JP2018200531A - 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム - Google Patents

教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム Download PDF

Info

Publication number
JP2018200531A
JP2018200531A JP2017104493A JP2017104493A JP2018200531A JP 2018200531 A JP2018200531 A JP 2018200531A JP 2017104493 A JP2017104493 A JP 2017104493A JP 2017104493 A JP2017104493 A JP 2017104493A JP 2018200531 A JP2018200531 A JP 2018200531A
Authority
JP
Japan
Prior art keywords
teacher data
specific identification
identification target
data generation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017104493A
Other languages
English (en)
Other versions
JP6974697B2 (ja
Inventor
直幸 津野
Naoyuki Tsuno
直幸 津野
廣 岡野
Hiroshi Okano
廣 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017104493A priority Critical patent/JP6974697B2/ja
Priority to US15/949,638 priority patent/US20180342077A1/en
Publication of JP2018200531A publication Critical patent/JP2018200531A/ja
Application granted granted Critical
Publication of JP6974697B2 publication Critical patent/JP6974697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24143Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)

Abstract

【課題】教師データを生成する手間と時間を削減することができる教師データ生成装置等の提供。
【解決手段】特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置において、前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成する識別モデル作成部と、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成部と、を有する教師データ生成装置である。
【選択図】図6

Description

本発明は、教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システムに関する。
近年、画像に映った識別対象の物体検出を行うためにディープラーニング(deep learning;深層学習)が使用されている。このディープラーニングによる物体認識手法としては、例えば、Faster R−CNN(Regions−Convolutional Neural Network)(例えば、非特許文献1参照)などが挙げられる。また、SSD(Single Shot multibox Detector)(例えば、非特許文献2参照)などが挙げられる。
ディープラーニングによる物体認識手法では、識別対象を予め決定し定義しておく必要がある。また、ディープラーニングでは汎化させるため、一般的に、識別対象1種類につき1,000枚程度以上の教師データを用意することが必要とされている。
教師データの画像の作成には、識別対象が映っている静止画を収集する方法と、識別対象が映っている動画データから静止画データを抽出することにより、動画データを静止画データに画像変換する方法とがある。これらの中でも、大量の静止画を取得する際の手間と時間の点から、動画データを静止画データに画像変換する方法が好適である。
得られた静止画に映っている識別対象のリージョンを切り出し、切り出した静止画にラベルを付加するか、またはリージョンとラベルを有する情報ファイルを作成し、この情報ファイルと静止画を組み合わせることにより、教師データが生成されている。
従来は、識別対象毎に動画データを静止画データに変換する画像変換処理、及び静止画にリージョンやラベルを付加する情報付加処理をすべて作業者が手作業で行っており、教師データの生成には非常に大きな手間と時間がかかっていた。
そのため、例えば、物体検出システムの学習フェーズにおいて作成したモデルに入力するデータを、検出フェーズにおいて増やすことにより学習用画像へのラベル付与の手間を削減できる方法が提案されている(例えば、特許文献1参照)。
また、汎用の物体識別器の認識結果から、予め準備してある個別物体識別器を選択して使用し認識精度を向上させることにより、動画にラベルを付与する手間を削減できる方法が提案されている(例えば、特許文献2参照)。
また、ディープラーニングによる物体認識手法であるR−CNN(Regions−Convolutional Neural Network)などにおいて、物体を検出したい画像領域のサイズや縦横比を考慮しなくてもすむように、必要なサイズに画像領域を合わせ込む手法が報告されている(例えば、非特許文献3参照)。
特開2016−62524号公報 特開2013−12163号公報
S.Ren,K.He,R.Girshick,and J.Sun,"Faster R−CNN: Towards Real−Time Object Detection with Region Proposal Networks",January 6,2016,[online],<https://arxiv.org./pdf/1506.01497.pdf> W.Liu,D.Anguelov,D.Erhan,C.Szegedy, and S.E.Reed,"SSD:Single Shot Multibox Detector",December 29,2016,[online],<https://arxiv.org./pdf/1512.02325.pdf> Y.Jia,E.Shelhamer,J.Donahue,S.Karayev,J.Long,R.Girshick,S.Guadarrama and T.Darrell,"Caffe: Convolutional Architecture for Fast Feature Embedding",June 20,2014,[online],<https://arxiv.org./pdf/1408.5093.pdf>
前述の非特許文献3の記載によれば、前述の特許文献1に記載の発明における課題は解決できるが、その上で、さらなる検出精度の向上が求められており、その手段の一つとして教師データを増やすことが必要となる。しかし、前述の特許文献1に記載の発明では、教師データを生成することができないので、教師データ自体を増やすための手間と時間を削減できないという課題がある。
また、前述の特許文献2に記載の発明においても、教師データを生成することができないので、教師データ自体を増やすための手間と時間を削減できない。さらに、前述の特許文献2に記載の発明では、個別物体識別器が複数必要になるため、画像認識装置の構成の複雑化や複数の個別物体識別器が各々使用するデータ格納領域が増大してしまうという課題がある。
一つの側面では、教師データを生成する手間と時間を削減することができる教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システムを提供することを目的とする。
一つの実施態様では、特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置において、
特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、特定の識別対象の識別モデルを作成する識別モデル作成部と、
作成された識別モデルを用いて、特定の識別対象を含む動画データから物体認識手法により推論を行い、特定の識別対象を検出し、特定の識別対象の教師データを生成する教師データ生成部と、を有する教師データ生成装置である。
一つの側面では、教師データを生成する手間と時間を削減することができる教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システムを提供することができる。
図1は、本発明の教師データ生成装置のハードウェア構成の一例を示す図である。 図2は、本発明の教師データ生成装置全体の一例を示すブロック図である。 図3は、本発明の教師データ生成装置全体の処理の流れの一例を示すフローチャートである。 図4は、従来の教師データ生成装置の一例を示すブロック図である。 図5は、従来の教師データ生成装置の他の一例を示すブロック図である。 図6は、実施例1の教師データ生成装置全体における各部の処理の一例を示すブロック図である。 図7は、実施例1の教師データ生成装置全体における各部の処理の流れの一例を示すフローチャートである。 図8は、実施例1の教師データ生成装置の識別モデル作成部における基準データのXMLファイルのラベルの一例を示す図である。 図9は、図8のラベルを定義したpythonのimportファイルの一例を示す図である。 図10は、図9のpythonのimportファイルをFaster R−CNNで参照できるように構成した一例を示す図である。 図11は、実施例2の教師データ生成装置全体における各部の処理の一例を示すブロック図である。 図12は、実施例2の教師データ生成装置全体における各部の処理の流れの一例を示すフローチャートである。 図13は、実施例2の動画データテーブルの一例を示す図である。 図14は、実施例3の教師データ生成装置全体における各部の処理の一例を示すブロック図である。 図15は、実施例3の教師データ生成装置全体における各部の処理の流れの一例を示すフローチャートである。 図16は、本発明の物体検出システム全体の一例を示すブロック図である。 図17は、本発明の物体検出システム全体の処理の流れの一例を示すフローチャートである。 図18は、本発明の物体検出システム全体の他の一例を示すブロック図である。 図19は、本発明の物体検出システムにおける学習部全体の一例を示すブロック図である。 図20は、本発明の物体検出システムにおける学習部全体の他の一例を示すブロック図である。 図21は、本発明の物体検出システムにおける学習部全体の処理の流れの一例を示すフローチャートである。 図22は、本発明の物体検出システムにおける推論部全体の一例を示すブロック図である。 図23は、本発明の物体検出システムにおける推論部全体の他の一例を示すブロック図である。 図24は、本発明の物体検出システムにおける推論部全体の処理の流れの一例を示すフローチャートである。
以下、本発明の一実施形態について説明するが、本発明は、これらの実施形態に何ら限定されるものではない。
(教師データ生成装置)
本発明の教師データ生成装置は、特定の識別対象の物体検出を行うための教師データを生成する教師データ生成装置において、識別モデル作成部と、教師データ生成部と、を有し、基準データ作成部及び選択部を有することが好ましく、さらに必要に応じてその他の部を有する。
<基準データ作成部>
基準データ作成部は、特定の識別対象を含む動画データを複数の静止画データに変換し、得られた複数の静止画データから切り出した特定の識別対象のリージョンにラベルを付加して特定の識別対象を含む基準データを作成する。
「特定の認識対象」とは、認識したい特定の対象を意味する。特定の認識対象としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、各種画像、図形、文字等の人間の視覚により検知できるものなどが挙げられる。
各種画像としては、例えば、人間の顔、動物(鳥、犬、猫、猿、熊、パンダ等)、果物(イチゴ、リンゴ、ミカン、ぶどう等)、汽車、電車、自動車(バス、トラック、自家用車等)、船、飛行機などが挙げられる。
「特定の識別対象を含む基準データ」としては、1種類または少数種の特定の識別対象を含む基準データであり、1種類〜3種類の特定の識別対象を含む基準データであることが好ましく、1種類の特定の識別対象を含む基準データであることがより好ましい。特定の識別対象が1種類の場合、識別対象であるかどうかを判別すればよく、複数種類の識別対象のうちのどの識別対象であるかを識別する必要がなく、他の種類を誤って認識する事象が減少するため、従来に比べて少数の基準データで足りる。
具体的には、1種類の特定の動物(例えば、パンダ)しか映っていない動画データを用いると、1種類の特定の動物(例えば、パンダ)以外の動物に誤って認識することはなく、少数の基準データから1種類の特定の動物(例えば、パンダ)の多数の教師データを生成することができる。
そこで、1種類または少数種の特定の識別対象を含む少数の基準データから識別モデルを作成し、この作成した識別モデルを用いて、動画データから特定の識別対象を検出することにより、特定の識別対象に関する教師データを多数生成することができる。その結果、教師データを増やすために必要な手間と時間を大幅に減らすことができる。
識別モデルは、上記の特定の識別対象の検出に用いられる。このような識別モデルを用いることにより、特定の識別対象ではない物体を認識してしまう誤認識を減らすことができる。
また、特定の識別対象の品種を絞って品種毎に1つまたは少数の基準データを作成し、これらの基準データを用いて品種毎に識別モデルを作成する。その後、品種毎に教師データを生成し、生成した各品種の教師データを用いて学習させることにより、汎用の識別モデルを作成することができる。
また、柴犬、秋田犬、マルチーズ、チワワ、ブルドッグ、トイプードル、ドーベルマン等の犬の種別毎に分けて、犬の種別毎の基準データを作成する。これらの犬の種別毎の1つまたは少数の基準データを用いて犬の種別毎に識別モデルをそれぞれ作成する。作成した識別モデルを用いて複数の犬の種別毎の教師データを生成する。次に、生成した複数の犬の種別毎の教師データを集めて、作成した識別モデルのラベルを犬に変えることで、犬の教師データを作成することができる。
「リージョン」とは、識別対象を矩形などで囲った領域を意味する。
「ラベル」とは、対象を示したり、識別または分類するために付けられた名前(文字列)を意味する。
<識別モデル作成部>
識別モデル作成部は、特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、特定の識別対象の識別モデルを作成する。
物体認識手法としては、ディープラーニングによる物体認識手法により行われることが好ましい。ディープラーニングは、人間の脳のニューロンを模した多層構造のニューラルネットワーク(ディープニューラルネットワーク)を用いた機械学習手法の一種であり、データの特徴を自動的に学習できる手法である。
ディープラーニングによる物体認識手法としては、特に制限はなく、公知のものから適宜選択することができ、例えば、以下のものが挙げられる。
(1)R−CNN(Region−based Convolutional Neuralnetwork)
R−CNNのアルゴリズムは、物体らしさ(Objectness)を見つける既存手法(Selective Search)を用いて、画像から物体候補(Region Proposals)を2,000個程度探す手法である。
次に、物体候補の領域画像を全て一定の大きさにリサイズして畳み込みニューラルネットワーク(Convolutional Neural Network;CNN)にかけて特徴を取り出す。次に、取り出した特徴を用いて複数のSVM(Support Vector Machine)により学習し、カテゴリ識別、及び回帰(regression)によってバウンディングボックス(物体を囲う正確な位置)を推定する。最後に、矩形の座標を回帰することで候補領域の位置を補正する。
R−CNNは、抽出された候補領域について、それぞれ特徴量の計算を行うため、検出処理に時間がかかる。
(2)SPPnet(Spatial Pyramid Pooling net)
SPPnetは、Spatial Pyramid Pooling(SPP)という手法を用いることにより、畳み込みニューラルネットワーク(CNN)で畳み込んだ最終層の特徴地図を縦横可変サイズで取り扱うことができる。
SPPnetは、画像1枚から大きな特徴地図を作成した後、物体候補(Region Proposals)の領域の特徴をSPPでベクトル化することにより、R−CNNに比べて高速化を達成できる。
(3)Fast R−CNN(Fast Region−based Convolutional Neuralnetwork)
Fast R−CNNは、関心が有る領域層(RoI pooling layer)という、SPPのピラミッド構造を取り除いたシンプルな幅可変プーリングを行う。
Fast R−CNNは、分類(classification)とバウンディングボックス回帰(bounding box regression)とを同時に学習させるためのマルチタスクロスにより1回で学習できるようにする。また、オンラインで教師データを生成する工夫を行っている。
Fast R−CNNは、マルチタスクロスの導入により、誤差逆伝播法(バックプロパゲーション)が全層に適用できるようになるため、全ての層の学習が可能である。
Fast R−CNNは、R−CNN及びSPPnetよりも高精度な物体検出を実現できる。
(4)Faster R−CNN(Region−based Convolutional Neuralnetwork)
Faster R−CNNは、領域提案ネットワーク(RPN;reagin proposal network)という物体候補領域を推定するネットワーク、及び関心が有るある領域(関心領域:Regions of Interest;RoI)のプーリングにクラス推定を行うことにより、エンドツーエンド(end to end)で学習できるアーキテクチャを実現できる。
領域提案ネットワーク(RPN)は、物体候補を出力するために、物体か否かを表すスコアと物体の領域との2つを同時に出力するように設計されている。
画像全体の特徴から、予め決められたk個の固定枠を用いて特徴を抽出し、領域提案ネットワーク(RPN)の入力とすることで、各場所において物体候補とすべきか否かを推定する。
Faster R−CNNは、物体候補として推定された出力枠(reg layer)の範囲を、Fast R−CNNと同様に関心が有る領域にプーリング(RoI Pooling)し、クラス識別用のネットワークの入力とすることで、最終的な物体検出を実現できる。
Faster R−CNNは、物体候補検出がディープ化されたことで、既存手法(Selective Search)よりも物体候補が高精度化し、かつ物体候補数が少なくなり、GPU上で5fpsの実行速度(VGGのネットワークを利用)を達成できる。また、識別精度もFast R−CNNより高精度化している。
(5)YOLO(You Only Look Once)
YOLOは、予め画像全体をグリッド分割しておき、分割した領域ごとに物体のクラスとバウンディングボックス(物体を囲う正確な位置)を求める方法である。
畳み込みニューラルネットワーク(CNN)のアーキテクチャがシンプルになったため、Faster R−CNNと比べると識別精度は少し劣るが、良好な検出速度を達成できる。
YOLOは、スライディング ウィンドウ(Sliding Window)や物体候補(Region Proposals)を使った手法と異なり、1枚の画像の全ての範囲を学習時に利用するため、周辺のコンテクストも同時に学習することができる。これにより、背景の誤検出を抑制できる。なお、背景の誤検出はFast R−CNNの約半分に抑えることができる。
(6)SSD(Single Shot multibox Detector)
SSDは、YOLOのアルゴリズムと同じような系統のアルゴリズムであり、様々な階層の出力層からマルチスケールな検出枠を出力できるように工夫されている。
SSDは、最先端(state of the art)の検出速度のアルゴリズム(YOLO)より高速であり、Faster R−CNNと同等の精度を実現するアルゴリズムである。また、小さなフィルタサイズの畳み込みニューラルネットワーク(CNN)を特徴地図に適応することにより、物体のカテゴリと位置を推定できる。また、様々なスケールの特徴地図を利用し、アスペクト比ごとに識別することにより、高い精度の検出率を達成できる。さらに、比較的低解像度でも高精度に検出できるエンドツーエンド(end to end)に学習可能なアルゴリズムである。
SSDは、異なる階層から特徴地図を使い、比較的小さなサイズの物体も検出できるため、入力画像サイズを小さくしても、精度が得られるため、高速化が可能である。
<教師データ生成部>
教師データ生成部は、作成された識別モデルを用いて、特定の識別対象を含む動画データから物体認識手法により推論を行い、特定の識別対象を検出し、特定の識別対象の教師データを生成する。
推論については、上述したディープラーニングによる物体認識手法を用いることができる。
教師データとは、教師ありディープラーニングで用いられる「入力データ」と「正解ラベル」とのペアである。「入力データ」を多数のパラメータを有するニューラルネットワークに入力することでディープラーニング学習を実施し、推論ラベルと正解ラベルとの差(学習中重み)を更新し、学習済み重みを求める。したがって、教師データの形態は、学習したい問題(以下、「タスク」と称することもある)に依存する。いくつかの教師データの例を下記の表1に挙げる。
Figure 2018200531
<選択部>
選択部は、生成された特定の識別対象の教師データから、任意の教師データを選択する。
選択部においては、深層学習処理にとって有用な教師データとなるように、例えば、フォーマットの変換、認識する部分の補正、ズレの補正、大きさの補正や教師データとして有用でないデータの除外などを行う。
以下に、本発明の実施例について図面を用いて具体的に説明するが、本発明は、この実施例に何ら限定されるものではない。
(実施例1)
図1は、教師データ生成装置のハードウェア構成の一例を示す図である。この図1の教師データ生成装置60の後述する外部記憶装置95には、教師データ生成プログラムが記録されており、後述のCPU(Central Processing Unit)91が当該プログラムを読出して実行することにより、後述の基準データ作成部61、識別モデル作成部81、教師データ生成部82、及び選択部83として動作する。
この図1の教師データ生成装置60は、バス98により互いに接続される、CPU91、メモリ92、外部記憶装置95、接続部97、及び媒体駆動部96を備え、入力部93及び出力部94が接続される。
CPU91は、外部記憶装置95などに格納された基準データ作成部61、識別モデル作成部81、教師データ生成部82、及び選択部83の各種プログラムを実行するユニットである。
メモリ92は、例えば、RAM(Random Access Memory)、フラッシュメモリやROM(Read Only Memory)等を含み、教師データ生成装置60を構成する各処理のプログラムとデータが格納される。
外部記憶装置95としては、例えば、磁気ディスク装置、光ディスク装置、光磁気ディスク装置などが挙げられる。この外部記憶装置95に上述の各処理のプログラムとデータを保存しておき、必要に応じて、これらをメモリ92にロードして使用することもできる。
接続部97としては、例えば、LAN(Local Area Network)、WAN(Wide Area Network)等の任意のネットワーク(回線、あるいは伝送媒体)を介して外部の装置に通信し、通信に伴うデータ変換を行う装置などが挙げられる。
媒体駆動部96は、可搬記録媒体99を駆動し、その記録内容にアクセスする。
可搬記録媒体99としては、例えば、メモリカード、フロッピー(登録商標)ディスク、CD−ROM(Compact Disk−Read Only Memory)、光ディスク、光磁気ディスク等の任意のコンピュータ読み取り可能な記録媒体などが挙げられる。この可搬記録媒体99に上述の各処理のプログラムとデータを格納しておき、必要に応じて、それらをメモリ92にロードして使用することもできる。
入力部93としては、例えば、キーボード、マウス、ポインティングデバイス、タッチパネル等であり、作業者からの指示の入力に用いられ、また、可搬記録媒体99を駆動してその記録内容の入力に用いられる。
出力部94としては、例えば、ディスプレイやプリンタ等であり、教師データ生成装置60の作業者への処理結果等の表示に用いられる。
なお、図1には示していないが、CPU91における演算処理の高速化のために、GPU(Graphics Processing Unit)などのアクセラレータやFPGA(Field−Programmable Gate Array)を利用できる構成としてもよい。
次に、図2は、実施例1の教師データ生成装置全体の一例を示すブロック図である。この図2の教師データ生成装置60は、識別モデル作成部81、及び教師データ生成部82を備えており、基準データ作成部61及び選択部83を備えていることが好ましい。ここで、識別モデル作成部81、及び教師データ生成部82の構成は、本発明の「教師データ生成装置」に該当し、識別モデル作成部81、及び教師データ生成部82を実行する処理は、本発明の「教師データ生成方法」に該当し、識別モデル作成部81、及び教師データ生成部82の処理をコンピュータに実行させるプログラムは、本発明に関する「教師データ生成プログラム」に該当する。
ここで、図3は、教師データ生成装置全体の処理の流れの一例を示すフローチャートである。以下、図2を参照して、教師データ生成装置全体の処理の流れについて説明する。
ステップS11では、基準データ作成部61は、1種類または少数種の特定の識別対象を含む動画データを静止画データに変換する。得られた静止画データから1種類または少数種の特定の識別対象のリージョンを切り出し、ラベルを付加して1種類または少数種の特定の識別対象を含む基準データを作成すると、処理をS12に移行する。基準データの作成処理は、作業者が行ってもよく、ソフトウェアにより実行してもよい。なお、ステップS11は、任意の処理であり、省略することができる。
ステップS12では、識別モデル作成部81は、1種類または少数種の特定の識別対象を含む基準データを学習対象となるように定義して、物体認識手法により学習を行い、1種類または少数種の特定の識別対象の識別モデルを作成すると、処理をS13に移行する。
ステップS13では、教師データ生成部82は、作成した識別モデルを用いて、1種類または少数種の特定の識別対象を含む動画データから物体認識手法により推論を行い、1種類または少数種の特定の識別対象を検出し、1種類または少数種の特定の識別対象の教師データを生成すると、処理をS14に移行する。
ステップS14では、選択部83が、生成した1種類または少数種の特定の識別対象の教師データから、任意の教師データを選抜すると、本処理を終了する。この教師データの選抜処理は、作業者が行ってもよく、ソフトウェアにより実行してもよい。なお、ステップS14は、任意の処理であり、省略することができる。
図4に示すように、従来は、教師データ生成装置70は、特定の識別対象が映っている動画データ50を、画像変換処理710において手作業で静止画データ720に変換する。次に、得られた静止画データ720を特定の識別対象の情報付加処理730において、手作業で静止画に映っている識別対象のリージョンを切り出し、この切り出した静止画にラベルの情報を手作業で付加して、教師データ10を生成していた。
従来は、図5に示す動画データ1 501、動画データ2 502、・・・動画データn 503から、教師データ生成装置70の画像1変換処理711、画像2変換処理712、・・・画像n変換処理713において、手作業で、静止画1データ721、静止画2データ722、・・・静止画nデータ723に画像変換する。この画像変換は既存のライブラリを使用したプログラムを作成すれば容易に自動化することができる。しかし、識別対象1の情報付加処理731、識別対象2の情報付加処理732、・・・識別対象nの情報付加処理733で実施する静止画から識別対象のリージョンを切り出し、この切り出した静止画にラベルを付加する情報付加処理は、手作業で実施しなければならない。その結果、識別対象1種類につき1,000枚以上の教師データを生成するためには大きな手間と時間がかかっていた。
このような情報付加処理を、識別対象1種類につき10枚〜100枚程度の1つまたは少数の教師データで学習したモデルを使用した物体認識で代用する方法も考えられる。しかし、1つまたは少数の教師データで複数の識別対象の物体認識を行うと、識別対象以外の物体を認識してしまう誤認識が生じる可能性が高くなり、生成した教師データに誤った教師データが混在する割合が高くなってしまう。
ここで、図6は、本発明の教師データ生成装置全体における各部の処理の一例を示すブロック図である。以下、識別対象の物体認識手法としてFaster R−CNNを使用し、画像データのjpgファイルと、PASCAL VOCフォーマットのXMLファイルとが組となった教師データを生成した実施例について説明する。なお、物体認識手法、及び教師データ生成装置のブロック図などは一例として挙げたものであり、これらに限定されるものではない。
[動画データ]
動画データ50は、1種類または少数種の特定の識別対象が映っている動画データである。動画の形式としては、avi、wmvフォーマットなどが挙げられる。
1種類または少数種の特定の識別対象としては、1種類であることが好ましく、例えば、動物であれば犬、ネコ、鳥、猿、熊、パンダなどが挙げられる。識別対象が1種類であると、識別対象が有るか無いかだけを判定すればよく、誤って認識することがないので、従来に比べて1つまたは少数の基準データで足りる。
[基準データ作成部]
基準データ作成部61は、画像変換処理611及び特定の識別対象の情報付加処理613を実行することにより、1種類または少数種の特定の識別対象を含む基準データ104を作成する。なお、基準データの作成は、任意であり、作業者から提供されたデータをそのまま、または適宜加工したものを用いることもできる。
画像変換処理611は、既存のライブラリを使用したプログラムにより、動画データ50の一定間隔のフレームを抽出する、またはランダムにフレームを取り出すことによりフレームを間引いて、1つまたは少数の静止画データ612に画像変換する。
静止画データ612は、1種類または少数種の特定の識別対象が映っている10枚〜100枚程度の1つまたは少数の静止画データである。静止画の形式としては、例えば、jpgなどが挙げられる。
特定の識別対象の情報付加処理613は、既存のツールを使用し、または作業者の手作業により、静止画データ612に映っている特定の識別対象のリージョンとラベルの情報をPASCAL VOCフォーマットのXMLファイルとして作成する。この特定の識別対象の情報付加処理613は、図4に示す従来の特定の識別対象の情報付加処理730と同様の処理であるが、図6の特定の識別対象の情報付加処理613は、フレームが1つまたは少数に間引かれているため、図4の従来の特定の識別対象の情報付加処理730に比べて大幅に手間と時間が削減できる。
以上により、静止画データ612のjpgファイルとPASCAL VOCフォーマットのXMLファイルとが組となった10枚〜100枚程度の1つまたは少数の基準データ104が作成される。基準データ104の形式は、識別モデル作成部81の入力となる形式であれば、静止画データのjpgファイルとPASCAL VOCフォーマットのXMLファイルが組となった形式に限定されるものではない。
[識別モデル作成部]
識別モデル作成部81は、特定の識別対象の専用化処理811、及び特定の識別対象の学習処理812を実行することにより、識別モデル813を作成する。
特定の識別対象の専用化処理811は、1つまたは少数の基準データ104内のXMLファイルのラベルを検索して特定の識別対象ラベルを取り出し、特定の識別対象の学習処理812の学習対象として定義する。即ち、特定の識別対象の専用化処理811においては、1つまたは少数の基準データ104内の1種類または少数種の特定の識別対象を動的に定義し、ディープラーニングによる物体認識手法で参照できるようにする。
特定の識別対象の学習処理812は、1つまたは少数の基準データ104を入力として、特定の識別対象の専用化処理811で定義した1種類または少数種の特定の識別対象の学習を行い、識別モデル813を作成する。学習は、ディープラーニングによる物体認識手法により行われる。ディープラーニングによる物体認識手法としては、Faster R−CNNを用いている。
従来のディープラーニングによる物体認識手法における学習済モデルは、複数種の識別対象の検出に使用する。これに対して、識別モデル813は、1種類または少数種の特定の識別対象の検出に使用される。1種類または少数種の特定の識別対象の識別モデル813を使用することにより、1種類または少数種の特定の識別対象ではない物体の誤認識を減らすことができる。
[教師データ生成部]
教師データ生成部82は、特定の識別対象の検出処理821、及び特定の識別対象の教師データ生成処理822を実行し、特定の識別対象の教師データ105を生成する。
特定の識別対象の検出処理821は、基準データ作成部61で使用した動画データ50と、識別モデル813とを入力として、動画データ50を1フレーム毎にディープラーニングによる物体認識手法により推論を行う。推論を行うことにより、特定の識別対象の専用化処理811で定義した1種類または少数種の特定の識別対象の検出を行う。
ディープラーニングによる物体認識手法としては、Faster R−CNNを用いている。
特定の識別対象の教師データ生成処理822は、特定の識別対象の教師データ105を自動で作成する。特定の識別対象の教師データ105は、1種類または少数種の特定の識別対象が映っている静止画データのjpgファイルと、特定の識別対象のリージョンとラベルの情報を持つPASCAL VOCフォーマットのXMLファイルとが組となったものである。
なお、特定の識別対象の教師データ105の形式は、基準データ104と同じ形式であるが、静止画データのjpgファイルと、PASCAL VOCフォーマットのXMLファイルが組となった形式に限定するものではない。
[選択部]
教師データ生成装置60は、特定の識別対象の教師データ105から、任意の教師データを選抜するため、選択部83を有することが好ましい。なお、教師データの選抜は、任意であり、特定の識別対象の教師データ105の数が足りない場合や特定の識別対象の教師データ105からの選抜が必要ない場合には、省略することができる。
選択部83は、特定の識別対象の教師データ選択処理831を実行し、特定の識別対象について、選抜された選抜教師データ100を生成する。
特定の識別対象の教師データ選択処理831においては、有用な教師データになるように、例えば、フォーマットの変換、認識する部分の補正、ズレの補正、大きさの補正や教師データとして有用でないデータの除外などを行う。
特定の識別対象の教師データ選択処理831は、特定の識別対象の教師データ105のリージョンを使って、特定の識別対象を切り出した静止画データ、または特定の識別対象のリージョンを枠で囲った静止画データを表示する。
表示された静止画データから所望の教師データを選択する、または不要な教師データを選択する選択手段により教師データを手作業、またはソフトウェアにより選択し、選択された教師データから特定の識別対象の選抜教師データ100を生成する。
以上により、教師データ生成装置60は、1つまたは少数の基準データ104から自動的に多くの教師データを生成できるため、教師データを生成する手間と時間を削減することができる。
次に、図7は、教師データ生成装置全体における各部の処理の流れの一例を示すフローチャートである。以下、図6を参照して、教師データ生成装置全体における各部の処理の流れについて説明する。
ステップS110では、基準データ作成部61は、画像変換処理611において、作成する基準データの数を設定すると、処理をS111に移行する。なお、作成する基準データの設定数は、10枚〜100枚程度の1つまたは少数でよい。
ステップS111では、基準データ作成部61は、動画データ50の0フレームから基準データの設定数間隔で、既存のライブラリを使用して動画データを静止画に変換してjpgファイルなどを作成すると、処理をS112に移行する。なお、動画データ50の特定の識別対象が映っているフレームの内、教師データにしたいフレームを既存のライブラリを使用して設定数分、動画から静止画に変換してjpgファイルなどを作成してもよい。
ステップS112では、基準データ作成部61は、特定の識別対象の情報付加処理613により、基準データを作成すると、処理をS113に移行する。
基準データは、手作業または既存のツールを使用して作成したjpgファイルに映っている特定の識別対象のリージョンとラベルの情報をPASCAL VOCフォーマットのXMLファイルとして作成される。
ステップS113では、基準データ作成部61は、作成した基準データ数が基準データ設定数より小さいか否かを判定する。
作成した基準データ数が基準データ設定数よりも小さいと判定すると、処理をS111に戻す。一方、作成した基準データ数が基準データ設定数よりも大きいと判定すると、処理をS114に移行する。このように基準データの作成処理を基準データ設定数分繰り返すことにより、基準データ104が作成される。1種類または少数種の特定の識別対象に絞っているため、1つまたは少数の基準データが得られる。
なお、ステップS110〜ステップS121はオプションであり、作業者から提供された基準データを用いることもできる。
ステップS114では、識別モデル作成部81は、特定の識別対象の専用化処理811において、図8に示すような基準データ104のXMLファイルのラベル(図8の<name>car</name>)を検索する。特定の識別対象(1種類の識別対象:図8のcar)を図9に示すようなpythonのimportファイルとして定義する。図10に示すようなFaster R−CNNで参照できるように定義すると、処理をS115に移行する。
このステップS114において、異なるラベルの基準データに変更することにより、識別モデルの識別対象を動的に切り替えることができる。
ステップS115では、特定の識別対象の学習処理812において、特定の識別対象の専用化処理811で定義したimportファイルを参照して、1つまたは少数の基準データ104を用いて、Faster R−CNNで学習を行い、識別モデル813を作成すると、処理をS116に移行する。
ステップS116では、識別モデル作成部81は、学習回数が指定された学習回数以下であるか否かを判定する。学習回数が指定された学習回数以下であると判定すると、処理をS115に戻す。一方、学習回数が指定された学習回数を超えたと判定すると、処理をS117に移行する。
学習回数としては、固定回数、引数による指定回数などを使用することができる。
学習回数をtrain accuracy(学習正解率)とすることもできる。指定されたtrain accuracy未満であると判定すると、処理をS115に戻す。一方、train accuracy以上と判定すると、処理をS117に移行する。
train accuracyとしては、固定train accuracy、引数による指定train accuracyなどを使用することができる。
ステップS117では、教師データ生成部82は、特定の識別対象の検出処理821において、基準データ作成部61で使用した動画データ50を読み込むと、処理をS118に移行する。
ステップS118では、読み込んだ動画データ50をフレーム0から順に1フレームずつ処理して、識別モデル作成部81の特定の識別対象の専用化処理811で定義にしたimportファイルを参照して、Faster R−CNNで検出すると、処理をS119に移行する。
ステップS119では、特定の識別対象の教師データ生成処理822において、特定の識別対象の教師データを生成すると、処理をS120に移行する。
特定の識別対象の教師データは、特定の識別対象の検出処理821で検出したjpgファイルと、jpgファイルに映っている特定の識別対象のリージョンとラベルの情報をPASCAL VOCフォーマットのXMLファイルとしたものである。
ステップS120では、教師データ生成部82は、読み込んだ動画データ50に残りのフレームがあるか否かを判定する。残りのフレームがあると判定すると、処理をS118に戻す。一方、残りのフレームがないと判定すると、処理をS121に移行する。
なお、検出したjpgファイルから特定の識別対象のリージョンを切り出したjpgファイルを教師データとして作成することもできる。動画データ50の全てのフレームに対して検出を繰り返すことで特定の識別対象の教師データ105を生成する。
ステップS121では、特定の識別対象の教師データ選択処理831により、特定の識別対象の教師データ105のリージョンを用いて、特定の識別対象を切り出した静止画データ、または特定の識別対象のリージョンを枠で囲った静止画データを全て表示する。
次に、有効な教師データを選択する、または不要な教師データを選択する選択手段で教師データを手動またはソフトウェアにより選択し、選択された教師データから特定の識別対象の選抜教師データ100を生成すると、本処理を終了する。なお、ステップS121はオプションである。
実施例1によれば、ディープラーニングの学習時に必要な教師データを、1つまたは少数の基準データから多数自動生成でき、教師データの生成の手間と時間を削減することが可能になる。
(実施例2)
図11は、実施例2の教師データ生成装置全体における各部の処理の一例を示すブロック図である。この図11の実施例2の教師データ生成装置601は、教師データ生成部82の特定の識別対象検出処理821において複数の動画データを処理する機能を追加した以外は、実施例1と同様である。このため、既に説明した実施例1と同一の構成については、同じ参照符号を付してその説明を省略する。
複数の動画データとしては、図13に示す動画データテーブルが挙げられる。動画データ1’ 5011は、動画データ1 501と同じ1種類または少数種の特定の識別対象が映った別の動画データである。動画の形式としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、avi、wmvフォーマットなどが挙げられる。なお、動画データ1’ 5011は複数指定することができる。
特定の識別対象検出処理821においては、基準データ作成部61で使用した動画データ1 501と、識別モデル813とを入力として、動画データ1 501の各フレームから特定の識別対象の専用化処理811で定義した特定の識別対象の検出を行う。
その後、動画データ1’ 5011と、識別モデル813とを入力として、動画データ1’ 5011の各フレームから特定の識別対象の専用化処理811で定義した特定の識別対象の検出を行う。なお、動画データ1’ 5011が複数指定された場合は、新たな動画データで特定の識別対象検出処理821から処理を繰り返す。
図12は、実施例2の教師データ生成装置601全体における各部の処理の流れの一例を示すフローチャートである。以下、図11を参照して、教師データ生成装置全体における各部の処理の流れについて説明する。
なお、図12中のステップS110〜ステップS116については、図7の実施例1のフローチャートと同様であるため、その説明を省略する。
ステップS210では、特定の識別対象検出処理821において、図13に示す動画データテーブルに画像変換処理611で使用した動画データ1 501のファイル名を先頭にして、以降、動画データ1’ 5011の画像データのファイル名を設定すると、処理をS211に移行する。なお、画像データのファイル名はファイル読み込みや入力装置からの読み込みでもよい。
ステップS211では、図13に示す動画データテーブルの先頭から順に画像データを読み込むと、処理をS118に移行する。
ステップS118では、図13に示す動画データテーブルから読み込んだ動画データ1 501をフレーム0から順に処理して、特定の識別対象の専用化処理811で定義にしたimportファイルを参照して、Faster R−CNNで検出すると、処理をS119に移行する。
ステップS119では、教師データ生成部82は、特定の識別対象の教師データ生成処理822において、特定の識別対象の教師データを生成すると、処理をS120に移行する。
特定の識別対象の教師データは、特定の識別対象検出処理821で検出したjpgファイルと、jpgファイルに映っている特定の識別対象のリージョンとラベルの情報をPASCAL VOCフォーマットのXMLファイルとして作成される。
ステップS120では、教師データ生成部82は、読み込んだ動画データ1 501に残りのフレームがあるか否かを判定する。読み込んだ動画データ1 501に残りのフレームがあると判定すると、処理をS118に戻す。一方、読み込んだ動画データ1 501に残りのフレームがないと判定すると、処理をS212に移行する。
ステップS212では、教師データ生成部82は、図13に示す動画データテーブルを参照し、未処理の動画データがあるか否かを判定する。未処理の動画データがあると判定すると、処理をS211に戻し、新たな動画データに基づき処理を行う。一方、未処理の動画データがないと判定すると、処理をS121に移行する。
ステップS121では、特定の識別対象の教師データ選択処理831により、特定の識別対象の教師データ105のリージョンを用いて、特定の識別対象を切り出した静止画データ、または特定の識別対象のリージョンを枠で囲った静止画データを全て表示する。
次に、有効な教師データを選択する、または不要な教師データを選択する選択手段で教師データを手動またはソフトウェアにより選択し、選択した教師データから特定の識別対象の選抜教師データ100を生成すると、本処理を終了する。なお、ステップS121はオプションである。
実施例2によれば、多数の教師データが自動で作成でき、実施例1に比べて、教師データ生成の手間と時間をさらに削減することが可能になる。
(実施例3)
図14は、実施例3の教師データ生成装置全体における各部の処理の一例を示すブロック図である。この図14の実施例3の教師データ生成装置602は、特定の識別対象の学習処理812により、特定の識別対象の教師データ105、または特定の識別対象の選抜教師データ100を用いて繰り返し処理する機能を追加した以外は、実施例1と同様である。このため、既に説明した実施例1と同一の構成については、同じ参照符号を付してその説明を省略する。
特定の識別対象の学習処理812において、特定の識別対象の教師データ105、または特定の識別対象の選抜教師データ100を用いて何回繰り返し処理するかのイテレーション数を設定する。
基準データ104を入力として、特定の識別対象の専用化処理811で定義した特定の識別対象の学習を行い、識別モデル813を作成する。または繰り返す場合には更新する。
教師データ生成部82の特定の識別対象の教師データ生成処理822は、特定の識別対象の学習処理812で設定されたイテレーション数分、特定の識別対象の教師データ105を入力として、特定の識別対象の学習処理812から処理を繰り返す。
特定の識別対象の教師データ選択処理831は、特定の識別対象の教師データ105のリージョンを使って、特定の識別対象を切り出した静止画データ、または特定の識別対象のリージョンを枠で囲った静止画データを表示する。
表示された静止画データから希望の教師データを選択する、または不要な教師データを選択する選択手段により教師データを手作業またはソフトウェアで選択し、選択された教師データから特定の識別対象の選抜教師データ100を生成する。
特定の識別対象の学習処理812で設定されたイテレーション数分、特定の識別対象の選抜教師データ100を入力として、特定の識別対象の学習処理812から処理を繰り返す。
なお、同じ教師データで複数回学習を行うと過学習になる可能性があるため、フィードバック処理では教師データが重複しないようにすることが好ましい。
ここで、図15は、教師データ生成装置全体における各部の処理の流れの一例を示すフローチャートである。以下、図14を参照して、教師データ生成装置全体における各部の処理の流れについて説明する。
なお、図15中のステップS110〜ステップS114については、図7の実施例1のフローチャートと同様であるため、その説明を省略する。
ステップS310では、特定の識別対象の学習処理812において、特定の識別対象の教師データ105、または特定の識別対象の選抜教師データ100を用いて何回繰り返し処理するか、イテレーション数を設定すると、処理をS115に移行する。なお、イテレーション数は、ファイル読み込みや入力装置からの読み込みであってもよく、固定値としてもよい。
ステップS115では、特定の識別対象の専用化処理811で定義したimportファイルを参照して、基準データ104を用い、Faster R−CNNで学習することにより、識別モデル813を作成すると、処理をS116に移行する。
ステップS116では、識別モデル作成部81は、学習回数が指定された学習回数以下であるか否かを判定する。学習回数が指定された学習回数以下であると判定すると、処理をS115に戻す。一方、学習回数が指定された学習回数を超えたと判定すると、処理をS117に移行する。
学習回数としては、固定回数、引数による指定回数、またはtrain accuracy(学習正解率)などを使用することができる。
ステップS117では、教師データ生成部82は、特定の識別対象検出処理821において、基準データ作成部61で使用した動画データ50を読み込むと、処理をS118に移行する。
ステップS118では、読み込んだ動画データ50をフレーム0から順に1フレームずつ処理して、特定の識別対象の専用化処理811で定義にしたimportファイルを参照して、Faster R−CNNで検出すると、処理をS119に移行する。
ステップS119では、特定の識別対象の教師データ生成処理822において、特定の識別対象検出処理821で検出したjpgファイルと、jpgファイルに映っている特定の識別対象のリージョンとラベルの情報をPASCAL VOCフォーマットのXMLファイルとして、教師データを生成すると、処理をS120に移行する。
なお、検出したjpgファイルから特定の識別対象のリージョンを切り出したjpgファイルを教師データとして作成することもできる。動画データ50の全てのフレームに対して検出を繰り返すことで特定の識別対象教師データ105を生成する。
ステップS120では、教師データ生成部82は、読み込んだ動画データ50に残りのフレームがあるか否かを判定する。読み込んだ動画データ50に残りのフレームがあると判定すると、処理をS118に戻す。一方、残りのフレームがないと判定すると、処理をS121に移行する。
ステップS121では、特定の識別対象の教師データ選択処理831により、特定の識別対象の教師データ105のリージョンを用いて、特定の識別対象を切り出した静止画データ、または特定の識別対象のリージョンを枠で囲った静止画データを全て表示する。
次に、有効な教師データを選択する、または不要な教師データを選択する選択手段で教師データを手動またはソフトウェアにより選択し、選択された教師データから特定の識別対象の選抜教師データ100を生成すると、処理をS311に移行する。なお、ステップS121はオプションである。
ステップS311では、教師データ生成部82または選択部83は、繰り返し回数が設定されているイテレーション数よりも小さいか否かを判定する。繰り返し回数がイテレーション数より小さいと判定すると、処理をS115に戻す。一方、繰り返し回数がイテレーション数より大きいと判定すると、本処理を終了する。
実施例3によれば、多数の教師データが自動で生成でき、実施例1に比べて、教師データ生成の手間と時間をさらに削減することが可能になる。
(実施例4)
実施例1の教師データ生成装置において、実施例3で追加した処理と実施例4で追加した処理とを組み合わせた構成とした以外は、実施例1と同様にして、実施例4の教師データ生成装置を作製した。
実施例4によれば、実施例1に比べて、さらに自動で生成する教師データ数が増え、教師データ生成の手間と時間をより削減することが可能になる。
(実施例5)
(物体検出システム)
図16は、本発明の物体検出システム全体の一例を示すブロック図である。この図16の物体検出システム400は、教師データ生成装置60と、学習部200と、推論部300とを備えている。
ここで、図17は、物体検出システム全体の処理の流れの一例を示すフローチャートである。以下、図16を参照して、物体検出システム全体の処理の流れについて説明する。
ステップS401では、教師データ生成装置60は、1種類または少数種の特定の識別対象の教師データを生成すると、処理をS402に移行する。
ステップS402では、学習部200は、教師データ生成装置60が生成した教師データを用いて学習を行い、学習済み重みを得ると、処理をS403に移行する。
ステップS403では、推論部300は、得られた学習済み重みを用いて推論を行い、推論結果を得ると、本処理を終了する。
図18は、本発明の物体検出システム全体の他の一例を示すブロック図である。この図18の物体検出システム400は、動画データ1 501、動画データ2 502、・・・動画データn 503から、教師データ生成装置60により、識別対象1の教師データ101、識別対象2の教師データ102・・・識別対象nの教師データ103が生成される。生成された教師データは、学習部200により学習され、推論部300により、検出結果240が得られる。
教師データ生成装置60としては、本発明の教師データ生成装置60を用いることができる。
学習部200及び推論部300としては、特に制限はなく、一般的なものを用いることができる。
<学習部>
学習部200は、教師データ生成装置60で生成した教師データを用いて学習を行う。
図19は、学習部全体の一例を示すブロック図である。図20は、学習部全体の他の一例を示すブロック図である。
教師データ生成装置で生成した教師データを用いて行う学習は、通常のディープラーニング学習と同様にして行うことができる。
図19に示す教師データ格納部12には、教師データ生成装置60で生成した入力データ(画像)と正解ラベルとのペアである教師データが格納されている。
ニューラルネットワーク定義201は、多層構造のニューラルネットワーク(ディープニューラルネットワーク)の種別、多数のニューロン同士がどのようにつながっているのかという構造を定義したファイルであり、作業者の指定値である。
学習済み重み202は、作業者の指定値であり、学習を開始する際に、予め学習済み重みを与えておくことが通常行われており、学習済み重みは、ニューラルネットワークの各ニューロンの重みを格納したファイルである。なお、学習において学習済み重みは必須ではない。
ハイパーパラメータ203は、学習に関するパラメータ群であり、学習を何回行うのか、学習中の重みをどのような幅で更新するのかなどが格納されているファイルである。
学習中重み205は、学習中のニューラルネットワークの各ニューロンの重みを表し、学習することで更新される。
図20に示すようにディープラーニング学習部204は、教師データ格納部12からミニバッチ207と呼ばれる単位で教師データを取得する。この教師データを入力データと正解ラベルとに分離し、順伝播処理と逆伝播処理とを行うことにより、学習中重みを更新して、学習済み重みを出力する。
学習の終了条件は、ニューラルネットワークに入力するか、または損失関数208が閾値を下回ったかで決定される。
ここで、図21は、学習部全体の処理の流れの一例を示すフローチャートである。以下、図19及び図20を参照して、学習部全体の処理の流れについて説明する。
ステップS501では、作業者またはソフトウェアが、ディープラーニング学習部204に、教師データ格納部12、ニューラルネットワーク定義201、ハイパーパラメータ203、及び必要に応じて学習済み重み202を与えると、処理をS502に移行する。
ステップS502では、ディープラーニング学習部204が、ニューラルネットワーク定義201に従いニューラルネットワークを構築すると、処理をS503に移行する。
ステップS503では、ディープラーニング学習部204が、学習済み重み202を有するか否かを判定する。
学習済み重み202を有していないと判定すると、ディープラーニング学習部204が、構築したニューラルネットワークにニューラルネットワーク定義201で指定されたアルゴリズムに従い、初期値を設定すると、処理をS506に移行する。一方、学習済み重み202を有すると判定すると、ディープラーニング学習部204が、構築したニューラルネットワークに学習済み重み202を設定すると、処理をS506に移行する。なお、初期値は、ニューラルネットワーク定義201に記載されている。
ステップS506では、ディープラーニング学習部204が、教師データ格納部12から指定されたバッチサイズの教師データ集合を取得すると、処理をS507に移行する。
ステップS507では、ディープラーニング学習部204が、教師データ集合を「入力データ」と「正解ラベル」とに分離すると、処理をS508に移行する。
ステップS508では、ディープラーニング学習部204が、ニューラルネットワークに「入力データ」を入力し、順伝播処理を実施すると、処理をS509に移行する。
ステップS509では、ディープラーニング学習部204が、順伝播処理の結果として、得られた「推論ラベル」と「正解ラベル」を損失関数208に与え、損失209を計算すると、処理をS510に移行する。なお、損失関数208は、ニューラルネットワーク定義201に記載されている。
ステップS510では、ディープラーニング学習部204が、ニューラルネットワークに損失209を入力し、逆伝播処理を実施して、学習中重みを更新すると、処理をS511に移行する。
ステップS511では、ディープラーニング学習部204が、終了条件に到達したか否かを判定する。ディープラーニング学習部204が、終了条件に到達していないと判定すると、処理をS506に戻し、終了条件に到達したと判定すると、処理をS512に移行する。なお、終了条件は、ハイパーパラメータ203に記載されている。
ステップS512では、ディープラーニング学習部204が、学習中重みを学習済み重みとして出力し、本処理を終了する。
<推論部>
推論部300は、学習部200で求めた学習済み重みを用いて推論(テスト)を行う。
図22は、推論部全体の一例を示すブロック図である。図23は、推論部全体の他の一例を示すブロック図である。
テストデータ格納部301を用いた推論は、通常のディープラーニング推論と同様にして行うことができる。
テストデータ格納部301は、推論用のテストデータを格納する。テストデータは入力データ(画像)のみである。
ニューラルネットワーク定義302は、学習部200のニューラルネットワーク定義201と基本的な構造は共通する。
学習済み重み303は、推論は学習した成果を評価するため、必ず与える。
ディープラーニング推論部304は、学習部200のディープラーニング学習部204に対応する。
ここで、図24は、推論部全体の処理の流れの一例を示すフローチャートである。以下、図22及び図23を参照して、推論部全体の処理の流れについて説明する。
ステップS601では、作業者またはソフトウェアが、ディープラーニング推論部304に、テストデータ格納部301、ニューラルネットワーク定義302、及び学習済み重み303を与えると、処理をS602に移行する。
ステップS602では、ディープラーニング推論部304が、ニューラルネットワーク定義302に従いニューラルネットワークを構築すると、処理をS603に移行する。
ステップS603では、ディープラーニング推論部304が、構築したニューラルネットワークに学習済み重み303を設定すると、処理をS604に移行する。
ステップS604では、ディープラーニング推論部304が、テストデータ格納部301から、指定されたバッチサイズのテストデータ集合を取得すると、処理をS605に移行する。
ステップS605では、ディープラーニング推論部304が、ニューラルネットワークにテストデータ集合の入力データを入力し、順伝播処理を実施すると、処理をS606に移行する。
ステップS606では、ディープラーニング推論部304が、推論ラベル(推論結果)を出力すると、本処理を終了する。
以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)
特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置において、
前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成する識別モデル作成部と、
作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成部と、
を有する教師データ生成装置。
(付記2)
前記教師データ生成装置はさらに、
前記特定の識別対象を含む動画データを複数の静止画データに変換し、得られた前記複数の静止画データから切り出した前記特定の識別対象のリージョンにラベルを付加して前記特定の識別対象を含む基準データを作成する基準データ作成部を有する付記1に記載の教師データ生成装置。
(付記3)
前記教師データ生成装置はさらに、
生成された前記特定の識別対象の教師データから、任意の教師データを選択する選択部を有する付記1または2に記載の教師データ生成装置。
(付記4)
前記教師データ生成装置において、
前記物体認識手法が、ディープラーニングによる物体認識手法により行われる付記1から3のいずれか一項に記載の教師データ生成装置。
(付記5)
特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置を用いた教師データ生成方法において、
前記教師データ生成装置が有する識別モデル作成部が、前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成し、
前記教師データ生成装置が有する教師データ生成部が、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成方法。
(付記6)
前記教師データ生成装置はさらに、
前記特定の識別対象を含む動画データを複数の静止画データに変換し、得られた前記複数の静止画データから切り出した前記特定の識別対象のリージョンにラベルを付加して前記特定の識別対象を含む基準データを作成する基準データ作成部を有する付記5に記載の教師データ生成方法。
(付記7)
前記教師データ生成装置はさらに、
生成された前記特定の識別対象の教師データから、任意の教師データを選択する選択部を有する付記5または6に記載の教師データ生成方法。
(付記8)
前記教師データ生成装置において、
前記物体認識手法が、ディープラーニングによる物体認識手法により行われる付記5から7のいずれか一項に記載の教師データ生成方法。
(付記9)
特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置の教師データ生成プログラムにおいて、
前記教師データ生成装置が有する識別モデル作成部に、前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成させ、
前記教師データ生成装置が有する教師データ生成部に、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成させる教師データ生成プログラム。
(付記10)
前記教師データ生成装置はさらに、
前記特定の識別対象を含む動画データを複数の静止画データに変換し、得られた前記複数の静止画データから切り出した前記特定の識別対象のリージョンにラベルを付加して前記特定の識別対象を含む基準データを作成する基準データ作成部を有する付記9に記載の教師データ生成プログラム。
(付記11)
前記教師データ生成装置はさらに、
生成された前記特定の識別対象の教師データから、任意の教師データを選択する選択部を有する付記9または10に記載の教師データ生成プログラム。
(付記12)
前記教師データ生成装置において、
前記物体認識手法が、ディープラーニングによる物体認識手法により行われる付記9から11のいずれか一項に記載の教師データ生成プログラム。
(付記13)
特定の識別対象の物体検出を行う物体検出システムにおいて、
前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成する識別モデル作成部と、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成部とを有する教師データ生成装置と、
前記教師データ生成装置が生成した教師データを用いて学習を行う学習部と、
前記学習部が生成した学習済み重みを用いて推論を行う推論部と、
を有することを特徴とする物体検出システム。
(付記14)
前記教師データ生成装置はさらに、
前記特定の識別対象を含む動画データを複数の静止画データに変換し、得られた前記複数の静止画データから切り出した前記特定の識別対象のリージョンにラベルを付加して前記特定の識別対象を含む基準データを作成する基準データ作成部を有する付記13に記載の物体検出システム。
(付記15)
前記教師データ生成装置はさらに、
生成された前記特定の識別対象の教師データから、任意の教師データを選択する選択部を有する付記13または14に記載の物体検出システム。
(付記16)
前記教師データ生成装置において、
前記物体認識手法が、ディープラーニングによる物体認識手法により行われる付記13から15のいずれか一項に記載の物体検出システム。
10 教師データ
50 動画データ
60 教師データ生成装置
61 基準データ作成部
81 識別モデル作成部
82 教師データ生成部
83 選択部
104 基準データ
105 特定の識別対象の教師データ
106 特定の識別対象の選抜教師データ
200 学習部
300 推論部
400 物体検出システム
612 静止画データ
813 識別モデル

Claims (7)

  1. 特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置において、
    前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成する識別モデル作成部と、
    作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成部と、
    を有する教師データ生成装置。
  2. 前記教師データ生成装置はさらに、
    前記特定の識別対象を含む動画データを複数の静止画データに変換し、得られた前記複数の静止画データから切り出した前記特定の識別対象のリージョンにラベルを付加して前記特定の識別対象を含む基準データを作成する基準データ作成部を有する請求項1に記載の教師データ生成装置。
  3. 前記教師データ生成装置はさらに、
    生成された前記特定の識別対象の教師データから、任意の教師データを選択する選択部を有する請求項1または2に記載の教師データ生成装置。
  4. 前記教師データ生成装置において、
    前記物体認識手法が、ディープラーニングによる物体認識手法により行われる請求項1から3のいずれか一項に記載の教師データ生成装置。
  5. 特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置を用いた教師データ生成方法において、
    前記教師データ生成装置が有する識別モデル作成部が、前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成し、
    前記教師データ生成装置が有する教師データ生成部が、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成方法。
  6. 特定の識別対象の物体検出を行う際に用いられる教師データを生成する教師データ生成装置の教師データ生成プログラムにおいて、
    前記教師データ生成装置が有する識別モデル作成部に、前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成させ、
    前記教師データ生成装置が有する教師データ生成部に、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成させる教師データ生成プログラム。
  7. 特定の識別対象の物体検出を行う物体検出システムにおいて、
    前記特定の識別対象を含む基準データを用いて物体認識手法により学習を行い、前記特定の識別対象の識別モデルを作成する識別モデル作成部と、作成された前記識別モデルを用いて、前記特定の識別対象を含む動画データから物体認識手法により推論を行い、前記特定の識別対象を検出し、前記特定の識別対象の教師データを生成する教師データ生成部とを有する教師データ生成装置と、
    前記教師データ生成装置が生成した教師データを用いて学習を行う学習部と、
    前記学習部が生成した学習済み重みを用いて推論を行う推論部と、
    を有することを特徴とする物体検出システム。

JP2017104493A 2017-05-26 2017-05-26 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム Active JP6974697B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017104493A JP6974697B2 (ja) 2017-05-26 2017-05-26 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム
US15/949,638 US20180342077A1 (en) 2017-05-26 2018-04-10 Teacher data generation apparatus and method, and object detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104493A JP6974697B2 (ja) 2017-05-26 2017-05-26 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム

Publications (2)

Publication Number Publication Date
JP2018200531A true JP2018200531A (ja) 2018-12-20
JP6974697B2 JP6974697B2 (ja) 2021-12-01

Family

ID=64401312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104493A Active JP6974697B2 (ja) 2017-05-26 2017-05-26 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム

Country Status (2)

Country Link
US (1) US20180342077A1 (ja)
JP (1) JP6974697B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135432A (ja) * 2019-02-20 2020-08-31 株式会社日立ソリューションズ・クリエイト 学習データの生成方法、学習データ生成装置及びプログラム
WO2020194961A1 (ja) 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 識別情報付与装置、識別情報付与方法、及びプログラム
JPWO2020217426A1 (ja) * 2019-04-25 2020-10-29
JPWO2020217425A1 (ja) * 2019-04-25 2020-10-29
JPWO2020241074A1 (ja) * 2019-05-30 2020-12-03
WO2021131127A1 (ja) 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 識別情報付与装置、識別情報付与方法、及びプログラム
KR20210088940A (ko) * 2020-01-07 2021-07-15 주식회사 애니멀고 동물 정보 판별용 어플리케이션을 구동하는 장치, 서버 및 이들을 포함하는 어플리케이션 관리 시스템
JPWO2021152801A1 (ja) * 2020-01-30 2021-08-05
KR20220065321A (ko) * 2020-11-13 2022-05-20 상명대학교산학협력단 영상 인식 기반 앵무새 종 인식 장치 및 방법
US11559888B2 (en) 2019-10-30 2023-01-24 Fanuc Corporation Annotation device
WO2023058082A1 (ja) * 2021-10-04 2023-04-13 日本電気株式会社 情報処理装置、情報処理システム、情報処理方法、及び、記録媒体
EP4343630A1 (en) 2022-09-21 2024-03-27 Glory Ltd. Image processing apparatus, method of generating learning model, and inference method
US11989928B2 (en) 2019-08-07 2024-05-21 Fanuc Corporation Image processing system
JP7491755B2 (ja) 2020-07-13 2024-05-28 繁 塩澤 データ生成装置、検出装置、及びプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333871B2 (ja) * 2016-02-25 2018-05-30 ファナック株式会社 入力画像から検出した対象物を表示する画像処理装置
CN110569696A (zh) * 2018-08-31 2019-12-13 阿里巴巴集团控股有限公司 用于车辆部件识别的神经网络系统、方法和装置
US10970871B2 (en) * 2018-09-07 2021-04-06 Huawei Technologies Co., Ltd. Estimating two-dimensional object bounding box information based on bird's-eye view point cloud
CN109978863B (zh) * 2019-03-27 2021-10-08 北京青燕祥云科技有限公司 基于x射线图像的目标检测方法及计算机设备
US11222069B2 (en) * 2019-03-31 2022-01-11 Cortica Ltd. Low-power calculation of a signature of a media unit
US11277556B2 (en) * 2019-04-01 2022-03-15 Jvckenwood Corporation Control device for automatic tracking camera
CN110245625B (zh) * 2019-06-19 2021-04-13 浪潮集团有限公司 一种基于孪生神经网络的野外大熊猫识别方法及系统
CN111680705B (zh) * 2020-08-13 2021-02-26 南京信息工程大学 适于目标检测的mb-ssd方法和mb-ssd特征提取网络
CN112597801B (zh) * 2020-11-24 2023-08-01 安徽天虹数码科技股份有限公司 一种录播系统中教师检测与跟踪方法及系统
US20230251792A1 (en) * 2022-02-04 2023-08-10 Western Digital Technologies, Inc. Memory Device Based Accelerated Deep-Learning System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145791A (ja) * 2010-01-13 2011-07-28 Hitachi Ltd 識別器学習画像生成プログラム、方法、及びシステム
JP2012174222A (ja) * 2011-02-24 2012-09-10 Olympus Corp 画像認識プログラム、方法及び装置
JP2016057918A (ja) * 2014-09-10 2016-04-21 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2016076073A (ja) * 2014-10-06 2016-05-12 日本電気株式会社 データ処理装置、データ処理方法、及び、コンピュータ・プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201604981UA (en) * 2013-12-19 2016-07-28 Avigilon Fortress Corp System and method for identifying faces in unconstrained media
WO2015110852A1 (en) * 2014-01-24 2015-07-30 Sony Corporation Face tracking for a mobile device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145791A (ja) * 2010-01-13 2011-07-28 Hitachi Ltd 識別器学習画像生成プログラム、方法、及びシステム
JP2012174222A (ja) * 2011-02-24 2012-09-10 Olympus Corp 画像認識プログラム、方法及び装置
JP2016057918A (ja) * 2014-09-10 2016-04-21 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2016076073A (ja) * 2014-10-06 2016-05-12 日本電気株式会社 データ処理装置、データ処理方法、及び、コンピュータ・プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNNI DAI: ""Online surveillance object classification with training data updating"", 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), JPN6021014216, 12 July 2016 (2016-07-12), US, pages 733 - 737, XP033061825, ISSN: 0004489137, DOI: 10.1109/ICALIP.2016.7846535 *
原田達也: ""機械学習による物体認識"", 画像ラボ, vol. 第27巻, 第1号, JPN6021014214, 10 January 2016 (2016-01-10), JP, pages 14 - 22, ISSN: 0004489136 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135432A (ja) * 2019-02-20 2020-08-31 株式会社日立ソリューションズ・クリエイト 学習データの生成方法、学習データ生成装置及びプログラム
JP7168485B2 (ja) 2019-02-20 2022-11-09 株式会社日立ソリューションズ・クリエイト 学習データの生成方法、学習データ生成装置及びプログラム
WO2020194961A1 (ja) 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 識別情報付与装置、識別情報付与方法、及びプログラム
JP7211496B2 (ja) 2019-04-25 2023-01-24 日本電気株式会社 教師データ生成装置
JP7211495B2 (ja) 2019-04-25 2023-01-24 日本電気株式会社 教師データ生成装置
WO2020217425A1 (ja) * 2019-04-25 2020-10-29 日本電気株式会社 教師データ生成装置
US11900659B2 (en) 2019-04-25 2024-02-13 Nec Corporation Training data generation apparatus
WO2020217426A1 (ja) * 2019-04-25 2020-10-29 日本電気株式会社 教師データ生成装置
US11954901B2 (en) 2019-04-25 2024-04-09 Nec Corporation Training data generation apparatus
JPWO2020217426A1 (ja) * 2019-04-25 2020-10-29
JPWO2020217425A1 (ja) * 2019-04-25 2020-10-29
WO2020241074A1 (ja) * 2019-05-30 2020-12-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法及びプログラム
JPWO2020241074A1 (ja) * 2019-05-30 2020-12-03
JP7454568B2 (ja) 2019-05-30 2024-03-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法、情報処理装置及びプログラム
US11989928B2 (en) 2019-08-07 2024-05-21 Fanuc Corporation Image processing system
US11559888B2 (en) 2019-10-30 2023-01-24 Fanuc Corporation Annotation device
WO2021131127A1 (ja) 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 識別情報付与装置、識別情報付与方法、及びプログラム
KR102321498B1 (ko) * 2020-01-07 2021-11-03 주식회사 애니멀고 동물 정보 판별용 어플리케이션을 구동하는 장치, 서버 및 이들을 포함하는 어플리케이션 관리 시스템
KR20210088940A (ko) * 2020-01-07 2021-07-15 주식회사 애니멀고 동물 정보 판별용 어플리케이션을 구동하는 장치, 서버 및 이들을 포함하는 어플리케이션 관리 시스템
JPWO2021152801A1 (ja) * 2020-01-30 2021-08-05
JP7491755B2 (ja) 2020-07-13 2024-05-28 繁 塩澤 データ生成装置、検出装置、及びプログラム
KR20220065321A (ko) * 2020-11-13 2022-05-20 상명대학교산학협력단 영상 인식 기반 앵무새 종 인식 장치 및 방법
KR102528739B1 (ko) * 2020-11-13 2023-05-04 상명대학교 산학협력단 영상 인식 기반 앵무새 종 인식 장치 및 방법
WO2023058082A1 (ja) * 2021-10-04 2023-04-13 日本電気株式会社 情報処理装置、情報処理システム、情報処理方法、及び、記録媒体
EP4343630A1 (en) 2022-09-21 2024-03-27 Glory Ltd. Image processing apparatus, method of generating learning model, and inference method

Also Published As

Publication number Publication date
US20180342077A1 (en) 2018-11-29
JP6974697B2 (ja) 2021-12-01

Similar Documents

Publication Publication Date Title
JP6974697B2 (ja) 教師データ生成装置、教師データ生成方法、教師データ生成プログラム、及び物体検出システム
US11823443B2 (en) Segmenting objects by refining shape priors
KR102177412B1 (ko) 이미지와 텍스트간 유사도 매칭 시스템 및 방법
CN108446741B (zh) 机器学习超参数重要性评估方法、系统及存储介质
JP2018097807A (ja) 学習装置
JP2020038660A (ja) CNN(Convolutional Neural Network)を利用して車線を検出するための学習方法及び学習装置そしてこれを利用したテスト方法及びテスト装置{LEARNING METHOD, LEARNING DEVICE FOR DETECTING LANE USING CNN AND TEST METHOD, TEST DEVICE USING THE SAME}
CN105144196A (zh) 用于计算相机或对象姿态的方法和设备
EP4064135A1 (en) Methods for performing self-supervised learning of deep-learning based detection network by using deep q-network and devices using the same
CN105765609A (zh) 使用有向无环图的存储器促进
US11314986B2 (en) Learning device, classification device, learning method, classification method, learning program, and classification program
WO2023020005A1 (zh) 神经网络模型的训练方法、图像检索方法、设备和介质
CN112347977B (zh) 一种诱导性多能干细胞的自动检测方法、存储介质及装置
JP2020038661A (ja) 車線モデルを利用して車線を検出し得る学習方法及び学習装置そしてこれを利用したテスト方法及びテスト装置{learning method, learning device for detecting lane using lane model and test method, test device using the same}
CN110084245A (zh) 基于视觉注意机制强化学习弱监督图像检测方法、系统
Agarwal et al. Efficient NetB3 for Automated Pest Detection in Agriculture
CN113316790B (zh) 用于自主学习代理中的无监督域适应的系统、方法和介质
CN112508029A (zh) 一种基于目标框标注的实例分割方法
JP2020047272A (ja) Cnn基盤車線検出のための学習方法及び学習装置、そしてこれを利用したテスト方法及びテスト装置
JP2021051589A5 (ja)
JP6988995B2 (ja) 画像生成装置、画像生成方法および画像生成プログラム
WO2023140044A1 (ja) モデル生成方法、モデル生成装置、推論プログラム、及び推論装置
JP2021197184A (ja) 分類器を訓練及びテストするためのデバイス及び方法
Darapaneni et al. American sign language detection using instance-based segmentation
Yasrab et al. CNN based Heuristic Function for A* Pathfinding Algorithm: Using Spatial Vector Data to Reconstruct Smooth and Natural Looking Plant Roots
Shen et al. Skeletonization in natural images and its application to object recognition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6974697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150