JP6512184B2 - Method of manufacturing silicon wafer - Google Patents

Method of manufacturing silicon wafer Download PDF

Info

Publication number
JP6512184B2
JP6512184B2 JP2016135938A JP2016135938A JP6512184B2 JP 6512184 B2 JP6512184 B2 JP 6512184B2 JP 2016135938 A JP2016135938 A JP 2016135938A JP 2016135938 A JP2016135938 A JP 2016135938A JP 6512184 B2 JP6512184 B2 JP 6512184B2
Authority
JP
Japan
Prior art keywords
wafer
osf
evaluation
rto
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135938A
Other languages
Japanese (ja)
Other versions
JP2018006698A (en
Inventor
博行 松山
博行 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016135938A priority Critical patent/JP6512184B2/en
Priority to CN201780042556.9A priority patent/CN109478512B/en
Priority to KR1020187035058A priority patent/KR102109551B1/en
Priority to DE112017003457.4T priority patent/DE112017003457T5/en
Priority to PCT/JP2017/014947 priority patent/WO2018008222A1/en
Publication of JP2018006698A publication Critical patent/JP2018006698A/en
Application granted granted Critical
Publication of JP6512184B2 publication Critical patent/JP6512184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコンウェーハの製造方法に関する。   The present invention relates to a method of manufacturing a silicon wafer.

半導体デバイスの基板として用いられるシリコンウェーハ(以下、「ウェーハ」と言う場合がある)は、一般にチョクラルスキー法(以下、「CZ法」と言う場合がある)により育成されたシリコン単結晶から切り出され、研磨等の工程を経て製造される。CZ法により育成された結晶には、grown−in欠陥と称される結晶欠陥が発生する場合がある。   A silicon wafer (hereinafter sometimes referred to as "wafer") used as a substrate of a semiconductor device is generally cut out from a silicon single crystal grown by the Czochralski method (hereinafter sometimes referred to as "CZ method"). And manufactured through processes such as polishing. In crystals grown by the CZ method, crystal defects called grown-in defects may occur.

図1は、引き上げられたシリコン単結晶の縦断面図であり、欠陥分布とV/Gの関係の一例を模式的に示す。Vはシリコン単結晶の引き上げ速度であり、Gは引き上げ直後におけるシリコン単結晶の成長方向の温度勾配である。
温度勾配Gは、CZ炉のホットゾーン構造の熱的特性により概ね一定とみなされる。このため、引き上げ速度Vを調整することにより、V/Gを制御することができる。なお、図1は、V/Gを徐々に低下させつつ成長させたシリコン単結晶を、その中心軸に沿って切断し、その断面にCuを付着させ、熱処理後、X線トポグラフ法で観察した結果を模式的に示す。
FIG. 1 is a longitudinal sectional view of a pulled-up silicon single crystal, and schematically shows an example of the relationship between defect distribution and V / G. V is a pulling rate of the silicon single crystal, and G is a temperature gradient in the growth direction of the silicon single crystal immediately after pulling.
The temperature gradient G is considered to be approximately constant due to the thermal characteristics of the CZ furnace's hot zone structure. Therefore, V / G can be controlled by adjusting the pulling speed V. In addition, FIG. 1 cut | disconnected the silicon single crystal grown making V / G fall gradually, cut it along the central axis, Cu was made to adhere to the cross section, and it observed by the X-ray topographic method after heat processing The results are shown schematically.

図1において、COP(Crystal Originated Particle)は、シリコン単結晶育成時に結晶格子を構成すべき原子が欠けた空孔の凝集体である。また、転位クラスターは、結晶格子間に過剰に取り込まれた格子間シリコンの凝集体である。
このようなCOPがウェーハ表面を熱酸化する際に酸化膜に取り込まれると、半導体素子のGOI(Gate Oxide Integrity)特性が劣化してしまう。また、転位クラスターも、デバイスの特性不良の原因となる。
そこで、このような問題点を解決するために、引き上げ速度V等を調整し、COPおよび転位クラスターを含まないシリコン単結晶を育成することが考えられる。
In FIG. 1, COP (Crystal Originated Particle) is an aggregate of vacancies in which atoms that should constitute a crystal lattice are lacking when growing a silicon single crystal. In addition, dislocation clusters are aggregates of interstitial silicon excessively incorporated between crystal lattices.
When such COP is incorporated into an oxide film when the wafer surface is thermally oxidized, the GOI (Gate Oxide Integrity) characteristics of the semiconductor element are degraded. Dislocation clusters also cause device characteristic failure.
Therefore, in order to solve such problems, it is conceivable to adjust the pulling rate V and the like to grow a silicon single crystal which does not contain COP and dislocation clusters.

このようなシリコン単結晶には、図1に示すOSF(Oxidation induced Stacking Fault:酸素誘起積層欠陥)領域、P領域、P領域のうち少なくとも1つの領域が含まれることになる。P領域は、空孔の凝集体であるCOPに近く、空孔型点欠陥が優勢な無欠陥領域である。また、P領域は、転位クラスターに隣接し、格子間シリコン型点欠陥が優勢な無欠陥領域である。 Such a silicon single crystal, OSF shown in FIG. 1 (Oxidation induced Stacking Fault: oxygen induced stacking faults) region, P V region will include at least one region of the P I area. P V region is close to the COP is an aggregate of vacancy, vacancy type point defects are dominant defect-free region. Also, P I area is adjacent to the dislocation clusters, interstitial silicon type point defects are dominant defect-free region.

しかしながら、COPおよび転位クラスターを含まない無欠陥領域からなるウェーハであっても、完全な無欠陥ウェーハというわけではない。
領域は、as−grown状態でほとんど酸素析出核を含んでおらず、熱処理を施しても酸素析出物が発生し難い。
しかし、OSF領域は、無欠陥領域であっても、COPが発生する領域に隣接しており、as−grown状態で板状酸素析出物(OSF核)を含んでいる。このため、高温(一般的には1000℃から1200℃)で熱酸化処理した場合、OSF核がOSFとして顕在化してしまう。また、P領域は、as−grown状態で酸素析出核を含んでおり、低温および高温(例えば、800℃と1000℃)の2段階の熱処理を施した場合、酸素析出物が発生し易い。
このようなOSF領域やP領域に潜在的に存在する欠陥は、as−grown状態のウェーハに対して、反応性イオンエッチング(Reactive Ion Etching:RIE)を施すことにより、OSF核とP領域に存在する酸素析出核をエッチング面上の突起として顕在化させることで検出できる。以後、RIEで検出できる欠陥を、RIE欠陥と言う。
However, even a wafer consisting of a defect-free area containing neither COP nor dislocation clusters is not a perfect defect-free wafer.
P I area does not include the most oxygen precipitation nuclei in as-grown state, the oxygen precipitate be subjected to a heat treatment hardly occurs.
However, the OSF region is adjacent to the region where COP occurs even if it is a defect-free region, and contains plate-like oxygen precipitates (OSF nuclei) in an as-grown state. For this reason, when thermally oxidizing at a high temperature (generally, 1000 ° C. to 1200 ° C.), the OSF nuclei become manifest as OSF. Also, P V region includes oxygen precipitation nuclei in as-grown state, low and high temperatures (e.g., 800 ° C. and 1000 ° C.) when subjected to heat treatment in two stages of easily oxygen precipitates occurs.
Defects potentially present in such OSF region and P V region, relative to the wafer in as-grown state, reactive ion etching (Reactive Ion Etching: RIE) by the applying, OSF nuclei and P V region Can be detected by making the oxygen precipitate nuclei present on the surface of the substrate as protrusions on the etching surface. Hereinafter, defects that can be detected by RIE are referred to as RIE defects.

ところで、ウェーハに潜在的に存在するRIE欠陥は、特定の条件で熱処理した場合に発生するが、デバイスの歩留りに与える影響が無視できなくなってきている。例えば、OSFがウェーハの表面に生成された場合、リーク電流の原因になりデバイス特性が劣化してしまう。また、P領域の酸素析出核がデバイス製造プロセスでの熱処理過程で酸素析出物を生成し、この酸素析出物がデバイスの素子の活性層に残ってしまうと、デバイスにリーク電流が発生するおそれがある。
そこで、デバイスの歩留りに与える影響を抑制できるウェーハの製造方法が検討されている(例えば、特許文献1参照)。
By the way, although the RIE defects potentially present in the wafer are generated when the heat treatment is performed under specific conditions, the influence on the yield of the device can not be ignored. For example, when an OSF is generated on the surface of a wafer, it causes leakage current and degrades device characteristics. Also, a possibility of oxygen precipitation nuclei of P V regions to generate oxygen precipitates during the heat treatment in a device manufacturing process, when the oxygen precipitate is left to the active layer of the element of the device, the leakage current in the device is generated There is.
Therefore, a method of manufacturing a wafer capable of suppressing the influence on the device yield has been studied (see, for example, Patent Document 1).

特許文献1の製造方法では、P領域およびP領域のうち少なくとも一方の領域のみを含むシリコン単結晶を育成し、このシリコン単結晶から切り出したウェーハに対して1300℃より高く1400℃以下で急速熱処理を行うことで、ウェーハ表面から少なくとも1μmの深さにわたってRIE欠陥を消滅させている。 In the manufacturing method of Patent Document 1, and growing a silicon single crystal containing only at least one region of the P V region and the P I area, 1300 ° C. higher than 1400 ° C. or less with respect to the wafer sliced from the silicon single crystal By performing the rapid thermal processing, the RIE defects are eliminated over a depth of at least 1 μm from the wafer surface.

特許第5578172号公報Patent No. 5578172 gazette

しかしながら、特許文献1のような製造方法では、ウェーハの品質を問わずに全てのウェーハに対して1300℃よりも高い温度で熱処理を行うため、例えば、Ta℃での熱処理で十分にRIE欠陥を低減可能なウェーハに対して、Ta℃よりも低いTb℃やかなり高いTc℃で熱処理が行われるおそれがある。Tb℃で熱処理する場合には、RIE欠陥を十分に低減できず、Tc℃で熱処理する場合には、RIE欠陥を十分に低減できるが必要以上の加熱により熱処理装置に余計な負荷がかかり、ウェーハの品質に応じて適切な温度で熱処理が行われないおそれがある。   However, in the manufacturing method as described in Patent Document 1, all the wafers are heat-treated at a temperature higher than 1300 ° C. regardless of the quality of the wafers. Therefore, for example, the heat treatment at Ta ° C. For wafers that can be reduced, heat treatment may be performed at Tb ° C. lower than Ta ° C. or at Tc ° C. considerably higher. In the case of heat treatment at Tb ° C., RIE defects can not be sufficiently reduced, and in the case of heat treatment at Tc ° C., although RIE defects can be sufficiently reduced, excess load is applied to the heat treatment apparatus due to excessive heating. The heat treatment may not be performed at an appropriate temperature depending on the quality of the

本発明の目的は、RIE欠陥が十分に低減されたシリコンウェーハを熱処理前の品質に応じた適切な熱処理により製造可能なシリコンウェーハの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a silicon wafer capable of producing a silicon wafer having a sufficiently reduced RIE defect by an appropriate heat treatment according to the quality before the heat treatment.

本発明者は、鋭意研究を重ねた結果、COPおよび転位クラスターを含まないシリコンウェーハでは、熱処理前のOSFの発生状況によってRIE欠陥を十分に低減可能な熱処理条件が異なることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies, the inventors have found that silicon wafers that do not contain COP and dislocation clusters differ in heat treatment conditions that can sufficiently reduce RIE defects depending on the state of occurrence of OSF before heat treatment. It has been completed.

すなわち、本発明のシリコンウェーハの製造方法は、チョクラルスキー法により、COPおよび転位クラスターを含まないシリコン単結晶を育成する育成工程と、前記シリコン単結晶から取得された評価ウェーハのOSFの発生状況を評価するOSF評価工程と、前記評価ウェーハにOSFが存在する場合、前記評価ウェーハと同じシリコン単結晶から取得されたシリコンウェーハに対し1310℃以上の条件でRTO処理を行い、前記評価ウェーハにOSFが存在しない場合、前記シリコンウェーハに対し1310℃未満の条件でRTO処理を行う熱処理工程とを含むことを特徴とする。   That is, in the method for producing a silicon wafer according to the present invention, a growing step of growing a silicon single crystal free of COP and dislocation clusters by the Czochralski method, and an OSF generation state of an evaluation wafer obtained from the silicon single crystal In the OSF evaluation step of evaluating the and, when an OSF is present in the evaluation wafer, an RTO process is performed on a silicon wafer obtained from the same silicon single crystal as the evaluation wafer under conditions of 1310 ° C. or higher And the heat treatment step of performing the RTO treatment on the silicon wafer under the condition of less than 1310.degree.

ここで、RTO(Rapid Thermal Oxidation)処理とは、酸化性雰囲気下で行う急速加熱・急速冷却熱処理である。
本発明によれば、OSFの有無に応じた異なる条件のRTO処理により、いずれの場合にも、RIE欠陥を十分に低減させることができる。したがって、RIE欠陥が十分に低減されたシリコンウェーハを熱処理前の品質に応じた適切な熱処理により製造できる。
Here, the RTO (Rapid Thermal Oxidation) treatment is a rapid heating / rapid cooling heat treatment performed in an oxidizing atmosphere.
According to the present invention, RIE defects can be sufficiently reduced in any case by RTO processing under different conditions depending on the presence or absence of OSF. Therefore, a silicon wafer with sufficiently reduced RIE defects can be manufactured by appropriate heat treatment according to the quality before heat treatment.

本発明のシリコンウェーハの製造方法において、OSFが存在しない評価ウェーハと同じシリコン単結晶から得られた他の評価ウェーハのRIE欠陥密度を評価するRIE欠陥密度評価工程を含み、前記熱処理工程は、前記RIE欠陥密度が5×10個/cm以上の場合、前記他の評価ウェーハと同じシリコン単結晶から取得されたシリコンウェーハに対し1270℃以上の条件でRTO処理を行い、前記RIE欠陥密度が5×10個/cm未満の場合、前記シリコンウェーハに対し1250℃以上の条件でRTO処理を行うことが好ましい。 The method for manufacturing a silicon wafer according to the present invention includes an RIE defect density evaluation step of evaluating the RIE defect density of another evaluation wafer obtained from the same silicon single crystal as the evaluation wafer having no OSF, wherein the heat treatment step When the RIE defect density is 5 × 10 6 / cm 3 or more, the RTO process is performed on a silicon wafer obtained from the same silicon single crystal as the other evaluation wafer under the conditions of 1270 ° C. or more, and the RIE defect density is In the case of less than 5 × 10 6 pieces / cm 3, it is preferable to perform the RTO treatment on the silicon wafer under the conditions of 1250 ° C. or higher.

本発明によれば、OSFが存在しないシリコンウェーハに対し、RIE欠陥密度に応じた異なる条件のRTO処理により、いずれの場合にも、RIE欠陥を十分に低減することができる。   According to the present invention, RIE defects can be sufficiently reduced in any case by performing RTO processing under different conditions according to the RIE defect density for a silicon wafer in which no OSF is present.

シリコン単結晶における欠陥分布とV/Gとの関係の一例を示す模式図。The schematic diagram which shows an example of the relationship between the defect distribution and V / G in a silicon single crystal. 本発明の一実施形態に係る引き上げ装置の構成を示す模式図。The schematic diagram which shows the structure of the pulling-up apparatus which concerns on one Embodiment of this invention. 前記一実施形態における熱処理装置の構成を示す模式図。The schematic diagram which shows the structure of the heat processing apparatus in the said one Embodiment. 前記一実施形態におけるRTO処理の温度プロファイルを示す図。The figure which shows the temperature profile of RTO process in the said one Embodiment. 本発明の実施例に係る実験1におけるRTO処理温度とRTO処理前後の面内最大RIE欠陥密度との関係を示す図。The figure which shows the relationship between RTO process temperature in Experiment 1 which concerns on the Example of this invention, and the in-plane largest RIE defect density before and behind RTO process. 前記実施例の実験2におけるRTO処理温度とRTO処理前後の面内最大RIE欠陥密度との関係を示す図。The figure which shows the relationship between RTO process temperature in Experiment 2 of the said Example, and the in-plane largest RIE defect density before and behind RTO process.

本発明の一実施形態を、図面を参照して説明する。
本実施形態のウェーハの製造方法は、CZ法により、COPおよび転位クラスターを含まないシリコン単結晶を育成する育成工程と、シリコン単結晶から取得された評価ウェーハのOSFの発生状況を評価するOSF評価工程と、OSFが存在しない評価ウェーハと同じシリコン単結晶から得られた他の評価ウェーハのRIE欠陥密度を評価するRIE欠陥密度評価工程と、OSF評価工程およびRIE欠陥密度評価工程での評価結果に基づいて、評価ウェーハと同じシリコン単結晶から取得されたシリコンウェーハに対しRTO処理を行う熱処理工程とを含んでいる。
以下において、育成工程で用いる引き上げ装置、熱処理工程で用いる熱処理装置について説明し、その後、ウェーハの製造方法の詳細について説明する。
One embodiment of the present invention will be described with reference to the drawings.
The wafer manufacturing method of the present embodiment includes a growth step of growing a silicon single crystal free of COP and dislocation clusters by the CZ method, and OSF evaluation of evaluating the generation situation of OSF of the evaluation wafer obtained from the silicon single crystal. In the process and the RIE defect density evaluation process for evaluating the RIE defect density of other evaluation wafers obtained from the same silicon single crystal as the evaluation wafer without the OSF, and the evaluation results in the OSF evaluation process and the RIE defect density evaluation process And a heat treatment step of performing RTO processing on a silicon wafer obtained from the same silicon single crystal as the evaluation wafer.
In the following, the pulling apparatus used in the growth step and the heat treatment apparatus used in the heat treatment step will be described, and then the details of the wafer manufacturing method will be described.

[装置の構成]
〔引き上げ装置の構成〕
図2に示すように、引き上げ装置1は、CZ法に用いられる装置であって、引き上げ装置本体2と、制御部3とを備えている。
引き上げ装置本体2は、チャンバ21と、このチャンバ21内の中心部に配置された坩堝22と、この坩堝22に熱を放射して加熱する加熱部としてのヒータ23と、断熱筒24と、ケーブル25と、熱遮蔽体26とを備えている。
[Device configuration]
[Configuration of pulling apparatus]
As shown in FIG. 2, the pulling device 1 is a device used in the CZ method, and includes a pulling device main body 2 and a control unit 3.
The pulling apparatus body 2 includes a chamber 21, a crucible 22 disposed at the center of the chamber 21, a heater 23 as a heating unit that radiates heat to the crucible 22 and heats it, a heat insulating cylinder 24, and a cable 25 and a thermal shield 26.

チャンバ21の上部には、Arガス等の不活性ガスをチャンバ21内に導入するガス導入口21Aが設けられている。チャンバ21の下部には、図示しない真空ポンプの駆動により、チャンバ21内の気体を排出するガス排気口21Bが設けられている。
チャンバ21内には、制御部3の制御により、チャンバ21上部のガス導入口21Aから、不活性ガスが所定のガス流量で導入される。そして導入されたガスが、チャンバ21下部のガス排気口21Bから排出されることで、不活性ガスがチャンバ21内の上方から下方に向かって流れる構成となっている。
A gas inlet 21A for introducing an inert gas such as Ar gas into the chamber 21 is provided above the chamber 21. At the lower part of the chamber 21, a gas exhaust port 21B for exhausting the gas in the chamber 21 by driving of a vacuum pump (not shown) is provided.
An inert gas is introduced into the chamber 21 at a predetermined gas flow rate from the gas inlet 21A at the top of the chamber 21 under the control of the control unit 3. Then, the introduced gas is discharged from the gas exhaust port 21B at the lower part of the chamber 21 so that the inert gas flows downward from above in the chamber 21.

坩堝22は、ウェーハの原料であるシリコンを融解し、シリコン融液Mとするものである。坩堝22は、所定の速度で回転および昇降が可能な支持軸27に支持されている。坩堝22は、有底円筒形状の石英坩堝221と、この石英坩堝221を収納する黒鉛坩堝222とを備えている。
ヒータ23は、坩堝22の外側に配置されており、坩堝22を加熱して、坩堝22内のシリコンを融解する。
断熱筒24は、坩堝22およびヒータ23の周囲を取り囲むように配置されている。
ケーブル25は、一端が、坩堝22上方に配置された図示しない引き上げ駆動部に接続され、他端に、種結晶SCが取り付けられる。ケーブル25は、制御部3による引き上げ駆動部の制御により、所定の速度で昇降するとともに、当該ケーブル25の軸を中心にして回転する。
熱遮蔽体26は、ヒータ23から上方に向かって放射される輻射熱を遮断する。
The crucible 22 melts silicon, which is a raw material of the wafer, to form a silicon melt M. The crucible 22 is supported by a support shaft 27 which can be rotated and lifted at a predetermined speed. The crucible 22 includes a bottomed cylindrical quartz crucible 221 and a graphite crucible 222 which houses the quartz crucible 221.
The heater 23 is disposed outside the crucible 22 and heats the crucible 22 to melt silicon in the crucible 22.
The heat insulating cylinder 24 is disposed to surround the crucible 22 and the heater 23.
One end of the cable 25 is connected to a pulling drive (not shown) disposed above the crucible 22, and the seed crystal SC is attached to the other end. The cable 25 moves up and down at a predetermined speed under the control of the pull-up drive unit by the control unit 3 and rotates around the axis of the cable 25.
The heat shield 26 blocks the radiant heat radiated upward from the heater 23.

制御部3は、図示しないメモリに記憶された制御プログラムや作業者の設定入力等に基づいて、チャンバ21内のガス流量や炉内圧、ヒータ23によるチャンバ21内の加熱温度、坩堝22やシリコン単結晶SMの回転数、種結晶SCの昇降タイミング等を制御して、シリコン単結晶SMを製造する。   The control unit 3 controls the gas flow rate in the chamber 21 and the furnace internal pressure, the heating temperature in the chamber 21 by the heater 23, the temperature of the crucible 22 and silicon single on the basis of a control program stored in a memory (not shown) The single-crystal silicon SM is manufactured by controlling the rotational speed of the crystal SM, the elevation timing of the seed crystal SC and the like.

〔熱処理装置の構成〕
図3に示すように、熱処理装置5は、チャンバ51を備えている。
チャンバ51内には、ウェーハトレイ52と、このウェーハトレイ52上に配置されたベース板53と、このベース板53上に立設された3本の支持ピン54とが設けられている。3本の支持ピン54は、円形の(シリコン)ウェーハWを水平に支持するため、上面視で120°間隔で配置されている。
[Configuration of heat treatment apparatus]
As shown in FIG. 3, the heat treatment apparatus 5 includes a chamber 51.
In the chamber 51, a wafer tray 52, a base plate 53 disposed on the wafer tray 52, and three support pins 54 erected on the base plate 53 are provided. The three support pins 54 are arranged at intervals of 120 ° in top view in order to horizontally support the circular (silicon) wafer W.

また、チャンバ51外には、上側加熱部55と、下側加熱部56と、パイロメータ57とが設けられている。
上側加熱部55は、チャンバ51の上側に配置された複数の上側加熱ランプ551を備え、下側加熱部56は、チャンバ51の下側に配置された複数の下側加熱ランプ561を備えている。上側加熱ランプ551および下側加熱ランプ561は、ハロゲンランプであり、それぞれの発光状態が独立的に制御可能に構成されている。このような構成により、上側加熱ランプ551および下側加熱ランプ561を個々に制御することで、ウェーハW面内の温度分布を制御することができる。
パイロメータ57は、下側加熱部56の下側に配置され、ウェーハWの温度を測定する。
Further, outside the chamber 51, an upper heating unit 55, a lower heating unit 56, and a pyrometer 57 are provided.
The upper heating unit 55 includes a plurality of upper heating lamps 551 disposed above the chamber 51, and the lower heating unit 56 includes a plurality of lower heating lamps 561 disposed below the chamber 51. . The upper heating lamp 551 and the lower heating lamp 561 are halogen lamps, and their light emission states are configured to be independently controllable. With such a configuration, by individually controlling the upper heating lamp 551 and the lower heating lamp 561, the temperature distribution in the surface of the wafer W can be controlled.
The pyrometer 57 is disposed below the lower heating unit 56 and measures the temperature of the wafer W.

また、チャンバ51には、不活性ガスや反応ガス等をチャンバ51内に導入するガス導入口51Aと、チャンバ51内のガスを排出するガス排気口51Bと、ウェーハWをチャンバ51外に搬送するための開口部51Cとが設けられている。開口部51Cは、ウェーハWがチャンバ51内に搬送されると、図示しないオートシャッタにより蓋がされる。   In the chamber 51, a gas introduction port 51A for introducing an inert gas, a reaction gas or the like into the chamber 51, a gas exhaust port 51B for exhausting the gas in the chamber 51, and the wafer W are transported out of the chamber 51. And an opening 51C for the purpose. When the wafer W is transferred into the chamber 51, the opening 51C is covered by an automatic shutter (not shown).

[ウェーハの製造方法]
ウェーハを製造するに際し、まず、図2に示す引き上げ装置1を用いて育成工程を行う。
この育成工程では、坩堝22内にシリコンを投入し、このシリコンをArガス雰囲気中で加熱して溶融させる。次に、ケーブル25に取り付けられた種結晶SCをシリコン融液Mに浸漬し、種結晶SCおよび坩堝22を回転させながら種結晶SCを徐々に引き上げることで、シリコン単結晶SMを製造する。
この際、シリコン単結晶SMの酸素濃度が、9.5×1017atoms/cm以上となるように、製造条件を制御することが好ましい。
また、引き上げに際しては、引き上げ速度Vと、引き上げ直後のシリコン単結晶SMの成長方向における温度勾配Gとの比V/Gが、図1のAに相当する値とCに相当する値との間に入るように製造条件を制御することが好ましい。これにより、COPおよび転位クラスターを含まないシリコン単結晶SMを製造することができる。また、比V/Gが、図1のAに相当する値とBに相当する値との間に入るように製造条件を制御することがより好ましい。これにより、OSF、COPおよび転位クラスターを含まないシリコン単結晶SMを製造することができる。なお、このようなシリコン単結晶SMは、黒鉛坩堝222、ヒータ23、断熱筒24、熱遮蔽体26が配置されたホットゾーン構造を改良して、引き上げ直後のシリコン単結晶SMの成長方向における温度勾配Gの径方向分布を調整できる引き上げ装置1により製造できる。
[Wafer manufacturing method]
When manufacturing a wafer, first, a growth step is performed using the pulling apparatus 1 shown in FIG.
In this growth step, silicon is introduced into the crucible 22 and the silicon is heated and melted in an Ar gas atmosphere. Next, the seed crystal SC attached to the cable 25 is immersed in the silicon melt M, and the seed crystal SC is gradually pulled up while rotating the seed crystal SC and the crucible 22 to manufacture the silicon single crystal SM.
At this time, it is preferable to control the manufacturing conditions so that the oxygen concentration of the silicon single crystal SM is 9.5 × 10 17 atoms / cm 3 or more.
In pulling, the ratio V / G of the pulling speed V to the temperature gradient G in the growth direction of the silicon single crystal SM immediately after pulling is between a value corresponding to A in FIG. 1 and a value corresponding to C. It is preferable to control the manufacturing conditions so that Thereby, silicon single crystal SM free of COP and dislocation clusters can be manufactured. In addition, it is more preferable to control the manufacturing conditions so that the ratio V / G falls between the value corresponding to A and the value corresponding to B in FIG. This makes it possible to produce a silicon single crystal SM free of OSF, COP and dislocation clusters. Note that such a silicon single crystal SM improves the hot zone structure in which the graphite crucible 222, the heater 23, the heat insulating cylinder 24, and the heat shield 26 are disposed, and the temperature in the growth direction of the silicon single crystal SM immediately after pulling up. It can be manufactured by the pulling apparatus 1 capable of adjusting the radial distribution of the gradient G.

次に、ウェーハWの取得工程を行う。
この取得工程では、シリコン単結晶SMを複数のブロックに切断した後、スライス、ラッピング、化学エッチング、鏡面研磨、その他の処理を行うことで、ウェーハWを得ることができる。
Next, the wafer W acquisition process is performed.
In this acquisition step, the wafer W can be obtained by cutting the silicon single crystal SM into a plurality of blocks and then performing slicing, lapping, chemical etching, mirror polishing, and other processes.

次に、取得工程で取得されたウェーハWから評価ウェーハを選出し、当該評価ウェーハのOSFの発生状況を評価する(OSF評価工程)。
OSFの発生状況評価方法としては、酸素雰囲気下、評価ウェーハに対し、1000℃±30℃の温度で2時間以上5時間以下の熱処理を行い、引続き1130℃±30℃の温度で1時間以上16時間以下の熱処理を行った後、セコエッチングを行ってから顕微鏡観察を行う方法が例示できる。
Next, an evaluation wafer is selected from the wafers W acquired in the acquisition step, and the occurrence status of the OSF of the evaluation wafer is evaluated (OSF evaluation step).
As a method of evaluating the state of occurrence of OSF, the evaluation wafer is subjected to heat treatment at a temperature of 1000 ° C. ± 30 ° C. for 2 hours or more and 5 hours or less under oxygen atmosphere. After heat treatment for less than a time, Seco etching may be performed and then microscopic observation may be performed.

次に、OSFが存在しない評価ウェーハと同じシリコン単結晶SMから他の評価ウェーハを得て、この評価ウェーハのRIE欠陥密度を評価する(RIE欠陥密度評価工程)。RIE欠陥密度評価方法としては、以下の方法が例示できる。
まず、評価ウェーハを反応性イオンエッチング装置内に装入し、HBr/Cl/He+O混合ガス雰囲気中で、Si/SiOの選択比が100以上になるように設定して約5μmのエッチングを行う。次に、反応性イオンエッチング後の評価ウェーハをフッ酸水溶液で洗浄し、反応性イオンエッチング時に付着した反応生成物を除去した後、エッチングされた面における複数箇所のRIE欠陥密度を測定する。そして、その最大値を評価ウェーハのRIE欠陥密度として評価する。
Next, another evaluation wafer is obtained from the same silicon single crystal SM as the evaluation wafer having no OSF, and the RIE defect density of this evaluation wafer is evaluated (RIE defect density evaluation step). The following method can be exemplified as the RIE defect density evaluation method.
First, the evaluation wafer is loaded into a reactive ion etching apparatus, and etching is performed for about 5 μm in an HBr / Cl 2 / He + O 2 mixed gas atmosphere, with a Si / SiO 2 selectivity of 100 or more. I do. Next, the evaluation wafer after reactive ion etching is washed with an aqueous solution of hydrofluoric acid to remove the reaction product attached at the time of reactive ion etching, and then the RIE defect density at a plurality of places on the etched surface is measured. Then, the maximum value is evaluated as the RIE defect density of the evaluation wafer.

次に、OSF評価工程、RIE欠陥密度評価工程での評価結果に基づいて、評価ウェーハと同じシリコン単結晶SMから取得されたウェーハWに対する熱処理工程を行う。
この熱処理工程では、図3に示す熱処理装置5を用い、図4に示す条件で、ウェーハWに対するRTO処理を行う。基本的なRTO処理は、以下のようにして行われる。
Next, based on the evaluation results in the OSF evaluation step and the RIE defect density evaluation step, a heat treatment step is performed on the wafer W acquired from the same silicon single crystal SM as the evaluation wafer.
In this heat treatment process, the RTO process is performed on the wafer W under the conditions shown in FIG. 4 using the heat treatment apparatus 5 shown in FIG. Basic RTO processing is performed as follows.

まず、上側加熱部55および下側加熱部56の制御により温度T2に保持されたチャンバ51内の支持ピン54上に、ウェーハWを載置する。
そして、ガス導入口51Aからガスを導入するとともに、このガスをガス排気口51Bから排出することで、チャンバ51内を酸化性雰囲気にした後、上側加熱部55および下側加熱部56を制御することで、ウェーハWを処理温度T3まで昇温速度ΔTuで急速加熱する。なお、酸化性雰囲気としては、酸素100%とすることが好ましいが、これに限定されることはなく、例えば、酸素と不活性ガスとの混合ガス雰囲気であってもよい。
次に、温度T3を保持時間Kだけ保持する。
この後、上側加熱部55および下側加熱部56を制御することで、ウェーハWを温度T1まで降温速度ΔTdで急速冷却し、その後、室温まで冷却することで、RIE欠陥が十分に低減されたウェーハWが得られる。
First, the wafer W is placed on the support pins 54 in the chamber 51 held at the temperature T2 by the control of the upper heating unit 55 and the lower heating unit 56.
Then, the gas is introduced from the gas introduction port 51A and the gas is exhausted from the gas exhaust port 51B to make the inside of the chamber 51 be an oxidizing atmosphere, and then the upper heating unit 55 and the lower heating unit 56 are controlled. Thus, the wafer W is rapidly heated to the processing temperature T3 at the temperature rising rate ΔTu. The oxidizing atmosphere is preferably 100% oxygen, but is not limited thereto. For example, a mixed gas atmosphere of oxygen and an inert gas may be used.
Next, the temperature T3 is held for the holding time K.
After that, by controlling the upper heating unit 55 and the lower heating unit 56, the wafer W is rapidly cooled to the temperature T1 at the temperature lowering rate ΔTd, and then the RIE defect is sufficiently reduced by cooling to the room temperature. A wafer W is obtained.

以上のRTO処理において、
・OSFが存在する場合
・OSFが存在せず、かつ、RTO処理前のRIE欠陥密度が
5×10個/cm以上の場合
・OSFが存在せず、かつ、RTO処理前のRIE欠陥密度が
5×10個/cm未満の場合
の処理温度T3は、以下の表1に示す通りである。
なお、保持時間Kとしては、10秒以上60秒以下が好ましく、生産性の観点から30秒以下がより好ましい。
In the above RTO process,
・ When OSF exists ・ When OSF does not exist and RIE defect density before RTO treatment is 5 × 10 6 / cm 3 or more ・ OSF does not exist and RIE defect density before RTO treatment The processing temperature T3 in the case of less than 5 × 10 6 / cm 3 is as shown in Table 1 below.
The holding time K is preferably 10 seconds to 60 seconds, and more preferably 30 seconds or less from the viewpoint of productivity.

Figure 0006512184
Figure 0006512184

OSFが存在する場合、処理温度T3は、1310℃以上であればよいが、熱処理装置の耐用寿命の観点から1350℃未満が好ましい。   When OSF is present, the treatment temperature T3 may be 1310 ° C. or higher, but is preferably less than 1350 ° C. from the viewpoint of the service life of the heat treatment apparatus.

ここで、一般的に、RTO処理は、複数の支持ピンでシリコンウェーハの外周部を支持して行われる。この場合、支持ピンとの接触点に作用するシリコンウェーハの自重による応力や、温度分布による熱応力等が原因で、支持ピンとの接触部分にスリップ転位が発生することがある。
このようなスリップ転位の発生抑制の観点から、OSFの有無やRIE欠陥密度にかかわらず、処理温度T3は、上記範囲の中でもより低い温度がより好ましい。
Here, in general, the RTO process is performed by supporting the outer peripheral portion of the silicon wafer with a plurality of support pins. In this case, slip dislocation may occur in the contact portion with the support pin due to stress due to the weight of the silicon wafer acting on the contact point with the support pin, thermal stress due to temperature distribution, and the like.
From the viewpoint of suppressing the occurrence of such slip dislocations, the processing temperature T3 is more preferably lower than the above range regardless of the presence or absence of OSF and the RIE defect density.

以上のように、評価ウェーハのOSFの有無や、RTO処理前のRIE欠陥密度に応じた異なる条件のRTO処理により、いずれの場合にも、RIE欠陥を十分に低減させることができる。   As described above, RIE defects can be sufficiently reduced in any case by RTO treatment under different conditions according to the presence or absence of the OSF of the evaluation wafer and the RIE defect density before the RTO treatment.

ここで、上述のようなRTO処理によりRIE欠陥が十分に低減されたウェーハWが得られる理由を補足しておく。
通常、CZ法により育成されたシリコン単結晶SMには、1018atoms/cm程度の酸素が不純物として含まれている。この酸素は、シリコンの融点付近では結晶格子間に固溶しているが、シリコン単結晶SMから切り出されたウェーハWでは、酸素の一部が酸化シリコン(SiO)として析出し、P領域の酸素析出核のような結晶欠陥を形成する。
このようなウェーハWに対して酸化性雰囲気中でRTO処理を行うと、ウェーハW内部の結晶欠陥中の酸化シリコンは、それを構成する酸素原子が結晶格子内に移動することによって消滅する。そして、酸化シリコンが消滅した後には、空孔が残る。RTO処理は酸化性雰囲気中で行われるため、ウェーハWの表面側から格子間シリコンが注入され、空孔が埋められる。その結果、OSF核に起因するOSFやP領域の酸素析出核に起因するRIE欠陥が消滅もしくは低減する。
Here, the reason why the wafer W in which the RIE defects are sufficiently reduced by the RTO process as described above is obtained is supplemented.
In general, oxygen of about 10 18 atoms / cm 3 is contained as an impurity in the silicon single crystal SM grown by the CZ method. This oxygen is in the vicinity of the melting point of silicon is a solid solution between the crystal lattice, the wafer W sliced from the silicon single crystal SM, part of oxygen is deposited as a silicon oxide (SiO 2), P V region Form crystal defects such as oxygen precipitate nuclei.
When the RTO process is performed on such a wafer W in an oxidizing atmosphere, the silicon oxide in the crystal defects in the wafer W disappears due to the movement of the oxygen atoms that constitute the wafer into the crystal lattice. Then, after the silicon oxide disappears, vacancies remain. Since the RTO process is performed in an oxidizing atmosphere, interstitial silicon is implanted from the front side of the wafer W to fill the vacancies. Consequently, RIE defects due to oxygen precipitation nuclei of OSF and P V region due to OSF nuclei disappear or reduce.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

[実験1:OSFを含みCOPおよび転位クラスターを含まないウェーハにおける、RTO処理温度とRTO処理前後のRIE欠陥の発生状況との関係]
まず、上述の引き上げ装置1を用い、V/Gを制御することで、OSFを含みCOPおよび転位クラスターを含まないシリコン単結晶を製造した。OSFの発生状況は、上記実施形態で例示した方法で確認した。次に、このシリコン単結晶からウェーハを切り出し、上記実施形態で例示した方法でウェーハの複数箇所のRIE欠陥密度を測定し、その最大値を面内最大RIE欠陥密度として求めた。
面内最大RIE欠陥密度の測定結果を表2に示す。
[Experiment 1: Relationship between RTO processing temperature and occurrence of RIE defects before and after RTO processing in a wafer containing OSF and not containing COP and dislocation clusters]
First, a silicon single crystal containing OSF and containing neither COP nor dislocation cluster was manufactured by controlling V / G using the above-described pulling apparatus 1. The occurrence status of OSF was confirmed by the method exemplified in the above embodiment. Next, a wafer was cut out from this silicon single crystal, and the RIE defect density at a plurality of locations of the wafer was measured by the method exemplified in the above embodiment, and the maximum value was determined as the in-plane maximum RIE defect density.
The measurement results of the in-plane maximum RIE defect density are shown in Table 2.

Figure 0006512184
Figure 0006512184

表2に示すように、OSFを含みCOPおよび転位クラスターを含まない実験例1〜18の全ての面内最大RIE欠陥密度は、検出限界(8×10個/cm)よりも大きい値であった。
なお、実験例1〜5、実験例6〜11、実験例12〜14、実験例15〜16、実験例17〜18のサンプルは、それぞれ同じシリコン単結晶から切り出したウェーハのため、実験例1、実験例6、実験例12、実験例15、実験例17のRTO処理前の面内最大RIE欠陥密度の値を、実験例2〜5、実験例7〜11、実験例13〜14、実験例16、実験例18の値として用いた。
次に、上述の熱処理装置5を用い、実験例1〜18のサンプルに対し、以下の条件でRTO処理を行い、このRTO処理後のサンプルに対し、上記方法で面内最大RIE欠陥密度を測定した。
温度T1 :600℃
温度T2 :800℃
処理温度T3 :表2参照
保持時間K :10秒
昇温速度ΔTu:50℃/秒
降温速度ΔTd:33℃/秒
なお、RTO処理には、RIE欠陥密度測定後のウェーハではなく、これと同じシリコン単結晶から切り出したウェーハであって、RIE欠陥密度測定を行っていないものを用いた。その結果を表2に示す。また、RTO処理温度とRTO処理前後の面内最大RIE欠陥密度との関係を図5に示す。なお、図5では、データ数が表1よりもかなり少ないが、RTO処理前後の面内最大RIE欠陥密度が同じサンプルが存在するためである。
As shown in Table 2, all the in-plane maximum RIE defect densities of Experimental Examples 1 to 18 containing OSF and not containing COP and dislocation clusters are larger than the detection limit (8 × 10 4 / cm 3 ). there were.
In addition, since the samples of Experimental Examples 1 to 5, Experimental Examples 6 to 11, Experimental Examples 12 to 14, Experimental Examples 15 to 16, and Experimental Examples 17 to 18 are wafers respectively cut out of the same silicon single crystal, Experimental Examples 1 The values of the maximum in-plane RIE defect density before RTO treatment of Experimental Example 6, Experimental Example 12, Experimental Example 15, and Experimental Example 17 are shown in Experimental Examples 2 to 5, Experimental Examples 7 to 11, Experimental Examples 13 to 14, It used as a value of Example 16 and Experimental example 18.
Next, RTO processing is performed on the samples of Experimental Examples 1 to 18 under the following conditions using the above-described heat treatment apparatus 5, and the in-plane maximum RIE defect density is measured on the sample after this RTO processing by the above method. did.
Temperature T1: 600 ° C
Temperature T2: 800 ° C
Processing temperature T3: See Table 2. Holding time K: 10 seconds Temperature rising rate ΔTu: 50 ° C./sec Temperature lowering rate ΔTd: 33 ° C./sec In RTO treatment, it is not the wafer after RIE defect density measurement but the same A wafer cut from a silicon single crystal, which was not subjected to RIE defect density measurement, was used. The results are shown in Table 2. Further, the relationship between the RTO processing temperature and the in-plane maximum RIE defect density before and after the RTO processing is shown in FIG. In FIG. 5, although the number of data is considerably smaller than that of Table 1, it is because there is a sample having the same maximum in-plane RIE defect density before and after RTO processing.

表2および図5に示すように、処理温度T3が1310℃以上の実験例2〜5、8〜18の場合、RTO処理前のRIE欠陥密度にかかわらず、面内最大RIE欠陥密度が検出限界以下のウェーハ、すなわちRIE欠陥が十分に低減されたウェーハが得られた。一方、処理温度T3が1310℃未満(1290℃、1300℃)の実験例1,6,7の場合、面内最大RIE欠陥密度が検出限界よりも大きいウェーハ、すなわちRIE欠陥が十分に低減されていないウェーハが得られた。
以上のことから、実験例2〜5,8〜18が本発明の実施例に相当し、実験例1,6,7が比較例に相当し、OSFを含みCOPおよび転位クラスターを含まないウェーハの場合、1310℃以上の処理温度T3でRTO処理を行うことで、RIE欠陥が十分に低減されたウェーハを製造できることが確認できた。
As shown in Table 2 and FIG. 5, in the case of Experimental Examples 2 to 5 and 8 to 18 where the processing temperature T3 is 1310 ° C. or higher, the in-plane maximum RIE defect density is the detection limit regardless of the RIE defect density before RTO treatment. The following wafers were obtained, ie, wafers with sufficiently reduced RIE defects. On the other hand, in the case of Experimental Examples 1, 6 and 7 in which the processing temperature T3 is less than 1310 ° C. (1290 ° C., 1300 ° C.), the wafer having the maximum in-plane RIE defect density larger than the detection limit, ie, the RIE defects are sufficiently reduced No wafer was obtained.
From the above, Experimental Examples 2 to 5, 8 to 18 correspond to Examples of the present invention, Experimental Examples 1, 6 and 7 correspond to Comparative Examples, and a wafer containing OSF and containing neither COP nor dislocation cluster In the case, it has been confirmed that a wafer having a sufficiently reduced RIE defect can be manufactured by performing the RTO process at a process temperature T3 of 1310 ° C. or higher.

[実験2:OSF、COPおよび転位クラスターを含まないウェーハにおける、RTO処理温度とRTO処理前後のRIE欠陥の発生状況との関係]
まず、上述の引き上げ装置1のV/Gを制御することで、OSF、COPおよび転位クラスターを含まないシリコン単結晶を製造した。そして、上記実験1と同様にして実験例19〜61のサンプル(ウェーハ)を製造し、RTO処理前の面内最大RIE欠陥密度の測定を行った。その結果を表3〜5に示す。
なお、実験例19〜53において、RTO処理前の面内最大RIE欠陥密度が同じものについては、実験1と同様に、1つのサンプルの値を他のサンプルの値として用いた。
[Experiment 2: Relationship between RTO processing temperature and occurrence of RIE defects before and after RTO processing in a wafer not containing OSF, COP and dislocation clusters]
First, by controlling V / G of the above-described pulling apparatus 1, a silicon single crystal free of OSF, COP and dislocation clusters was manufactured. Then, samples (wafers) of Experimental Examples 19 to 61 were manufactured in the same manner as in Experiment 1 above, and the in-plane maximum RIE defect density before RTO treatment was measured. The results are shown in Tables 3 to 5.
In Experimental Examples 19 to 53, as in Experiment 1, when the maximum in-plane RIE defect density before RTO treatment is the same, the value of one sample was used as the value of the other sample.

Figure 0006512184
Figure 0006512184

Figure 0006512184
Figure 0006512184

Figure 0006512184
Figure 0006512184

表3,4に示すように、OSF、COPおよび転位クラスターを含まない実験例19〜53において、RTO処理前のRIE欠陥密度は、5×10個/cm以上であった。一方、表5に示すように、OSF、COPおよび転位クラスターを含まない実験例54〜61において、RTO処理前のRIE欠陥密度は、5×10個/cm未満であった。
次に、実験1と同様に、実験例19〜61のサンプルを得たシリコン単結晶から切り出したウェーハであって、RIE欠陥密度測定を行っていないものを用いて、RTO処理、RTO処理後の面内最大RIE欠陥密度の測定を行った。その結果を表3〜5に示す。また、RTO処理温度とRTO処理前後の面内最大RIE欠陥密度との関係を図6に示す。
なお、RTO処理については、処理温度T3を表3〜5に示す条件にしたこと以外は、実験1と同じにした。
As shown in Tables 3 and 4, in Experimental Examples 19 to 53 which do not contain OSF, COP and dislocation clusters, the RIE defect density before RTO treatment was 5 × 10 6 / cm 3 or more. On the other hand, as shown in Table 5, in the experimental examples 54 to 61 not containing OSF, COP and dislocation clusters, the RIE defect density before the RTO treatment was less than 5 × 10 6 / cm 3 .
Next, in the same manner as in Experiment 1, a wafer cut out from the silicon single crystal from which the samples of Experimental Examples 19 to 61 were obtained, which has not been subjected to RIE defect density measurement, is subjected to RTO processing and RTO processing. The in-plane maximum RIE defect density was measured. The results are shown in Tables 3 to 5. Further, the relationship between the RTO processing temperature and the in-plane maximum RIE defect density before and after the RTO processing is shown in FIG.
The RTO treatment was the same as Experiment 1 except that the treatment temperature T3 was changed to the conditions shown in Tables 3 to 5.

表3,4および図6に示すように、実験例19〜53においては、処理温度T3が1270℃以上の実験例22,23,27,28,32,33,37,38、42,43,47,48,52,53の場合、RTO処理後の面内最大RIE欠陥密度が検出限界以下であったが、処理温度T3が1270℃未満の上記以外の実験例の場合、検出限界よりも大きい値になった。
以上のことから、実験例22,23,27,28,32,33,37,38、42,43,47,48,52,53が本発明の実施例に相当し、実験例19〜21,24〜26,29〜31,34〜36,39〜41,44〜46,49〜51が比較例に相当し、OSF、COPおよび転位クラスターを含まず、かつ、RTO処理前のRIE欠陥密度が5×10個/cm以上のウェーハの場合、1270℃以上の処理温度T3でRTO処理を行うことで、RIE欠陥が十分に低減されたウェーハを製造できることが確認できた。
As shown in Tables 3 and 4 and FIG. 6, in Experimental Examples 19 to 53, Experimental Examples 22, 23, 28, 28, 32, 33, 37, 38, 42, 43, in which the treatment temperature T3 is 1270 ° C. or higher. In the cases of 47, 48, 52 and 53, the in-plane maximum RIE defect density after RTO treatment was below the detection limit, but in the case of other experimental examples where the treatment temperature T3 is less than 1270 ° C, it is larger than the detection limit It became a value.
From the above, Experimental Examples 22, 23, 27, 28, 32, 33, 33, 37, 38, 42, 43, 47, 48, 52, 53 correspond to Examples of the present invention, and Experimental Examples 19 to 21, 24 to 26, 29 to 31, 34 to 36, 39 to 41, 44 to 46, 49 to 51 correspond to comparative examples, which do not contain OSF, COP and dislocation clusters, and have RIE defect density before RTO treatment In the case of a wafer of 5 × 10 6 pieces / cm 3 or more, it has been confirmed that a wafer having a sufficiently reduced RIE defect can be manufactured by performing the RTO treatment at a treatment temperature T3 of 1270 ° C. or more.

一方、表5および図6に示すように、実験例54〜61の全てにおいて、RTO処理後の面内最大RIE欠陥密度が検出限界以下であった。また、実験例19〜53の結果から、処理温度T3が高いほど、面内最大RIE欠陥密度が小さくなると推測できる。
これらのことから、RTO処理前のRIE欠陥密度が5×10個/cm未満の場合、1250℃の処理温度T3でRIE欠陥が十分に低減されるのであるから、処理温度T3が1250℃を超える場合でも、RIE欠陥が十分に低減されると推定できる。
以上のことから、実験例54〜61が本発明の実施例に相当し、OSF、COPおよび転位クラスターを含まず、かつ、RTO処理前のRIE欠陥密度が5×10個/cm未満のウェーハの場合、1250℃以上の処理温度T3でRTO処理を行うことで、RIE欠陥が十分に低減されたウェーハを製造できることが確認できた。
On the other hand, as shown in Table 5 and FIG. 6, in all of Experimental Examples 54 to 61, the in-plane maximum RIE defect density after RTO treatment was below the detection limit. Further, from the results of Experimental Examples 19 to 53, it can be inferred that the in-plane maximum RIE defect density decreases as the processing temperature T3 increases.
From these facts, when the RIE defect density before RTO treatment is less than 5 × 10 6 pieces / cm 3 , the RIE defect is sufficiently reduced at the treatment temperature T3 of 1250 ° C. Therefore, the treatment temperature T3 is 1250 ° C. It can be estimated that the RIE defects are sufficiently reduced.
From the above, Experimental Examples 54 to 61 correspond to the examples of the present invention and do not contain OSF, COP and dislocation clusters, and the RIE defect density before RTO treatment is less than 5 × 10 6 / cm 3 . In the case of a wafer, it has been confirmed that a wafer having a sufficiently reduced RIE defect can be manufactured by performing the RTO process at a process temperature T3 of 1250 ° C. or higher.

SM…シリコン単結晶、W…ウェーハ。   SM: silicon single crystal, W: wafer.

Claims (2)

チョクラルスキー法により、COPおよび転位クラスターを含まないシリコン単結晶を育成する育成工程と、
前記シリコン単結晶から取得された評価ウェーハのOSFの発生状況を評価するOSF評価工程と、
前記評価ウェーハにOSFが存在する場合、前記評価ウェーハと同じシリコン単結晶から取得されたシリコンウェーハに対し1310℃以上の条件でRTO処理を行い、前記評価ウェーハにOSFが存在しない場合、前記シリコンウェーハに対し1310℃未満の条件でRTO処理を行う熱処理工程とを含むことを特徴とするシリコンウェーハの製造方法。
A growing step of growing a silicon single crystal free of COP and dislocation clusters by the Czochralski method;
An OSF evaluation step of evaluating the generation situation of the OSF of the evaluation wafer obtained from the silicon single crystal;
When an OSF is present in the evaluation wafer, an RTO process is performed on a silicon wafer obtained from the same silicon single crystal as the evaluation wafer under conditions of 1310 ° C. or higher, and when no OSF is present in the evaluation wafer, the silicon wafer And a heat treatment step of performing RTO treatment under conditions of less than 1310 ° C., and a method of manufacturing a silicon wafer.
請求項1に記載のシリコンウェーハの製造方法において、
OSFが存在しない評価ウェーハと同じシリコン単結晶から得られた他の評価ウェーハのRIE欠陥密度を評価するRIE欠陥密度評価工程を含み、
前記熱処理工程は、前記RIE欠陥密度が5×10個/cm以上の場合、前記他の評価ウェーハと同じシリコン単結晶から取得されたシリコンウェーハに対し1270℃以上の条件でRTO処理を行い、前記RIE欠陥密度が5×10個/cm未満の場合、前記シリコンウェーハに対し1250℃以上の条件でRTO処理を行うことを特徴とするシリコンウェーハの製造方法。
In the method of manufacturing a silicon wafer according to claim 1,
Including the RIE defect density evaluation step of evaluating the RIE defect density of other evaluation wafers obtained from the same silicon single crystal as the evaluation wafer without OSF,
In the heat treatment step, when the RIE defect density is 5 × 10 6 pieces / cm 3 or more, an RTO treatment is performed on a silicon wafer obtained from the same silicon single crystal as the other evaluation wafer under conditions of 1270 ° C. or more A method for producing a silicon wafer, wherein the RTO treatment is performed on the silicon wafer under conditions of 1250 ° C. or higher when the RIE defect density is less than 5 × 10 6 / cm 3 .
JP2016135938A 2016-07-08 2016-07-08 Method of manufacturing silicon wafer Active JP6512184B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016135938A JP6512184B2 (en) 2016-07-08 2016-07-08 Method of manufacturing silicon wafer
CN201780042556.9A CN109478512B (en) 2016-07-08 2017-04-12 Method for manufacturing silicon wafer
KR1020187035058A KR102109551B1 (en) 2016-07-08 2017-04-12 Manufacturing method of silicon wafer
DE112017003457.4T DE112017003457T5 (en) 2016-07-08 2017-04-12 Method for producing a silicon wafer
PCT/JP2017/014947 WO2018008222A1 (en) 2016-07-08 2017-04-12 Method for manufacturing silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135938A JP6512184B2 (en) 2016-07-08 2016-07-08 Method of manufacturing silicon wafer

Publications (2)

Publication Number Publication Date
JP2018006698A JP2018006698A (en) 2018-01-11
JP6512184B2 true JP6512184B2 (en) 2019-05-15

Family

ID=60901647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135938A Active JP6512184B2 (en) 2016-07-08 2016-07-08 Method of manufacturing silicon wafer

Country Status (5)

Country Link
JP (1) JP6512184B2 (en)
KR (1) KR102109551B1 (en)
CN (1) CN109478512B (en)
DE (1) DE112017003457T5 (en)
WO (1) WO2018008222A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059932A (en) * 2001-08-08 2003-02-28 Toshiba Ceramics Co Ltd Silicon single crystal wafer and production method therefor
JP4605626B2 (en) * 2002-09-19 2011-01-05 Sumco Techxiv株式会社 Silicon wafer manufacturing method
JP4524983B2 (en) * 2002-10-22 2010-08-18 信越半導体株式会社 Method for manufacturing silicon wafer
JP4380141B2 (en) * 2002-10-31 2009-12-09 信越半導体株式会社 Silicon wafer evaluation method
JP4716372B2 (en) * 2005-09-27 2011-07-06 コバレントマテリアル株式会社 Silicon wafer manufacturing method
JP2010173887A (en) * 2009-01-28 2010-08-12 Sumco Corp Production process of silicon wafer
JP2010263186A (en) * 2009-04-08 2010-11-18 Sumco Corp Method for manufacturing silicon wafer
US20120001301A1 (en) 2009-04-13 2012-01-05 Shin-Etsu Handotai Co., Ltd. Annealed wafer, method for producing annealed wafer and method for fabricating device
JP5565079B2 (en) * 2010-05-10 2014-08-06 信越半導体株式会社 Manufacturing method of SOI wafer

Also Published As

Publication number Publication date
KR20190002673A (en) 2019-01-08
WO2018008222A1 (en) 2018-01-11
CN109478512A (en) 2019-03-15
DE112017003457T5 (en) 2019-03-28
JP2018006698A (en) 2018-01-11
CN109478512B (en) 2023-03-31
KR102109551B1 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
US6077343A (en) Silicon single crystal wafer having few defects wherein nitrogen is doped and a method for producing it
JP5515406B2 (en) Silicon wafer and manufacturing method thereof
KR101390024B1 (en) Method for manufacturing silicon wafer
JP2010040587A (en) Method of manufacturing silicon wafer
WO2002002852A1 (en) Silicon single crystal wafer and method for manufacturing the same
KR20100014191A (en) Silicon wafer, method for manufacturing silicon wafer, and heat treatment method for silicon wafer
KR20100014188A (en) Manufacturing method for silicon wafer
JP5163459B2 (en) Silicon single crystal growth method and silicon wafer inspection method
KR101313462B1 (en) Method for heat treating silicon wafer
KR100374703B1 (en) A Single Crystal Silicon Wafer, Ingot and Methods thereof
JP2005015312A (en) Method for manufacturing single crystal, and single crystal
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
JP2005015313A (en) Method for manufacturing single crystal, and single crystal
KR101472183B1 (en) Method for heat-treating silicon wafer
JP5997552B2 (en) Heat treatment method for silicon wafer
JP5944643B2 (en) Heat treatment method for silicon wafer
JP6512184B2 (en) Method of manufacturing silicon wafer
JP6418085B2 (en) Silicon single crystal inspection method and manufacturing method
CN113862791A (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP5668786B2 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP3900816B2 (en) Silicon wafer manufacturing method
KR101105509B1 (en) Method for manufacturing single crystal with uniform distribution of micro-defects and Apparatus for implementing the same
TWI671440B (en) 矽Single crystal manufacturing method, 矽 single crystal and 矽 wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250