JP2018193270A - Evaluation method of silicon single crystal, and production method of silicon single crystal - Google Patents

Evaluation method of silicon single crystal, and production method of silicon single crystal Download PDF

Info

Publication number
JP2018193270A
JP2018193270A JP2017097363A JP2017097363A JP2018193270A JP 2018193270 A JP2018193270 A JP 2018193270A JP 2017097363 A JP2017097363 A JP 2017097363A JP 2017097363 A JP2017097363 A JP 2017097363A JP 2018193270 A JP2018193270 A JP 2018193270A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
oxygen concentration
lpd
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097363A
Other languages
Japanese (ja)
Other versions
JP6737232B2 (en
Inventor
憲哉 鈴木
Kenya Suzuki
憲哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2017097363A priority Critical patent/JP6737232B2/en
Publication of JP2018193270A publication Critical patent/JP2018193270A/en
Application granted granted Critical
Publication of JP6737232B2 publication Critical patent/JP6737232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide an evaluation method of a silicon single crystal capable of estimating an occurrence state of LPD in an early stage after production of the silicon single crystal.SOLUTION: An evaluation method of a silicon single crystal includes an oxygen concentration measurement step for measuring an oxygen concentration in the silicon single crystal containing COP, and an LPD occurrence state estimation step for estimating the occurrence state of LPD of the silicon single crystal.SELECTED DRAWING: Figure 12

Description

本発明は、シリコン単結晶の評価方法およびシリコン単結晶の製造方法に関する。   The present invention relates to a silicon single crystal evaluation method and a silicon single crystal manufacturing method.

半導体デバイスの基板として用いられるシリコンウェーハ(以下、「ウェーハ」と言う場合がある)は、一般にチョクラルスキー法(以下、「CZ法」と言う場合がある)により育成されたシリコン単結晶から切り出され、研磨、熱処理等の工程を経て製造される。
図1は、引き上げられたシリコン単結晶の縦断面図であり、欠陥分布とV/Gの関係の一例を模式的に示す。Vはシリコン単結晶の引き上げ速度であり、Gは引き上げ直後におけるシリコン単結晶の成長方向の温度勾配である。温度勾配Gは、CZ炉のホットゾーン構造の熱的特性により、シリコン単結晶の引き上げの進行中において、概ね一定とみなされる。このため、引き上げ速度Vを調整することにより、V/Gを制御することができる。
A silicon wafer used as a substrate of a semiconductor device (hereinafter sometimes referred to as “wafer”) is generally cut out from a silicon single crystal grown by the Czochralski method (hereinafter sometimes referred to as “CZ method”). Then, it is manufactured through processes such as polishing and heat treatment.
FIG. 1 is a longitudinal sectional view of a pulled silicon single crystal, and schematically shows an example of the relationship between defect distribution and V / G. V is the pulling speed of the silicon single crystal, and G is the temperature gradient in the growth direction of the silicon single crystal immediately after the pulling. The temperature gradient G is considered to be substantially constant during the pulling of the silicon single crystal due to the thermal characteristics of the hot zone structure of the CZ furnace. For this reason, V / G can be controlled by adjusting the pulling speed V.

図1において、COP(Crystal Originated Particle)は、シリコン単結晶育成時に結晶格子を構成すべき原子が欠けた空孔の凝集体である。
OSF(Oxidation induced Stacking Fault:酸素誘起積層欠陥)領域は、高温(一般的には1000℃から1200℃)で熱酸化処理した場合、OSF核がOSFとして顕在化する。
領域とP領域は、COPも転位クラスターも含まず、P領域は、as−grown状態で酸素析出核を含んでおり、熱処理を施した場合、酸素析出物(BMD)が発生し易い。図2に示すように、V/Gが大きくなると、P領域における空孔型点欠陥の濃度は高くなる。
領域は、as−grown状態でほとんど酸素析出核を含んでおらず、熱処理を施してもBMDが発生し難い。
In FIG. 1, COP (Crystal Originated Particle) is an agglomeration of vacancies lacking atoms that should constitute a crystal lattice when a silicon single crystal is grown.
When an OSF (Oxidation induced Stacking Fault) region is thermally oxidized at a high temperature (generally 1000 ° C. to 1200 ° C.), OSF nuclei become apparent as OSF.
P V region and the P I area, COP also not include dislocation clusters, P V region includes oxygen precipitation nuclei in as-grown state, when subjected to heat treatment, oxygen precipitate (BMD) occurs easy. As shown in FIG. 2, as V / G increases, the concentration of hole-type point defects in the Pv region increases.
P I area does not include the most oxygen precipitation nuclei in as-grown state, BMD be subjected to a heat treatment hardly occurs.

このようなシリコン単結晶の製造に際し、COPの個数を評価する方法が知られている(例えば、特許文献1参照)。
特許文献1には、シリコン単結晶から切り出したウェーハを鏡面研磨してから、COPの個数を評価する方法が開示されている。
A method for evaluating the number of COPs in manufacturing such a silicon single crystal is known (see, for example, Patent Document 1).
Patent Document 1 discloses a method for evaluating the number of COPs after mirror-polishing a wafer cut from a silicon single crystal.

特開2005−281071号公報Japanese Patent Laying-Open No. 2005-281071

しかしながら、特許文献1に記載のような方法では、シリコン単結晶製造後、鏡面研磨を経てCOP評価が終了するまでの期間が長いため、COPに起因するLPD(Light Point Defect:ライト・ポイント・デフェクト)の発生状況を評価する場合、評価結果を得るまでに時間を要するおそれがある。   However, in the method described in Patent Document 1, since it takes a long time to complete COP evaluation after mirror polishing after the production of a silicon single crystal, LPD (Light Point Defect) caused by COP ), It may take time to obtain an evaluation result.

本発明の目的は、シリコン単結晶製造後の早い段階で、LPDの発生状況を推定できるシリコン単結晶の評価方法およびシリコン単結晶の製造方法を提供することにある。   An object of the present invention is to provide a method for evaluating a silicon single crystal and a method for producing a silicon single crystal that can estimate the occurrence of LPD at an early stage after the production of the silicon single crystal.

本発明のシリコン単結晶の評価方法は、COPを含むシリコン単結晶の酸素濃度を測定する酸素濃度測定工程と、前記酸素濃度の測定結果に基づいて、前記シリコン単結晶のLPDの発生状況を推定するLPD発生状況推定工程とを備えていることを特徴とする。   The method for evaluating a silicon single crystal according to the present invention includes an oxygen concentration measurement step for measuring the oxygen concentration of a silicon single crystal containing COP, and the LPD occurrence state of the silicon single crystal is estimated based on the measurement result of the oxygen concentration. And an LPD occurrence state estimating step.

シリコン単結晶の酸素濃度の測定は、一般的に、シリコン単結晶引上後のブロック分割時にサンプリングされたサンプルウェーハに対して行われる。このため、酸素濃度の測定結果は、鏡面研磨されたウェーハの評価結果と比べて、早い段階で得ることができる。
本発明によれば、酸素濃度の測定結果に基づいて、シリコン単結晶製造後の早い段階でLPDの発生状況を推定できる。
The measurement of the oxygen concentration of a silicon single crystal is generally performed on a sample wafer sampled at the time of block division after pulling the silicon single crystal. For this reason, the measurement result of the oxygen concentration can be obtained at an earlier stage than the evaluation result of the mirror-polished wafer.
According to the present invention, it is possible to estimate the occurrence of LPD at an early stage after the production of a silicon single crystal based on the measurement result of the oxygen concentration.

本発明のシリコン単結晶の評価方法において、前記酸素濃度測定工程は、直胴部における固化率が15%以下の領域における酸素濃度を測定することが好ましい。   In the silicon single crystal evaluation method of the present invention, the oxygen concentration measurement step preferably measures the oxygen concentration in a region where the solidification rate in the straight body portion is 15% or less.

本発明によれば、酸素濃度の測定位置を選択するだけの簡単な方法で、LPDの発生状況を精度良く推定できる。
なお、固化率とは、シリコン単結晶を引き上げる前のシリコン融液の総重量に対する固化した重量の割合を意味する。
According to the present invention, it is possible to accurately estimate the LPD occurrence state by a simple method of selecting an oxygen concentration measurement position.
The solidification rate means the ratio of the solidified weight to the total weight of the silicon melt before pulling up the silicon single crystal.

本発明のシリコン単結晶の製造方法は、坩堝と、前記坩堝を加熱することでシリコン融液を生成するヒータと、種結晶を前記シリコン融液に接触させた後に引き上げる引き上げ部とを備えた単結晶引き上げ装置を利用したチョクラルスキー法によるシリコン単結晶の製造方法であって、COPを含む第1のシリコン単結晶を製造する製造工程と、上述のシリコン単結晶の評価方法を用いて、前記第1のシリコン単結晶のLPDの発生状況を推定する評価工程と、前記評価工程における推定結果に基づいて、COPを含む第2のシリコン単結晶の製造条件を設定する製造条件設定工程とを備えていることを特徴とする。   A method for producing a silicon single crystal according to the present invention includes a crucible, a heater that generates a silicon melt by heating the crucible, and a pulling unit that pulls up a seed crystal after contacting the silicon melt. A method for producing a silicon single crystal by the Czochralski method using a crystal pulling apparatus, the production process for producing a first silicon single crystal containing COP, and the above-described silicon single crystal evaluation method, An evaluation step for estimating the LPD occurrence state of the first silicon single crystal, and a manufacturing condition setting step for setting a manufacturing condition for the second silicon single crystal including the COP based on the estimation result in the evaluation step. It is characterized by.

第1のシリコン単結晶がLDPが多く発生している不良品の場合、製造条件を変更するまでは、その後に製造される全てのシリコン単結晶が不良品となる。
本発明によれば、第1のシリコン単結晶製造後の早い段階で得られたLPDの発生状況の推定結果に基づいて、第2のシリコン単結晶の製造条件を設定するため、不良品の数を減らすことができる。
In the case where the first silicon single crystal is a defective product in which a large amount of LDP is generated, all the silicon single crystals manufactured thereafter are defective products until the manufacturing conditions are changed.
According to the present invention, since the manufacturing condition of the second silicon single crystal is set based on the estimation result of the LPD occurrence state obtained at an early stage after the manufacturing of the first silicon single crystal, the number of defective products Can be reduced.

シリコン単結晶における欠陥分布とV/Gとの関係の一例を示す説明図。Explanatory drawing which shows an example of the relationship between defect distribution and V / G in a silicon single crystal. シリコン単結晶におけるV/Gと空孔型点欠陥濃度との関係を示すグラフ。The graph which shows the relationship between V / G and a vacancy-type point defect density | concentration in a silicon single crystal. 本発明を導くために行った実験1,2および本発明の一実施形態で用いる単結晶引き上げ装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the single crystal pulling apparatus used in Experiment 1, 2 conducted in order to guide | lead this invention, and one Embodiment of this invention. 前記単結晶引き上げ装置の概略構成を示す模式図であり、図3の状態よりも引き上げが進行した状態を示す。It is a schematic diagram which shows schematic structure of the said single crystal pulling apparatus, and shows the state which pulling progressed rather than the state of FIG. 前記実験1におけるヒータバッチ数と第1領域の酸素濃度の移動平均値との関係を示すグラフ。The graph which shows the relationship between the heater batch number in the said experiment 1, and the moving average value of the oxygen concentration of a 1st area | region. 前記実験1におけるヒータバッチ数と第1領域のLPDの移動平均値との関係を示すグラフ。The graph which shows the relationship between the number of heater batches in the said experiment 1, and the moving average value of LPD of the 1st field. 前記実験1における第1領域の酸素濃度の移動平均値とLPDの移動平均値との関係を示すグラフ。The graph which shows the relationship between the moving average value of the oxygen concentration of the 1st area | region in the said experiment 1, and the moving average value of LPD. 前記実験2における第2領域の酸素濃度の移動平均値とLPDの移動平均値との関係を示すグラフ。The graph which shows the relationship between the moving average value of the oxygen concentration of the 2nd area | region in the said experiment 2, and the moving average value of LPD. 前記実験2における第3領域の酸素濃度の移動平均値とLPDの移動平均値との関係を示すグラフ。The graph which shows the relationship between the moving average value of the oxygen concentration of the 3rd area | region in the said experiment 2, and the moving average value of LPD. 前記実験2における第4領域の酸素濃度の移動平均値とLPDの移動平均値との関係を示すグラフ。The graph which shows the relationship between the moving average value of the oxygen concentration of the 4th area | region in the said experiment 2, and the moving average value of LPD. 前記実験2における固化率と酸素濃度の移動平均値およびLPDの移動平均値の相関係数の絶対値との関係を示すグラフ。The graph which shows the relationship between the solidification rate in the said experiment 2, and the absolute value of the correlation coefficient of the moving average value of oxygen concentration, and the moving average value of LPD. 前記一実施形態におけるシリコン単結晶の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the silicon single crystal in the said one Embodiment. 前記一実施形態の効果の説明図。Explanatory drawing of the effect of the said one Embodiment.

[本発明を導くに至った経緯]
〔実験1:シリコン単結晶の酸素濃度とLPDの発生状況との関係調査〕
まず、本実験で用いた単結晶引き上げ装置について説明する。
図3に示すように、単結晶引き上げ装置1は、CZ法(チョクラルスキー法)に用いられる装置であって、引き上げ装置本体2と、メモリ3と、制御部4とを備えている。
引き上げ装置本体2は、チャンバ21と、このチャンバ21内の中心部に配置された坩堝22と、この坩堝22を加熱するヒータ23と、引き上げ部24と、熱遮蔽体25とを備えている。
チャンバ21の上部には、Arガスなどの不活性ガスをチャンバ21内に導入するガス導入口21Aが設けられている。チャンバ21の下部には、チャンバ21内の気体を排出するガス排気口21Bが設けられている。
坩堝22は、ウェーハの原料である多結晶のシリコンを融解し、シリコン融液Mとするものである。坩堝22は、所定の速度で回転および昇降が可能な支持軸26に支持されている。
ヒータ23は、坩堝22の周囲に配置されており、坩堝22内のシリコンを融解する。
引き上げ部24は、一端に種結晶SCが取り付けられる引き上げケーブル241と、この引き上げケーブル241を昇降および回転させる引き上げ駆動部242とを備えている。
熱遮蔽体25は、ヒータ23から上方に向かって放射される輻射熱を遮断する。
メモリ3には、チャンバ21内のガス流量や炉内圧、ヒータ23に投入する電力、坩堝22やシリコン単結晶SMの回転数など、シリコン単結晶SMの製造に必要な各種情報を記憶している。
[Background to Leading the Present Invention]
[Experiment 1: Investigation of relationship between oxygen concentration of silicon single crystal and LPD generation status]
First, the single crystal pulling apparatus used in this experiment will be described.
As shown in FIG. 3, the single crystal pulling apparatus 1 is an apparatus used for the CZ method (Czochralski method), and includes a pulling apparatus main body 2, a memory 3, and a control unit 4.
The lifting device main body 2 includes a chamber 21, a crucible 22 disposed at the center of the chamber 21, a heater 23 for heating the crucible 22, a lifting portion 24, and a heat shield 25.
A gas inlet 21 </ b> A for introducing an inert gas such as Ar gas into the chamber 21 is provided at the upper portion of the chamber 21. A gas exhaust port 21 </ b> B that exhausts the gas in the chamber 21 is provided in the lower portion of the chamber 21.
The crucible 22 melts polycrystalline silicon, which is a raw material of a wafer, to form a silicon melt M. The crucible 22 is supported by a support shaft 26 that can be rotated and moved up and down at a predetermined speed.
The heater 23 is disposed around the crucible 22 and melts silicon in the crucible 22.
The pulling unit 24 includes a pulling cable 241 to which the seed crystal SC is attached at one end, and a pulling drive unit 242 that moves the pulling cable 241 up and down and rotates.
The heat shield 25 blocks radiant heat radiated upward from the heater 23.
The memory 3 stores various information necessary for manufacturing the silicon single crystal SM, such as the gas flow rate in the chamber 21 and the furnace pressure, the electric power supplied to the heater 23, and the rotational speed of the crucible 22 and the silicon single crystal SM. .

上述の単結晶引き上げ装置1を用いて、直径が200mmのシリコン単結晶SMを製造した。具体的に、新品のヒータ23をチャンバ21に取り付けた。そして、チャンバ21内を減圧下の不活性ガス雰囲気に維持し、種結晶SCをシリコン融液Mに着液させた後に、V/Gの値が図1のAに相当する値よりも大きくなるように引き上げることで、ネック部SM1、肩部SM2、直胴部SM3、および、図示しないテール部を有し、直胴部SM3にCOPを含むシリコン単結晶SMを製造した。この引き上げ中、坩堝22は、回転しつつ、図3および図4に示すように、シリコン融液Mの液面と熱遮蔽体25の下端との距離GP(ギャップGP)がほぼ一定になるように上昇した。
その後、ヒータ23を交換せずに、同じ単結晶引き上げ装置1を用いて複数のシリコン単結晶SMを製造した。
A silicon single crystal SM having a diameter of 200 mm was manufactured using the single crystal pulling apparatus 1 described above. Specifically, a new heater 23 was attached to the chamber 21. Then, after the chamber 21 is maintained in an inert gas atmosphere under reduced pressure and the seed crystal SC is deposited on the silicon melt M, the value of V / G becomes larger than the value corresponding to A in FIG. By pulling up in this way, a silicon single crystal SM having a neck portion SM1, a shoulder portion SM2, a straight body portion SM3, and a tail portion (not shown) and including COP in the straight body portion SM3 was manufactured. During this pulling up, the crucible 22 rotates and the distance GP (gap GP) between the liquid surface of the silicon melt M and the lower end of the thermal shield 25 becomes substantially constant as shown in FIGS. Rose to.
Thereafter, a plurality of silicon single crystals SM were manufactured using the same single crystal pulling apparatus 1 without replacing the heater 23.

上述のように製造したシリコン単結晶SMにおける酸素濃度と、LPDの発生状況とを評価した。
評価用のウェーハは、直胴部SM3における固化率が15%以下の領域(以下、第1領域という)から取得した。このウェーハに対してミラーエッチングを行った後、FTIR(Fourier Transform Infrared Spectrometer:フーリエ変換赤外分光光度計)を用いてASTM F−121(1979)により酸素濃度を測定した。1枚のウェーハの酸素濃度測定結果を1バッチの測定結果とした。
LPDの測定は、第1領域における評価用ウェーハの取得領域よりも引き上げ方向下端側の領域から得たウェーハに対し、面取り、ラッピング、平面研削、エッチング、鏡面面取り、一次研磨など経て鏡面研磨を行い、表面検査装置(KLA−Tencor社製SP−1)を用いて、表面で観察される1枚あたりのLPDをカウントした。サイズが120nm以上のLPDを測定対象とし、100枚〜200枚程度のウェーハにおけるLPD測定結果の平均値を1バッチの測定結果とした。
The oxygen concentration in the silicon single crystal SM produced as described above and the occurrence of LPD were evaluated.
The wafer for evaluation was obtained from an area where the solidification rate in the straight body part SM3 is 15% or less (hereinafter referred to as the first area). After performing mirror etching on this wafer, the oxygen concentration was measured by ASTM F-121 (1979) using FTIR (Fourier Transform Infrared Spectrometer). The oxygen concentration measurement result of one wafer was taken as one batch measurement result.
In the LPD measurement, the wafer obtained from the lower end side in the pulling direction from the evaluation wafer acquisition area in the first area is subjected to mirror polishing through chamfering, lapping, surface grinding, etching, mirror chamfering, primary polishing, etc. Using a surface inspection device (SP-1 manufactured by KLA-Tencor), the LPD per sheet observed on the surface was counted. LPD having a size of 120 nm or more was used as a measurement target, and an average value of LPD measurement results of about 100 to 200 wafers was taken as one batch of measurement results.

バッチ数(以下、「ヒータバッチ数」という)と酸素濃度の移動平均値との関係を図5に示す。また、ヒータバッチ数とLPDの移動平均値との関係を図6に示す。
図5および図6において、Nバッチ目の移動平均値とは、Nバッチ目を含む直近4バッチの平均値を意味する。なお、同じ単結晶引き上げ装置1を用いて、本実験の対象(COPを含むシリコン単結晶)と異なる品質のシリコン単結晶も製造したため、移動平均値は、品質が本実験の対象と異なるシリコン単結晶を含まない直近4バッチの平均値である。
FIG. 5 shows the relationship between the number of batches (hereinafter referred to as “heater batch number”) and the moving average value of oxygen concentration. Further, FIG. 6 shows the relationship between the number of heater batches and the moving average value of LPD.
5 and 6, the moving average value of the Nth batch means the average value of the latest four batches including the Nth batch. Since the same single crystal pulling apparatus 1 was used to manufacture a silicon single crystal having a quality different from that of the subject of this experiment (a silicon single crystal including COP), the moving average value is different from that of the subject of this experiment. It is the average value of the last 4 batches that do not contain crystals.

図5および図6に示すように、ヒータバッチ数が100バッチとなるあたりを境にして、酸素濃度が低下するとともにLPDが増加する傾向が見られた。
本発明者は、この理由を以下のように推測した。
As shown in FIG. 5 and FIG. 6, there was a tendency for the oxygen concentration to decrease and LPD to increase with the number of heater batches reaching 100 batches.
The inventor presumed this reason as follows.

シリコン単結晶SMの製造中、シリコン融液MからはSiOガスが発生し、このSiOガスは、坩堝22とヒータ23との間を通過してチャンバ21下方に導かれる。このとき、SiOガスとヒータ23のカーボンとが反応し、ヒータ23のカーボンが減肉する。SiOガスは上方から下方に導かれるため、上記反応はヒータ23の上部の方が下部よりも顕著に発生し、ヒータ23の上部が下部よりも劣化することになる。このようにヒータ23の上部が劣化すると、当該上部の抵抗率が下部よりも高くなり、上部の加熱比率が増加し、下部の加熱比率が減少する。
また、シリコン融液Mへの酸素のメインの供給元は坩堝22の底部であるため、ヒータ23下部の加熱比率が減少すると、坩堝22の底部の加熱量も減少し、シリコン融液Mへの酸素の供給量も減少する。以上のことから、ヒータバッチ数が増加すると、ヒータ23上部の劣化も進行し、その結果、シリコン単結晶SMの酸素濃度が低下すると推測した。
During the manufacture of the silicon single crystal SM, SiO gas is generated from the silicon melt M, and this SiO gas passes between the crucible 22 and the heater 23 and is guided below the chamber 21. At this time, the SiO gas reacts with the carbon of the heater 23, and the carbon of the heater 23 is thinned. Since the SiO gas is guided from the upper side to the lower side, the above reaction occurs more significantly in the upper part of the heater 23 than in the lower part, and the upper part of the heater 23 is deteriorated more than the lower part. When the upper portion of the heater 23 deteriorates in this way, the resistivity of the upper portion becomes higher than that of the lower portion, the upper heating ratio increases, and the lower heating ratio decreases.
In addition, since the main supply source of oxygen to the silicon melt M is the bottom of the crucible 22, if the heating ratio at the lower part of the heater 23 is reduced, the amount of heating at the bottom of the crucible 22 is also reduced. Oxygen supply is also reduced. From the above, it was estimated that when the number of heater batches increased, deterioration of the upper portion of the heater 23 progressed, and as a result, the oxygen concentration of the silicon single crystal SM decreased.

また、ヒータバッチ数の増加に伴いヒータ23上部の加熱比率が増加すると、シリコン融液Mから引き上げられたシリコン単結晶SMの冷却が抑制され、ヒータ23上部の加熱比率が増加しない場合と比べてV/Gの値も大きくなる。その結果、図2に示すように、空孔型点欠陥濃度が高くなり、空孔型点欠陥が凝集して形成されるCOPが増加し、LPDが増加すると推測した。   Moreover, when the heating ratio of the upper part of the heater 23 increases with the increase in the number of heater batches, the cooling of the silicon single crystal SM pulled up from the silicon melt M is suppressed, and compared with the case where the heating ratio of the upper part of the heater 23 does not increase. The value of V / G also increases. As a result, as shown in FIG. 2, it was estimated that the vacancy point defect concentration increased, the COP formed by aggregation of the vacancy point defects increased, and the LPD increased.

図5および図6の結果から得られる酸素濃度の移動平均値とLPDの移動平均値の関係を調べると、図7に示すように、両者の間に相関があることがわかった。
図7のデータに基づく近似直線LA1の式は、酸素濃度の移動平均値をX(×1017atoms/cm)、LPDの移動平均値をY(個/枚)とした場合、以下の式(1)で表される。
Y=−103.72×X+1680.3 … (1)
When the relationship between the moving average value of oxygen concentration obtained from the results of FIGS. 5 and 6 and the moving average value of LPD was examined, it was found that there was a correlation between the two as shown in FIG.
The equation of the approximate straight line LA1 based on the data in FIG. 7 is as follows when the moving average value of oxygen concentration is X (× 10 17 atoms / cm 3 ) and the moving average value of LPD is Y (pieces / sheet). It is represented by (1).
Y = −103.72 × X + 1680.3 (1)

図7に示す関係から、本実験で用いた単結晶引き上げ装置1においては、シリコン単結晶SMの酸素濃度が13.4×1017atoms/cm以下の場合に、当該シリコン単結晶SMから得られるウェーハ1枚あたりのLPDが300個以上になり、13.4×1017atoms/cmを超える場合に、LPDが300個未満になると推定できる。
したがって、酸素濃度の測定結果に基づいて、シリコン単結晶SMの製造後の早い段階でLPDの発生状況を推定できることが確認できた。そして、酸素濃度測定に用いたシリコン単結晶SMを第1のシリコン単結晶とした場合、酸素濃度の測定結果に基づいて、当該第1のシリコン単結晶以降に製造される第2のシリコン単結晶の製造条件を設定する、具体的に、引き上げ速度を遅くすることで、不良品の数を減らすことができる。
From the relationship shown in FIG. 7, in the single crystal pulling apparatus 1 used in this experiment, when the oxygen concentration of the silicon single crystal SM is 13.4 × 10 17 atoms / cm 3 or less, it is obtained from the silicon single crystal SM. When the number of LPDs per wafer is 300 or more and exceeds 13.4 × 10 17 atoms / cm 3 , it can be estimated that the number of LPDs is less than 300.
Therefore, it was confirmed that the LPD generation status can be estimated at an early stage after the production of the silicon single crystal SM based on the measurement result of the oxygen concentration. Then, when the silicon single crystal SM used for the oxygen concentration measurement is the first silicon single crystal, the second silicon single crystal manufactured after the first silicon single crystal based on the measurement result of the oxygen concentration. The number of defective products can be reduced by lowering the pulling speed.

〔実験2:直胴部の固化率と酸素濃度およびLPD発生状況の相関との関係調査〕
実験1のシリコン単結晶SMにおける固化率が15%を超え30%以下の領域(以下、第2領域という)、30%を超え50%以下の領域(以下、第3領域という)、50%を超える領域(以下、第4領域という)からウェーハを得た。そして、これらのウェーハにおけるヒータバッチ数と酸素濃度の移動平均値との関係、ヒータバッチ数とLPDの移動平均値との関係を求め、これらの関係から酸素濃度の移動平均値とLPDの移動平均値との関係を調べた。
第2領域の関係を図8に、第3領域の関係を図9に、第4領域の関係を図10にそれぞれ示す。
図8〜図10に示すように、各図のデータに基づく近似直線LA2〜LA4を参照すると、第2〜第4領域においても、第1領域と同様に、酸素濃度の移動平均値が大きくなると、LPDの移動平均値が小さくなることが確認できた。
[Experiment 2: Investigation of the relationship between the solidification rate of the straight body part and the correlation between oxygen concentration and LPD generation status]
The solidification rate in the silicon single crystal SM of Experiment 1 is 15% to 30% or less (hereinafter referred to as the second region), 30% to 50% or less (hereinafter referred to as the third region), 50% A wafer was obtained from a region exceeding this (hereinafter referred to as a fourth region). Then, the relationship between the number of heater batches and the moving average value of oxygen concentration in these wafers, and the relationship between the number of heater batches and the moving average value of LPD are obtained, and the moving average value of oxygen concentration and the moving average of LPD are obtained from these relationships. The relationship with the value was examined.
FIG. 8 shows the relationship of the second region, FIG. 9 shows the relationship of the third region, and FIG. 10 shows the relationship of the fourth region.
As shown in FIGS. 8 to 10, referring to the approximate lines LA <b> 2 to LA <b> 4 based on the data in each figure, the moving average value of the oxygen concentration increases in the second to fourth regions as in the first region. It was confirmed that the moving average value of LPD was small.

また、第1〜第4領域における、酸素濃度の移動平均値とLPDの移動平均値との相関係数の絶対値を算出した。その結果を図11に示す。
図11に示すように、第1領域における相関が他の領域と比べて高かった。
本発明者は、この理由を以下のように推測した。
Further, the absolute value of the correlation coefficient between the moving average value of oxygen concentration and the moving average value of LPD in the first to fourth regions was calculated. The result is shown in FIG.
As shown in FIG. 11, the correlation in the first region was higher than in the other regions.
The inventor presumed this reason as follows.

固化率が低いほど、シリコン融液Mの量は多い。シリコン単結晶SMの引き上げ中、ギャップGPはほぼ一定のため、固化率が低いほど坩堝22の位置が低くなり、当該坩堝22の底部とヒータ23の下部との距離が短くなる。このため、ヒータ23上部の劣化に伴い下部の加熱比率が減少し、坩堝22底部の加熱量が減少したときの影響は、固化率が低いほど大きくなる。以上のことから、固化率が15%以下の領域における酸素濃度を測定することによって、他の領域の測定を行う場合と比べて、LPDの発生状況を精度よく推定できると推測した。   The lower the solidification rate, the greater the amount of silicon melt M. During the pulling of the silicon single crystal SM, the gap GP is substantially constant, so that the lower the solidification rate, the lower the position of the crucible 22 and the shorter the distance between the bottom of the crucible 22 and the lower portion of the heater 23. For this reason, the heating ratio of the lower part decreases with the deterioration of the upper part of the heater 23, and the influence when the heating amount of the bottom part of the crucible 22 decreases increases as the solidification rate decreases. From the above, it was speculated that by measuring the oxygen concentration in the region where the solidification rate was 15% or less, it was possible to estimate the occurrence of LPD more accurately than in the case of measuring in other regions.

なお、図5〜図11に示す実験1,2の結果は、単結晶引き上げ装置の各構成部材のサイズや配置位置により異なるが、酸素濃度とLPD発生状況との相関関係は、各構成部材のサイズや配置位置によらず実験1,2の結果と同じであると考えられる。   Although the results of Experiments 1 and 2 shown in FIGS. 5 to 11 differ depending on the size and arrangement position of each constituent member of the single crystal pulling apparatus, the correlation between the oxygen concentration and the LPD occurrence state is different for each constituent member. It is considered that the results of Experiments 1 and 2 are the same regardless of the size and arrangement position.

[実施形態]
次に、本発明の一実施形態として、COPを含むシリコン単結晶SMの製造方法について図面を参照して説明する。
本実施形態では、抵抗率が8Ω・cm以上12Ω・cm以下、外周研削後の直胴部SM3の直径が200mmとなるようなp型のシリコン単結晶SMを製造する場合を例示する。また、シリコン単結晶SMの第1領域における酸素濃度とLPD発生状況との関係が、図7に示す関係となるような単結晶引き上げ装置1を用いる場合を例示する。さらに、メモリ3には、図7に示すような関係を示すLPD発生状況推定用情報が記憶されている。
なお、直胴部SM3の外周研削後の直径は、300mm、450mmなど他の大きさであってもよい。
[Embodiment]
Next, as an embodiment of the present invention, a method for producing a silicon single crystal SM containing COP will be described with reference to the drawings.
In the present embodiment, a case where a p-type silicon single crystal SM having a resistivity of 8 Ω · cm or more and 12 Ω · cm or less and a diameter of the straight barrel portion SM3 after outer peripheral grinding is 200 mm is illustrated. Further, the case where the single crystal pulling apparatus 1 is used in which the relationship between the oxygen concentration in the first region of the silicon single crystal SM and the LPD generation state becomes the relationship shown in FIG. Further, the memory 3 stores information for estimating the occurrence of LPD indicating the relationship as shown in FIG.
Note that the diameter of the straight body portion SM3 after the outer periphery grinding may be other sizes such as 300 mm and 450 mm.

まず、単結晶引き上げ装置1の制御部4は、シリコン単結晶SMの製造条件、例えばヒータ電力、Ar流量、炉内圧、坩堝22やシリコン単結晶SMの回転数などを設定する。
次に、制御部4は、坩堝22を加熱することで、当該坩堝22内のポリシリコン素材(シリコン原料)およびドーパントを融解させ、シリコン融液Mを生成する。その後、制御部4は、図12に示すように、チャンバ21内を減圧下の不活性雰囲気に維持し、坩堝22を回転させつつ、ギャップGPがほぼ一定になるように上昇させながら、直胴部SM3にCOPを含む第1のシリコン単結晶SMを製造する(ステップS1:製造工程)。
First, the control unit 4 of the single crystal pulling apparatus 1 sets the manufacturing conditions of the silicon single crystal SM, for example, heater power, Ar flow rate, furnace pressure, the number of revolutions of the crucible 22 and the silicon single crystal SM, and the like.
Next, the control unit 4 heats the crucible 22 to melt the polysilicon material (silicon raw material) and the dopant in the crucible 22, thereby generating a silicon melt M. Thereafter, as shown in FIG. 12, the control unit 4 maintains the inside of the chamber 21 in an inert atmosphere under reduced pressure, rotates the crucible 22, and raises the gap GP so as to be substantially constant. A first silicon single crystal SM containing COP in the part SM3 is manufactured (step S1: manufacturing process).

次に、作業者は、第1のシリコン単結晶SMにおける直胴部SM3の酸素濃度を測定する(ステップS2:酸素濃度測定工程(評価工程))。このステップS2において、作業者は、第1のシリコン単結晶における直胴部SM3から評価用ウェーハを取得する。評価用ウェーハは、直胴部SM3における固化率が15%以下の領域から取得することが好ましい。そして、作業者は、実験1と同様に、ミラーエッチング後の評価用ウェーハの酸素濃度を、FTIRで測定する。なお、作業者は、酸素濃度の他に、抵抗率やカーボン濃度も測定してもよい。   Next, the operator measures the oxygen concentration of the straight body portion SM3 in the first silicon single crystal SM (step S2: oxygen concentration measurement step (evaluation step)). In step S2, the operator acquires an evaluation wafer from the straight body portion SM3 of the first silicon single crystal. The evaluation wafer is preferably obtained from a region where the solidification rate in the straight body portion SM3 is 15% or less. Then, as in Experiment 1, the operator measures the oxygen concentration of the evaluation wafer after mirror etching using FTIR. The worker may measure the resistivity and the carbon concentration in addition to the oxygen concentration.

この後、制御部4は、作業者によって酸素濃度が入力されると、この酸素濃度と、メモリ3の図7に示すようなLPD発生状況推定用情報とに基づいて、LPDの発生状況を推定する(ステップS3:LPD発生状況推定工程(評価工程))。
このステップS3において、制御部4は、酸素濃度が判断閾値以下の場合、ウェーハ1枚あたりのLPDが品質基準値以上であると推定し、判断閾値未満の場合、品質基準値未満であると推定する。本実施形態では、判断閾値は、13.4×1017atoms/cmであり、品質基準値は、300個である。
Thereafter, when the oxygen concentration is input by the operator, the control unit 4 estimates the LPD occurrence status based on the oxygen concentration and LPD occurrence status estimation information as shown in FIG. (Step S3: LPD occurrence state estimation step (evaluation step)).
In step S3, the control unit 4 estimates that the LPD per wafer is equal to or higher than the quality reference value when the oxygen concentration is equal to or lower than the determination threshold value, and estimates that the LPD is lower than the quality reference value when the oxygen concentration is lower than the determination threshold value. To do. In the present embodiment, the determination threshold is 13.4 × 10 17 atoms / cm 3 and the quality reference value is 300 pieces.

そして、制御部4は、LPDが品質基準値以上であると推定した場合、製造条件を変更し(ステップS4:製造条件設定工程)、この変更した製造条件で、直胴部SM3にCOPを含む第2のシリコン単結晶SMを製造する(ステップS5)。ステップS4において、制御部4は、第2のシリコン単結晶SMにおけるLPDの発生個数を減らすために、引き上げ速度を遅くする。この場合、COP濃度と引き上げ速度との関係を予め求めておき、この関係に基づいて、減らしたいLPDの個数に対応する引き上げ速度を求めればよい。
ここで、ステップS4における製造条件変更は、ステップS3の工程中にシリコン単結晶SMが製造されている場合には、当該シリコン単結晶SMについて行うのではなく、その次のバッチの第2のシリコン単結晶SMについて行われる。また、ステップS3の工程中にシリコン単結晶SMが製造されていない場合には、次のバッチの第2のシリコン単結晶SMについて行われる。
Then, when it is estimated that the LPD is equal to or higher than the quality reference value, the control unit 4 changes the manufacturing condition (step S4: manufacturing condition setting step), and includes the COP in the straight body portion SM3 under the changed manufacturing condition. A second silicon single crystal SM is manufactured (step S5). In step S4, the controller 4 slows the pulling rate in order to reduce the number of LPDs generated in the second silicon single crystal SM. In this case, the relationship between the COP concentration and the pulling rate is obtained in advance, and the pulling rate corresponding to the number of LPDs to be reduced may be obtained based on this relationship.
Here, when the silicon single crystal SM is manufactured during the process of step S3, the manufacturing condition change in step S4 is not performed on the silicon single crystal SM, but the second silicon in the next batch. This is done for single crystal SM. When the silicon single crystal SM is not manufactured during the process of step S3, the process is performed on the second silicon single crystal SM of the next batch.

一方、制御部4は、LPDが品質基準値未満であると推定した場合、製造条件を維持し(ステップS6:製造条件設定工程)、第1のシリコン単結晶SMと同じ製造条件で第2のシリコン単結晶SMを製造する(ステップS5)。   On the other hand, when it is estimated that the LPD is less than the quality reference value, the control unit 4 maintains the manufacturing conditions (step S6: manufacturing condition setting step) and performs the second manufacturing process under the same manufacturing conditions as the first silicon single crystal SM. A silicon single crystal SM is manufactured (step S5).

[実施形態の作用効果]
上記実施形態によれば、以下のような作用効果を奏することができる。
従来、LPDの発生状況に基づく製造条件設定は、図13に示すように、本実施形態のステップS1,S2の工程を行った後、直胴部SM3の残りの部分に対して、スライスから鏡面研磨にかけての工程を行う(ステップS11)。そして、鏡面研磨後のウェーハのLPDを測定し(ステップS12)、LPDが品質基準値以上か否かに基づいて、製造条件を変更あるいは維持していた(ステップS13)。このような方法では、特にステップS11の工程に時間を要するため、第1のシリコン単結晶SMの製造バッチの次バッチを1バッチ目とした場合、例えば7バッチ目の途中でしかLPDの測定結果を得ることができず、8バッチ目からしか製造条件を設定することができない。この場合、1バッチ目から7バッチ目のシリコン単結晶SMが不良品になってしまうおそれがある。
これに対し、本実施形態では、ステップS11,S12の工程を行わずに、評価用ウェーハの酸素濃度測定結果に基づきLPDの発生状況を推定し(ステップS3)、この推定結果に基づいて、製造条件を変更あるいは維持する(ステップS4,S6)。このように、時間を要するステップS11の工程を行わないため、例えば、2バッチ目の途中でLPDの推定結果を得ることができる。また、このLPDの推定結果に基づいて、3バッチ目(第2のシリコン単結晶SM)の製造条件を設定することができる。したがって、1バッチ目のシリコン単結晶SMが不良品であっても、2バッチ目以降のシリコン単結晶SMを良品にすることができ、不良品の数を減らすことができる。
[Effects of Embodiment]
According to the said embodiment, there can exist the following effects.
Conventionally, as shown in FIG. 13, the manufacturing condition setting based on the LPD occurrence state is performed from the slice to the mirror surface with respect to the remaining portion of the straight body portion SM3 after performing the steps S1 and S2 of the present embodiment. A process for polishing is performed (step S11). Then, the LPD of the wafer after mirror polishing was measured (step S12), and the manufacturing conditions were changed or maintained based on whether the LPD is equal to or higher than the quality reference value (step S13). In such a method, since the process of step S11 takes time in particular, when the next batch of the production batch of the first silicon single crystal SM is set to the first batch, for example, the LPD measurement result is only in the middle of the seventh batch. The manufacturing conditions can be set only from the 8th batch. In this case, the silicon single crystals SM from the first batch to the seventh batch may be defective.
On the other hand, in this embodiment, without performing the processes of steps S11 and S12, the occurrence of LPD is estimated based on the oxygen concentration measurement result of the evaluation wafer (step S3), and the manufacturing is performed based on the estimation result. The conditions are changed or maintained (steps S4 and S6). Thus, since the time-consuming step S11 is not performed, for example, an LPD estimation result can be obtained in the middle of the second batch. In addition, based on the LPD estimation result, the manufacturing conditions of the third batch (second silicon single crystal SM) can be set. Accordingly, even if the first batch of silicon single crystal SM is defective, the second and subsequent batches of silicon single crystal SM can be made non-defective, and the number of defective products can be reduced.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
例えば、判断閾値、品質基準値は、上記値に限らずニーズに応じて他の値にしてもよい。
第1領域に加えて、あるいは、第1領域に代えて、第2〜第4領域のうち少なくとも1つの領域のLPD発生状況推定用情報をメモリ3に記憶してもよい。この場合、制御部4は、作業者によって酸素濃度および評価用ウェーハの取得領域が入力されると、この取得領域に対応するLPD発生状況推定用情報と、酸素濃度とに基づいて、LPDの発生状況を推定してもよい。
ステップS3〜S6の処理を作業者が行ってもよい。
酸素濃度およびLPDの移動平均値に基づいて、酸素濃度とLPD発生状況との関係を求めたが、各バッチのデータをそのまま用いて求めてもよい。
[Modification]
Note that the present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the scope of the present invention.
For example, the determination threshold value and the quality reference value are not limited to the above values, and may be other values according to needs.
In addition to the first area or in place of the first area, information for estimating the LPD occurrence status of at least one of the second to fourth areas may be stored in the memory 3. In this case, when the oxygen concentration and the acquisition region of the evaluation wafer are input by the operator, the control unit 4 generates the LPD based on the information for estimating the LPD occurrence state corresponding to the acquisition region and the oxygen concentration. The situation may be estimated.
An operator may perform the processing of steps S3 to S6.
Although the relationship between the oxygen concentration and the LPD generation state is obtained based on the oxygen concentration and the moving average value of LPD, the data of each batch may be obtained as it is.

1…単結晶引き上げ装置、22…坩堝、23…ヒータ、24…引き上げ部、SM…シリコン単結晶、SM3…直胴部。   DESCRIPTION OF SYMBOLS 1 ... Single crystal pulling apparatus, 22 ... Crucible, 23 ... Heater, 24 ... Pulling part, SM ... Silicon single crystal, SM3 ... Straight body part.

Claims (3)

COPを含むシリコン単結晶の酸素濃度を測定する酸素濃度測定工程と、
前記酸素濃度の測定結果に基づいて、前記シリコン単結晶のLPDの発生状況を推定するLPD発生状況推定工程とを備えていることを特徴とするシリコン単結晶の評価方法。
An oxygen concentration measurement step for measuring the oxygen concentration of the silicon single crystal containing COP;
And a LPD generation state estimation step of estimating an LPD generation state of the silicon single crystal based on the measurement result of the oxygen concentration.
請求項1に記載のシリコン単結晶の評価方法において、
前記酸素濃度測定工程は、直胴部における固化率が15%以下の領域における酸素濃度を測定することを特徴とするシリコン単結晶の評価方法。
In the evaluation method of the silicon single crystal according to claim 1,
The method for evaluating a silicon single crystal, wherein the oxygen concentration measuring step measures the oxygen concentration in a region where the solidification rate in the straight body portion is 15% or less.
坩堝と、
前記坩堝を加熱することでシリコン融液を生成するヒータと、
種結晶を前記シリコン融液に接触させた後に引き上げる引き上げ部とを備えた単結晶引き上げ装置を利用したチョクラルスキー法によるシリコン単結晶の製造方法であって、
COPを含む第1のシリコン単結晶を製造する製造工程と、
請求項1または請求項2に記載のシリコン単結晶の評価方法を用いて、前記第1のシリコン単結晶のLPDの発生状況を推定する評価工程と、
前記評価工程における推定結果に基づいて、COPを含む第2のシリコン単結晶の製造条件を設定する製造条件設定工程とを備えていることを特徴とするシリコン単結晶の製造方法。
Crucible,
A heater for generating a silicon melt by heating the crucible;
A method for producing a silicon single crystal by a Czochralski method using a single crystal pulling device including a pulling unit that pulls a seed crystal after contacting the silicon melt.
A manufacturing process for manufacturing a first silicon single crystal containing COP;
Using the silicon single crystal evaluation method according to claim 1 or 2, an evaluation step of estimating an LPD occurrence state of the first silicon single crystal;
A method for manufacturing a silicon single crystal, comprising: a manufacturing condition setting step for setting a manufacturing condition for a second silicon single crystal containing COP based on an estimation result in the evaluation step.
JP2017097363A 2017-05-16 2017-05-16 Method for evaluating silicon single crystal and method for manufacturing silicon single crystal Active JP6737232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097363A JP6737232B2 (en) 2017-05-16 2017-05-16 Method for evaluating silicon single crystal and method for manufacturing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097363A JP6737232B2 (en) 2017-05-16 2017-05-16 Method for evaluating silicon single crystal and method for manufacturing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2018193270A true JP2018193270A (en) 2018-12-06
JP6737232B2 JP6737232B2 (en) 2020-08-05

Family

ID=64570137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097363A Active JP6737232B2 (en) 2017-05-16 2017-05-16 Method for evaluating silicon single crystal and method for manufacturing silicon single crystal

Country Status (1)

Country Link
JP (1) JP6737232B2 (en)

Also Published As

Publication number Publication date
JP6737232B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6724142B2 (en) Silicon wafer with uniform radial oxygen variation
JP2010040587A (en) Method of manufacturing silicon wafer
JP5163459B2 (en) Silicon single crystal growth method and silicon wafer inspection method
WO2002002852A1 (en) Silicon single crystal wafer and method for manufacturing the same
US7875116B2 (en) Silicon single crystal producing method, annealed wafer, and method of producing annealed wafer
JP5621612B2 (en) Silicon single crystal inspection method and manufacturing method
JP6569613B2 (en) Silicon wafer evaluation method and manufacturing method
JP5381558B2 (en) Pulling method of silicon single crystal
JP4193610B2 (en) Single crystal manufacturing method
JP2005015312A (en) Method for manufacturing single crystal, and single crystal
EP1640483A1 (en) Process for producing single crystal and single crystal
KR20200073264A (en) Silicon block quality determination method, silicon block quality determination program and silicon single crystal manufacturing method
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
EP1591566B1 (en) Method of producing p-doped silicon single crystal and p-doped n-type silicon single crystal wafe
JP6737232B2 (en) Method for evaluating silicon single crystal and method for manufacturing silicon single crystal
JP6418085B2 (en) Silicon single crystal inspection method and manufacturing method
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP5724890B2 (en) Silicon single crystal wafer, method for evaluating in-plane uniformity of the amount of precipitated oxygen, method for producing silicon single crystal
JP4962406B2 (en) Method for growing silicon single crystal
JP2013175742A (en) Epitaxial wafer manufacturing method, epitaxial wafer and imaging device manufacturing method
JP6493105B2 (en) Epitaxial silicon wafer
TWI671440B (en) 矽Single crystal manufacturing method, 矽 single crystal and 矽 wafer
JP2010116271A (en) Growing method of silicon single crystal and silicon single crystal ingot
JP6512184B2 (en) Method of manufacturing silicon wafer
JP2011001236A (en) Method for estimating crystal defect of large-diameter silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6737232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250