JP2018192443A - Regeneration method of anion resin and cation resin, and condensate demineralizer - Google Patents

Regeneration method of anion resin and cation resin, and condensate demineralizer Download PDF

Info

Publication number
JP2018192443A
JP2018192443A JP2017099997A JP2017099997A JP2018192443A JP 2018192443 A JP2018192443 A JP 2018192443A JP 2017099997 A JP2017099997 A JP 2017099997A JP 2017099997 A JP2017099997 A JP 2017099997A JP 2018192443 A JP2018192443 A JP 2018192443A
Authority
JP
Japan
Prior art keywords
exchange resin
resin
anion exchange
cation exchange
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017099997A
Other languages
Japanese (ja)
Inventor
充 余田
Mitsuru Yoda
充 余田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017099997A priority Critical patent/JP2018192443A/en
Publication of JP2018192443A publication Critical patent/JP2018192443A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a resin regeneration method, with which reduction of equipment cost is easy and reverse regeneration hardly occurs.SOLUTION: The resin regeneration method comprises the steps of: transferring from a condensate demineralization tower 2 to a regeneration tower 4 a mixed resin M including an anion exchange resin and a cation exchange resin which had been charged into the condensate demineralization tower 2 to form a mixed bed; separating the mixed resin M transferred to the regeneration tower 4 into an upper layer A formed of the anion exchange resin, a lower layer C formed of the cation exchange resin, and an intermediate resin layer T located between the upper layer A and the lower layer C and containing the anion exchange resin and the cation exchange resin; regenerating and washing the anion exchange resin of the upper layer A and transferring the regenerated and washed anion exchange resin to the condensate demineralization tower 2; transferring the intermediate resin layer T to a resin storage vessel 6; regenerating and washing the cation exchange resin of the lower layer C and transferring the regenerated and washed anion exchange resin to the condensate demineralization tower 2; and mixing the cation exchange resin and the anion exchange resin in the condensate demineralization tower 2.SELECTED DRAWING: Figure 1

Description

本発明は、アニオン樹脂及びカチオン樹脂の再生方法及び復水脱塩装置に関し、特に復水脱塩塔に混床充填されるアニオン交換樹脂とカチオン交換樹脂の再生方法に関する。   The present invention relates to a method for regenerating an anion resin and a cation resin and a condensate demineralizer, and more particularly to a method for regenerating an anion exchange resin and a cation exchange resin packed in a condensate demineralization tower.

発電所では復水の脱塩のために復水脱塩塔が用いられている。復水脱塩塔にはアニオン交換樹脂とカチオン交換樹脂が充填され、Cl等のアニオン成分とNa等のカチオン成分が除去される。復水脱塩塔には通常、アニオン交換樹脂とカチオン交換樹脂とが混床で充填されている。アニオン交換樹脂とカチオン交換樹脂のいずれかが飽和状態に達すると、アニオン交換樹脂とカチオン交換樹脂は再生塔に移送され、薬液で再生されて再び復水脱塩塔に戻される。 At the power plant, a condensate demineralization tower is used to demineralize the condensate. The condensate demineralization tower is filled with an anion exchange resin and a cation exchange resin, and an anion component such as Cl and a cation component such as Na + are removed. The condensate demineralization tower is usually packed with an anion exchange resin and a cation exchange resin in a mixed bed. When either the anion exchange resin or the cation exchange resin reaches a saturated state, the anion exchange resin and the cation exchange resin are transferred to the regeneration tower, regenerated with a chemical solution, and returned again to the condensate demineralization tower.

特許文献1には、復水脱塩塔に混床充填されるアニオン交換樹脂とカチオン交換樹脂の再生方法が開示されている。まず、復水脱塩塔に充填されているアニオン交換樹脂とカチオン交換樹脂の混合樹脂がカチオン再生塔に移送される。次に、カチオン再生塔内で、混合樹脂がアニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、アニオン交換樹脂とカチオン交換樹脂との間に位置し、アニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層と、に分離される。次に、上層のアニオン交換樹脂がアニオン再生塔に移送され、中間樹脂層が中間樹脂貯蔵槽に移送される。アニオン交換樹脂とカチオン交換樹脂はそれぞれアニオン再生塔とカチオン再生塔で再生される。再生されたアニオン交換樹脂とカチオン交換樹脂は樹脂貯蔵槽に移送され、混合された状態で貯蔵される。樹脂貯蔵槽に貯蔵されたアニオン交換樹脂とカチオン交換樹脂は、次のアニオン交換樹脂とカチオン交換樹脂の再生のために空となった復水脱塩塔に混床充填される。中間樹脂貯蔵槽に移送された中間樹脂層はカチオン再生塔に移送され、次にカチオン再生塔に移送された樹脂とともに分離される。   Patent Document 1 discloses a method for regenerating an anion exchange resin and a cation exchange resin that are packed in a condensate demineralization tower. First, the mixed resin of the anion exchange resin and the cation exchange resin packed in the condensate demineralization tower is transferred to the cation regeneration tower. Next, in the cation regeneration tower, the mixed resin is located between the upper layer made of an anion exchange resin, the lower layer made of a cation exchange resin, and the anion exchange resin and the cation exchange resin, And an intermediate resin layer. Next, the upper anion exchange resin is transferred to the anion regeneration tower, and the intermediate resin layer is transferred to the intermediate resin storage tank. The anion exchange resin and the cation exchange resin are regenerated in an anion regeneration tower and a cation regeneration tower, respectively. The regenerated anion exchange resin and cation exchange resin are transferred to a resin storage tank and stored in a mixed state. The anion exchange resin and cation exchange resin stored in the resin storage tank are mixed and packed in a condensate demineralization tower that has been emptied for regeneration of the next anion exchange resin and cation exchange resin. The intermediate resin layer transferred to the intermediate resin storage tank is transferred to the cation regeneration tower, and then separated together with the resin transferred to the cation regeneration tower.

特許文献2にも、復水脱塩塔に混床充填されるアニオン交換樹脂とカチオン交換樹脂の再生方法が開示されている。まず、復水脱塩塔に充填されているアニオン交換樹脂とカチオン交換樹脂の混合樹脂が再生塔に移送される。次に、混合樹脂がアニオン交換樹脂の上層とカチオン交換樹脂の下層とに分離される。次に、上層の上方からアニオン交換樹脂の再生薬剤が供給される。この際、下層のカチオン交換樹脂にアニオン交換樹脂の再生薬剤が入り込むことを防止するため、下方から支持水を供給する。アニオン交換樹脂の再生薬剤と支持水は上層の下部に設けられた集水管で回収される。次に、下層の下方からカチオン交換樹脂の再生薬剤が供給される。この際、上層のアニオン交換樹脂にカチオン交換樹脂の再生薬剤が入り込むことを防止するため、上方から支持水を供給する。カチオン交換樹脂の再生薬剤と支持水は上記集水管で回収される。その後、再生されたアニオン交換樹脂とカチオン交換樹脂は樹脂貯蔵槽に移送される。   Patent Document 2 also discloses a method for regenerating an anion exchange resin and a cation exchange resin that are packed in a condensate demineralization tower. First, the mixed resin of the anion exchange resin and the cation exchange resin packed in the condensate demineralization tower is transferred to the regeneration tower. Next, the mixed resin is separated into an upper layer of the anion exchange resin and a lower layer of the cation exchange resin. Next, the regenerated chemical | medical agent of an anion exchange resin is supplied from the upper layer. At this time, in order to prevent the regenerated chemical of the anion exchange resin from entering the lower layer cation exchange resin, the supporting water is supplied from below. The regenerated chemical and supporting water for the anion exchange resin are collected by a water collecting pipe provided at the lower part of the upper layer. Next, a regenerated chemical of the cation exchange resin is supplied from below the lower layer. At this time, in order to prevent the regenerated chemical of the cation exchange resin from entering the anion exchange resin in the upper layer, the supporting water is supplied from above. The regenerated chemical of the cation exchange resin and the supporting water are collected by the water collecting pipe. Thereafter, the regenerated anion exchange resin and cation exchange resin are transferred to a resin storage tank.

特開平10−128128号公報JP-A-10-128128 特開平5−317729号公報JP-A-5-317729

特許文献1に開示された樹脂の再生方法は、カチオン再生塔とアニオン再生塔と樹脂貯蔵槽と中間樹脂貯蔵槽とを必要とするため、設備のコストや設置スペースを削減することが難しい。また、アニオン交換樹脂とカチオン交換樹脂をそれぞれ専用の再生塔に移送するため、樹脂の移送時間も長くなる。   Since the resin regeneration method disclosed in Patent Document 1 requires a cation regeneration tower, an anion regeneration tower, a resin storage tank, and an intermediate resin storage tank, it is difficult to reduce the cost and installation space of equipment. Moreover, since the anion exchange resin and the cation exchange resin are respectively transferred to a dedicated regeneration tower, the resin transfer time is also increased.

特許文献2に開示された樹脂の再生方法によれば、中間樹脂層にアニオン交換樹脂の再生薬剤とカチオン交換樹脂の再生薬剤が入り込む。このため、アニオン交換樹脂がカチオン交換樹脂の再生薬剤で逆再生され、あるいはカチオン交換樹脂がアニオン交換樹脂の再生薬剤で逆再生される可能性がある。   According to the resin regeneration method disclosed in Patent Document 2, an anion exchange resin regeneration agent and a cation exchange resin regeneration agent enter the intermediate resin layer. For this reason, there is a possibility that the anion exchange resin is reversely regenerated with the regenerative agent of the cation exchange resin, or the cation exchange resin is reversely regenerated with the regenerative agent of the anion exchange resin.

本発明は設備のコストの削減が容易で、かつ樹脂の逆再生が生じにくいアニオン樹脂及びカチオン樹脂の再生方法と復水脱塩装置を提供することを目的とする。   An object of the present invention is to provide a method for regenerating an anion resin and a cation resin, and a condensate demineralizer, which can easily reduce the cost of equipment and hardly cause reverse regeneration of the resin.

本発明の一態様は、復水脱塩塔に混床充填されるアニオン交換樹脂とカチオン交換樹脂の再生方法に関する。本再生方法は、復水脱塩塔に混床充填されたアニオン交換樹脂とカチオン交換樹脂の混合樹脂を、復水脱塩塔から再生塔に移送することと、再生塔に移送された混合樹脂を、アニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、上層と下層との間に位置しアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層と、に分離することと、上層のアニオン交換樹脂を再生し洗浄することと、再生及び洗浄されたアニオン交換樹脂を復水脱塩塔に移送することと、アニオン交換樹脂の移送後、中間樹脂層を樹脂貯蔵槽に移送することと、中間樹脂層の移送後、下層のカチオン交換樹脂を再生し洗浄することと、再生及び洗浄されたカチオン交換樹脂を復水脱塩塔に移送することと、復水脱塩塔内のカチオン交換樹脂およびアニオン交換樹脂を混合させることと、を有する。   One embodiment of the present invention relates to an anion exchange resin packed in a condensate demineralization tower and a method for regenerating the cation exchange resin. In this regeneration method, the mixed resin of the anion exchange resin and the cation exchange resin packed in the condensate demineralization tower is transferred from the condensate demineralization tower to the regeneration tower, and the mixed resin transferred to the regeneration tower. Are separated into an upper layer made of an anion exchange resin, a lower layer made of a cation exchange resin, and an intermediate resin layer located between the upper layer and the lower layer and containing an anion exchange resin and a cation exchange resin, Regenerating and washing the anion exchange resin, transferring the regenerated and washed anion exchange resin to the condensate demineralization tower, and transferring the intermediate resin layer to the resin storage tank after the transfer of the anion exchange resin; After the transfer of the intermediate resin layer, the lower cation exchange resin is regenerated and washed, the regenerated and washed cation exchange resin is transferred to the condensate demineralization tower, and the cation exchange in the condensate demineralization tower Resin and Anio Having a be mixed exchange resin.

本発明の他の態様は復水脱塩装置に関する。復水脱塩装置は、アニオン交換樹脂とカチオン交換樹脂が混床充填された復水脱塩塔と、アニオン交換樹脂とカチオン交換樹脂を収容する再生塔と、復水脱塩塔に混床充填されたアニオン交換樹脂とカチオン交換樹脂の混合樹脂を再生塔に移送する混合樹脂移送ラインと、再生塔に移送された混合樹脂を、アニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、上層と下層との間に位置しアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層と、に分離する混合樹脂分離手段と、上層のアニオン交換樹脂を再生し洗浄する手段と、再生塔の上層が形成される領域と復水脱塩塔とを接続し、再生され洗浄されたアニオン交換樹脂を復水脱塩塔に移送するアニオン交換樹脂移送ラインと、中間樹脂層を一時的に貯蔵する樹脂貯蔵槽と、再生塔の中間樹脂層が形成される領域と樹脂貯蔵槽とを接続し、中間樹脂層を樹脂貯蔵槽に移送する第1の中間樹脂層移送ラインと、下層のカチオン交換樹脂を再生し洗浄する手段と、再生塔の下層が形成される領域と復水脱塩塔とを接続し、再生され洗浄されたカチオン交換樹脂を復水脱塩塔に移送するカチオン交換樹脂移送ラインと、復水脱塩塔に移送されたアニオン交換樹脂とカチオン交換樹脂を混合する手段と、を有する。   Another aspect of the present invention relates to a condensate demineralizer. The condensate demineralizer is composed of a condensate demineralization tower filled with an anion exchange resin and a cation exchange resin, a regeneration tower containing an anion exchange resin and a cation exchange resin, and a condensate demineralization tower packed in a mixed bed. A mixed resin transfer line for transferring the mixed resin of the anion exchange resin and the cation exchange resin to the regeneration tower, the mixed resin transferred to the regeneration tower, an upper layer made of an anion exchange resin, and a lower layer made of a cation exchange resin, An intermediate resin layer located between the upper layer and the lower layer and containing an anion exchange resin and a cation exchange resin, a mixed resin separation means, a means for regenerating and washing the upper anion exchange resin, and an upper layer of the regeneration tower An anion exchange resin transfer line that connects the region where the water is formed and the condensate demineralization tower and transfers the regenerated and washed anion exchange resin to the condensate demineralization tower, and a resin that temporarily stores the intermediate resin layer Saving The tank is connected to the region where the intermediate resin layer of the regeneration tower is formed and the resin storage tank, and the first intermediate resin layer transfer line for transferring the intermediate resin layer to the resin storage tank and the lower cation exchange resin are regenerated. A cation exchange resin transfer line for connecting the region where the lower layer of the regeneration tower is formed and the condensate demineralizer, and transferring the regenerated and washed cation exchange resin to the condensate demineralizer, And means for mixing the anion exchange resin and the cation exchange resin transferred to the condensate demineralization tower.

本発明によれば、再生塔に移送された混合樹脂が、再生塔の内部でアニオン交換樹脂からなる上層とカチオン交換樹脂からなる下層と中間樹脂層とに分離され、さらに再生塔の内部でアニオン交換樹脂とカチオン交換樹脂が再生される。このため、アニオン交換樹脂及びカチオン交換樹脂専用の再生塔やこれらの樹脂を移送するための設備を設ける必要がない。先に再生されたアニオン交換樹脂は復水脱塩塔に移送されるため、再生されたアニオン交換樹脂の受槽を設ける必要がない。下層のカチオン樹脂は、アニオン樹脂の再生、中間樹脂の移送後に再生されるため、仮に前工程で逆再生したとしても、最終的に再生される。従って、本発明によれば、設備のコストの削減が容易で、かつ樹脂の逆再生が生じにくいアニオン樹脂及びカチオン樹脂の再生方法と復水脱塩装置を提供することができる。   According to the present invention, the mixed resin transferred to the regeneration tower is separated into an upper layer made of an anion exchange resin, a lower layer made of a cation exchange resin, and an intermediate resin layer inside the regeneration tower. Exchange resin and cation exchange resin are regenerated. For this reason, it is not necessary to provide the regeneration tower only for anion exchange resin and cation exchange resin, and the installation for transferring these resins. Since the previously regenerated anion exchange resin is transferred to the condensate demineralization tower, it is not necessary to provide a receiving tank for the regenerated anion exchange resin. Since the lower layer cationic resin is regenerated after the regeneration of the anion resin and the transfer of the intermediate resin, even if it is reversely regenerated in the previous step, it is finally regenerated. Therefore, according to the present invention, it is possible to provide a method for regenerating an anion resin and a cation resin and a condensate demineralization apparatus which can easily reduce the cost of equipment and hardly cause reverse regeneration of the resin.

樹脂の再生塔への移送が行われる直前の復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralization apparatus just before the transfer to the regeneration tower of resin. 樹脂の再生塔への移送が行われるときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralization apparatus when transfer to the regeneration tower of resin is performed. 混合樹脂をアニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、中間樹脂層と、に分離するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralization apparatus when separating mixed resin into the upper layer which consists of an anion exchange resin, the lower layer which consists of a cation exchange resin, and an intermediate resin layer. アニオン交換樹脂を再生するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when reproducing | regenerating an anion exchange resin. アニオン交換樹脂を洗浄するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when wash | cleaning an anion exchange resin. アニオン交換樹脂を脱塩塔に移送するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when transferring an anion exchange resin to a desalting tower. 中間樹脂層を樹脂貯蔵槽に移送するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when transferring an intermediate resin layer to a resin storage tank. カチオン交換樹脂を再生するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when reproducing | regenerating a cation exchange resin. カチオン交換樹脂を洗浄するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when wash | cleaning a cation exchange resin. カチオン交換樹脂を脱塩塔に移送するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of the condensate demineralizer when transferring a cation exchange resin to a desalting tower. 中間樹脂層を再生塔に移送するときの復水脱塩装置の状態を示す図である。It is a figure which shows the state of a condensate demineralizer when transferring an intermediate resin layer to a regeneration tower. 復水脱塩塔のスクリーンの斜視図である。It is a perspective view of the screen of a condensate demineralization tower. 図12の部分拡大図である。It is the elements on larger scale of FIG. 空気供給手段の断面図である。It is sectional drawing of an air supply means.

以下、図面を参照して、本発明の一実施形態に係る復水脱塩装置と、アニオン交換樹脂とカチオン交換樹脂の再生方法について説明する。本発明の復水脱塩装置は主に発電所で用いられる。図1は本発明の復水脱塩装置1の概略構成を示している。復水脱塩装置1は、アニオン交換樹脂とカチオン交換樹脂が混床充填され復水を脱塩する復水脱塩塔2と、アニオン交換樹脂とカチオン交換樹脂を再生する再生装置3と、を有している。再生装置3はアニオン交換樹脂とカチオン交換樹脂の再生及び洗浄を行う再生塔4と、後述する中間樹脂層を一時的に貯蔵する樹脂貯蔵槽6と、を有している。タービン(図示せず)で仕事を行った蒸気は復水器(図示せず)で凝縮されて復水となり、復水ろ過装置(図示せず)等でろ過された後、復水脱塩塔2で脱塩され、ボイラー(図示せず)等の蒸気発生装置に供給される。   Hereinafter, with reference to the drawings, a condensate demineralizer according to an embodiment of the present invention, and a method for regenerating an anion exchange resin and a cation exchange resin will be described. The condensate demineralizer of the present invention is mainly used in power plants. FIG. 1 shows a schematic configuration of a condensate demineralizer 1 according to the present invention. The condensate demineralizer 1 includes a condensate demineralization tower 2 for demineralizing condensate by filling a mixed bed of anion exchange resin and cation exchange resin, and a regenerator 3 for regenerating the anion exchange resin and cation exchange resin. Have. The regenerator 3 has a regeneration tower 4 that regenerates and cleans the anion exchange resin and the cation exchange resin, and a resin storage tank 6 that temporarily stores an intermediate resin layer described later. Steam that has worked in a turbine (not shown) is condensed in a condenser (not shown) to become condensate, filtered by a condensate filtration device (not shown), etc., and then a condensate demineralizer 2 is desalted and supplied to a steam generator such as a boiler (not shown).

図1はアニオン交換樹脂とカチオン交換樹脂の再生塔4への移送が行われる直前の復水脱塩装置1を示している。復水脱塩塔2にはアニオン交換樹脂とカチオン交換樹脂が混床充填されている。すなわち、復水脱塩塔2にはアニオン交換樹脂とカチオン交換樹脂が混合された混合樹脂Mが充填されている。混合樹脂Mはスクリーン10によって保持されている。復水脱塩塔2のスクリーン10の直上の位置に、混合樹脂Mを再生塔4に移送するための混合樹脂移送ラインL1が接続されている。混合樹脂移送ラインL1の弁V1は閉じられている。復水脱塩塔2の上部には再生されたアニオン交換樹脂とカチオン交換樹脂を充填するための樹脂充填ラインL2が接続されている。樹脂充填ラインL2は樹脂の移送方向における上流側でアニオン交換樹脂取り出しラインL3とカチオン交換樹脂取り出しラインL4に接続されている。樹脂充填ラインL2の弁V2は閉じられている。再生塔4の底部には前回の再生処理で残存した中間樹脂層Tが貯蔵されている。中間樹脂層Tは逆再生されたカチオン交換樹脂を含んでいる可能性がある。   FIG. 1 shows the condensate demineralizer 1 immediately before the transfer of the anion exchange resin and the cation exchange resin to the regeneration tower 4 is performed. The condensate demineralization tower 2 is packed with an anion exchange resin and a cation exchange resin. That is, the condensate demineralization tower 2 is filled with a mixed resin M in which an anion exchange resin and a cation exchange resin are mixed. The mixed resin M is held by the screen 10. A mixed resin transfer line L 1 for transferring the mixed resin M to the regeneration tower 4 is connected to a position directly above the screen 10 of the condensate demineralization tower 2. The valve V1 of the mixed resin transfer line L1 is closed. A resin filling line L <b> 2 for filling the regenerated anion exchange resin and cation exchange resin is connected to the upper part of the condensate demineralization tower 2. The resin filling line L2 is connected to the anion exchange resin take-out line L3 and the cation exchange resin take-out line L4 on the upstream side in the resin transfer direction. The valve V2 of the resin filling line L2 is closed. At the bottom of the regeneration tower 4, an intermediate resin layer T remaining in the previous regeneration process is stored. The intermediate resin layer T may contain a reversely regenerated cation exchange resin.

次に、図2に示すように、アニオン交換樹脂とカチオン交換樹脂を再生塔4に移送する。なお、図2〜11において、樹脂、再生薬剤、水等が流通するラインを太線で示している。具体的には混合樹脂移送ラインL1の弁V1を開き、復水脱塩塔2の混合樹脂Mを、混合樹脂移送ラインL1を通して再生塔4に移送する。樹脂は水と空気によって移送される。一般に、水は樹脂のルージング(ほぐし)とスラリー濃度の調整に用いられ、空気は移送元の塔内の加圧に用いられる。図示は省略しているが、移送先の塔はドレン/ベントを開放することによって移送元の塔に対し減圧される。混合樹脂Mは再生塔4に貯蔵されている中間樹脂層Tと一体化して新たな混合樹脂Mとなる。混合樹脂Mの移送が終わると混合樹脂移送ラインL1の弁V1を閉じる。   Next, as shown in FIG. 2, the anion exchange resin and the cation exchange resin are transferred to the regeneration tower 4. In addition, in FIGS. 2-11, the line through which resin, a regenerative medicine, water, etc. distribute | circulate is shown by the thick line. Specifically, the valve V1 of the mixed resin transfer line L1 is opened, and the mixed resin M in the condensate demineralization tower 2 is transferred to the regeneration tower 4 through the mixed resin transfer line L1. The resin is transferred by water and air. In general, water is used for resin loosening and adjustment of the slurry concentration, and air is used for pressurization in the transfer tower. Although not shown, the destination column is depressurized relative to the source column by opening the drain / vent. The mixed resin M is integrated with the intermediate resin layer T stored in the regeneration tower 4 to become a new mixed resin M. When the transfer of the mixed resin M is finished, the valve V1 of the mixed resin transfer line L1 is closed.

次に、図3に示すように、再生塔4の底部に接続された水供給ラインL5の弁V5を開き、水供給ラインL5から再生塔4に水を供給する。混合樹脂Mは水によって攪拌される。比重の大きいカチオン樹脂と比重の小さいアニオン樹脂の沈降速度の違いによって、カチオン樹脂が下部に、アニオン樹脂が上部に分離される。アニオン樹脂とカチオン樹脂の境界にはアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層Tが形成される。このようにして、再生塔4に移送された混合樹脂Mは、アニオン交換樹脂からなる上層Aと、カチオン交換樹脂からなる下層Cと、上層Aと下層Cとの間に位置しアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層Tと、に分離される。水供給ラインL5は、混合樹脂Mをアニオン交換樹脂からなる上層Aと、カチオン交換樹脂からなる下層Cと、中間樹脂層Tと、に分離する混合樹脂分離手段を構成する。   Next, as shown in FIG. 3, the valve V5 of the water supply line L5 connected to the bottom of the regeneration tower 4 is opened to supply water to the regeneration tower 4 from the water supply line L5. The mixed resin M is stirred with water. Due to the difference in sedimentation speed between the cationic resin having a large specific gravity and the anionic resin having a small specific gravity, the cationic resin is separated at the lower part and the anionic resin is separated at the upper part. An intermediate resin layer T including the anion exchange resin and the cation exchange resin is formed at the boundary between the anion resin and the cation resin. Thus, the mixed resin M transferred to the regeneration tower 4 is located between the upper layer A made of an anion exchange resin, the lower layer C made of a cation exchange resin, and the upper layer A and the lower layer C. And an intermediate resin layer T containing a cation exchange resin. The water supply line L5 constitutes mixed resin separation means for separating the mixed resin M into an upper layer A made of an anion exchange resin, a lower layer C made of a cation exchange resin, and an intermediate resin layer T.

次に、図4に示すように、アニオン交換樹脂再生薬液供給ラインL6の弁V6を開き、アニオン交換樹脂再生薬液供給ラインL6からアニオン交換樹脂からなる上層Aにアニオン交換樹脂再生薬液を供給する。再生薬液はポンプまたはエゼクタ(図示せず)によってアニオン交換樹脂再生薬液供給ラインL6に注入される。アニオン交換樹脂再生薬液供給ラインL6は共通ラインL13を介して、再生塔4の内部のアニオン樹脂からなる上層Aの上方に位置する供給配管8に接続されている。なお、共通ラインL13には、アニオン交換樹脂再生薬液供給ラインL6の他に、カチオン交換樹脂再生薬液供給ラインL7と、洗浄液供給ラインL8とが合流している。このため、共通ラインL13と供給配管8は、アニオン交換樹脂の再生薬剤と、カチオン交換樹脂の再生薬剤と、アニオン交換樹脂及びカチオン交換樹脂の洗浄液とを選択的に供給する機能を有している。アニオン交換樹脂再生薬液としては例えばNaOHが用いられる。アニオン交換樹脂再生薬液を供給するのと同時に、アニオン交換樹脂再生薬液の回収ラインL9の弁V9を開く。回収ラインL9は、再生塔4の内部の中間樹脂層Tが形成される領域に設けられた集水管9に接続されている。集水管9の表面には多数の開口が形成されている。開口はアニオン交換樹脂とカチオン交換樹脂を通過させず、薬液などの液体だけを通過させる。アニオン交換樹脂再生薬液はアニオン交換樹脂からなる上層Aと中間樹脂層Tを通り、集水管9で集められ、回収ラインL9から回収される。これによって、アニオン交換樹脂からなる上層Aが再生される。この際、水供給ラインL5の弁V5を開き、水供給ラインL5から水を供給する。水は上向き流となってカチオン交換樹脂からなる下層Cと中間樹脂層Tを通り、集水管9で集められ、回収ラインL9から回収される。水はアニオン交換樹脂再生薬液が下層Cのカチオン交換樹脂に入り込み、カチオン交換樹脂を逆再生することを防止する。この工程は省略することも可能である。仮に下層Cのカチオン交換樹脂が逆再生されても、後工程でカチオン交換樹脂再生薬液によって再生されることで、カチオン交換樹脂がNa形からH形に変化し、逆再生が解消されるためである。アニオン交換樹脂の再生が終了したら、アニオン交換樹脂再生薬液供給ラインL6の弁V6を閉じる。供給配管8と、共通ラインL13と、アニオン交換樹脂再生薬液供給ラインL6と、集水管9と、回収ラインL9はアニオン交換樹脂の再生手段を構成する。   Next, as shown in FIG. 4, the valve V6 of the anion exchange resin regenerative chemical liquid supply line L6 is opened, and the anion exchange resin regenerative chemical liquid is supplied from the anion exchange resin regenerative chemical liquid supply line L6 to the upper layer A made of the anion exchange resin. The regenerated chemical solution is injected into the anion exchange resin regenerated chemical solution supply line L6 by a pump or an ejector (not shown). The anion exchange resin regenerative chemical solution supply line L6 is connected to a supply pipe 8 located above the upper layer A made of an anion resin inside the regeneration tower 4 via a common line L13. In addition to the anion exchange resin regenerative chemical liquid supply line L6, a cation exchange resin regenerative chemical liquid supply line L7 and a cleaning liquid supply line L8 are joined to the common line L13. For this reason, the common line L13 and the supply pipe 8 have a function of selectively supplying an anion exchange resin regeneration agent, a cation exchange resin regeneration agent, and an anion exchange resin and a cation exchange resin cleaning solution. . For example, NaOH is used as the anion exchange resin regenerating chemical solution. Simultaneously with supplying the anion exchange resin regenerated chemical solution, the valve V9 of the anion exchange resin regenerated chemical solution recovery line L9 is opened. The recovery line L9 is connected to a water collection pipe 9 provided in a region where the intermediate resin layer T inside the regeneration tower 4 is formed. A large number of openings are formed on the surface of the water collecting pipe 9. The opening does not allow the anion exchange resin and the cation exchange resin to pass, but allows only a liquid such as a chemical solution to pass therethrough. The anion exchange resin regenerated chemical solution passes through the upper layer A and the intermediate resin layer T made of the anion exchange resin, is collected by the water collecting pipe 9, and is recovered from the recovery line L9. Thereby, the upper layer A made of the anion exchange resin is regenerated. At this time, the valve V5 of the water supply line L5 is opened to supply water from the water supply line L5. The water flows upward, passes through the lower layer C and the intermediate resin layer T made of the cation exchange resin, is collected by the water collecting pipe 9, and is recovered from the recovery line L9. Water prevents the anion exchange resin regenerating chemical solution from entering the cation exchange resin of the lower layer C and reversely regenerating the cation exchange resin. This step can be omitted. Even if the cation exchange resin of the lower layer C is reversely regenerated, it is regenerated by a cation exchange resin regenerative chemical solution in a later step, so that the cation exchange resin changes from Na form to H form, and reverse regeneration is eliminated. is there. When the regeneration of the anion exchange resin is completed, the valve V6 of the anion exchange resin regeneration chemical liquid supply line L6 is closed. The supply pipe 8, the common line L13, the anion exchange resin regenerative chemical solution supply line L6, the water collection pipe 9, and the recovery line L9 constitute an anion exchange resin regeneration means.

次に、図5に示すように、洗浄液供給ラインL8の弁V8を開き、洗浄液供給ラインL8からアニオン交換樹脂からなる上層Aに洗浄液を供給する。洗浄液としては例えば純水が用いられる。回収ラインL9の弁V9は開いたままである。洗浄液はアニオン交換樹脂再生薬液と同様の経路を通り、回収ラインL9から回収される。これによって、アニオン交換樹脂が洗浄される。水供給ラインL5から水が供給されるため、アニオン交換樹脂再生薬液を含んだ洗浄水が下層Cのカチオン交換樹脂に入り込み、カチオン交換樹脂が逆再生されることが防止される。上述の理由によって、水供給ラインL5からの水の供給を省略することも可能である。アニオン交換樹脂の洗浄が終了したら、洗浄液供給ラインL8の弁V8と回収ラインL9の弁V9を閉じる。供給配管8と、共通ラインL13と、洗浄液供給ラインL8と、集水管9と、回収ラインL9はアニオン交換樹脂の洗浄手段を構成する。   Next, as shown in FIG. 5, the valve V8 of the cleaning liquid supply line L8 is opened, and the cleaning liquid is supplied from the cleaning liquid supply line L8 to the upper layer A made of an anion exchange resin. For example, pure water is used as the cleaning liquid. The valve V9 of the recovery line L9 remains open. The cleaning liquid passes through the same path as the anion exchange resin regenerated chemical solution and is recovered from the recovery line L9. Thereby, the anion exchange resin is washed. Since water is supplied from the water supply line L5, the washing water containing the anion exchange resin regenerating chemical solution enters the cation exchange resin of the lower layer C, and the cation exchange resin is prevented from being reversely regenerated. For the above reasons, it is possible to omit the supply of water from the water supply line L5. When the cleaning of the anion exchange resin is completed, the valve V8 of the cleaning liquid supply line L8 and the valve V9 of the recovery line L9 are closed. The supply pipe 8, the common line L13, the cleaning liquid supply line L8, the water collecting pipe 9, and the recovery line L9 constitute an anion exchange resin cleaning means.

次に、図6に示すように、アニオン交換樹脂取り出しラインL3と樹脂充填ラインL2の弁V3,V2を開き、再生及び洗浄されたアニオン交換樹脂を復水脱塩塔2に移送する。アニオン交換樹脂取り出しラインL3の一端は、再生塔4のアニオン交換樹脂からなる上層Aが形成される領域の下部に接続されており、他端は樹脂充填ラインL2に接続されている。アニオン交換樹脂取り出しラインL3と樹脂充填ラインL2はアニオン交換樹脂移送ラインを構成する。再生及び洗浄されたアニオン交換樹脂はアニオン交換樹脂取り出しラインL3と樹脂充填ラインL2を通り、復水脱塩塔2に再充填される。アニオン交換樹脂の移送が終了したらアニオン交換樹脂取り出しラインL3と樹脂充填ラインL2の弁V3,V2を閉じる。このとき、再生塔4内では中間樹脂層Tが露出している。   Next, as shown in FIG. 6, the valves V3 and V2 of the anion exchange resin take-out line L3 and the resin filling line L2 are opened, and the regenerated and washed anion exchange resin is transferred to the condensate demineralizer 2. One end of the anion exchange resin take-out line L3 is connected to the lower part of the region where the upper layer A made of the anion exchange resin of the regeneration tower 4 is formed, and the other end is connected to the resin filling line L2. The anion exchange resin take-out line L3 and the resin filling line L2 constitute an anion exchange resin transfer line. The regenerated and washed anion exchange resin passes through the anion exchange resin take-out line L3 and the resin filling line L2, and is refilled in the condensate demineralization tower 2. When the transfer of the anion exchange resin is completed, the valves V3 and V2 of the anion exchange resin take-out line L3 and the resin filling line L2 are closed. At this time, the intermediate resin layer T is exposed in the regeneration tower 4.

次に、図7に示すように、第1の中間樹脂層移送ラインL10の弁V10を開き、中間樹脂層Tを樹脂貯蔵槽6に移送する。第1の中間樹脂層移送ラインL10は再生塔4の中間樹脂層Tが形成される領域の下部と樹脂貯蔵槽6とを接続している。ここで、復水脱塩装置1は、新品のアニオン交換樹脂とカチオン交換樹脂を充填するための樹脂ホッパ6を供えている。樹脂ホッパ6は上部が開放された開放容器である。第1の中間樹脂層移送ラインL10の弁V10を開き、新品のアニオン交換樹脂とカチオン交換樹脂を樹脂ホッパ6に投入することで、アニオン交換樹脂とカチオン交換樹脂が再生塔4に充填される。アニオン交換樹脂とカチオン交換樹脂は再生塔4で計量された後、カチオン交換樹脂取り出しラインL4と樹脂充填ラインL2を経由して復水脱塩塔2に充填される。本実施形態では樹脂貯蔵槽6として樹脂ホッパ6が用いられている。樹脂ホッパ6は従来の復水脱塩装置にも一般的に備えられているものであるため、樹脂貯蔵槽6を設けることで設備数が増加することはない。また、復水脱塩装置は通常、復水脱塩塔2や再生塔4から塔外に漏れ出すアニオン交換樹脂とカチオン交換樹脂を捕捉する樹脂キャッチャ7を備えている。樹脂キャッチャ7は図示のとおり、再生塔4の頂部のベントラインL12に接続されており、図示は省略するが、復水脱塩塔2の頂部のベントラインにも接続されている。ベントラインL12の弁V12の開放時にベントラインL12に漏れ出したアニオン交換樹脂とカチオン交換樹脂は樹脂キャッチャ7で捕捉される。樹脂貯蔵槽6として樹脂キャッチャ7を用いることもできる。なお、本実施形態では樹脂ホッパ6と樹脂キャッチャ7は一体化されており、コスト低減に寄与している。中間樹脂層Tの移送が終了したら第1の中間樹脂層移送ラインL10の弁V10を閉じる。このとき、再生塔4内にはカチオン交換樹脂からなる下層Cだけが残存している。   Next, as shown in FIG. 7, the valve V <b> 10 of the first intermediate resin layer transfer line L <b> 10 is opened, and the intermediate resin layer T is transferred to the resin storage tank 6. The first intermediate resin layer transfer line L <b> 10 connects the lower part of the region where the intermediate resin layer T of the regeneration tower 4 is formed and the resin storage tank 6. Here, the condensate demineralizer 1 is provided with a resin hopper 6 for filling a new anion exchange resin and a cation exchange resin. The resin hopper 6 is an open container whose upper part is opened. The regeneration column 4 is filled with the anion exchange resin and the cation exchange resin by opening the valve V10 of the first intermediate resin layer transfer line L10 and introducing new anion exchange resin and cation exchange resin into the resin hopper 6. The anion exchange resin and the cation exchange resin are weighed in the regeneration tower 4 and then charged into the condensate demineralization tower 2 via the cation exchange resin take-out line L4 and the resin filling line L2. In this embodiment, a resin hopper 6 is used as the resin storage tank 6. Since the resin hopper 6 is generally provided in a conventional condensate demineralizer, the number of facilities does not increase by providing the resin storage tank 6. In addition, the condensate demineralizer usually includes a resin catcher 7 that captures an anion exchange resin and a cation exchange resin that leak from the condensate demineralization tower 2 and the regeneration tower 4 to the outside of the tower. As shown in the figure, the resin catcher 7 is connected to the vent line L12 at the top of the regeneration tower 4 and is also connected to the vent line at the top of the condensate demineralizer 2 although not shown. The anion exchange resin and the cation exchange resin leaked to the vent line L12 when the valve V12 of the vent line L12 is opened are captured by the resin catcher 7. A resin catcher 7 can also be used as the resin storage tank 6. In this embodiment, the resin hopper 6 and the resin catcher 7 are integrated, which contributes to cost reduction. When the transfer of the intermediate resin layer T is completed, the valve V10 of the first intermediate resin layer transfer line L10 is closed. At this time, only the lower layer C made of the cation exchange resin remains in the regeneration tower 4.

次に、図8に示すように、カチオン交換樹脂再生薬液供給ラインL7の弁V7を開き、カチオン交換樹脂再生薬液供給ラインL7からカチオン交換樹脂からなる下層Cにカチオン交換樹脂再生薬液を供給する。再生薬液はポンプまたはエゼクタ(図示せず)によってカチオン交換樹脂再生薬液供給ラインL7に注入される。カチオン交換樹脂再生薬液としては例えばHClが用いられる。これと同時に、再生塔4の底部に接続されたカチオン交換樹脂再生薬液の回収ラインL14の弁V14を開く。アニオン交換樹脂を洗浄したときと同様にしてカチオン交換樹脂が再生される。アニオン交換樹脂はすでに復水脱塩塔2に移送されているため、水供給ラインL5から水を供給する必要はない。なお、アニオン交換樹脂の再生時に万が一カチオン交換樹脂の一部が逆再生された場合でも、カチオン交換樹脂はカチオン交換樹脂再生薬液によってH形に戻る。カチオン交換樹脂の再生が終了したら、カチオン交換樹脂再生薬液供給ラインL7の弁V7を閉じる。供給配管8と、共通ラインL13と、カチオン交換樹脂再生薬液供給ラインL7と、回収ラインL14はカチオン交換樹脂の再生手段を構成する。   Next, as shown in FIG. 8, the valve V7 of the cation exchange resin regenerative chemical liquid supply line L7 is opened, and the cation exchange resin regenerative chemical liquid is supplied from the cation exchange resin regenerated chemical liquid supply line L7 to the lower layer C made of the cation exchange resin. The regenerated chemical solution is injected into the cation exchange resin regenerated chemical solution supply line L7 by a pump or an ejector (not shown). For example, HCl is used as the cation exchange resin regenerating chemical solution. At the same time, the valve V14 of the recovery line L14 for the cation exchange resin regenerative chemical solution connected to the bottom of the regeneration tower 4 is opened. The cation exchange resin is regenerated in the same manner as when the anion exchange resin is washed. Since the anion exchange resin has already been transferred to the condensate demineralization tower 2, it is not necessary to supply water from the water supply line L5. Even if a part of the cation exchange resin is reversely regenerated at the time of regeneration of the anion exchange resin, the cation exchange resin returns to the H form by the cation exchange resin regenerating chemical solution. When regeneration of the cation exchange resin is completed, the valve V7 of the cation exchange resin regeneration chemical solution supply line L7 is closed. The supply pipe 8, the common line L13, the cation exchange resin regenerated chemical liquid supply line L7, and the recovery line L14 constitute a cation exchange resin regeneration means.

次に、図9に示すように、洗浄液供給ラインL8の弁V8を開き、洗浄液供給ラインL8からカチオン交換樹脂の下層Cに洗浄液を供給する。アニオン交換樹脂を洗浄したときと同様にして下層Cのカチオン交換樹脂が洗浄される。回収ラインL14の弁V14は開いたままである。カチオン交換樹脂の洗浄が終了したら、洗浄液供給ラインL8の弁V8と回収ラインL14の弁V14を閉じる。供給配管8と、共通ラインL13と、洗浄液供給ラインL8と、回収ラインL14はカチオン交換樹脂の洗浄手段を構成する。   Next, as shown in FIG. 9, the valve V8 of the cleaning liquid supply line L8 is opened, and the cleaning liquid is supplied from the cleaning liquid supply line L8 to the lower layer C of the cation exchange resin. The cation exchange resin of the lower layer C is washed in the same manner as when the anion exchange resin is washed. The valve V14 of the recovery line L14 remains open. When the cleaning of the cation exchange resin is completed, the valve V8 of the cleaning liquid supply line L8 and the valve V14 of the recovery line L14 are closed. The supply pipe 8, the common line L13, the cleaning liquid supply line L8, and the recovery line L14 constitute a cation exchange resin cleaning means.

次に、図10に示すように、カチオン交換樹脂取り出しラインL4と樹脂充填ラインL2の弁V4,V2を開き、再生及び洗浄されたカチオン交換樹脂を復水脱塩塔2に移送する。カチオン交換樹脂取り出しラインL4の一端は再生塔4のカチオン交換樹脂からなる下層Cが形成される領域の下部に接続されており、他端は樹脂充填ラインL2に接続されている。カチオン交換樹脂取り出しラインL4と樹脂充填ラインL2はカチオン交換樹脂移送ラインを構成する。再生及び洗浄されたカチオン交換樹脂はカチオン交換樹脂取り出しラインL4と樹脂充填ラインL2を通り、復水脱塩塔2に再充填される。カチオン交換樹脂の移送が終了したらカチオン交換樹脂取り出しラインL4と樹脂充填ラインL2の弁V4,V2を閉じる。このとき、再生塔4内には樹脂がない状態となる。   Next, as shown in FIG. 10, the valves V4 and V2 of the cation exchange resin take-out line L4 and the resin filling line L2 are opened, and the regenerated and washed cation exchange resin is transferred to the condensate demineralization tower 2. One end of the cation exchange resin take-out line L4 is connected to the lower part of the region of the regeneration tower 4 where the lower layer C made of the cation exchange resin is formed, and the other end is connected to the resin filling line L2. The cation exchange resin take-out line L4 and the resin filling line L2 constitute a cation exchange resin transfer line. The regenerated and washed cation exchange resin passes through the cation exchange resin take-out line L4 and the resin filling line L2, and is refilled in the condensate demineralization tower 2. When the transfer of the cation exchange resin is completed, the valves V4 and V2 of the cation exchange resin take-out line L4 and the resin filling line L2 are closed. At this time, there is no resin in the regeneration tower 4.

次に、図11に示すように、第2の中間樹脂層移送ラインL11の弁V11を開き、中間樹脂層Tを樹脂貯蔵槽6から再生塔4に移送する。中間樹脂層Tの移送が終了したら中間樹脂層移送ラインL11の弁V11を閉じる。これによって、再生塔4は図1に示す状態に戻り、次に再生塔4に新たなアニオン交換樹脂とカチオン交換樹脂が供給されるまで待機する。   Next, as shown in FIG. 11, the valve V11 of the second intermediate resin layer transfer line L11 is opened, and the intermediate resin layer T is transferred from the resin storage tank 6 to the regeneration tower 4. When the transfer of the intermediate resin layer T is completed, the valve V11 of the intermediate resin layer transfer line L11 is closed. As a result, the regeneration tower 4 returns to the state shown in FIG. 1 and then waits until a new anion exchange resin and cation exchange resin are supplied to the regeneration tower 4.

一方、アニオン交換樹脂とカチオン交換樹脂は別々のタイミングで復水脱塩塔2に移送されるため、この時点では図11に示すように、アニオン交換樹脂の上にカチオン交換樹脂が積層された複床充填の状態にある。これを混床状態にするため、スクリーン10の下方から空気流を供給する。図12は復水脱塩塔2のスクリーン10の斜視図を、図13は図12の破線で示した部分の拡大図を示している。   On the other hand, since the anion exchange resin and the cation exchange resin are transferred to the condensate demineralization tower 2 at different timings, at this point, as shown in FIG. 11, a composite of the cation exchange resin laminated on the anion exchange resin is laminated. It is in a state of floor filling. In order to make this into a mixed bed state, an air flow is supplied from below the screen 10. FIG. 12 is a perspective view of the screen 10 of the condensate demineralizer 2, and FIG. 13 is an enlarged view of a portion indicated by a broken line in FIG.

スクリーン10はアニオン交換樹脂とカチオン交換樹脂を保持する円板状の部材であり、同じく円形のスクリーン保持板11に保持されている。スクリーン10の上面10aは水平面となっている。スクリーン10は互いに間隔をおいて一方向に延びる複数のワイヤ部材10bと、ワイヤ部材10bと直交する方向に延び、複数のワイヤ部材10bを保持する複数のサポートロッド10cと、から構成されている。ワイヤ部材10b及びサポートロッド10cは金属または樹脂で作成され、金属で作成されている場合は溶接等の、樹脂で作成されている場合は接着剤等の適宜の手段で、相互に固定されている。ワイヤ部材10bとサポートロッド10cは直交していなくてもよく、ワイヤ部材10bを固定できる限り、任意の角度で交差することができる。   The screen 10 is a disk-shaped member that holds an anion exchange resin and a cation exchange resin, and is held by a circular screen holding plate 11. The upper surface 10a of the screen 10 is a horizontal plane. The screen 10 includes a plurality of wire members 10b extending in one direction at intervals and a plurality of support rods 10c extending in a direction orthogonal to the wire members 10b and holding the plurality of wire members 10b. The wire member 10b and the support rod 10c are made of metal or resin, and are fixed to each other by appropriate means such as welding when made of metal, or adhesive when made of resin. . The wire member 10b and the support rod 10c do not need to be orthogonal, and can intersect at any angle as long as the wire member 10b can be fixed.

ワイヤ部材10bの断面形状は特に限定されないが、上側に一辺が位置する三角形断面、上側に長辺が位置する台形断面などが特に好ましい。ワイヤ部材10bの間隔は上側で狭く、下側で広くなっているため、下向き流で流れる復水に含まれる異物がワイヤ部材10b間の隙間に捕捉されることが防止される。ワイヤ部材10bの断面形状としては他にも、ホームベース状の断面、円または楕円の半部に相当する断面等が挙げられる。ワイヤ部材10bの上面の間隔dは、アニオン交換樹脂とカチオン交換樹脂が流出しないように選択される。   The cross-sectional shape of the wire member 10b is not particularly limited, but a triangular cross section with one side positioned on the upper side, a trapezoidal cross section with a long side positioned on the upper side, and the like are particularly preferable. Since the interval between the wire members 10b is narrower on the upper side and wider on the lower side, foreign matter contained in the condensate flowing in the downward flow is prevented from being captured in the gap between the wire members 10b. Other examples of the cross-sectional shape of the wire member 10b include a home-base cross-section and a cross-section corresponding to a half of a circle or an ellipse. The distance d between the upper surfaces of the wire members 10b is selected so that the anion exchange resin and the cation exchange resin do not flow out.

スクリーン保持板11は複数の開口11aを備えている。スクリーン10に保持されたアニオン交換樹脂とカチオン交換樹脂を通過した復水は、図13に矢印で示すように、互いに隣接するワイヤ部材10bの間の間隙10dを通過し、次に、互いに隣接するサポートロッド10cの間の空間10eに入り、その後スクリーン保持板11の開口11aに流入し、下側空間13(図14参照)に流出する。互いに隣接するサポートロッド10cで囲まれる空間10eは、必ずいずれかの開口11aと連通しており、サポートロッド10cで囲まれる空間10eに流入した復水が下側空間13に排出されるようになっている。   The screen holding plate 11 includes a plurality of openings 11a. The anion exchange resin held on the screen 10 and the condensate that has passed through the cation exchange resin pass through the gap 10d between the adjacent wire members 10b as shown by arrows in FIG. It enters the space 10e between the support rods 10c, and then flows into the opening 11a of the screen holding plate 11 and flows out into the lower space 13 (see FIG. 14). The space 10e surrounded by the support rods 10c adjacent to each other always communicates with one of the openings 11a, and the condensate flowing into the space 10e surrounded by the support rods 10c is discharged to the lower space 13. ing.

図14はスクリーン10の下方に設けられる空気供給手段の断面を示している。空気供給手段は以下に述べる空気供給ノズル12と複数の管14とからなる。空気供給ノズル12は復水脱塩塔2の側面に設けられ、下側空間13に開口している。複数の管14はスクリーン保持板11に取り付けられ、下側空間13を延びている。各々の管14の側面には開口14aが設けられている。   FIG. 14 shows a cross section of the air supply means provided below the screen 10. The air supply means includes an air supply nozzle 12 and a plurality of tubes 14 described below. The air supply nozzle 12 is provided on the side surface of the condensate demineralization tower 2 and opens to the lower space 13. The plurality of tubes 14 are attached to the screen holding plate 11 and extend through the lower space 13. An opening 14 a is provided on the side surface of each tube 14.

複床充填のアニオン交換樹脂とカチオン交換樹脂を混床状態とするため、空気供給ノズル12から下側空間13に空気が供給される。下側空間13は残留水、シャワリング水等の水で満たされており、供給された空気はスクリーン保持板11の下面11b付近に滞留する。空気流量を適切に選択することによって、スクリーン保持板11の下面11bのほぼ全面と接する空気層15が形成される。空気層15の空気は各管14の開口14aを通して管14の内部に流入し、スクリーン10の上面から上昇流となって排出される(図14の矢印参照)。複床充填のアニオン交換樹脂とカチオン交換樹脂はこの空気流によって攪拌され、混床状態となる。   Air is supplied from the air supply nozzle 12 to the lower space 13 in order to make the mixed bed state of the anion exchange resin and the cation exchange resin filled in multiple beds. The lower space 13 is filled with water such as residual water or showering water, and the supplied air stays near the lower surface 11 b of the screen holding plate 11. By appropriately selecting the air flow rate, an air layer 15 in contact with the substantially entire lower surface 11b of the screen holding plate 11 is formed. The air in the air layer 15 flows into the inside of the pipe 14 through the opening 14a of each pipe 14, and is discharged as an upward flow from the upper surface of the screen 10 (see the arrow in FIG. 14). The anion exchange resin and the cation exchange resin filled in the multiple beds are agitated by this air flow to be in a mixed bed state.

従来の復水脱塩装置では、アニオン再生塔で再生されたアニオン交換樹脂はカチオン再生塔に移送され、カチオン再生塔で再生されたカチオン交換樹脂ととともに混床状態にして復水脱塩塔に移送している。しかし、従来の復水脱塩塔は上述の空気供給手段を備えていないため、本実施形態に従ってアニオン交換樹脂とカチオン交換樹脂を再生しても、別々に復水脱塩塔に送られて複床状態となったアニオン交換樹脂とカチオン交換樹脂を混床状態にすることが困難であった。本実施形態では、空気供給手段を備えた復水脱塩塔と上述した再生方法とを組み合わせることで、再生されたアニオン交換樹脂とカチオン交換樹脂を混床状態にすることが可能となっている。   In the conventional condensate demineralizer, the anion exchange resin regenerated in the anion regeneration tower is transferred to the cation regeneration tower and mixed with the cation exchange resin regenerated in the cation regeneration tower to form a condensate demineralization tower. It is transported. However, since the conventional condensate demineralization tower does not include the air supply means described above, even if the anion exchange resin and the cation exchange resin are regenerated according to the present embodiment, they are separately sent to the condensate demineralization tower. It was difficult to make the anion exchange resin and the cation exchange resin in a bed state into a mixed bed state. In the present embodiment, the regenerated anion exchange resin and the cation exchange resin can be mixed in a mixed bed state by combining the condensate demineralization tower provided with the air supply means and the above-described regeneration method. .

1 復水脱塩装置
2 復水脱塩塔
3 再生装置
4 再生塔
6 樹脂貯蔵槽(樹脂ホッパ)
7 樹脂キャッチャ
8 供給配管
9 集水管
10 スクリーン
11 スクリーン保持板
12 空気供給ノズル
14 管
A 上層(アニオン樹脂層)
C 下層(カチオン樹脂層)
M 混合樹脂
T 中間樹脂層
L1 混合樹脂移送ライン
L2 樹脂充填ライン
L3 アニオン交換樹脂取り出しライン
L4 カチオン交換樹脂取り出しライン
L5 水供給ライン
L6 アニオン交換樹脂再生薬液供給ライン
L7 カチオン交換樹脂再生薬液供給ライン
L8 洗浄液供給ライン
L9 アニオン交換樹脂再生薬液及び洗浄液の回収ライン
L10 第1の中間樹脂層移送ライン
L11 第2の中間樹脂層移送ライン
L12 ベントライン
L13 共通ライン
L14 カチオン交換樹脂再生薬液の回収ライン
DESCRIPTION OF SYMBOLS 1 Condensate demineralizer 2 Condensate demineralizer 3 Regenerator 4 Regenerator 6 Resin storage tank (resin hopper)
7 Resin catcher 8 Supply pipe 9 Water collecting pipe 10 Screen 11 Screen holding plate 12 Air supply nozzle 14 Pipe A Upper layer (anion resin layer)
C Lower layer (cationic resin layer)
M Mixed resin T Intermediate resin layer L1 Mixed resin transfer line L2 Resin filling line L3 Anion exchange resin takeout line L4 Cation exchange resin takeout line L5 Water supply line L6 Anion exchange resin regenerative chemical liquid supply line L7 Cation exchange resin regenerative chemical liquid supply line L8 Cleaning liquid Supply line L9 Anion exchange resin regenerated chemical solution and cleaning liquid recovery line L10 First intermediate resin layer transfer line L11 Second intermediate resin layer transfer line L12 Vent line L13 Common line L14 Cation exchange resin regenerated chemical solution recovery line

Claims (12)

復水脱塩塔に混床充填されるアニオン交換樹脂とカチオン交換樹脂の再生方法であって、
前記復水脱塩塔に混床充填されたアニオン交換樹脂とカチオン交換樹脂の混合樹脂を、前記復水脱塩塔から再生塔に移送することと、
前記再生塔に移送された前記混合樹脂を、アニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、前記上層と前記下層との間に位置しアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層と、に分離することと、
前記上層のアニオン交換樹脂を再生し洗浄することと、
再生及び洗浄された前記アニオン交換樹脂を前記復水脱塩塔に移送することと、
前記アニオン交換樹脂の移送後、前記中間樹脂層を樹脂貯蔵槽に移送することと、
前記中間樹脂層の移送後、前記下層のカチオン交換樹脂を再生し洗浄することと、
再生及び洗浄された前記カチオン交換樹脂を前記復水脱塩塔に移送することと、
前記復水脱塩塔内のカチオン交換樹脂およびアニオン交換樹脂を混合させることと、
を有する、アニオン交換樹脂とカチオン交換樹脂の再生方法。
A method for regenerating an anion exchange resin and a cation exchange resin packed in a condensate demineralization tower,
Transferring the mixed resin of anion exchange resin and cation exchange resin packed in the condensate demineralization tower to the regeneration tower from the condensate demineralization tower;
The mixed resin transported to the regeneration tower is an intermediate layer including an anion exchange resin and a cation exchange resin located between the upper layer made of an anion exchange resin, a lower layer made of a cation exchange resin, and the upper layer and the lower layer. Separating into a resin layer;
Regenerating and washing the upper layer anion exchange resin;
Transferring the regenerated and washed anion exchange resin to the condensate demineralizer;
After transferring the anion exchange resin, transferring the intermediate resin layer to a resin storage tank;
After transferring the intermediate resin layer, regenerating and washing the lower layer cation exchange resin;
Transferring the regenerated and washed cation exchange resin to the condensate demineralizer;
Mixing the cation exchange resin and anion exchange resin in the condensate demineralization tower;
A method for regenerating an anion exchange resin and a cation exchange resin.
前記上層の上方から前記アニオン交換樹脂の再生薬液を供給し、前記中間樹脂層から前記アニオン交換樹脂の再生薬液を回収することによって、前記上層のアニオン交換樹脂が再生される、請求項1に記載の再生方法。   2. The anion exchange resin of the upper layer is regenerated by supplying a regenerative chemical solution of the anion exchange resin from above the upper layer and recovering the regenerative chemical solution of the anion exchange resin from the intermediate resin layer. How to play. 前記上層の上方から洗浄液を供給し、前記中間樹脂層から前記洗浄液を回収することによって、前記上層のアニオン交換樹脂が洗浄される、請求項2に記載の再生方法。   The regeneration method according to claim 2, wherein the upper layer anion exchange resin is washed by supplying a washing solution from above the upper layer and recovering the washing solution from the intermediate resin layer. 前記アニオン交換樹脂の再生薬液または前記洗浄液が供給されるときに前記下層の下方から水が供給され、前記中間樹脂層から、前記アニオン交換樹脂の再生薬液または前記洗浄液とともに、前記水が回収される、請求項3に記載の再生方法。   When the regenerated chemical solution of the anion exchange resin or the cleaning solution is supplied, water is supplied from below the lower layer, and the water is recovered from the intermediate resin layer together with the regenerated chemical solution of the anion exchange resin or the cleaning solution. The reproduction method according to claim 3. 前記樹脂貯蔵槽として、前記アニオン交換樹脂と前記カチオン交換樹脂の樹脂ホッパ、または前記アニオン交換樹脂と前記カチオン交換樹脂の樹脂キャッチャが用いられる、請求項1から4のいずれか1項に記載の再生方法。   The regeneration according to any one of claims 1 to 4, wherein a resin hopper of the anion exchange resin and the cation exchange resin or a resin catcher of the anion exchange resin and the cation exchange resin is used as the resin storage tank. Method. 前記カチオン交換樹脂の移送後、前記樹脂貯蔵槽内の中間樹脂を、前記再生塔に移送する、請求項1から5のいずれか1項に記載の再生方法。   The regeneration method according to any one of claims 1 to 5, wherein after the transfer of the cation exchange resin, an intermediate resin in the resin storage tank is transferred to the regeneration tower. 前記復水脱塩塔に移送された前記アニオン交換樹脂と前記カチオン交換樹脂はスクリーンの上に保持され、前記スクリーンの下方から空気流を供給することによって混床状態となる、請求項1から6のいずれか1項に記載の再生方法。   The anion exchange resin and the cation exchange resin transferred to the condensate demineralization tower are held on a screen, and are mixed into a mixed bed state by supplying an air flow from below the screen. The reproducing method according to any one of the above. アニオン交換樹脂とカチオン交換樹脂が混床充填された復水脱塩塔と、
前記アニオン交換樹脂と前記カチオン交換樹脂を収容する再生塔と、
前記復水脱塩塔に混床充填されたアニオン交換樹脂とカチオン交換樹脂の混合樹脂を前記再生塔に移送する混合樹脂移送ラインと、
前記再生塔に移送された前記混合樹脂を、アニオン交換樹脂からなる上層と、カチオン交換樹脂からなる下層と、前記上層と前記下層との間に位置しアニオン交換樹脂とカチオン交換樹脂とを含む中間樹脂層と、に分離する混合樹脂分離手段と、
前記上層のアニオン交換樹脂を再生し洗浄する手段と、
前記再生塔の前記上層が形成される領域と前記復水脱塩塔とを接続し、再生され洗浄された前記アニオン交換樹脂を前記復水脱塩塔に移送するアニオン交換樹脂移送ラインと、
前記中間樹脂層を一時的に貯蔵する樹脂貯蔵槽と、
前記再生塔の前記中間樹脂層が形成される領域と前記樹脂貯蔵槽とを接続し、前記中間樹脂層を前記樹脂貯蔵槽に移送する第1の中間樹脂層移送ラインと、
前記下層のカチオン交換樹脂を再生し洗浄する手段と、
前記再生塔の前記下層が形成される領域と前記復水脱塩塔とを接続し、再生され洗浄された前記カチオン交換樹脂を前記復水脱塩塔に移送するカチオン交換樹脂移送ラインと、
前記復水脱塩塔に移送されたアニオン交換樹脂とカチオン交換樹脂を混合する手段と、を有する、復水脱塩装置。
A condensate demineralization tower packed with a mixed bed of anion exchange resin and cation exchange resin;
A regeneration tower containing the anion exchange resin and the cation exchange resin;
A mixed resin transfer line for transferring a mixed resin of an anion exchange resin and a cation exchange resin packed in the condensate demineralization tower to the regeneration tower;
The mixed resin transported to the regeneration tower is an intermediate layer including an anion exchange resin and a cation exchange resin located between the upper layer made of an anion exchange resin, a lower layer made of a cation exchange resin, and the upper layer and the lower layer. A resin layer, and a mixed resin separating means for separating the resin layer;
Means for regenerating and washing the anion exchange resin of the upper layer;
An anion exchange resin transfer line for connecting the region where the upper layer of the regeneration tower is formed and the condensate demineralization tower, and transferring the regenerated and washed anion exchange resin to the condensate demineralization tower;
A resin storage tank for temporarily storing the intermediate resin layer;
A first intermediate resin layer transfer line for connecting the region where the intermediate resin layer of the regeneration tower is formed and the resin storage tank, and transferring the intermediate resin layer to the resin storage tank;
Means for regenerating and washing the underlying cation exchange resin;
A cation exchange resin transfer line for connecting the region where the lower layer of the regeneration tower is formed and the condensate demineralization tower and transferring the regenerated and washed cation exchange resin to the condensate demineralization tower;
And a means for mixing the anion exchange resin and the cation exchange resin transferred to the condensate demineralization tower.
前記カチオン交換樹脂を移送後、前記中間樹脂を前記樹脂貯蔵槽から前記再生塔に移送する第2の中間樹脂層移送ラインを有する、請求項8に記載の復水脱塩装置   The condensate demineralizer according to claim 8, further comprising a second intermediate resin layer transfer line for transferring the intermediate resin from the resin storage tank to the regeneration tower after transferring the cation exchange resin. 前記アニオン交換樹脂を再生し洗浄する手段は、前記再生塔の内部の前記上層の上方に位置し、前記アニオン交換樹脂の再生薬剤と洗浄液とを選択的に供給する供給配管と、
前記再生塔の内部の前記中間樹脂層が形成される領域に設けられ、前記アニオン交換樹脂の再生薬剤と前記洗浄液とを回収する集水管と、を有する、請求項8または9に記載の復水脱塩装置。
A means for regenerating and washing the anion exchange resin is located above the upper layer inside the regeneration tower, and a supply pipe for selectively supplying the regenerant chemical and washing liquid of the anion exchange resin,
The condensate according to claim 8 or 9, further comprising a water collection pipe provided in a region where the intermediate resin layer is formed inside the regeneration tower and collecting the regeneration agent of the anion exchange resin and the cleaning liquid. Desalination equipment.
前記アニオン交換樹脂と前記カチオン交換樹脂の樹脂ホッパと、
前記アニオン交換樹脂と前記カチオン交換樹脂の樹脂キャッチャと、を有し、
前記樹脂ホッパと前記樹脂キャッチャのいずれかが前記樹脂貯蔵槽として用いられる、請求項8から10のいずれか1項に記載の復水脱塩装置。
A resin hopper of the anion exchange resin and the cation exchange resin;
A resin catcher for the anion exchange resin and the cation exchange resin;
The condensate demineralizer according to any one of claims 8 to 10, wherein either the resin hopper or the resin catcher is used as the resin storage tank.
前記復水脱塩塔に移送されたアニオン交換樹脂とカチオン交換樹脂を混合する手段は、前記復水脱塩塔に設けられ、前記アニオン交換樹脂と前記カチオン交換樹脂とを保持するスクリーンと、前記スクリーンの下方から空気流を供給する空気供給手段と、を有する、請求項8から11のいずれか1項に記載の復水脱塩装置。   The means for mixing the anion exchange resin and the cation exchange resin transferred to the condensate demineralization tower is provided in the condensate demineralization tower, the screen holding the anion exchange resin and the cation exchange resin, The condensate demineralizer according to any one of claims 8 to 11, further comprising air supply means for supplying an air flow from below the screen.
JP2017099997A 2017-05-19 2017-05-19 Regeneration method of anion resin and cation resin, and condensate demineralizer Pending JP2018192443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099997A JP2018192443A (en) 2017-05-19 2017-05-19 Regeneration method of anion resin and cation resin, and condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099997A JP2018192443A (en) 2017-05-19 2017-05-19 Regeneration method of anion resin and cation resin, and condensate demineralizer

Publications (1)

Publication Number Publication Date
JP2018192443A true JP2018192443A (en) 2018-12-06

Family

ID=64571198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099997A Pending JP2018192443A (en) 2017-05-19 2017-05-19 Regeneration method of anion resin and cation resin, and condensate demineralizer

Country Status (1)

Country Link
JP (1) JP2018192443A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451977A (en) * 1977-10-03 1979-04-24 Japan Organo Co Ltd Method of preventing leakage of trouble ion in mixed bed system ion-exchange device
JPS5454970A (en) * 1977-10-12 1979-05-01 Japan Organo Co Ltd Prevention of leakage of interfering ion in mixed bed type ion exchange apparatus
JPS5511089A (en) * 1978-05-11 1980-01-25 Belco Pollution Control Corp Method of regenerating mixed resin bed used for purifying condensed water
JPS647990A (en) * 1987-06-29 1989-01-11 Toshiba Corp Condensate desalting device
JPH1147744A (en) * 1997-07-31 1999-02-23 Kurita Water Ind Ltd Condensed water treatment
JP2001054738A (en) * 1999-06-09 2001-02-27 Nippon Rensui Co Ltd Column and method for separating mixed ion exchange resins
WO2012157448A1 (en) * 2011-05-17 2012-11-22 オルガノ株式会社 Ion exchange equipment
WO2015129698A1 (en) * 2014-02-25 2015-09-03 オルガノ株式会社 Method for purifying sucrose solution and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451977A (en) * 1977-10-03 1979-04-24 Japan Organo Co Ltd Method of preventing leakage of trouble ion in mixed bed system ion-exchange device
JPS5454970A (en) * 1977-10-12 1979-05-01 Japan Organo Co Ltd Prevention of leakage of interfering ion in mixed bed type ion exchange apparatus
JPS5511089A (en) * 1978-05-11 1980-01-25 Belco Pollution Control Corp Method of regenerating mixed resin bed used for purifying condensed water
JPS647990A (en) * 1987-06-29 1989-01-11 Toshiba Corp Condensate desalting device
JPH1147744A (en) * 1997-07-31 1999-02-23 Kurita Water Ind Ltd Condensed water treatment
JP2001054738A (en) * 1999-06-09 2001-02-27 Nippon Rensui Co Ltd Column and method for separating mixed ion exchange resins
WO2012157448A1 (en) * 2011-05-17 2012-11-22 オルガノ株式会社 Ion exchange equipment
WO2015129698A1 (en) * 2014-02-25 2015-09-03 オルガノ株式会社 Method for purifying sucrose solution and device therefor

Similar Documents

Publication Publication Date Title
JP5699209B2 (en) Ion exchanger
JP2000503889A (en) Method and apparatus for minimizing wastewater emissions
CN207748952U (en) A kind of electroplating wastewater reclaimer
CN206454659U (en) Soften the cleaning device of water process ion exchange resin for oil field
US3674685A (en) Process of and apparatus for the ion-exchange treatment of liquids
EP3283218B1 (en) Regeneration of mixed bed resins
JP2018192443A (en) Regeneration method of anion resin and cation resin, and condensate demineralizer
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
US3583908A (en) Condensate purification process
JP6910844B2 (en) Condenser desalination device
TW201402471A (en) Condensate demineralizer and condensate demineralization method
JP2018126687A (en) Ion exchange resin regeneration apparatus and method
JP2013081906A (en) Apparatus and method for producing ion exchange treatment water
US1776883A (en) Filtration process and apparatus
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPH0679656B2 (en) Hollow fiber membrane filter with desalination function
JP4295670B2 (en) Ion exchanger
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP3632375B2 (en) Condensate demineralizer
TWI648224B (en) Operation method of regenerative ion exchange device
JPH05168953A (en) Regeneration of ion exchange membrane and its device
JPS6219898B2 (en)
KR970058779A (en) Ion exchange resin transfer separation regeneration method and apparatus of out-of-phase regenerative mixed-phase multiple desalination plant
JPH049583B2 (en)
JP2654053B2 (en) Condensate desalination equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116