JP3632375B2 - Condensate demineralizer - Google Patents

Condensate demineralizer Download PDF

Info

Publication number
JP3632375B2
JP3632375B2 JP13585597A JP13585597A JP3632375B2 JP 3632375 B2 JP3632375 B2 JP 3632375B2 JP 13585597 A JP13585597 A JP 13585597A JP 13585597 A JP13585597 A JP 13585597A JP 3632375 B2 JP3632375 B2 JP 3632375B2
Authority
JP
Japan
Prior art keywords
resin
condensate
ion exchange
exchange resin
transfer main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13585597A
Other languages
Japanese (ja)
Other versions
JPH10309478A (en
Inventor
茂夫 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP13585597A priority Critical patent/JP3632375B2/en
Publication of JPH10309478A publication Critical patent/JPH10309478A/en
Application granted granted Critical
Publication of JP3632375B2 publication Critical patent/JP3632375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の復水脱塩塔及びイオン交換樹脂の再生設備を具備した復水脱塩装置に関し、更に詳しくは復水脱塩塔と再生設備間でイオン交換樹脂を移送する樹脂移送管の配管構造を改良した復水脱塩装置に関する。
【0002】
【従来の技術】
復水脱塩装置は、例えば原子力発電所や火力発電所等の発電所で発生する復水中の不純物イオンを除去する脱塩処理に用いられている。復水は発電用のタービンの駆動源として利用した蒸気を復水器により冷却して得られた水で、発電所では大量の復水が発生するため、復水脱塩装置は大規模なものが多い。また、復水脱塩装置に用いられるイオン交換樹脂は高価なため、復水脱塩塔内のイオン交換樹脂が貫流点に達すると、イオン交換樹脂を再生して繰り返し使用するようにしている。イオン交換樹脂の再生には再生設備を使用するため、復水脱塩装置は、一般的に、複数の復水脱塩塔及び再生設備とを備えている。そして、これらの各復水脱塩塔と再生設備は樹脂移送管によって連結され、樹脂移送管を介して再生用イオン交換樹脂及び再生済みイオン交換樹脂を移送している。
【0003】
そこで、各復水脱塩塔、再生設備及び樹脂移送管の関係について図3を参照しながら説明する。復水脱塩装置は、同図に示すように、例えば強酸性カチオン交換樹脂11と強塩基性アニオン交換樹脂12を混合した混合イオン交換樹脂10が充填された複数(図3では6基だけ図示してあるが、基数は復水の処理量に応じて設定される)の混床式の復水脱塩塔21〜26からなる復水脱塩塔群20と、この復水脱塩塔群20の内、貫流点に達した復水脱塩塔内の混合イオン交換樹脂10を抜き出して再生する再生設備30とを備えている。そして、復水脱塩塔群20と再生設備30は後述する二系列の樹脂移送主管を介して連結されている。また、再生設備30は、同一塔内で混合イオン交換樹脂10を密度差によって強酸性カチオン交換樹脂11と強塩基性アニオン交換樹脂12に分離して個別に再生する再生塔31と、この再生塔31で再生された混合イオン交換樹脂10を貯留する樹脂貯槽32とを備えている。再生塔31の下部と樹脂貯槽32の上部は連結管33によって連結され、再生塔31で再生された混合イオン交換樹脂10を連結管33を介して樹脂貯槽32へ移送するようにしてある。尚、34、35、36はいずれもバルブである。
【0004】
また、二系列の樹脂移送主管は、貫流点に達した再生用混合イオン交換樹脂10を各復水脱塩塔21〜26から再生設備30へ移送するための第1樹脂移送主管41と、再生済み混合イオン交換樹脂10を再生設備30から空の復水脱塩塔へ移送するための第2樹脂移送主管42とからなっている。そして、図示してないが第1、第2樹脂移送主管41、42のいずれにもバルブや光電子管等の付属機器が配設され、第1、第2樹脂移送主管41、42を流れる樹脂スラリー(水で流動容易な状態まで希釈されたイオン交換樹脂)の流量を調整したり、樹脂スラリーの流れを監視したりするようにしてある。
【0005】
第1樹脂移送主管41は各復水脱塩塔21〜26へ分岐する分岐管41A〜41Fを有し、第1樹脂移送主管41は各分岐管41A〜41Fを介して各復水脱塩塔21〜26の底部に連結されている。更に、各分岐管41A〜41Fには例えば自動バルブ(以下、単に「バルブ」と称す。)51〜56がそれぞれ配設され、各バルブ51〜56によって各復水脱塩塔21〜26と第1樹脂移送主管41との間を連通し、遮断するようにしてある。また、第1樹脂移送主管41は再生設備30の再生塔31の上部に連結され、その端部に配設されたバルブ34によって第1樹脂移送主管41と再生塔31との間を連通し、遮断するようにしてある。
【0006】
また、第2樹脂移送主管42は各復水脱塩塔21〜26の上方でそれぞれに分岐する分岐管42A〜42Fを有し、各分岐管42A〜42Fを介して各復水脱塩塔21〜26の上部に連結されている。更に、各分岐管42A〜42Fにはバルブ61〜66がそれぞれ配設され、各バルブ61〜66によって各復水脱塩塔21〜26と第2樹脂移送主管42との間を連通し、遮断するようにしてある。また、第2樹脂移送主管42は再生設備30の樹脂貯槽32の下部に連結され、その端部に配設されたバルブ35によって第2樹脂移送主管42と樹脂貯槽32との間を連通し、遮断するようにしてある。
【0007】
次に、例えば復水脱塩塔21内の混合イオン交換樹脂10を再生する場合について説明する。復水脱塩塔21内の混合イオン交換樹脂10を再生するには、まず通水用のバルブ(図示せず)を閉じて他の復水脱塩塔22〜26から隔離する。次いで、例えば復水脱塩塔21の下部分岐管41Aのバルブ51及び再生塔31側のバルブ34を共に開いた状態で復水脱塩塔21の下部から純水及び空気を供給し、内部の混合イオン交換樹脂10を攪拌しながら移送に適したスラリー濃度まで樹脂濃度を希釈する。この時、復水脱塩塔21の上部からも空気を供給し、復水脱塩塔21内の圧力を徐々に高めて行く。復水脱塩塔21内の圧力が高くなって第1樹脂移送主管41の圧力損失分に打ち勝つ圧力に達すると、既に開放されているバルブ51から樹脂スラリーが第1樹脂移送主管41を流れ、バルブ34を介して再生塔31内へ流入する。純水及び空気を継続して供給すると、最終的には復水脱塩塔21内の再生用混合イオン交換樹脂10が全て再生塔31内へ移送される。全ての混合イオン交換樹脂10が再生塔31内へ移送されると、予め貯留してある再生済み混合イオン交換樹脂10を再生設備30の樹脂貯槽32から空になった復水脱塩塔21内へ移送する。
【0008】
再生設備30から再生済み混合イオン交換樹脂10を移送する場合には、樹脂貯槽32側のバルブ35及び復水脱塩塔21の上部分岐管42Aのバルブ61を共に開いた状態で樹脂貯槽32の下部から純水及び空気を供給し、内部の再生済み混合イオン交換樹脂10を攪拌しながら移送に適したスラリー濃度まで樹脂濃度を希釈する。また、樹脂貯槽32の上部からも空気を供給し、樹脂貯槽32内の圧力が第2樹脂移送主管42の圧力損失分に打ち勝つと、既に開放されているバルブ35から樹脂スラリーが第2樹脂移送主管42を流れ、バルブ61を介して復水脱塩塔21内へ流入し、最終的には樹脂貯槽32内の再生済み混合イオン交換樹脂10が全て復水脱塩塔21内へ移送され、次の通水が可能になる。
【0009】
一方、再生設備30では再生用混合イオン交換樹脂10を受け取ると、再生塔31において再生用混合イオン交換樹脂10の再生を行う。この再生工程では、従来公知のように混合イオン交換樹脂10のエアスクラビング操作、逆洗操作、樹脂分離操作、分離後の強酸性カチオン交換樹脂及び強塩基性アニオン交換樹脂の個別再生操作、並びに個別洗浄操作等を行う。一連の再生操作が終了すると、バルブ36を開き、連結管33を介して再生塔31内の再生済み混合イオン交換樹脂10を樹脂貯槽32へ移送し、ここで次に必要な時まで再生済み混合イオン交換樹脂10を貯留する。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の復水脱塩装置の場合には、各復水脱塩塔21〜26と再生設備30間が二系列の第1、第2樹脂移送主管41、42によって連結されているため、第1、第2樹脂移送主管41、42の敷設にはレイアウト上種々の制約を受けてそれぞれの配管構造が複雑になると共に第1、第2樹脂移送主管41、42にはそれぞれバルブや光電子スイッチ等の付属機器が必要になって建設コストが高くなるという課題があった。また、二系列の第1、第2樹脂移送主管41、42にそれぞれ付属機器があってその数が多く、付属機器に要する保守、点検等のメンテナンス費用が高くなるという課題があった。
【0011】
本発明は、上記課題を解決するためになされたもので、各復水脱塩塔と再生設備間を結ぶ樹脂移送管の配管構造を簡素化することができ、もって建設コスト及びメンテナンスコストの低減を達成することができる復水脱塩装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明の請求項1に記載の復水脱塩装置は、複数の復水脱塩塔と、各復水脱塩塔内のイオン交換樹脂を再生する再生設備とを備え、且つ上記各復水脱塩塔の底部と上記再生設備とを第1樹脂移送主管を介して連結すると共に上記各復水脱塩塔の上部と上記再生設備とを第2樹脂移送主管を介して連結し、第1樹脂移送主管を復水脱塩塔の再生用イオン交換樹脂の移送として使用すると共に第2樹脂移送主管を再生設備の再生済みイオン交換樹脂の移送用として使用する復水脱塩装置において、上記樹脂移送主管と上記樹脂移送主管とを兼ねる共通樹脂移送主管設けると共に上記共通樹脂移送主管に複数の分岐管を設け、且つ、上記複数の分岐管は、上記各復水脱塩塔の底部と上記共通樹脂移送主管とをそれぞれ連結し且つ上記再生用イオン交換樹脂の移送用として使用する複数の第1分岐管と、上記共通樹脂移送主管と上記各復水脱塩塔の上部とをそれぞれ連結し且つ上記再生済みイオン交換樹脂の移送用として使用する複数の第2分岐管と、上記共通樹脂移送主管と上記再生設備とを連結し且つ上記再生用イオン交換樹脂の移送用として使用する第3分岐管と、上記共通樹脂移送主管と上記再生設備とを連結し且つ上記再生済みイオン交換樹脂の移送用として使用する第4分岐管と、を有することを特徴とするものである。
【0013】
また、本発明の請求項2に記載の復水脱塩装置は、請求項1に記載の発明において、再生済みイオン交換樹脂の流れとは逆方向に流れる水を供給する給水管を上記共通樹脂移送主管の復水脱塩塔側端部に連結したことを特徴とするものである。
【0014】
また、本発明の請求項3に記載の復水脱塩装置は、請求項1または請求項2に記載の発明において、上記第2分岐管の下流部二股に分岐する枝管を設け、各枝管を隣合う復水脱塩塔に連結し、上記第2分岐管を隣合う復水脱塩塔によって共用したことを特徴とするものである。
【0015】
また、本発明の請求項4に記載の復水脱塩装置は、請求項1〜請求項3のいずれか1項に記載の発明において、上記共通樹脂移送主管及び上記第4分岐管それぞれそれぞれの内部を流れるイオン交換樹脂の監視手段を設けたことを特徴とするものである。
【0016】
【発明の実施の形態】
以下、図1、図2に示す実施形態に基づいて従来と同一または相当部分には同一符号を附して本発明について説明する。尚、各図中、図1は本発明の復水脱塩装置の一実施形態を示す樹脂移送ラインのフロー図、図2は図1に示す復水脱塩装置の一部を拡大して示す拡大図である。
【0017】
本実施形態の復水脱塩装置は、図1に示すように、例えば強酸性カチオン交換樹脂11及び強塩基性アニオン交換樹脂12の混合イオン交換樹脂10がそれぞれ充填された6基の復水脱塩塔21〜26からなる復水脱塩塔群20と、この復水脱塩塔群20の内、貫流点に達した復水脱塩塔内の混合イオン交換樹脂10を再生する再生設備30とを備えて構成されている。また、再生設備30は、従来と同様に、混合イオン交換樹脂10の強酸性カチオン交換樹脂11と強塩基性アニオン交換樹脂12に個別に再生する再生塔31と、この再生塔31で再生された混合イオン交換樹脂10を貯留する樹脂貯槽32とを備え、連結管33を介して再生塔31内の再生済み混合イオン交換樹脂10を樹脂スラリーとして樹脂貯槽32へ移送し、貯留するようにしてある。
【0018】
さて、本実施形態では復水脱塩塔群20と再生設備30を連結する樹脂移送管の配管構造を以下で説明するように簡素化し、発電所内のレイアウトによる種々の制約があっても配管の建設コストを低減すると共にメンテナンスコストを低減できるようにしてある。即ち、従来は再生用イオン交換樹脂を樹脂スラリーとして復水脱塩塔から再生設備へ移送する際に用いられる第1樹脂移送主管と再生済みイオン交換樹脂を樹脂スラリーとして再生設備から復水脱塩塔へ移送する際に用いられる第2樹脂移送主管の二系列あったが、本実施形態では図1に示すように第2樹脂移送主管を第1樹脂移送主管に纏めて共通樹脂移送主管70として一系列にした点に特徴がある。
【0019】
上記共通樹脂移送主管70は図1に示すように復水脱塩塔群20及び再生設備30においてそれぞれ分岐する分岐管を有している。分岐管は、各復水脱塩塔21〜26内の再生用混合イオン交換樹脂10を樹脂スラリーとして取り出すためにそれぞれの底部に連結された第1分岐管71〜76と、各復水脱塩塔21〜26内に再生済み混合イオン交換樹脂10を樹脂スラリーとして受け入れるためにそれぞれの上部に連結された第2分岐管77〜79と、再生用混合イオン交換樹脂10を樹脂スラリーとして受給するために再生設備30の再生塔31の上部に連結された第3分岐管70Aと、再生済み混合イオン交換樹脂10を樹脂スラリーとして給送するために再生設備30の樹脂貯槽32の底部に連結された第4分岐管70Bとからなっている。
【0020】
第1分岐管71〜76にはそれぞれバルブ51〜56が配設され、各復水脱塩塔21〜26から再生用混合イオン交換樹脂10を取り出す時にそれぞれのバルブ51〜56を個別に開くようにしてある。また、第2分岐管77〜79は、図1に示すように、共通樹脂移送主管70から各復水脱塩塔21〜26の上方に達するように延設され、それぞれの延長端が二股に分岐し、一本の第2分岐管を隣合う復水脱塩塔によって共用するようにしてある。そして、第2分岐管77〜79は図2に示すような構造になっている。尚、図2では2基の復水脱塩塔21、22が他を代表して図示されている。
【0021】
例えば図2に示すように発電所構内のレイアウト上、共通樹脂移送主管70が復水脱塩塔群20の真下(図2では一点鎖線で示してある)を通すことができない場合、共通樹脂移送主管70をその真下から外れた位置に敷設せざるを得ない。この場合、第2分岐管77は、図2に示すように、共通樹脂移送主管70の分岐点から隣合う復水脱塩塔21、22の中間位置まで例えば45°の角度を作って斜め上方へ延び、この中間位置から垂直上方に立ち上がっている。更に、第2分岐管77は各復水脱塩塔21、22より若干高い位置で枝管77A、77Bとして左右に分岐し、それぞれの延長端が各復水脱塩塔21、22の上部に連結されている。尚、61〜66は各枝管77A、77B、78A、78B、79A、79Bにそれぞれ配設されたバルブである。
【0022】
また、図1に示すように上記共通樹脂移送主管70の端部には給水管80が連結され、この給水管80から共通樹脂移送主管70へ例えば純水を給送し、第2分岐管77〜79の内の混合イオン交換樹脂10を移送すべき第2分岐管において再生設備30からの樹脂スラリーと合流するようにしてある。この時の給水流量は給水管80に配設されたバルブ81によって調整するようにしてある。そして、例えば右側の復水脱塩塔22へ樹脂スラリーを移送する場合には、図2に示すように実線の矢印で示した方向へ樹脂スラリーを流すと共にこの流れと拮抗させて一点鎖線の矢印で示した方向へ純水を流すと、樹脂スラリーと純水は第2分岐管77で合流する。この時、第2分岐管77では左側の復水脱塩塔21のバルブ61を閉じているためその枝管77A内での流れはなく、右側の復水脱塩塔22のみへ樹脂スラリーが流入し、この復水脱塩塔22のみへ再生済み混合イオン交換樹脂を移送することができる。
【0023】
また、上記共通樹脂移送主管70には光電子管90Aがスラリー樹脂の監視手段として配設され、この光電子管90Aによって共通樹脂移送主管70内を流れる樹脂スラリーを監視するようにしてある。光電子管は例えば2箇所に配置され、他の一つは樹脂貯槽32近傍の第4分岐管70Bに光電子管90Bとして配設されている。光電子管90Aは復水脱塩装置群20を出入りする樹脂スラリーを監視し、光電子管90Bは再生設備30から流出する樹脂スラリーを監視するようにしてある。従って、光電子管90Aによって貫流点に達した混合イオン交換樹脂10の樹脂スラリーが復水脱塩塔群20から完全に流出したか否かを確認することができ、また、光電子管90Bによって再生済み混合イオン交換樹脂10の樹脂スラリーが再生設備30から完全に流出したか否かを確認することができる。また、光電子管90Aによって再生済み混合イオン交換樹脂10が完全に復水脱塩塔群20へ流入したか否かを確認することもできる。尚、図示してないが各復水脱塩塔21〜26及び樹脂貯槽32にはそれぞれ覗き窓が取り付けられ、各覗き窓によって内部の混合イオン交換樹脂10の状態を確認することができるようにしてある。
【0024】
次に、イオン交換樹脂の再生時の動作について説明する。例えば復水脱塩塔群20の復水脱塩塔22内の混合イオン交換樹脂10を再生する時には、まず通水用のバルブ(図示せず)を閉じて復水脱塩塔22における脱塩処理を停止し、他の復水脱塩塔21及び23〜26から隔離する。次いで、復水脱塩塔22の第1分岐管72のバルブ52及び再生設備30のバルブ34を共に開いた状態で復水脱塩塔22下部のバルブ(図示せず)から純水及び空気を個別に供給し、内部の混合イオン交換樹脂10を攪拌しながら移送に適したスラリー濃度まで樹脂濃度を希釈する。この時、復水脱塩塔22上部のバルブ(図示せず)からも空気を供給し、復水脱塩塔22内の圧力を徐々に高め、この圧力が共通樹脂移送主管70の圧力損失分に打ち勝つ圧力に達すると、既に開放されているバルブ52から樹脂スラリーが共通樹脂移送主管70を流れ、復水脱塩塔群20から流出し、バルブ34を介して再生塔31内へ流入する。この時の共通樹脂移送主管70内の樹脂スラリーの流れは光電子管90Aによって確認することができる。純水及び空気の供給を継続すると、最終的には復水脱塩塔22内の再生用混合イオン交換樹脂10が全て再生塔31内へ移送される。全ての樹脂スラリーが再生設備30側へ移送されたか否かは光電子管90Aによって確認することができる。再生用混合イオン交換樹脂10が全て再生塔31内へ移送されると、空になった復水脱塩塔22内へ再生済みの混合イオン交換樹脂10を樹脂貯槽32から移送する。
【0025】
この時には、再生設備30の樹脂貯槽32側のバルブ35及び復水脱塩塔22のバルブ62を共に開いた状態で樹脂貯槽32の下部から純水及び空気を供給し、内部の再生済み混合イオン交換樹脂10を攪拌しながら移送に適したスラリー濃度まで樹脂濃度を希釈すると共に樹脂貯槽32の上部からも空気を供給する。樹脂貯槽32内の圧力が共通樹脂移送主管70の圧力損失分に打ち勝つと、既に開放されているバルブ35から第4分岐管70Bを経由して共通樹脂移送主管70を流れる。この動作と並行してバルブ81を開き、給水管80から共通樹脂移送主管70へ純水を供給すると、この純水は第2分岐管77の分岐始点で樹脂スラリーと合流し、第2分岐管77及びその枝管77Bを経由して復水脱塩塔22内へ流入する。この際、給水管80からの給水流量は再生設備30からの樹脂スラリーの流量と拮抗する流量に調整する。再生設備30から再生済み混合イオン交換樹脂10が流出する様子は再生設備30の光電子管90Bによって監視することができ、復水脱塩塔群20側へ流入する様子はその光電子管90Aによって監視することができる。また、再生済み混合イオン交換樹脂10の移送が終了したか否かは両光電子管90A、90Bによって確認することができる。
【0026】
また、第2分岐管77の下部には水平部分及び直角に立ち上がる部分があるが、混合イオン交換樹脂10が滞留する虞がなく樹脂スラリーを確実に第2分岐管77の上方へ移送することができる。また、第2分岐管77の下流側が枝管77A、77Bに分岐しているが、各枝管77A、77Bはいずれも分岐始点から水平に延設され、しかも枝管77Aのバルブ61は閉じているため、枝管77A側に樹脂スラリーが流れ込むことなく復水脱塩塔22に通じる枝管77Bにのみ樹脂スラリーが円滑に流れる。このようにして樹脂スラリーが枝管77B及びバルブ62を介して復水脱塩塔22内へ流入し、最終的には樹脂貯槽32内の再生済み混合イオン交換樹脂10が全て復水脱塩塔22内へ移送され、次の通水が可能になる。
【0027】
一方、再生設備30では再生用混合イオン交換樹脂10を受け取ると、再生塔31において再生用混合イオン交換樹脂10の再生を行う。この再生工程では、従来公知のように混合イオン交換樹脂10のエアスクラビング操作、逆洗操作等によって混合イオン交換樹脂10の付着した懸濁物質を除去する。次いで、上昇流通水により混合イオン交換樹脂10を密度差で分離すると、強酸性カチオン交換樹脂11が下層として形成され、強塩基性アニオン交換樹脂12が上層として形成される。そして、再生塔31の上部から水酸化ナトリウム水溶液をアルカリ再生剤として分散供給すると共に再生塔31の下部からバランス水を供給しながら上層の強塩基性アニオン交換樹脂12を再生した後、上下から純水を供給して強塩基性アニオン交換樹脂12を洗浄する。この時の再生廃液は上層と下層の境界に配置された給排液管31Aから排出する。更に、再生塔31の下部から塩酸水溶液を酸再生剤として供給すると共に再生塔31の上部からバランス水を供給しながら下層の強酸性カチオン交換樹脂11を再生した後、上下から純水を供給して強酸性カチオン交換樹脂11を洗浄する。その後、再生塔31内で再生後の各イオン交換樹脂11、12を同塔内で混合した後、バルブ36を開き、再生済み混合イオン交換樹脂10を連結管33を介して樹脂貯槽32へ移送し、ここで次に必要な時まで混合イオン交換樹脂10を貯留する。
【0028】
以上説明したように本実施形態によれば、再生済み混合イオン交換樹脂10を再生設備30から復水脱塩塔群20へ移送する樹脂移送主管と、再生用混合イオン交換樹脂10を復水脱塩塔群20から再生設備30へ移送する樹脂移送主管を共通使用する共通樹脂移送主管70を設けると共に、この共通樹脂移送主管70から各復水脱塩塔21〜26に連通する第2分岐管77〜79を設け、従来二系列あった樹脂移送主管を一系列に纏めたため、共通樹脂移送主管70の配管構造が極めて簡素化され、発電所内のレイアウト上の制約があっても共通樹脂移送主管70の配管設計が従来と比較して容易になり、しかも配管長を短くすることができると共に樹脂移送主管の付属機器の点数を格段に削減することができ、樹脂移送配管の建設コストを格段に低減することができる。また、樹脂移送主管の付属機器の点数の削減に伴って配管の保守、点検等のメンテナンスコストを軽減することができる。
【0029】
また、復水脱塩塔群20及び再生設備30それぞれに光電子管90Aを設けたため、各光電子管90Aによって共通樹脂移送主管70における樹脂スラリーの流れを監視することができると共に樹脂スラリー移送が完了したことを確実に確認することができる。更に、共通樹脂移送主管70の復水脱塩塔群20の端部に給水管80を接続して樹脂スラリーの流れと拮抗する純水を供給するようにしたため、給水管80からの給水流量を適宜調整することにより樹脂スラリーの流れを制御して復水脱塩塔群20の所定の復水脱塩塔内へ再生済み混合イオン交換樹脂10を円滑且つ確実に移送することができる。
【0030】
また、例えば復水脱塩塔21、22に連通する第2分岐管77をその下流部で二股に分岐して枝管77A、77Bを設け、各枝管77A、77Bを隣合う復水脱塩塔21、22の上部に連結し、この第2分岐管77を両復水脱塩塔21、22によって共用するようにしたため、立ち上げ配管の本数を減らすことができる。更に、他の第2分岐管78、79へ再生済み混合イオン交換樹脂10を移送することなく、復水脱塩塔21、22に連結された第2分岐管77にのみ再生済みイオン交換樹脂10を円滑且つ確実に移送し、ひいてはそれぞれの復水脱塩塔21または22へ再生済みイオン交換樹脂10を移送することができる。
【0031】
尚、本発明は上記実施形態に何等制限されるものではない。例えば、第2分岐管77〜79の配管構造は分岐始点に傾斜角45°の傾斜部を有しているが、これらの傾斜角は必要に応じて適宜変更することができ、場合によっては傾斜部を設けなくても良い。また、樹脂スラリーの監視手段は光電子管に制限されるものではなく、監視手段としてはその他の光電的検出手段を適宜用いることができる。
【0032】
【発明の効果】
本発明の請求項1に記載の発明によれば、各復水脱塩塔と再生設備間を結ぶ樹脂移送管の配管構造を簡素化することができ、もって建設コスト及びメンテナンスコストの低減を達成することができる復水脱塩装置を提供することができる。
【0033】
また、本発明の請求項2及び請求項3に記載の発明によれば、請求項1に記載の発明において、再生設備から各復水脱塩塔に再生済みイオン交換樹脂を円滑且つ確実に移送することができる復水脱塩装置を提供することができる。
【0034】
また、本発明の請求項4に記載の発明によれば、請求項1〜請求項3のいずれか1項に記載の発明において、各復水脱塩塔と再生設備間におけるイオン交換樹脂の移送状態を確実に確認することができる復水脱塩装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の復水脱塩装置の一実施形態を示す樹脂移送ラインのフロー図である。
【図2】図1に示す復水脱塩装置の一部を拡大して示す拡大図である。
【図3】従来の復水脱塩装置の一実施形態を示す樹脂移送ラインのフロー図である。
【符号の説明】
10 混合イオン交換樹脂
20 復水脱塩塔群(複数の復水脱塩塔)
21〜26 復水脱塩塔
41 第1樹脂移送主管
42 第2樹脂移送主管
30 再生設備
70 共通樹脂移送主管
77〜79 第2分岐管(分岐管)
77A、77B 枝管
80 給水管
90A、90B 光電子管(監視手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condensate demineralizer having a plurality of condensate demineralization towers and an ion exchange resin regeneration facility, and more specifically, a resin transfer pipe for transferring an ion exchange resin between the condensate demineralization tower and the regeneration facility. The present invention relates to a condensate demineralizer with an improved piping structure.
[0002]
[Prior art]
The condensate demineralization apparatus is used for a desalting treatment for removing impurity ions in condensate generated at a power plant such as a nuclear power plant or a thermal power plant. Condensate is water obtained by cooling steam used as a driving source for power generation turbines with a condenser, and a large amount of condensate is generated at the power plant. There are many. Further, since the ion exchange resin used in the condensate demineralizer is expensive, when the ion exchange resin in the condensate demineralization tower reaches the pour point, the ion exchange resin is regenerated and used repeatedly. Since a regeneration facility is used for the regeneration of the ion exchange resin, the condensate demineralizer generally includes a plurality of condensate demineralization towers and a regeneration facility. Each of these condensate demineralization towers and the regeneration facility are connected by a resin transfer pipe, and the ion exchange resin for regeneration and the regenerated ion exchange resin are transferred through the resin transfer pipe.
[0003]
Therefore, the relationship between each condensate demineralizer, the regeneration facility, and the resin transfer pipe will be described with reference to FIG. As shown in the figure, the condensate demineralizer is composed of a plurality of mixed ion exchange resins 10 in which, for example, a strong acid cation exchange resin 11 and a strongly basic anion exchange resin 12 are mixed. The condensate demineralization tower group 20 including the mixed bed type condensate demineralization towers 21 to 26, and the condensate demineralization tower group, which are shown in the drawing, are set in accordance with the condensate treatment amount). 20 is provided with a regeneration facility 30 that extracts and regenerates the mixed ion exchange resin 10 in the condensate demineralization tower that has reached the through-flow point. And the condensate demineralization tower group 20 and the reproduction | regeneration equipment 30 are connected via the 2 series resin transfer main pipe mentioned later. The regeneration facility 30 includes a regeneration tower 31 that separates the mixed ion exchange resin 10 into a strongly acidic cation exchange resin 11 and a strongly basic anion exchange resin 12 according to a density difference and regenerates them separately in the same tower, and the regeneration tower. And a resin storage tank 32 for storing the mixed ion exchange resin 10 regenerated at 31. The lower part of the regeneration tower 31 and the upper part of the resin storage tank 32 are connected by a connecting pipe 33, and the mixed ion exchange resin 10 regenerated in the regeneration tower 31 is transferred to the resin storage tank 32 through the connecting pipe 33. Reference numerals 34, 35 and 36 are valves.
[0004]
The two series of resin transfer main pipes include a first resin transfer main pipe 41 for transferring the regenerated mixed ion exchange resin 10 that has reached the flow-through point from each of the condensate demineralization towers 21 to 26 to the regeneration facility 30, and It comprises a second resin transfer main pipe 42 for transferring the used mixed ion exchange resin 10 from the regeneration facility 30 to an empty condensate demineralization tower. Although not shown, the first and second resin transfer main pipes 41 and 42 are provided with accessory devices such as valves and photoelectron tubes, and the resin slurry flows through the first and second resin transfer main pipes 41 and 42. The flow rate of the ion exchange resin diluted to a state where it can easily flow with water is adjusted, and the flow of the resin slurry is monitored.
[0005]
The first resin transfer main pipe 41 has branch pipes 41A to 41F branched to the condensate demineralization towers 21 to 26, and the first resin transfer main pipe 41 passes through the branch pipes 41A to 41F. 21 to 26 are connected to the bottom. Further, for example, automatic valves (hereinafter simply referred to as “valves”) 51 to 56 are arranged in the branch pipes 41A to 41F, respectively, and the condensate demineralization towers 21 to 26 are connected to the branch pipes 41A to 41F. 1 The resin transfer main pipe 41 is communicated with and cut off. The first resin transfer main pipe 41 is connected to the upper part of the regeneration tower 31 of the regeneration facility 30, and communicates between the first resin transfer main pipe 41 and the regeneration tower 31 by a valve 34 disposed at the end thereof. It is designed to shut off.
[0006]
Further, the second resin transfer main pipe 42 has branch pipes 42A to 42F that respectively branch above the condensate demineralization towers 21 to 26, and each condensate demineralization tower 21 via the branch pipes 42A to 42F. To the top of .about.26. Further, valves 61 to 66 are respectively provided in the branch pipes 42A to 42F, and the valves 61 to 66 communicate between the condensate demineralization towers 21 to 26 and the second resin transfer main pipe 42 to block them. I have to do it. The second resin transfer main pipe 42 is connected to the lower part of the resin storage tank 32 of the regeneration facility 30 and communicates between the second resin transfer main pipe 42 and the resin storage tank 32 by a valve 35 disposed at an end thereof. It is designed to shut off.
[0007]
Next, for example, a case where the mixed ion exchange resin 10 in the condensate demineralization tower 21 is regenerated will be described. In order to regenerate the mixed ion exchange resin 10 in the condensate demineralization tower 21, first, a water valve (not shown) is closed to isolate it from the other condensate demineralization towers 22 to 26. Next, for example, pure water and air are supplied from the lower part of the condensate demineralizer 21 with both the valve 51 of the lower branch pipe 41A of the condensate demineralizer 21 and the valve 34 on the regeneration tower 31 side opened. While stirring the mixed ion exchange resin 10, the resin concentration is diluted to a slurry concentration suitable for transfer. At this time, air is also supplied from the upper part of the condensate demineralizer 21 to gradually increase the pressure in the condensate demineralizer 21. When the pressure in the condensate demineralization tower 21 increases and reaches a pressure that overcomes the pressure loss of the first resin transfer main pipe 41, the resin slurry flows through the first resin transfer main pipe 41 from the already opened valve 51, It flows into the regeneration tower 31 through the valve 34. If pure water and air are continuously supplied, all the mixed ion exchange resin for regeneration 10 in the condensate demineralization tower 21 is finally transferred into the regeneration tower 31. When all the mixed ion exchange resins 10 are transferred into the regeneration tower 31, the regenerated mixed ion exchange resins 10 stored in advance in the condensate demineralization tower 21 emptied from the resin storage tank 32 of the regeneration facility 30. Transfer to
[0008]
When transferring the regenerated mixed ion exchange resin 10 from the regeneration facility 30, the valve 35 on the resin storage tank 32 side and the valve 61 of the upper branch pipe 42 </ b> A of the condensate demineralization tower 21 are both opened. Pure water and air are supplied from below, and the resin concentration is diluted to a slurry concentration suitable for transfer while stirring the regenerated mixed ion exchange resin 10 inside. Further, when air is also supplied from the upper part of the resin storage tank 32 and the pressure in the resin storage tank 32 overcomes the pressure loss of the second resin transfer main pipe 42, the resin slurry is transferred from the valve 35 that has already been opened to the second resin transfer. It flows through the main pipe 42 and flows into the condensate demineralization tower 21 through the valve 61. Finally, all the regenerated mixed ion exchange resin 10 in the resin storage tank 32 is transferred into the condensate demineralization tower 21; The next water flow becomes possible.
[0009]
On the other hand, when the regeneration facility 30 receives the regeneration mixed ion exchange resin 10, the regeneration tower 31 regenerates the regeneration mixed ion exchange resin 10. In this regeneration step, as conventionally known, the air scrubbing operation, backwashing operation, resin separation operation of the mixed ion exchange resin 10, the individual regeneration operation of the strongly acidic cation exchange resin and the strongly basic anion exchange resin after separation, and the individual Perform cleaning operations. When a series of regenerating operations is completed, the valve 36 is opened, and the regenerated mixed ion exchange resin 10 in the regenerating tower 31 is transferred to the resin storage tank 32 via the connecting pipe 33, where regenerated mixing is performed until the next required time. The ion exchange resin 10 is stored.
[0010]
[Problems to be solved by the invention]
However, in the case of the conventional condensate demineralization apparatus, the condensate demineralization towers 21 to 26 and the regeneration facility 30 are connected by two series of first and second resin transfer main pipes 41 and 42. The laying of the first and second resin transfer main pipes 41 and 42 is subject to various restrictions on the layout, and the respective piping structures become complicated, and the first and second resin transfer main pipes 41 and 42 have valves and optoelectronic switches, respectively. There was a problem that the construction cost would be increased due to the necessity of such accessory equipment. In addition, the two systems of the first and second resin transfer main pipes 41 and 42 have accessory devices, respectively, and the number of the accessory devices is large, and there is a problem that maintenance costs such as maintenance and inspection required for the accessory devices increase.
[0011]
The present invention has been made to solve the above-described problems, and can simplify the piping structure of the resin transfer pipe connecting each condensate demineralization tower and the regeneration facility, thereby reducing the construction cost and the maintenance cost. An object of the present invention is to provide a condensate demineralizer that can achieve the above.
[0012]
[Means for Solving the Problems]
The condensate demineralization apparatus according to claim 1 of the present invention comprises a plurality of condensate demineralization towers and a regeneration facility for regenerating the ion exchange resin in each condensate demineralization tower, The bottom of the demineralization tower and the regeneration facility are connected via a first resin transfer main pipe, and the upper portion of each condensate demineralization tower and the regeneration facility are connected via a second resin transfer main pipe. In the condensate demineralization apparatus that uses the resin transfer main pipe as a transfer of the ion exchange resin for regeneration of the condensate demineralization tower and uses the second resin transfer main pipe for the transfer of the regenerated ion exchange resin of the regeneration facility, the above First 1 Resin transfer main pipe And above First 2 Resin transfer main pipe Doubles as Common resin transfer main pipe The In addition to the common resin transfer main pipe plural A branch pipe is provided. And the plurality of branch pipes respectively connect the bottom of each condensate demineralization tower and the common resin transfer main pipe and use a plurality of first branch pipes used for transferring the regeneration ion exchange resin. , The common resin transfer main pipe Upper part of each condensate demineralizer And each Linking And a plurality of second branch pipes used for transferring the regenerated ion exchange resin, the common resin transfer main pipe and the regenerating equipment are connected and used for transferring the regenerating ion exchange resin. A branch pipe, and a fourth branch pipe that connects the common resin transfer main pipe and the regeneration facility and is used for transferring the regenerated ion exchange resin. It is characterized by this.
[0013]
The condensate demineralizer according to claim 2 of the present invention is the condensate demineralizer according to claim 1, wherein the common resin is provided with a water supply pipe for supplying water flowing in a direction opposite to the flow of the regenerated ion exchange resin. The transfer main pipe is connected to the end of the condensate demineralization tower side.
[0014]
Further, the condensate demineralization apparatus according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein Second Downstream part of branch pipe In Bifurcated Do Provide branch pipes, connect each branch pipe to the adjacent condensate demineralization tower, Second above Branch pipe Adjoin It is characterized by being shared by the condensate demineralization tower.
[0015]
Moreover, the condensate demineralizer according to claim 4 of the present invention is the common resin transfer main pipe according to any one of claims 1 to 3. And each of the fourth branch pipes In Respectively The present invention is characterized in that a monitoring means for the ion exchange resin flowing inside is provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIG. 1 and FIG. In each figure, FIG. 1 is a flow diagram of a resin transfer line showing an embodiment of the condensate demineralizer of the present invention, and FIG. 2 is an enlarged view of a part of the condensate demineralizer shown in FIG. It is an enlarged view.
[0017]
As shown in FIG. 1, the condensate demineralization apparatus of the present embodiment includes, for example, six condensate dewatering units each filled with a mixed ion exchange resin 10 of a strongly acidic cation exchange resin 11 and a strongly basic anion exchange resin 12. A condensate demineralization tower group 20 composed of salt towers 21 to 26, and a regeneration facility 30 for regenerating the mixed ion exchange resin 10 in the condensate demineralization tower that has reached the pour point in the condensate demineralization tower group 20. And is configured. In addition, the regeneration facility 30 is regenerated in the regeneration tower 31 and the regeneration tower 31 that individually regenerates the strongly ionized cation exchange resin 11 and the strongly basic anion exchange resin 12 of the mixed ion exchange resin 10 as in the past. A resin storage tank 32 for storing the mixed ion exchange resin 10 is provided, and the regenerated mixed ion exchange resin 10 in the regeneration tower 31 is transferred as resin slurry to the resin storage tank 32 through the connecting pipe 33 and stored. .
[0018]
Now, in this embodiment, the piping structure of the resin transfer pipe connecting the condensate demineralization tower group 20 and the regeneration facility 30 is simplified as described below, and even if there are various restrictions due to the layout in the power plant, The construction cost can be reduced and the maintenance cost can be reduced. That is, conventionally, the first resin transfer main pipe used when transferring the ion exchange resin for regeneration as a resin slurry from the condensate demineralization tower to the regeneration facility and the condensate desalination from the regeneration facility using the regenerated ion exchange resin as the resin slurry. Although there were two series of second resin transfer main pipes used when transferring to the tower, in this embodiment, as shown in FIG. 1, the second resin transfer main pipes are combined into the first resin transfer main pipes to form a common resin transfer main pipe 70. It is characterized by a series of points.
[0019]
As shown in FIG. 1, the common resin transfer main pipe 70 has branch pipes that branch in the condensate demineralization tower group 20 and the regeneration facility 30. The branch pipes include first branch pipes 71 to 76 connected to the respective bottoms for taking out the regenerated mixed ion exchange resin 10 in the condensate demineralization towers 21 to 26 as a resin slurry, and each condensate demineralization. In order to receive the regenerated mixed ion exchange resin 10 as a resin slurry, the second branch pipes 77 to 79 connected to the upper parts of the towers 21 to 26 to receive the regenerated mixed ion exchange resin 10 as a resin slurry. The third branch pipe 70A connected to the upper part of the regeneration tower 31 of the regeneration facility 30 and the bottom of the resin storage tank 32 of the regeneration facility 30 for feeding the regenerated mixed ion exchange resin 10 as a resin slurry. It consists of a fourth branch pipe 70B.
[0020]
The first branch pipes 71 to 76 are provided with valves 51 to 56, respectively, and when the regeneration mixed ion exchange resin 10 is taken out from the condensate demineralizers 21 to 26, the valves 51 to 56 are individually opened. It is. In addition, as shown in FIG. 1, the second branch pipes 77 to 79 are extended from the common resin transfer main pipe 70 so as to reach above the condensate demineralization towers 21 to 26, and each extended end is bifurcated. It branches and it is made to share one 2nd branch pipe with the adjacent condensate demineralization tower. The second branch pipes 77 to 79 have a structure as shown in FIG. In FIG. 2, two condensate demineralization towers 21 and 22 are shown as representatives.
[0021]
For example, as shown in FIG. 2, when the common resin transfer main pipe 70 cannot pass under the condensate demineralization tower group 20 (shown by a one-dot chain line in FIG. 2) due to the layout of the power plant premises, the common resin transfer The main pipe 70 has to be laid at a position off from directly below. In this case, as shown in FIG. 2, the second branch pipe 77 forms an angle of, for example, 45 ° from the branch point of the common resin transfer main pipe 70 to the intermediate position of the adjacent condensate demineralization towers 21 and 22. And rises vertically upward from this intermediate position. Further, the second branch pipe 77 branches left and right as branch pipes 77A and 77B at a position slightly higher than the condensate demineralization towers 21 and 22, and the extended ends of the second branch pipes 77 are located above the condensate demineralization towers 21 and 22, respectively. It is connected. Note that reference numerals 61 to 66 denote valves disposed on the branch pipes 77A, 77B, 78A, 78B, 79A, and 79B, respectively.
[0022]
Further, as shown in FIG. 1, a water supply pipe 80 is connected to the end of the common resin transfer main pipe 70, and for example, pure water is supplied from the water supply pipe 80 to the common resin transfer main pipe 70, and the second branch pipe 77. In the second branch pipe to which the mixed ion exchange resin 10 of -79 is to be transferred, the resin slurry from the regeneration facility 30 is joined. The water supply flow rate at this time is adjusted by a valve 81 disposed in the water supply pipe 80. And, for example, to the right condensate demineralization tower 22 Resin slurry 2, when the resin slurry is flowed in the direction indicated by the solid arrow as shown in FIG. 2 and pure water is caused to flow in the direction indicated by the dashed-dotted arrow by antagonizing this flow, the resin slurry and Pure water merges in the second branch pipe 77. At this time, since the valve 61 of the left condensate demineralization tower 21 is closed in the second branch pipe 77, there is no flow in the branch pipe 77A, and the resin slurry flows only into the right condensate demineralization tower 22. The regenerated mixed ion exchange resin can be transferred only to the condensate demineralization tower 22.
[0023]
A photoelectron tube 90A is disposed in the common resin transfer main pipe 70 as a slurry resin monitoring means, and the resin slurry flowing in the common resin transfer main pipe 70 is monitored by the photoelectron tube 90A. The photoelectron tubes are disposed, for example, at two locations, and the other is disposed as a photoelectron tube 90B in the fourth branch tube 70B in the vicinity of the resin storage tank 32. The photoelectron tube 90A monitors the resin slurry entering and exiting the condensate demineralizer group 20, and the photoelectron tube 90B monitors the resin slurry flowing out of the regeneration facility 30. Therefore, it can be confirmed whether or not the resin slurry of the mixed ion exchange resin 10 that has reached the flow-through point by the photoelectron tube 90A has completely flowed out of the condensate demineralization tower group 20, and has been regenerated by the photoelectron tube 90B. Whether or not the resin slurry of the mixed ion exchange resin 10 has completely flowed out of the regeneration facility 30 can be confirmed. Further, it can be confirmed whether the regenerated mixed ion exchange resin 10 has completely flowed into the condensate demineralization tower group 20 by the photoelectron tube 90A. Although not shown, observation windows are attached to the condensate demineralization towers 21 to 26 and the resin storage tank 32, respectively, so that the state of the internal mixed ion exchange resin 10 can be confirmed by the inspection windows. It is.
[0024]
Next, the operation at the time of regeneration of the ion exchange resin will be described. For example, when the mixed ion exchange resin 10 in the condensate demineralization tower 22 of the condensate demineralization tower group 20 is regenerated, first, a water passage valve (not shown) is closed to demineralize the condensate demineralization tower 22. The process is stopped and isolated from the other condensate demineralization towers 21 and 23-26. Next, with both the valve 52 of the first branch pipe 72 of the condensate demineralizer 22 and the valve 34 of the regeneration facility 30 open, pure water and air are supplied from a valve (not shown) below the condensate demineralizer 22. The resin concentration is dilute to a slurry concentration suitable for transfer while individually supplying and stirring the mixed ion exchange resin 10 inside. At this time, air is also supplied from a valve (not shown) at the top of the condensate demineralizer 22 to gradually increase the pressure in the condensate demineralizer 22, and this pressure corresponds to the pressure loss of the common resin transfer main pipe 70. When the pressure that overcomes the above is reached, the resin slurry flows from the already opened valve 52 through the common resin transfer main pipe 70, flows out of the condensate demineralization tower group 20, and flows into the regeneration tower 31 through the valve 34. The flow of the resin slurry in the common resin transfer main pipe 70 at this time can be confirmed by the photoelectron tube 90A. If the supply of pure water and air is continued, all the mixed ion exchange resin 10 for regeneration in the condensate demineralization tower 22 is finally transferred into the regeneration tower 31. Whether or not all the resin slurry has been transferred to the regeneration facility 30 side can be confirmed by the photoelectron tube 90A. When all of the regenerated mixed ion exchange resin 10 is transferred into the regeneration tower 31, the regenerated mixed ion exchange resin 10 is transferred from the resin storage tank 32 into the empty condensate demineralization tower 22.
[0025]
At this time, pure water and air are supplied from the lower part of the resin storage tank 32 with both the valve 35 on the resin storage tank 32 side of the regeneration facility 30 and the valve 62 of the condensate demineralization tower 22 open, and the internal regenerated mixed ions are supplied. While stirring the exchange resin 10, the resin concentration is diluted to a slurry concentration suitable for transfer, and air is also supplied from the upper part of the resin storage tank 32. When the pressure in the resin storage tank 32 overcomes the pressure loss of the common resin transfer main pipe 70, it flows through the common resin transfer main pipe 70 via the fourth branch pipe 70B from the already opened valve 35. In parallel with this operation, when the valve 81 is opened and pure water is supplied from the water supply pipe 80 to the common resin transfer main pipe 70, the pure water merges with the resin slurry at the branch start point of the second branch pipe 77, and the second branch pipe. It flows into the condensate demineralizer 22 via 77 and its branch pipe 77B. At this time, the feed water flow rate from the feed water pipe 80 is adjusted to a flow rate that antagonizes the flow rate of the resin slurry from the regeneration facility 30. The state where the regenerated mixed ion exchange resin 10 flows out of the regeneration facility 30 can be monitored by the photoelectron tube 90B of the regeneration facility 30, and the state of flowing into the condensate demineralization tower group 20 side is monitored by the photoelectron tube 90A. be able to. Further, whether or not the transfer of the regenerated mixed ion exchange resin 10 is completed can be confirmed by both photoelectron tubes 90A and 90B.
[0026]
In addition, the lower portion of the second branch pipe 77 has a horizontal portion and a portion that rises at a right angle, but there is no possibility that the mixed ion exchange resin 10 stays, and the resin slurry can be reliably transferred above the second branch pipe 77. it can. Further, the downstream side of the second branch pipe 77 is branched into branch pipes 77A and 77B. Each of the branch pipes 77A and 77B extends horizontally from the branch start point, and the valve 61 of the branch pipe 77A is closed. Therefore, the resin slurry smoothly flows only to the branch pipe 77B leading to the condensate demineralization tower 22 without flowing into the branch pipe 77A side. In this way, the resin slurry flows into the condensate demineralization tower 22 via the branch pipe 77B and the valve 62, and finally all the regenerated mixed ion exchange resin 10 in the resin storage tank 32 is the condensate demineralization tower. The next water flow is possible.
[0027]
On the other hand, when the regeneration facility 30 receives the regeneration mixed ion exchange resin 10, the regeneration tower 31 regenerates the regeneration mixed ion exchange resin 10. In this regeneration step, suspended substances to which the mixed ion exchange resin 10 is adhered are removed by an air scrubbing operation, backwashing operation, or the like of the mixed ion exchange resin 10 as conventionally known. Next, when the mixed ion exchange resin 10 is separated by the density difference by the rising circulation water, the strong acid cation exchange resin 11 is formed as the lower layer, and the strong base anion exchange resin 12 is formed as the upper layer. Then, an aqueous sodium hydroxide solution is dispersedly supplied from the upper part of the regeneration tower 31 as an alkali regenerant, and the strong basic anion exchange resin 12 is regenerated while supplying balance water from the lower part of the regeneration tower 31. Water is supplied to wash the strongly basic anion exchange resin 12. The regeneration waste liquid at this time is discharged from the supply / drain pipe 31A arranged at the boundary between the upper layer and the lower layer. Furthermore, after supplying the aqueous hydrochloric acid solution as an acid regenerant from the lower part of the regeneration tower 31 and regenerating the lower layer strongly acidic cation exchange resin 11 while supplying the balance water from the upper part of the regeneration tower 31, pure water is supplied from above and below. The strong acid cation exchange resin 11 is washed. Thereafter, after the regenerated ion exchange resins 11 and 12 are mixed in the regeneration tower 31, the valve 36 is opened, and the regenerated mixed ion exchange resin 10 is transferred to the resin storage tank 32 through the connecting pipe 33. Here, the mixed ion exchange resin 10 is stored until the next required time.
[0028]
As described above, according to the present embodiment, the resin transfer main pipe for transferring the regenerated mixed ion exchange resin 10 from the regenerating facility 30 to the condensate demineralization tower group 20 and the regenerated mixed ion exchange resin 10 are decondensed. A common resin transfer main pipe 70 that commonly uses a resin transfer main pipe that is transferred from the salt tower group 20 to the regeneration facility 30 is provided, and a second branch pipe that communicates from the common resin transfer main pipe 70 to the condensate demineralization towers 21 to 26. 77 to 79 are provided, and the two conventional resin transfer main pipes are combined into one line, so that the piping structure of the common resin transfer main pipe 70 is extremely simplified, and even if there are restrictions on the layout in the power plant, the common resin transfer main pipe 70 piping design is easier than before, and the piping length can be shortened and the number of equipment attached to the resin transfer main pipe can be greatly reduced. It can be greatly reduced. In addition, maintenance costs such as maintenance and inspection of piping can be reduced with a reduction in the number of equipment attached to the resin transfer main pipe.
[0029]
Further, since the photoelectron tubes 90A are provided in the condensate demineralization tower group 20 and the regeneration facility 30, respectively, the flow of the resin slurry in the common resin transfer main tube 70 can be monitored by each photoelectron tube 90A and the resin slurry transfer is completed. This can be confirmed with certainty. Furthermore, since the feed water pipe 80 is connected to the end of the condensate demineralization tower group 20 of the common resin transfer main pipe 70 to supply pure water that antagonizes the flow of the resin slurry, the feed water flow rate from the feed water pipe 80 is changed. By appropriately adjusting the flow of the resin slurry, the regenerated mixed ion exchange resin 10 can be smoothly and surely transferred into a predetermined condensate demineralization tower of the condensate demineralization tower group 20 by controlling the flow of the resin slurry.
[0030]
Further, for example, the second branch pipe 77 communicating with the condensate demineralization towers 21 and 22 is bifurcated at the downstream portion thereof to provide branch pipes 77A and 77B. Since it connects with the upper part of the towers 21 and 22, and this 2nd branch pipe 77 was shared by both the condensate demineralization towers 21 and 22, the number of start-up piping can be reduced. Furthermore, the regenerated ion exchange resin 10 is only supplied to the second branch pipe 77 connected to the condensate demineralization towers 21 and 22 without transferring the regenerated mixed ion exchange resin 10 to the other second branch pipes 78 and 79. Can be smoothly and reliably transferred, and the regenerated ion exchange resin 10 can be transferred to the respective condensate demineralization towers 21 or 22.
[0031]
In addition, this invention is not restrict | limited to the said embodiment at all. For example, the piping structure of the second branch pipes 77 to 79 has an inclined portion with an inclination angle of 45 ° at the branch start point, but these inclination angles can be appropriately changed as necessary, and in some cases, the inclination is inclined. It is not necessary to provide a part. The monitoring means for the resin slurry is not limited to the photoelectron tube, and other photoelectric detection means can be used as appropriate as the monitoring means.
[0032]
【The invention's effect】
According to the first aspect of the present invention, the piping structure of the resin transfer pipe connecting each condensate demineralization tower and the regeneration facility can be simplified, thereby reducing the construction cost and the maintenance cost. It is possible to provide a condensate demineralizer that can be used.
[0033]
Further, according to the invention described in claim 2 and claim 3 of the present invention, in the invention described in claim 1, the regenerated ion exchange resin is smoothly and reliably transferred from the regeneration facility to each condensate demineralization tower. It is possible to provide a condensate demineralizer that can be used.
[0034]
According to the invention described in claim 4 of the present invention, in the invention described in any one of claims 1 to 3, the ion exchange resin is transferred between each condensate demineralization tower and the regeneration facility. It is possible to provide a condensate demineralizer capable of confirming the state with certainty.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a resin transfer line showing an embodiment of a condensate demineralization apparatus of the present invention.
FIG. 2 is an enlarged view showing a part of the condensate demineralizer shown in FIG.
FIG. 3 is a flow diagram of a resin transfer line showing an embodiment of a conventional condensate demineralizer.
[Explanation of symbols]
10 Mixed ion exchange resin
20 Condensate demineralization towers (multiple condensate demineralization towers)
21-26 Condensate Demineralization Tower
41 1st resin transfer main pipe
42 Second resin transfer main pipe
30 Reproduction equipment
70 Common resin transfer main pipe
77-79 Second branch pipe (branch pipe)
77A, 77B Branch pipe
80 Water supply pipe
90A, 90B Photoelectron tube (monitoring means)

Claims (4)

複数の復水脱塩塔と、各復水脱塩塔内のイオン交換樹脂を再生する再生設備とを備え、且つ上記各復水脱塩塔の底部と上記再生設備とを第1樹脂移送主管を介して連結すると共に上記各復水脱塩塔の上部と上記再生設備とを第2樹脂移送主管を介して連結し、第1樹脂移送主管を復水脱塩塔の再生用イオン交換樹脂の移送として使用すると共に第2樹脂移送主管を再生設備の再生済みイオン交換樹脂の移送用として使用する復水脱塩装置において、上記樹脂移送主管と上記樹脂移送主管とを兼ねる共通樹脂移送主管設けると共に上記共通樹脂移送主管に複数の分岐管を設け、且つ、上記複数の分岐管は、上記各復水脱塩塔の底部と上記共通樹脂移送主管とをそれぞれ連結し且つ上記再生用イオン交換樹脂の移送用として使用する複数の第1分岐管と、上記共通樹脂移送主管と上記各復水脱塩塔の上部とをそれぞれ連結し且つ上記再生済みイオン交換樹脂の移送用として使用する複数の第2分岐管と、上記共通樹脂移送主管と上記再生設備とを連結し且つ上記再生用イオン交換樹脂の移送用として使用する第3分岐管と、上記共通樹脂移送主管と上記再生設備とを連結し且つ上記再生済みイオン交換樹脂の移送用として使用する第4分岐管と、を有することを特徴とする復水脱塩装置。A plurality of condensate demineralization towers and a regeneration facility for regenerating the ion exchange resin in each condensate demineralization tower, and the bottom of each condensate demineralization tower and the regeneration facility are connected to a first resin transfer main pipe And the upper part of each condensate demineralization tower and the regeneration facility are connected via a second resin transfer main pipe, and the first resin transfer main pipe is connected to the ion exchange resin for regeneration of the condensate demineralization tower. in condensate demineralizer using a second resin transfer main with use as a transport for the transport of regenerated ion exchange resin regeneration equipment, common resin serving also as the said first resin transfer main and the second resin transfer main a plurality of branch pipes to the common resin transfer main provided with a transfer main provided, and, the plurality of branch pipes, and the reproduction connecting each condensate demineralizer bottom and the common resin transfer main and respectively Used for the transfer of ion exchange resin A first branch pipe, and a plurality of second branch pipes to be used for the transfer of the common resin transfer main and the the top of each condensate demineralizer connected respectively and the regenerated ion exchange resin, the common A third branch pipe that connects the resin transfer main pipe and the regeneration equipment and is used for transferring the regeneration ion exchange resin, connects the common resin transfer main pipe and the regeneration equipment, and the regenerated ion exchange resin. A condensate demineralizer comprising: a fourth branch pipe used for transferring the water. 再生済みイオン交換樹脂の流れとは逆方向に流れる水を供給する給水管を上記共通樹脂移送主管の復水脱塩塔側端部に連結したことを特徴とする請求項1に記載の復水脱塩装置。The condensate according to claim 1, wherein a water supply pipe for supplying water flowing in a direction opposite to the flow of the regenerated ion exchange resin is connected to an end of the common resin transfer main pipe on the condensate demineralization tower side. Desalination equipment. 上記第2分岐管の下流部二股に分岐する枝管を設け、各枝管を隣合う復水脱塩塔に連結し、上記第2分岐管を隣合う復水脱塩塔によって共用したことを特徴とする請求項1または請求項2に記載の復水脱塩装置。The branch pipe that branches into two on the downstream portion of the second branch pipe is provided that, connected to the condensate demineralizer adjacent each branch pipe, and shared by the condensate demineralizer adjacent the second branch pipe The condensate demineralizer according to claim 1 or 2, characterized in that. 上記共通樹脂移送主管及び上記第4分岐管それぞれそれぞれの内部を流れるイオン交換樹脂の監視手段を設けたことを特徴とする請求項1〜請求項3のいずれか1項に記載の復水脱塩装置。The condensate drainage according to any one of claims 1 to 3, wherein each of the common resin transfer main pipe and the fourth branch pipe is provided with a monitoring means for ion exchange resin flowing inside each. Salt equipment.
JP13585597A 1997-05-09 1997-05-09 Condensate demineralizer Expired - Fee Related JP3632375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13585597A JP3632375B2 (en) 1997-05-09 1997-05-09 Condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13585597A JP3632375B2 (en) 1997-05-09 1997-05-09 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JPH10309478A JPH10309478A (en) 1998-11-24
JP3632375B2 true JP3632375B2 (en) 2005-03-23

Family

ID=15161358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13585597A Expired - Fee Related JP3632375B2 (en) 1997-05-09 1997-05-09 Condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3632375B2 (en)

Also Published As

Publication number Publication date
JPH10309478A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
CN102112400A (en) Composite filtration and desalination equipment
US20090114583A1 (en) Ion exchange equipment
JPS6038505A (en) Steam generator
US3414508A (en) Condensate purification process
CN100427209C (en) Duel compartment coagulation mixed beds external regeneration knockout tower and regeneration art work
JP3632375B2 (en) Condensate demineralizer
JP7124397B2 (en) Cation exchange resin regeneration tower
JP6776926B2 (en) Ion exchange resin regeneration device and regeneration method
JP3610388B2 (en) Condensate demineralizer
JP2020075226A (en) Regeneration device for ion exchange resin
CN112705275B (en) Single set of fine treatment regeneration system shared by multiple supercritical units
CA1183973A (en) Regeneration of ion exchange materials
US4472282A (en) Mixed bed polishing process
JPH10192718A (en) Resin regenerator for condensate desalter
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3707940B2 (en) Condensate treatment system and condensate treatment method
CN212712856U (en) High-efficiency mixed ion exchanger
CN115646557B (en) Condensate fine treatment resin negative regeneration tower and regeneration system
JPS6219898B2 (en)
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JPS5817884A (en) Treatment of condensate
CN201280449Y (en) Microcomputer full-automatic water softener
SU1386579A1 (en) Method and apparatus for regenerating ion exchange in countercurrent flow filter
JPS5931311Y2 (en) ion exchange equipment
JP2000167551A (en) Condensate desalination equipment and its process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees