号SHに基づいて心臓26を構成する2房2室の機能異常、或いは解剖学的異常を評価し、異常状態を示す表示を表示装置76の画面から出力させる。この心拍信号評価制御部74は、たとえば、波形解析制御部72により算出された心拍信号SHが表す心拍波形と予め記憶された複数種類の異常評価パターンとの相関係数Cを算出し、その相関係数Cが予め設定された判定値を超えた異常評価パターンが示す、心臓26を構成する2房2室の機能異常、或いは解剖学的異常を決定し、且つその異常の程度を評価する。心拍信号SHが示す心拍波形は、心臓26を構成する2房2室の容量変化の総和を表すものであるので、容積変化のタイミングが異なるその2房2室のいずれかの機能異常や、解剖学的な異常情報を反映しているからである。また、人工呼吸管理下において、特に、呼気終末期に大気圧以上の圧力をかけることで、肺胞虚脱を防止し肺酸素化を改善しようとする呼気終末陽圧(Positive end expiratory pressure : PEEP)が採用されている場合には、肺胞の圧力はそれに接する心臓26の容積の拡張を制限し、血行動態に影響を及ぼすことが考えられるが、このような状態を反映する異常評価パターンと心拍信号SHが表す心拍波形との相関係数に基づいて心臓26の容積の拡張が制限される異常評価が行なわれる。
図12は、電子制御装置40の制御作動の要部、すなわち心拍信号検出/評価ルーチンを説明するフローチャートである。気体流算出制御部に対応するステップS1(以下、ステップを省略する)では、気体流速計測回路38の出力電圧Voutすなわち気流センサ36を通過する気体流速に対応する計測信号SMが、生体10の少なくとも1呼吸周期以上の期間において読み込まれる。次に、気体流算出制御部70に対応するS2において、たとえば図7に示される、気流センサ36内を流れる気体流量FR(cc/min)と、気体流速計測回路38の出力電圧Voutの自乗値Vout2との間の予め記憶された関係から、気流センサ36を通る実際の気体流速を反映する気体流速計測回路38の出力電圧Voutの自乗値Vout2に基づいて気体流量FRが算出されるとともに、その気体流量FRの変化波形すなわち図8の呼吸波形を表す呼吸信号SRが算出される。次いで、波形解析制御部72に対応するS3において、呼吸信号SRよりも高い基本周波数を有する心拍波形の周波数的特徴に基づいて、心拍波形が重畳する上記呼吸信号SRから心拍波形を示す心拍信号SHが抽出される。たとえば、心臓26の拍動に同期して呼吸信号SRに重畳する心拍信号SHが表す波形の周波数解析をフーリエ変換により実行されて、図9に示されるようにその心拍信号SHの周波数スペクトルに現れる心拍信号SHの周波数成分である基本周波数f0、第1高調波f1、第2高調波f2、第3高調波f3が予め求められ、図10に示すように、それら周波数成分から逆フーリエ変換を用いて心拍信号SHが合成される。上記呼吸信号SRに重畳する心拍信号SHは、たとえばECG波形をトリガとして採取される。図10では、このように推定された心拍信号SHと実際に計測された計測波形とが重ねて表示されているが、あたかも同一の波形の如く両者が良く一致している。なお、図9および図10の波形はラットから得られたものである。また、気流センサ36から出力された呼吸信号SRから、その呼吸信号SRに重畳する生体10の心臓26の拍動に同期する周波数成分が除去され、すなわち心拍信号SHが除去され、生体10の肺24による容積変化に対応する気体流量FRの変化のみを示す呼吸波形を表す、心拍信号SHが重畳しない生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0が算出される。そして、呼吸信号SRをたとえば心拍信号SHを構成する周波数成分より低い周波数を通過させるローパスフィルタ或いはバンドパスフィルタを通過させることにより、図8に示す、呼吸信号SRから心拍信号SHを除去して、心拍信号SHが重畳しない生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0が算出される。或いは、気流センサ36から出力された呼吸信号SRの周波数スペクトルからそれを構成する周波数成分が抽出され、その周波数成分から逆フーリエ変換により、心拍信号SHが重畳しない生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0が算出される。
次に、心拍信号評価制御部74に対応するS4では、心拍信号SHの発生周期から生体10の心拍数HRが算出し、たとえばその心拍数HRが予め設定された基準範囲の上限値或いは下限値から外れた場合に異常判定が行われる。また、心拍信号SHの振幅値Aが算出され、たとえばその振幅値Aが予め設定された基準範囲の上限値或いは下限値から外れた場合に心拍出量の異常判定が行なわれる。また、波形解析制御部72により解析された心拍信号SHに基づいて心臓26を構成する2房2室の機能異常、或いは解剖学的異常が評価される。たとえば、心拍信号SHが表す心拍波形と予め記憶された複数種類の異常評価パターンとの相関係数Cが算出され、その相関係数Cが予め設定された判定値を超えた異常評価パターンが示す、心臓26を構成する2房2室の機能異常、或いは解剖学的異常が決定し、且つその異常の程度が評価される。
そして、S5では、心拍数HRの異常、振幅値A(心拍出量)の異常、心臓26を構成する2房2室の機能異常、或いは解剖学的異常が、表示装置76の画面から出力される。これにより、心拍数を変化させる変時作用を有する循環器系の薬の薬効だけでなく、心拍出量を変化させる変力作用を有する循環器系の薬の薬効を、評価できる。特に、ECG(心電図)では不可能であった心拍出量を変化させる変力作用を有する循環器系の薬の薬効を評価できる利点がある。また、人工呼吸管理下において、特に、呼気終末期に大気圧以上の圧力をかけることで、肺胞虚脱を防止し肺酸素化を改善しようとする呼気終末陽圧(Positive end expiratory pressure : PEEP)が採用されている場合には、肺胞の圧力はそれに接する心臓26の容積の拡張を制限し、血行動態に影響を及ぼすことが考えられるが、このような状態を反映する異常評価パターンと心拍信号SHが表す心拍波形との相関係数に基づいて心臓26の容積の拡張が制限される異常評価が行なわれる。
上述のように、本実施例の心拍信号検出装置30によれば、波形解析制御部72により、気体流算出制御部70から出力された呼吸信号SRからその呼吸信号SRに重畳する生体10の心臓26の拍動に同期する周波数成分が抽出され、その拍動を表す心拍信号SHが出力される。このため、その心拍信号SHを用いることにより、生体10に貼着するECG電極を用いることなく、生体10の心臓26の拍出を表す心拍信号SHを容易に検出することができる。すなわち、皮膚が弱く、心電計測を目的として上記ECG電極を長時間皮膚に貼りつけることが難しい乳幼児であっても、容易に心拍信号SHを得ることができる。また、実際の心臓26の容積変化すなわち心拍出量を反映した心拍信号SHを得ることができるので、心電誘導波形を用いる従来に比較して、心臓26の拍動の有無を高い信頼性で確認でき、救急救命現場での医療処置が速やかに行なわれ得るとともに、心拍数HRを変化させるだけでなく心拍出量を変化させる循環器系の薬の臨床的な評価が可能となるという効果も得られる。
また、本実施例の心拍信号検出装置30によれば、気流センサ36は、温度に応じて電気抵抗が変化する電気抵抗素子たとえば白金抵抗素子又は金抵抗素子で構成されたヒータ素子52を内面に形成した回路基材フィルム50を、気体が流れる円管状のケース46内にその内壁面に沿い且つその内壁面に対して所定の空隙Sを隔てて装着し、通電加熱されるヒータ素子52の電気抵抗がその管内を流れる気体流量に応じて変化することに基づいて円管状のケース46内の気体流量を検出するものである。このため、フレキシブルな材料で構成された円管状のケース46であっても、その円管状のケース46の内壁形状に沿い且つその内壁面に対して所定の空隙Sを隔ててヒータ素子52をその円管状のケース46の内壁に装着しているために、流量を点ではなく線で検出するために、曲がりくねった配管でも流量を計測できるとともに、ヒータ素子52と円管状のケース46との間に熱絶縁用の空間が形成されているために、ヒータ素子52自体の熱容量で熱に対する応答性が決まり、高速応答を実現できるようになる。
また、本実施例の心拍信号検出装置30によれば、気流センサ36は、ヒータ素子52aおよび52bを4抵抗素子の1つとして含むブリッジ回路(電橋)56aおよび56bを備え、ブリッジ回路56aおよび56bの出力電圧Vout1およびVout2を反映する気体流速計測回路38の出力電圧Voutの自乗値Vout2と気体流量FRとの間の予め記憶された図7の関係から、実際の気体流速計測回路38の出力電圧Voutに基づいて気体流量が検出される。このため、気体流量FRの計測が高精度で行なわれる利点がある。
また、本実施例の心拍信号検出装置30によれば、波形解析制御部72は、気体流算出制御部70から出力された呼吸信号SRからその呼吸信号SRに重畳する生体10の心臓26の拍動に同期する周波数成分を除去し、生体10の胸郭18および横隔膜20由来の肺気量成分を表す換気成分信号SR0が出力される。このため、換気成分信号SR0と心拍信号SHとが同時に得られるので、時間制限のある救急救命での医療業務を短時間に遂行できる利点がある。
また、本実施例の心拍信号検出装置30によれば、波形解析制御部72により解析された心拍信号SHに基づいて心臓26を構成する2房2室の機能異常、或いは解剖学的異常を評価する心拍信号評価制御部74が備えられる。このため、心拍信号SHが得られるだけでなく、その心拍信号SHに基づいて心臓26を構成する2房2室の機能異常、或いは解剖学的異常を知ることができる。
次に、本発明の他の実施例を以下に説明するが、実施例相互に共通する構成については同一の符号を付して説明を省略する。
前述の実施例の気流センサ36には、一対のヒータ素子52a、52bが設けられていたが、図13に示すように、1個のヒータ素子が設けられたものであってもよい。この場合は、気体の流通方向が明確ではないが、一応の気体流量の測定が可能である。図13は、1つのヒータ素子52aを有する気流センサ36を示す斜視図であって、図4に相当する図である。図14は、ヒータ素子52aの温度に対する抵抗値変化率(30℃の値を1.00としたときの変化率)を示す抵抗変化特性TCRを示す図である。図15は、1つのヒータ素子52aを有する気流センサ36を駆動する気体流量計測回路の構成を示す回路図であって、図6に相当する図である。図15において、気体流速計測回路38は、4つの抵抗器R1、R2、R3、およびヒータ素子52a(抵抗器Rhd)から構成され、第1ブリッジ電源電圧Vs1が印加される第1ブリッジ回路56aと、第1ブリッジ回路56aの出力電圧Vout1を第1帰還増幅器59aで増幅し、その信号に応じた電流を第1トランジスタ58aにて第1ブリッジ回路56aに流す第1計測回路60aを、備えている。上記出力電圧Vout1は気流速度を表している。上記抵抗器R3は、第1ブリッジ回路56aの平衡状態を調整する可変抵抗器である。
また、図16は、ヒータ素子52aの両側に、抵抗値変化で流量を計測する一対の検出用抵抗素子53a、53bを設けた例を示している。本実施例の気流センサ36では、ヒータ素子52aと検出用抵抗素子53a、53bとを分離しているため、単一のヒータ素子52aを有する気流センサ36に比較して、流量の計測精度を高めることができる。本実施例では、上記検出用抵抗素子53a、53bには、たとえば図6に示す計測回路が接続され、上記ヒータ素子52aには、たとえばヒータ素子52aを一定温度に加熱する加熱制御回路が接続される。
また、前述の図4に示す一対のヒータ素子52a、52bを有する気流センサ36は、図17に示すように一対の温度補償素子62a、62bが設けられたものであってもよい。図18は、その計測回路60の一部である第1計測回路50aを示している。上記温度補償素子62a、62bは、ヒータ素子52a、52bと比較して10倍程度以上の電気抵抗値を有していて自己発熱が抑制されている。温度補償素子62a、62bは、ヒータ素子52a、52bと同一基板上で同一条件のスパッタリングにより形成されているため、ヒータ素子52a、52bと同じ抵抗温度特性を備えている。図19は、温度補償素子62a、62bを用いた場合の流量に対する出力電圧特性を気体温度を変えて求めたものであり、図20は温度補償素子62a、62bを用いない場合の流量に対する出力電圧特性を気体温度を変えて求めたものである。図20では、20℃での出力電圧に比べて34℃での出力電圧は50%低下したのに対して、図19では2%以下の低下となった。
図21は、気道内気体流量測定装置110およびそれに備えられた気流センサ126の構成、およびその気道内気体流量測定装置110に備えられた電子制御装置112の機能をそれぞれ説明する図であって、気道内気体流量測定装置110は、気管支鏡114と、電子制御装置112と、表示出力装置116と、気流センサ126とを備えている。気流センサ126は、実施例1の図4に示すような2ヒータ素子型、実施例2の図13に示すような1ヒータ素子型、実施例3の図16に示すような型、実施例4の図17に示すような一対の温度補償素子付の2ヒータ素子型のいずれであってもよいが、本実施例5では2ヒータ素子型から構成される例を示している。
気管支鏡114は、図22に示すような生体118の気道120内に挿入される可撓性シース122を備えている。図23に示すように、その可撓性シース122内を通してその先端から突き出し操作可能に設けられた気流測定用カテーテル124と、その気流測定用カテーテル124の先端部に設けられた気流センサ126と、その気流測定用カテーテル124内を通してその先端から突き出し操作可能に設けられた操作ワイヤ128と、その操作ワイヤ128の先端部に設けられた拡径バスケット129とを用いて気道内の気体流量測定を行なう。図21に示すように、可撓性シース122の先端面には、気流測定用カテーテル124を通すための縦通穴123の開口の他に、光源125およびCCDカメラ127が設けられている。
図24は、可撓性シース122から突き出された気流測定用カテーテル124の先端部に設けられた気流センサ126と、気流測定用カテーテル124の先端から突き出された拡径バスケット129を拡大して示す斜視図である。本実施例では、気流測定用カテーテル124の先端部において、気流センサ126の先に拡径バスケット129が設けられている。この拡径バスケット129は、先端部および後端部が先端チップ130および後端チップ132によって互いに束ねられた複数本の弾性ワイヤ134を有して気流測定用カテーテル124の先端部に固定され、気流測定用カテーテル124の内の縦通穴136内にあるときにはその縦通穴136の内壁により抑えられるが、その縦通穴136の開口138から外部へ突き出されると弾性ワイヤ134の弾性力により拡径するように構成されている。
図25の(a)に示すように、気流測定用カテーテル124が可撓性シース122の先端面から突き出されて気流センサ126が気道120内に露出され、図25の(b)に示すように、操作ワイヤ128が気流測定用カテーテル124の先端面から突き出され、図25の(c)に示すように、拡径バスケット129が気道120内で拡径された測定状態では、気流測定用カテーテル124の先端部に設けられ、且つ拡径バスケット129の可撓性シース122側に連ねられた気流センサ126が、気道120の中央部に位置決めされるようになっている。
図26は気流センサ126の構成を説明する斜視図であり、図27は気流センサ126の横断面図である。図26および図27に示すように、気流センサ126は、第1センサ基材として機能する気流測定用カテーテル124の先端部において、一対のスペーサ140を介して巻回され、たとえばパリレン樹脂、エポキシ樹脂、ポリイミド樹脂製などの電気的絶縁性および可撓性を有する回路基材フィルム142と、その回路基材フィルム142の外周面に蒸着された温度可変抵抗性を有する金属薄膜たとえば白金膜又は金膜などからホトエッチングにより形成され、中心軸線方向に所定間隔を隔てて位置する一対のヒータ素子144a、144bと、回路基材フィルム142の中心軸線方向の端部を気流測定用カテーテル124の先端部に固定する一対の環状固定部材146a、146bとを、備え、通電加熱される一対のヒータ素子144a、144bの電気抵抗が気道120内を流れる気体流量に応じて変化することに基づいてその気道120内の気体流量を検出する。一対の環状固定部材146a、146bは、固着或いは圧着によって回路基材フィルム142の中心軸線方向の端部を気流測定用カテーテル124の先端部に固定する樹脂部品であって、たとえば接着剤により気流測定用カテーテル124の先端部に固着される。また、一対の環状固定部材146a、146bが熱収縮樹脂により構成される場合には、加熱収縮により気流測定用カテーテル124の先端部に圧着される。
図27に示すように、上記回路基材フィルム142と気流測定用カテーテル124の先端部の外周面との間に一対のスペーサ140が介在させられることにより、回路基材フィルム142のうちの少なくとも一対のヒータ素子144a、144bが形成された部分と気流測定用カテーテル124の先端部の外周面との間に隙間Sが形成され、一対のヒータ素子144a、144bが断熱されている。図28は、気流測定用カテーテル124の先端部において一対のスペーサ140を介して巻回された回路基材フィルム142を展開して示している。図29は、実験的に気体の流通を開始させたときに得られたたとえばヒータ素子144a、144bの抵抗値変化すなわち後述の気体流速計測回路150の出力電圧Voutの変化を示している。この図29における出力電圧Voutは、ヒータ素子144a、144bの低熱容量および上記隙間Sによる断熱作用による高い応答性を示している。
図30は、気体流速計測回路150の一構成例であって、定温度型測定回路を示している。図30において、気体流速計測回路150は、4つの抵抗器R1、R2、R3、およびヒータ素子144a(抵抗値Rhd)から構成され、第1ブリッジ電源電圧Vs1が印加される第1ブリッジ回路152と、第1ブリッジ回路152の出力電圧Vout1を第1帰還増幅器156で増幅し、その信号に応じた電流を第1トランジスタ154にて第1ブリッジ回路152に流す第1計測回路158を、備えている。また、気体流速計測回路150は、4つの抵抗器R5、R6、R7、およびヒータ素子144b(抵抗値Rhu)から構成され、第2ブリッジ電源電圧Vs2が印加される第2ブリッジ回路162と、第2ブリッジ回路162の出力電圧Vout2を第2帰還増幅器166で増幅し、その信号に応じた電流を第2トランジスタ164にて第2ブリッジ回路162に流す第2計測回路168を、備えている。そして、気体流速計測回路150は、さらに、第1ブリッジ回路152の出力電圧Vout1および第2ブリッジ回路162の出力電圧Vout2の差電圧を増幅して出力電圧Voutを出力する差動増幅器170を備えている。上記抵抗器R3は、第1ブリッジ回路152の平衡状態を調整する可変抵抗器であり、上記抵抗器R7は、第2ブリッジ回路162の平衡状態を調整する可変抵抗器である。
以上のように構成された気体流速計測回路150において、第1ブリッジ回路152の平衡状態から急に気体流速が増加すると、第1ヒータ素子144aの温度が低下してその抵抗値Rhdが減少するので、第1ブリッジ回路152を当初の平衡状態に戻すように帰還増幅器56によって第1ブリッジ電源電圧Vs1が増加させられ、第1ヒータ素子144aの温度が上昇させられ、第1ヒータ素子144aの温度が定温度に維持される。同様に、第2ブリッジ回路162の平衡状態から急に気体流速が増加すると、第2ヒータ素子144bの温度が低下してその抵抗値Rhuが減少するので、第2ブリッジ回路162を当初の平衡状態に戻すように帰還増幅器166によって第2ブリッジ電源電圧Vs2が増加させられ、第1ヒータ素子144bの温度が上昇させられ、ヒータ素子144bの温度が定温度に維持される。差動増幅器170から出力される、第1ブリッジ回路152の出力電圧Vout1および第2ブリッジ回路162の出力電圧Vout2の差電圧を表す出力電圧Voutは、気体流量測定回路150は、一対のヒータ素子144aおよび144bにおける抵抗変化の差分を反映する信号、すなわち、気道120内の往方向および復方向の気体流の方向を表す波形となる。すなわち、1呼吸周期で1つの山および谷から成る波形として表す気体流の方向を表す信号となる。
気体流量FR(cc/min)は、たとえば図7に示すものと同様の予め求められた校正曲線すなわち気体流速FS(cm/sec)と出力電圧の自乗値との関係から、ヒータ素子152aおよび152bを含む第1ブリッジ回路156aおよび156bからの出力電圧Vout1および出力電圧Vout2のうち、ヒータ素子が上流側に位置するブリッジ回路から出力される出力電圧に基づいて算出される。上記出力電圧Vout1および出力電圧Vout2の一方は、気体流速計測回路38の出力電圧Voutの正負に基づいて選択される。気体流速計測回路38から出力される気体流速FS(cm/sec)を表す出力電圧Vout1および出力電圧Vout2に、予め求めた気流センサ126内の流通断面積C(定数)を乗算することで気流センサ126内を流れる気体流量FR(cc/min)が求められる。なお、図7に示す関係の縦軸である気体流量に替えて、気体流速FS(cm/sec)が用いられてもよい。
なお、第1計測回路158において、第1ブリッジ回路152の出力電圧Vout1、第1帰還増幅器156の出力電圧(V)、第1帰還増幅器156の出力電流、第1電圧レギュレータ154の出力電流のいずれもヒータ素子144aの抵抗値Rhdの変化を反映しているので、それらのいずれからでも、ヒータ素子144aの抵抗値Rhdの変化が求められ得る。第2計測回路168においても同様である。したがって、第1計測回路158、第2計測回路168の出力信号は、それらに対応する気体流速を表すものであってもよい。
図31は、気流センサ126および気体流速計測回路150を用いて、ラットの呼吸を気流センサ126内を通過する気体流量FR(cc/min)として求めた実験例を示している。
図21に戻って、画像処理回路172は、CCDカメラ127を通して得られる画像を電子信号に変換する撮像素子を有し、その撮像素子により電子信号に変換された画像である気道120内の画像を電子制御装置112へ出力する。電子制御装置112は、予めROM或いはRAMに記憶されたプログラムをCPUが実行する形式の所謂マイクロコンピュータから構成されており、その制御機能実現手段としての気体流量算出制御部174を備え、信号処理結果である気道120内の気体流速、或いは気体流量FR等を表示出力装置116の画面に表示させる。
気体流量算出制御部174は、画像処理回路172から入力された気道120内の画像から、気流センサ126の位置に対応する気道120の内径を算出する。また、気体流量算出制御部174は、たとえば図7に示される、気流センサ126内を流れる気体流量FR(cc/min)と第1、第2ブリッジ回路152、162の出力電圧を反映するパラメータの自乗値たとえば計測回路150の出力電圧Voutの自乗値Vout2との間の予め求められた関係を、気道120の内径毎に予め記憶し、可撓性シース122の先端から撮像された気道120の実際の内径からその内径に対応する関係を選択し、選択された関係から、気流センサ126の出力信号から気体流速計測回路150からの出力電圧Voutの自乗値Vout2に基づいて、気道120内の気体流量FRを算出し、その気体流量FRの変化波形を表す気体流量信号、および、気体流量FRを表す数値たとえば平均値、最大値、最小値を、表示出力装置116に出力する。図31は、ラットから採取された上記気体流量信号の波形の一例を示している。
上述のように、本実施例の気道内気体流量測定装置110によれば、気流測定用カテーテル124の先端部(第1センサ基材)の外周面に円筒状に巻かれた状態で固定された可撓性の回路基材フィルム(第1回路基材フィルム)142の外周面にヒータ素子(第1ヒータ素子)144a、144bが形成されるとともに、流体測定用カテーテル124内を通る操作ワイヤ128が突き出し操作されることで拡径する拡径バスケット129が、気流センサ(第1気流センサ)126を気道120内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、気道120内の流通抵抗が小さくなり、しかも気道120内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。
また、本実施例の気道内気体流量測定装置110によれば、回路基材フィルム(第1回路基材フィルム)142は、スペーサ140を介して気流測定用カテーテル124の先端部(第1センサ基材)の外周面に円筒状に巻かれた状態で固定されることにより、その回路基材フィルム(第1回路基材フィルム)142のうちの少なくともヒータ素子144a、144b(第1ヒータ素子)が形成されている部分と気流測定用カテーテル124の先端部(第1センサ基材)の外周面との間に隙間Sが形成されている。これにより、回路基材フィルム142に形成されたヒータ素子144a、144bと気流測定用カテーテル124の先端部との間の断熱が高められるので、一層正確に気体流量が測定される。また、ヒータ素子144a、144b自体の熱容量が小さいので、高速応答が得られる。
また、本実施例の気道内気体流量測定装置110によれば、回路基材フィルム(第1回路基材フィルム)142には、一対のヒータ素子144a、144b(第1ヒータ素子)が形成されている。また、それら一対のヒータ素子144a、144b(第1ヒータ素子)をそれぞれ含む4抵抗素子から成る一対の第1ブリッジ回路152、第2ブリッジ回路162とそれら一対の第1ブリッジ回路152、第2ブリッジ回路162の出力信号差に対応する出力信号を出力する差動増幅器170とを有する気体流速計測回路(第1気体流速計測回路)150と、予め記憶された関係から第1ブリッジ回路152および第2ブリッッジ回路162の出力信号Vout1およびVout2に基づいて気道120内の気体流量を表す気体流量信号(第1気体流量信号)を算出する気体流量算出制御部(第1気体流量算出制御部)174とが、含まれる。この気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流の方向を1つの山および谷で表す波形である。すなわち、1呼吸内の気体流量を1つの山および谷で気体流量を表すので、解りやすい気道120内の気体流量が得られる。
図32は、他の実施例の気道内気体流量測定装置110に用いられる気流センサ182を説明する斜視図であって、図24に対応する図である。本実施例の気流センサ182は、前述の気流センサ126と同様に構成されているが、その気流センサ126に替えて、拡径バスケット129の先端チップ130に固定されていて、測定状態では拡径バスケット129よりも先端側に位置させられる点、および、拡径バスケット129の先端チップ130に操作ワイヤ128が連結され且つ後端チップ132が操作ワイヤ128に摺動可能に装着されている点などで、相違している。
先端チップ130には、第2センサ基材として機能する気流測定用カテーテル124と同径であるが、それとは別体の円柱状基材184が連結されており、その円柱状樹脂基材184に、気流センサ126と同様に構成された気流センサ182が設けられている。操作ワイヤ128が気流測定用カテーテル124に引き込まれている状態では、拡径バスケット129が気流測定用カテーテル124の縦通穴136内に収容され、且つ円柱状基材184あるいはそれが固定された先端チップ130が気流測定用カテーテル124の先端面に略当接させられているが、操作ワイヤ128が気流測定用カテーテル124の先端面から突き出された測定状態では、図32に示されるように、拡径バスケット129が開かれるとともに、その拡径バスケット129の先端側に気流センサ182が位置させられる。
本実施例の気流センサ182は、前述の実施例の図21、図30と同様に、気体流速計測回路150に接続されるとともに、その気体流速計測回路150からの信号に基づいて電子制御装置112内の気体流量算出制御部74により、気体流量が測定され、表示出力装置116に表示されるようになっている。
本実施例の気流センサ182によれば、円柱状基材(第2センサ基材)184の外周面に円筒状に巻かれた状態で固定された可撓性の回路基材フィルム(第2回路基材フィルム)142の外周面にヒータ素子(第2ヒータ素子)144a、144bが形成されるとともに、流体測定用カテーテル124内を通る操作ワイヤ128が突き出し操作されることで拡径する拡径バスケット129が、気流センサ(第2気流センサ)182を気道120内の中央に位置させることから、一端がカテーテルに固定された円筒状のセンサ基材の側面に形成された通気穴と他端の開口との間を測定気体が通される形式の従来に比較して、気道120内の流通抵抗が小さくなり、しかも気道120内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。特に、気流センサ182が拡径バスケット129の先端側に位置していて、呼気区間では気流センサ182が拡径バスケット129の上流側に位置するので、呼気区間の気体流量が一層正確に測定される。
また、本実施例の気流センサ182によれば、回路基材フィルム(第2回路基材フィルム)142は、スペーサ140を介して円柱状基材(第2センサ基材)184の外周面に円筒状に巻かれた状態で固定されることにより、その回路基材フィルム(第2回路基材フィルム)142のうちの少なくともヒータ素子144a、144b(第2ヒータ素子)が形成されている部分と円柱状基材(第2センサ基材)184の外周面との間に隙間Sが形成されている。これにより、回路基材フィルム142に形成されたヒータ素子144a、144bと円柱状基材(第2センサ基材)184との間の断熱が高められるので、一層正確に気体流量が測定される。また、ヒータ素子144a、144b自体の熱容量が小さいので、高速応答が得られる。
また、本実施例の気流センサ182によれば、回路基材フィルム(第2回路基材フィルム)142には、一対のヒータ素子144a、144b(第2ヒータ素子)が形成されている。また、それら一対のヒータ素子144a、144b(第2ヒータ素子)をそれぞれ含む4抵抗素子から成る一対の第1ブリッジ回路152、第2ブリッジ回路162とそれら一対の第1ブリッジ回路152、第2ブリッジ回路162の出力信号差に対応する出力信号を出力する差動増幅器170とを有する気体流速計測回路(第2気体流速計測回路)150と、予め記憶された関係から第1ブリッジ回路152および第2ブリッッジ回路162の出力信号Vout1およびVout2に基づいて気道120内の気体流量を表す気体流量信号(第2気体流量信号)を算出する気体流量算出制御部(第2気体流量算出制御部)174とが、備えられる。この気体流量信号は、1呼吸周期内における気道内の気体の流通方向に拘わらず、1呼吸内の気体流量を1つの山および谷で表すので、解りやすい気道120内の気体流量が得られる。
図33は、本発明の他の実施例の気道内気体流量測定装置180に用いられる気流センサ192を説明する斜視図であって、図24に対応する図である。本実施例の気流センサ192は、実施例5の気流センサ126と実施例6の気流センサ182とが組合せられることにより構成されている。図34は、本実施例の気道内気体流量測定装置180の構成を説明する図21に対応する図である。図34において、第1気体流速計測回路150aおよび第2気体流速計測回路150bは、気流センサ126および気流センサ182にそれぞれ接続されるものであって、前述の実施例の気体流速計測回路150と同様にそれぞれ構成されている。また、第1気体流量算出制御部174aおよび第2気体流量算出制御部174bは、前述の実施例の気体流量算出制御部174と同様の機能をそれぞれ備えるものである。
本実施例の気道内気体流量測定装置180によれば、実施例5の気道内気体流量測定装置110と同様の効果が得られる。また、気流センサ182が拡径バスケット129の先端側に位置していて、呼気区間では気流センサ182が拡径バスケット129の上流側に位置するので、呼気区間の気体流量が正確に測定される。同時に、気流センサ126が拡径バスケット129の基端側に位置していて、吸気区間では気流センサ126が拡径バスケット129の上流側に位置するので、吸気区間の気体流量が正確に測定される。
図35は、本発明の他の実施例の気道内気体流量測定装置110に用いられる気流センサ202を説明する斜視図であって、図24に対応する図である。本実施例の気流センサ202は、前述の気流センサ126と同様に構成されているが、その気流センサ126とは異なり、拡径バスケット129の内の長手方向の中央部に位置するように操作ワイヤ128により支持されていて、測定状態では拡径バスケット129の横断面の中央位置に位置させられる点、および、操作ワイヤ128が引き込まれると拡径バスケット129および気流センサ202が気流測定用カテーテル124内に収容されるようになっている点などで、相違している。
本実施例の気流センサ202は、前述の実施例の図21、図30と同様に、気体流速計測回路150に接続されるとともに、その気体流速計測回路150からの信号に基づいて電子制御装置112内の気体流量算出制御部74により、気体流量が測定され、表示出力装置116に表示されるようになっている。
本実施例の気道内気体流量測定装置110は、可撓性シース122に通される気流測定用カテーテル124の先端部に一体的または別体に設けられた円筒状の気流測定用カテーテル(第1センサ基材)124と、その気流測定用カテーテル124の先端から出し入れされる操作ワイヤ128と、先端部および後端部が互いに束ねられた複数本の弾性ワイヤ134から構成されて操作ワイヤ126の先端部に設けられ、前記流体測定用カテーテル124の先端から突き出されることで拡径する拡径バスケット129と、拡径バスケット129内において操作ワイヤ126のうち拡径バスケット129の長手方向の中央部に位置する部分に円筒状に巻かれた状態で固定された可撓性の回路基材フィルム142(第1回路基材フィルム)と、回路基材フィルム142の外周面に形成された1または2の第1ヒータ素子とを有する気流センサ202とを、備えている。
本実施例の気流センサ202によれば、気道120内の中央に位置させられることから、気道120内の流通抵抗が小さくなり、しかも気道120内の粘液の滞留や詰まりが発生し難い構造であるので、気体流量が正確かつ容易に測定される。特に、気流センサ202が拡径バスケット129内の軸方向の中央および横断面の中央に位置していて、気体流量が一層正確に測定される。
以上、本発明の実施例を説明したが、本発明はその他の態様においても適用される。
たとえば、前述の実施例では、波形解析制御部72は、呼吸波形から得られた周波数スペクトル中に含まれる心拍同期波形の周波数成分から心拍信号SHを合成していたが、波形解析制御部72は、心拍信号SHの基本周波数を含む通過周波数帯を有するバンドパスフィルタを通して呼吸信号SRから心拍信号SHを抽出してもよい。このように抽出された心拍信号SHの波形の精度はそれほど高くないが、たとえば心拍数HRを算出する場合は十分に目的を達成できる。また、心拍信号SHの振幅により心拍出量が推定される。
また、前述の実施例では、気流測定用カテーテル124の先端部自体が、気流センサ126の第1センサ基材或いは第2センサ基材として機能するものであったが、その気流測定用カテーテル124の先端部に長手方向に連結されたり、外周側に被覆した別部材を、気流センサ126の第1センサ基材或いは第2センサとして機能させるものであってもよい。要するに、気流センサ126のセンサ基材は、可撓性シースに通される気流測定用カテーテルの先端部に一体または別体に設けられたものであってもよい。
また、拡径バスケットと気流センサを連結し、操作ワイヤ126の先端部に設けられ、気流センサ202で示したように、全体を気流測定用カテーテル124の中に収納した状態で気管支鏡の可撓性シース122に通し、気流を測定する部位で、気流測定用カテーテル124から操作ワイヤ126により気流測定用カテーテル124の先端より突き出すことで拡径バスケット129が拡径するシステムであってもよい。この場合、気流センサ202以外の気流センサ126、182、192で実施される。
また、図30の気体流速計測回路150において、気体温度の測定値に対する影響を抑制するために、必要に応じて、温度補償回路が適宜設けられる。
また、実施例1から実施例4に記載の気流センサ36、実施例5から実施例8に記載のバスケット式の気流センサ126、182、192、202は、バルーンカテーテル、スワンガンツカテーテル、点滴装置の輸液管路等に装着されて、尿路内の流速、血管内の流速、輸液の流速を検出するために用いられてもよい。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨を逸脱しない範囲において種々変更が加えられ得るものである。
10、118:生体
24:肺
26:心臓
30:心拍信号検出装置
36、126、182、192、202:気流センサ
38:気体流速計測回路
40:電子制御装置
42:人工呼吸器
50:回路基材フィルム
52a、52b:ヒータ素子
56:ブリッジ回路
70:気体流算出制御部
72:波形解析制御部
74:心拍信号評価制御部
FR:気体流量
SH:心拍信号
SR:呼吸信号
SR0:換気成分信号
110、180:気道内気体流量測定装置
112:電子制御装置
114:気管支鏡
116:表示出力装置
120:気道
122:可撓性シース
123:縦通穴
124:気流測定用カテーテル(第1センサ基材)
125:光源
127:CCDカメラ
128:操作ワイヤ
129:拡径バスケット
130:先端チップ
132:後端チップ
134:弾性ワイヤ
136:縦通穴
138:開口
140:スペーサ
142:回路基材フィルム(第1回路基材フィルム、第2回路基材フィルム)
144a、144b:ヒータ素子(第1ヒータ素子、第2ヒータ素子)
146a、146b:環状固定部材
150:気体流速計測回路
152:第1ブリッジ回路
154:第1電圧レギュレータ
156:第1作動増幅器
158:第1計測回路
162:第2ブリッジ回路
164:第2電圧レギュレータ
166:第2帰還増幅器
168:第2計測回路
170:差動増幅器
172:画像処理回路
174:気体流量算出制御部
184:円柱状基材(第2センサ基材)
S:隙間

Claims (8)

  1. 可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、
    前記可撓性シースに通される気流測定用カテーテルの先端部に一体または別体に設けられた円筒状の第1センサ基材と、
    前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、
    前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する気流センサと、
    前記気流測定用カテーテル内を通して設けられた操作ワイヤと、
    先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記気流測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと
    を、含むことを特徴とする気道内気体流量測定装置。
  2. 可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、
    前記可撓性シースに通される気流測定用カテーテル内を通して設けられた操作ワイヤと、
    先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記気流測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、
    前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、
    前記第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、
    前記第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する気流センサと
    を、含むことを特徴とする気道内気体流量測定装置。
  3. 可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、
    前記可撓性シースに通される気流測定用カテーテルの先端部に一体または別体に設けられた円筒状の第1センサ基材と、
    前記第1センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、
    前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する第1気流センサと、
    前記気流測定用カテーテル内を通して設けられた操作ワイヤと、
    先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記気流測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、
    前記拡径バスケットの先端部に設けられた円柱状或いは円筒状の第2センサ基材と、
    前記第2センサ基材の外周面に円筒状に巻かれた状態で固定された可撓性の第2回路基材フィルムと、
    前記第2回路基材フィルムの外周面に形成された1または2の第2ヒータ素子とを有する第2気流センサと
    を、含むことを特徴とする気道内気体流量測定装置。
  4. 前記可撓性の第1回路基材フィルムは、スペーサを介して前記第1センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、前記第1回路基材フィルムのうちの少なくとも前記第1ヒータ素子が形成されている部分と前記第1センサ基材の外周面との間に隙間が形成されている
    ことを特徴とする請求項1または3の気道内気体流量測定装置。
  5. 前記可撓性の第2回路基材フィルムは、スペーサを介して前記第2センサ基材の外周面に円筒状に巻かれた状態で固定されることにより、その第2回路基材フィルムのうちの少なくとも前記第2ヒータ素子が形成されている部分と前記第2センサ基材の外周面との間に隙間が形成されている
    ことを特徴とする請求項2または3の気道内気体流量測定装置。
  6. 前記第1回路基材フィルムには、一対の前記第1ヒータ素子が形成されており、
    前記一対の第1ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路と、前記一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第1気体流速計測回路と、
    予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第1気体流量信号を算出する第1気体流量算出制御部と
    を、含むことを特徴とする請求項1、3または4の気道内気体流量測定装置。
  7. 前記第2回路基材フィルムには、一対の前記第2ヒータ素子が形成されており、
    前記一対の第2ヒータ素子をそれぞれ含む4抵抗素子から成る一対のブリッジ回路と、前記一対のブリッジ回路の出力信号差に対応する出力信号を出力する差動増幅器とを有する第2気体流速計測回路と、
    予め記憶された関係からその出力信号に基づいて前記気道内の気体流量を表す第2気体流量信号を算出する第2気体流量算出制御部と
    を、含むことを特徴とする請求項2、3または5の気道内気体流量測定装置。
  8. 可撓性シースの先端部における気道内の気体流量を測定するための気道内気体流量測定装置であって、
    前記可撓性シースに通される気流測定用カテーテルの先端部に一体的または別体に設けられた円筒状の第1センサ基材と、
    前記第1センサ基材の先端から出し入れされる操作ワイヤと、
    先端部および後端部が互いに束ねられた複数本の弾性ワイヤから構成されて前記操作ワイヤの先端部に設けられ、前記気流測定用カテーテルの先端から突き出されることで拡径する拡径バスケットと、
    前記拡径バスケット内において前記操作ワイヤのうち前記拡径バスケットの長手方向の中央部に位置する部分に円筒状に巻かれた状態で固定された可撓性の第1回路基材フィルムと、
    前記第1回路基材フィルムの外周面に形成された1または2の第1ヒータ素子とを有する気流センサと
    を、含むことを特徴とする気道内気体流量測定装置。
JP2018162170A 2015-02-03 2018-08-30 気道内気体流量測定装置 Active JP6635614B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015019747 2015-02-03
JP2015019748 2015-02-03
JP2015019747 2015-02-03
JP2015019748 2015-02-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016573411A Division JP6399614B2 (ja) 2015-02-03 2016-02-03 心拍信号検出装置

Publications (3)

Publication Number Publication Date
JP2018202195A true JP2018202195A (ja) 2018-12-27
JP2018202195A5 JP2018202195A5 (ja) 2019-03-14
JP6635614B2 JP6635614B2 (ja) 2020-01-29

Family

ID=56564181

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016573411A Active JP6399614B2 (ja) 2015-02-03 2016-02-03 心拍信号検出装置
JP2018162170A Active JP6635614B2 (ja) 2015-02-03 2018-08-30 気道内気体流量測定装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016573411A Active JP6399614B2 (ja) 2015-02-03 2016-02-03 心拍信号検出装置

Country Status (4)

Country Link
US (1) US10765377B2 (ja)
EP (1) EP3254617B1 (ja)
JP (2) JP6399614B2 (ja)
WO (1) WO2016125842A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279955A1 (en) * 2015-05-07 2018-10-04 Ecom Medical, Inc. Systems and methods for internal ecg acquisition
JP7084576B2 (ja) * 2018-05-01 2022-06-15 国立大学法人東海国立大学機構 流れ測定装置
JP6999141B1 (ja) 2020-07-06 2022-01-18 株式会社コスモスウェブ 生体情報収集システム及びセンサユニット
DE102020131836A1 (de) * 2020-12-01 2022-06-02 Löwenstein Medical Technology S.A. Beatmungsgerät und Überwachungssystem
CN113273978B (zh) * 2021-05-21 2022-04-29 电子科技大学 一种基于超宽带雷达的人体呼吸和心跳频率的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541905A (ja) * 1999-04-21 2002-12-10 ブロンカス テクノロジーズ, インコーポレイテッド エネルギーの適用による気道の改変
JP2009168480A (ja) * 2008-01-11 2009-07-30 Univ Nagoya 流量センサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518002A (en) * 1993-10-22 1996-05-21 Medtrac Technologies, Inc. Portable electronic spirometric device
EP0927538B1 (en) 1993-11-05 2004-04-07 Resmed Limited Determination of airway patency
JP3896405B2 (ja) 2000-01-24 2007-03-22 日本光電工業株式会社 2電極/3電極変換接続器
JP4587008B2 (ja) 2000-07-24 2010-11-24 大名 魏 標準12誘導心電図の構築方法および心電図検査装置
EP2388036A3 (en) 2004-02-25 2013-03-13 ResMed Ltd. Cardiac monitoring and therapy using a device for providing pressure treatment of sleep disordered breathing
US7536908B2 (en) * 2004-03-11 2009-05-26 Siargo, Ltd. Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
GB2462304B (en) * 2008-07-31 2010-12-01 Laerdal Medical As Device and method for detecting heart beats in a patient using the airway pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541905A (ja) * 1999-04-21 2002-12-10 ブロンカス テクノロジーズ, インコーポレイテッド エネルギーの適用による気道の改変
JP2009168480A (ja) * 2008-01-11 2009-07-30 Univ Nagoya 流量センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUHIRO SHIKIDA ET AL.: "Catheter flow sensor with temperature compensation for tracheal intubation tube system", SENSORS AND ACTUATORS A, vol. 215, JPN6019046413, 15 August 2014 (2014-08-15), pages 155 - 160, ISSN: 0004162904 *

Also Published As

Publication number Publication date
JPWO2016125842A1 (ja) 2018-02-22
US20180014792A1 (en) 2018-01-18
EP3254617B1 (en) 2021-03-17
WO2016125842A1 (ja) 2016-08-11
EP3254617A4 (en) 2018-09-12
JP6635614B2 (ja) 2020-01-29
EP3254617A1 (en) 2017-12-13
JP6399614B2 (ja) 2018-10-03
US10765377B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6635614B2 (ja) 気道内気体流量測定装置
JP6993005B2 (ja) 肺機能検査装置及びその方法
JP7291751B2 (ja) 生理学的パラメータを求めるシステム
JP7209538B2 (ja) 生理的パラメータを監視するための装置および方法
EP3268073B1 (en) Respiratory therapy apparatus and computer program.
JP6247217B2 (ja) 初期段階の呼気における口呼吸の検出
US7814906B2 (en) Method and relevant apparatus for nasal ventilation, particularly for flow-synchronised neonatal assisted ventilation
JP2022002737A (ja) 睡眠呼吸障害のスクリーニング、診断および監視のためのシステムおよび方法
JP5181291B2 (ja) 呼吸機能測定装置
US20090306528A1 (en) Adaptive temperature sensor for breath monitoring device
JP2019509791A (ja) 中心静脈圧マノメトリの使用を介した呼吸パラメーター推定及び非同調検出アルゴリズムの強化
US10638971B2 (en) Methods and applications for detection of breath flow and the system thereof
US20220218928A1 (en) Method for evaluating volume responsiveness and medical device
WO2019152699A1 (en) Devices and methods for monitoring physiologic parameters
JP2023518805A (ja) 肺炎またはその他の健康状態を予測、識別、および/または管理するための装置
EP3522778B1 (en) An apparatus and method for determining a calibration parameter for a blood pressure measurement device
US6322514B1 (en) Method for determining cardiac characteristics of subject
JP2009542391A5 (ja)
JP2020062405A (ja) 気道開存性インデックスの決定を伴う心肺蘇生法のための監視換気装置
JP7084576B2 (ja) 流れ測定装置
WO2018032042A1 (en) Apparatus and methods for monitoring cardio-respiratory disorders
CN109316189B (zh) 一种非接触性呼吸动态检测方法和装置
W Ja'afreh et al. Design of a Closed Loop Nebulizer System and Study its Effect on ECG
EP4337086A1 (en) Methods and apparatus for detecting sleep disordering events
CN116236180A (zh) 人体颈动脉体活性测量装置及测量方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6635614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250