JP2018189436A - 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム - Google Patents

動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム Download PDF

Info

Publication number
JP2018189436A
JP2018189436A JP2017090391A JP2017090391A JP2018189436A JP 2018189436 A JP2018189436 A JP 2018189436A JP 2017090391 A JP2017090391 A JP 2017090391A JP 2017090391 A JP2017090391 A JP 2017090391A JP 2018189436 A JP2018189436 A JP 2018189436A
Authority
JP
Japan
Prior art keywords
position information
condition
flow line
terminal device
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017090391A
Other languages
English (en)
Other versions
JP6916438B2 (ja
Inventor
孝司 島田
Koji Shimada
孝司 島田
清英 大宮
Kiyohide Omiya
清英 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017090391A priority Critical patent/JP6916438B2/ja
Publication of JP2018189436A publication Critical patent/JP2018189436A/ja
Application granted granted Critical
Publication of JP6916438B2 publication Critical patent/JP6916438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

【課題】移動路の動線数を特定できる条件を導出できる動線特定システムを提供する。【解決手段】動線特定システム(車線判定システム10)は、車両A、B、Cに搭載され、車両の位置情報と、位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信する制御部を有する端末装置200a、200b、200cと、複数の車両のそれぞれから受信した位置情報及び画像を用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、所定の範囲毎の第1の条件を端末装置に送信する制御部を有するサーバ装置100と、を有する動線特定システム(車線判定システム10)である。【選択図】図1

Description

本発明は、動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラムに関する。
自車が走行する道路の車線毎の情報を把握することは、車両の安全運行やサービスの面で重要である。
例えば、車線毎の道路の平坦性の情報があれば、夜行バスの運転者が平坦性の良い車線を選択して走行できるため、走行中の振動により睡眠中の乗客を起こさずに運行でき、安全運行やサービスの面で向上させることが可能となる。
車線毎に自車の位置を把握する技術としては、例えば、地図情報上における自車両の位置を算出するマップマッチング装置が提案されている(例えば、特許文献1等参照)。
特開2015−68665号公報
しかしながら、特許文献1に記載の技術では、自車の位置を地図情報上にマッチングする必要があり、例えば、道路が新設された場合には通行可能な車線数が変わり、地図情報を変更しないとマッチングが難しくなる。このため、地図情報に依存した形態で車線数を特定することが困難な場合があり、地図情報がないと機能しないという問題がある。
一つの側面では、移動路の動線数を特定できる条件を導出できる動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラムを提供することを目的とする。
一つの実施態様では、動線特定システムは、移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信する制御部を有する端末装置と、複数の前記移動体のそれぞれから受信した前記位置情報及び前記画像を用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、前記所定の範囲毎の前記第1の条件を前記端末装置に送信する制御部を有するサーバ装置と、を有する。
一つの側面では、移動路の動線数を特定できる条件を導出できる動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラムを提供することができる。
図1は、動線特定システムの一例を示す図である。 図2は、サーバ装置のハードウェア構成の一例を示すブロック図である。 図3は、サーバ装置の機能構成の一例を示すブロック図である。 図4は、走行履歴DBが記憶する走行履歴データの一例を示す図である。 図5は、LA生成部が行うLA生成処理の一例を示す説明図である。 図6は、チューニング部が行うチューニング処理の一例を示す説明図である。 図7は、チューニング部が行うチューニング処理の他の一例を示す説明図である。 図8は、チューニング部が行うチューニング処理の他の一例を示す説明図である。 図9は、基準画像における撮影状態のバリエーションの一例を示す説明図である。 図10は、基準画像における撮影状態のバリエーションの他の一例を示す説明図である。 図11は、基準画像における撮影状態のバリエーションの他の一例を示す説明図である。 図12は、車線数の情報を含む道路地図の一例を示す図である。 図13は、端末装置のハードウェア構成の一例を示すブロック図である。 図14は、端末装置の機能構成の一例を示す説明図である。 図15は、動線特定システムが行う処理の流れの一例を示すシーケンス図である。 図16は、サーバ装置が行う処理の流れの一例を示すフローチャートである。 図17は、端末装置が行う処理の流れの一例を示すフローチャートである。
動線特定システムは、当該移動体が位置する移動路の動線数と当該移動体が位置する動線の位置を特定することができる。動線特定システムは、移動体が搭載する端末装置と、端末装置から位置情報及びその位置における周辺画像を受信するサーバ装置を有する。
具体的には、端末装置は、移動体の位置情報と、位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信する。端末装置は、移動体に搭載される。
ここで、移動体としては、例えば、車両、動物、水上移動体などが挙げられる。また、車両としては、例えば、自動車、自転車などが挙げられる。なお、動物には人も含まれる。
移動路とは、例えば、道路、水路などが挙げられる。また、道路としては、例えば、車道、歩道などが挙げられる。
動線とは、移動体が移動する経路を示す線であり、例えば、車線などが挙げられる。
移動体の位置情報とは、移動体の位置を特定できる情報であり、例えば、GPS(Grobal Positioning System)ユニットにより取得した経度緯度の情報などが挙げられる。
所定の撮影範囲を撮影した画像とは、例えば、移動体を中心に所定の撮影範囲を半径60mとし、デジタルビデオカメラなどを用いて撮影した当該移動体の周辺画像などが挙げられる。
次に、サーバ装置は、複数の移動体のそれぞれから受信した位置情報と画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出する。サーバ装置は、所定の範囲毎の第1の条件を端末装置に送信する。
ここで、地理的に隣り合う所定の範囲とは、例えば、移動路を走行方向に対して直交する方向に約100mごとに順次分割した領域である。サーバ装置は、所定の範囲毎に動線数を特定する。
なお、以下では所定の範囲を「LA(Local Area)」と称することもある。
動線数を特定するための第1の条件としては、動線数を特定できる条件であれば特に制限はなく、目的に応じて適宜選択することができる。
具体的には、第1の条件としては、人工知能を用いない場合、当該移動体周辺の移動路を撮影した画像から動線数を特定しやすい基準画像を選定し、選定した基準画像と動線数を特定すべき画像との類似度が所定の値以上という条件などとする。このようにすると、動線特定システムは、類似度が所定の値以上であれば、基準画像における既知の動線数を特定すべき画像の動線数であると特定することができる。あるいは、動線特定システムは、特定すべき画像と、既知の動線数が異なる画像との類似度をそれぞれ導出し、類似度が所定の値以上という条件を用いて、類似度が高い基準画像の動線数を特定すべき画像の動線数であると特定することができる。
また、第1の条件としては、人工知能を用いる場合、所定の撮影範囲を撮影した画像を教師画像データ群、当該画像を撮影した位置における所定の範囲の既知の動線数を教師正解データ群として人工知能が学習して導出した学習済み重みパラメータなどとする。このようにすると、動線特定システムは、導出した学習済み重みパラメータを用いて推論し、動線数を特定することができる。
これにより、動線特定システムは、複数の移動体のそれぞれから受信した位置情報と画像とを用いて、移動路の動線数を特定できる条件を導出することができ、更には、動線数を特定することができる。
次に、サーバ装置は、位置情報とその位置で撮影した画像とを送信した一の移動体が、当該位置情報により特定される所定の範囲において、いずれの動線に位置しているかを特定するための第2の条件を導出して端末装置に送信する。
ここで、いずれの動線に位置しているかを特定するための第2の条件としては、いずれの動線に位置しているかを特定できる条件であれば特に制限はなく、目的に応じて適宜選択することができる。
なお、「いずれの動線に位置しているかを特定する」ことは、移動体が車両であれば「自車走行動線位置を特定する」ことを意味する。また、以下では「自車走行動線位置」を「動線位置」と称することもある。
具体的には、第2の条件としては、人工知能を用いない場合、所定の範囲毎に移動体の動線位置を特定しやすい基準画像を選定し、選定した基準画像と動線位置を特定すべき画像との類似度が所定の値以上という条件などとする。このようにすると、動線特定システムは、類似度が所定の値以上であれば、基準画像における既知の動線位置を特定すべき画像の動線位置であると特定することができる。あるいは、動線特定システムは、特定すべき画像と、既知の動線位置が異なる画像との類似度をそれぞれ導出し、類似度が所定の値以上という条件を用いて、類似度が高い基準画像の動線位置を特定すべき画像の動線位置であると特定することができる。
また、第2の条件としては、人工知能を用いる場合、移動体が位置している動線が既知である画像を教師画像データ群、当該画像における移動体が位置している動線を教師正解データ群として人工知能が学習して得た学習済み重みパラメータなどとする。このようにすると、動線特定システムは、導出した学習済み重みパラメータを用いて推論し、動線位置を特定することができる。
また、端末装置は、特定した結果である動線数の情報といずれの動線に位置しているかの情報とを、位置情報と、位置情報に示される位置において撮影された画像との対応を識別可能な状態でサーバ装置に送信する。
このように、動線数及び動線位置を特定した結果をサーバ装置にフィードバックすることにより、サーバ装置は、人工知能を用いる場合、特定した結果を教師正解データ群として用いて、学習済み重みパラメータを更新することができる。また、サーバ装置は、人工知能を用いない場合、特定した結果を、動線数と自車が位置している動線が既知である基準画像の候補として用いることができる。
以下、本発明の一実施例を説明するが、本発明は、この実施例に何ら限定されるものではない。
(第1の実施例)
(動線特定システム)
図1は、動線特定システム10の一例を示す図である。本実施例の動線特定システム10は、移動体としての車両が走行しているところの高速道路の車線数及び車線位置を特定するシステムである。
図1に示すように、動線特定システム10は、サーバ装置100と、車両A、B、C、・・・にそれぞれ搭載されている端末装置200a、200b、200c、・・・と、を有する。
サーバ装置100は、ネットワーク300を介して端末装置200a、200b、200c、・・・と通信可能に接続されている。
なお、端末装置200a、200b、200c、・・・は、装置の構成がそれぞれ同様であることから、以下では「端末装置200」と称してまとめて説明する。また、車両A、B、C、・・・は、区別する必要がないときは単に「車両」と称することもある。
まず、サーバ装置100のハードウェア構成及び機能構成について説明する。
(サーバ装置)
<サーバ装置のハードウェア構成>
図2は、サーバ装置100のハードウェア構成の一例を示すブロック図である。
図2に示すように、サーバ装置100のハードウェア構成は以下の各装置を有する。各装置は、バス109を介してそれぞれ通信可能に接続されている。
CPU(Central Processing Unit)101は、種々の制御や演算を行なう処理装置である。CPU101は、主記憶装置102などが記憶するOS(Operating System)やプログラムを実行することにより、種々の機能を実現する。すなわち、CPU101は、本実施例では、動線特定プログラムを実行することにより、後述する制御部140として機能する。
動線特定プログラムは、必ずしも最初から主記憶装置102、補助記憶装置105などに記憶されていなくともよい。また、インターネット、LAN、WANなどを介してサーバ装置100に接続される他の情報処理装置などに動線特定プログラムを記憶させ、サーバ装置100がこれらから動線特定プログラムを取得して実行するようにしてもよい。
また、CPU101は、サーバ装置100全体の動作を制御する。なお、本実施例では、サーバ装置100全体の動作を制御する装置をCPU101としたが、これに限ることなく、例えば、FPGA(Field Programmable Gate Array)などとしてもよい。
主記憶装置102は、各種プログラムを記憶し、各種プログラムを実行するために必要なデータ等を記憶する。
主記憶装置102は、図示しない、ROM(Read Only Memory)と、RAM(Random Access Memory)と、を有する。
ROMは、BIOS(Basic Input/Output System)等の各種プログラムなどを記憶している。
RAMは、ROMに記憶された各種プログラムがCPU101により実行される際に展開される作業範囲として機能する。RAMとしては、特に制限はなく、目的に応じて適宜選択することができる。RAMとしては、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)などが挙げられる。
GPU(Graphics Processing Unit)103は、グラフィック処理、並列的な数値演算処理などの必要な処理を実行する。
VRAM(Video Random Access Memory)104は、ディスプレイ108に画像を表示するために必要なデータを保持するためのメモリ領域として機能する。
補助記憶装置105としては、各種情報を記憶できれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ソリッドステートドライブ、ハードディスクドライブなどが挙げられる。また、補助記憶装置105は、CD(Compact Disc)ドライブ、DVD(Digital Versatile Disc)ドライブ、BD(Blu−ray(登録商標) Disc)ドライブなどの可搬記憶装置としてもよい。
通信インターフェイス106は、特に制限はなく、適宜公知のものを用いることができ、例えば、無線又は有線を用いた通信デバイスなどが挙げられる。
入力装置107は、サーバ装置100に対する各種要求を受け付けることができれば特に制限はなく、適宜公知のものを用いることができ、例えば、キーボード、マウス、タッチパネルなどが挙げられる。
ディスプレイ108は、特に制限はなく、適宜公知のものを用いることができ、例えば、液晶ディスプレイ、有機ELディスプレイなどが挙げられる。
なお、サーバ装置100は、ネットワーク上のコンピュータ群であるクラウドの一部であってもよい。
<サーバ装置の機能構成>
図3は、サーバ装置100の機能構成の一例を示すブロック図である。
図3に示すように、サーバ装置100の機能構成としては、通信部120と、記憶部130と、制御部140と、を有する。
通信部120は、制御部140の指示に基づき、通信インターフェイス106を用いて車両の位置情報及び画像を含む走行履歴データを各端末装置200から受信する。
また、通信部120は、車線数を特定するための第1の条件、及び、車線位置を特定するための第2の条件を端末装置200に送信する。
記憶部130は、補助記憶装置105に走行履歴データベース(以下、「走行履歴DB」と称することもある)121を有する。
走行履歴DB121は、通信部120が受信した走行履歴データを走行履歴データ群として記憶する。
図4は、走行DB121が記憶する走行履歴データの一例を示す図である。
図4に示すように、走行履歴データは、本実施例では「車両ID、取得日時、位置情報(経度、緯度)」の項目を含み、端末装置200により紐付けられた図示しない画像を含む。
「車両ID」のデータ項目は、端末装置200が搭載されている当該車両を識別するためのデータであり、予め設定される。
「取得日時」及び「位置情報(経度、緯度)」のデータ項目は、端末装置200に搭載されているGPS(Global Positioning System)ユニットにより取得される。
なお、本実施例では、走行履歴データには、位置情報及びその位置における画像を含むとしたが、これに限ることなく、例えば、「車速、加速度、出発日時、出発地(経度、緯度)、到着日時、目的地(経度、緯度)」などのデータ項目をさらに含むようにしてもよい。
<制御部>
制御部140は、本実施例では、サーバ装置100全体の動作を制御する機能を有すると共に、LA生成部141、チューニング部142、及び条件導出部143として機能する。
図5は、LA生成部141が行うLA生成処理の一例を示す説明図である。ここで、図5を参照しながら、LA生成部141が行うLA生成処理について説明する。
まず、LA生成部141は、各車両の走行履歴データにおける取得日時情報及び位置情報に基づき、車両の進行方向を特定する。次に、LA生成部141は、図5中の矢印で示すような同一の進行方向の車両の走行履歴データが存在する箇所に基準点を設ける。そして、LA生成部141は、基準点から進行方向に100m進んだ地点近傍の走行履歴データを抽出し、抽出した走行履歴データの位置の重心をLAの中心点として算出する。
なお、データを取得する時間間隔が比較的長い走行履歴データが存在し、100m進んだ地点近傍に走行履歴データが存在しない場合には、図5中の「○」で示すように補完データを算出する。
図6〜図8は、チューニング部142が行うチューニング処理の一例を示す説明図である。ここで、図6〜図8を参照しながら、LAを生成した場合、道路が新設された場合に分けて、チューニング部142が行うチューニング処理について説明する。
まず、LAを生成した場合のチューニング処理について説明する。
この場合には、チューニング部142は、生成したLAにおいて走行履歴データの取得地点毎の画像に基づいてそれぞれ車線数を導出し、取得地点毎で車線数が異なる場合があっても、当該LA内で「最も多い車線数」を当該LAの車線数と特定する。
具体的には、図6に示すように、車線数が「3」から「4」に増えるLAyにおいて、各取得地点で導出した車線数が「3」と「4」が混在している場合を考える。この場合、チューニング部142は、LAyにおいては車線数「3」よりも車線数「4」のほうが多いため、当該LAyの車線数を「4」と特定する。
次に、道路が新設された場合のチューニング処理について説明する。
この場合には、チューニング部142は、当該LAにおいて導出前後の車線数を比較する。チューニング部142は、導出前後の車線数が一致していればチューニング処理は不要と判定し、導出前後の車線数が一致していなければチューニング処理を行うと判定する。
具体的には、車線数を導出する前に図7に示すような複数のLAにおいて、車線数を導出するときに図8に示すような道路が新設されていた場合を考える。この場合、LA2及びLA3では車線数が「4」から「5」に増えているため、チューニング部142は、チューニング処理を行い、道路が新設された場合であっても対応することができる。
条件導出部143は、車線数を特定するための第1の条件、及び、車線位置を特定するための第2の条件を導出する。
条件導出部143は、本実施例では、図9〜図11に示すような状態で自車から撮影した画像のうち、路上の白線、周辺の他車との位置関係のバリエーションを持たせた基準画像を用いて、車線数及び車線位置を特定する類似度を導出する。
なお、条件導出部143は、車両から受信した車線数の情報と車線位置の情報との少なくともいずれかの特定の誤りが一定のしきい値以上であるか否かを判定するようにしてもよい。条件導出部143は、一定のしきい値以上であると判定したときに、第1の条件、及び/又は、第2の条件を再度導出する。これにより、制御部140は、誤りの少ない車線数及び車線位置の情報を取得することができる。
なお、制御部140は、第1の条件に基づいてLA毎に特定した車線数の情報を、図12に示すように、車線数の情報を含む道路地図として出力するようにしてもよい。これにより、道路の車線数を可視化することができる。
次に、端末装置200のハードウェア構成及び機能構成について説明する。
(端末装置)
端末装置200は、本実施例では、トラックなどの商用車に搭載されているデジタルタコグラフであり、GPS(Global Positioning System)ユニットと、車両の周囲を撮影できるカメラと、を有する。端末装置200は、GPSユニット及びカメラにより、位置情報及びその位置における車両の周囲の画像を取得日時と紐付けて取得した走行履歴データを、サーバ装置100に1秒間毎にあるいは10秒間毎に順次送信する。
<端末装置のハードウェア構成>
図13は、端末装置200のハードウェア構成の一例を示すブロック図である。
図13に示すように、端末装置200のハードウェア構成は以下の各装置を有する。各装置は、バス211を介してそれぞれ通信可能に接続されている。
CPU201は、種々の制御や演算を行なう処理装置である。CPU201は、主記憶装置202などが記憶するOSやプログラムを実行することにより、種々の機能を実現する。すなわち、CPU201は、本実施例では、動線特定プログラムを実行することにより、後述する制御部240として機能する。
動線特定プログラムは、必ずしも最初から主記憶装置202、補助記憶装置205などに記憶されていなくともよい。また、インターネット、LAN、WANなどを介して端末装置200に接続される他の情報処理装置などに動線特定プログラムを記憶させ、端末装置200がこれらから動線特定プログラムを取得して実行するようにしてもよい。
また、CPU201は、端末装置200全体の動作を制御する。なお、本実施例では、端末装置200全体の動作を制御する装置をCPU201としたが、これに限ることなく、例えば、FPGAなどとしてもよい。
主記憶装置202は、各種プログラムを記憶し、各種プログラムを実行するために必要なデータ等を記憶する。
主記憶装置202は、図示しない、ROMと、RAMと、を有する。
ROMは、BIOS等の各種プログラムなどを記憶している。
RAMは、ROMに記憶された各種プログラムがCPU201により実行される際に展開される作業範囲として機能する。RAMとしては、特に制限はなく、目的に応じて適宜選択することができる。RAMとしては、例えば、DRAM、SRAMなどが挙げられる。
GPU203は、グラフィック処理、並列的な数値演算処理などの必要な処理を実行する。
VRAM204は、ディスプレイ208に画像を表示するために必要なデータを保持するためのメモリ領域として機能する。
補助記憶装置205としては、各種情報を記憶できれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ソリッドステートドライブ、ハードディスクドライブなどが挙げられる。また、補助記憶装置205は、CDドライブ、DVDドライブ、BDドライブなどの可搬記憶装置としてもよい。
通信インターフェイス206は、特に制限はなく、適宜公知のものを用いることができ、例えば、無線を用いた通信デバイスなどが挙げられる。
入力装置207は、端末装置200に対する各種要求を受け付けることができれば特に制限はなく、適宜公知のものを用いることができ、例えば、キーボード、マウス、タッチパネルなどが挙げられる。
ディスプレイ208は、特に制限はなく、適宜公知のものを用いることができ、例えば、液晶ディスプレイ、有機ELディスプレイなどが挙げられる。
GPSユニット209は、位置情報としての緯度経度の情報、及び、取得日時として時刻の情報を取得する。
カメラ210は、例えば、デジタルビデオカメラなどであり、車両に設置され、かつ車両を中心に所定の撮影範囲を撮影する。カメラ210は、単数であっても複数であってもよい。
<端末装置の機能構成>
図14は、端末装置200の機能構成の一例を示す説明図である。
図14に示すように、端末装置200の機能構成としては、通信部220と、記憶部230と、制御部240と、を有する。
通信部220は、制御部240の指示に基づき、通信インターフェイス206を用いて車両の位置情報及び画像を含む走行履歴データをサーバ装置100に送信する。
また、通信部220は、車線数を特定するための第1の条件、及び、車線位置を特定するための第2の条件をサーバ装置100から受信する。
記憶部230は、サーバ装置100から受信した第1の条件及び第2の条件を補助記憶装置205に記憶する。
<制御部>
制御部240は、本実施例では、端末装置200全体の動作を制御する機能を有すると共に、位置情報取得部241、画像取得部242、及び特定部243として機能する。
位置情報取得部241は、GPSユニット209を用いて位置情報としての緯度経度の情報、及び、取得日時として時刻の情報を取得する。
画像取得部242は、車両に設置されたカメラ210を用いて、道路上の白線や他車が映り込むように、当該車両を中心に所定の撮影範囲を撮影する。
特定部243は、当該端末装置200を搭載した車両が位置する、第1の条件に基づいて車線数を特定するとともに、第2の条件に基づいていずれの車線かを特定する。また、特定部243は、特定した結果である車線数及び車線位置の情報を、位置情報と、位置情報に示される位置において撮影された画像との対応を識別可能な状態でサーバ装置100に送信する。
このように、車線数及び車線位置を特定した結果をサーバ装置100にフィードバックすることにより、サーバ装置100は、人工知能を用いる場合、特定した結果を教師正解データ群として用いて、学習済み重みパラメータを更新することができる。また、サーバ装置は、人工知能を用いない場合、特定した結果を、車線数と自車が位置している車線が既知である基準画像の候補として用いることができる。
制御部240は、LAにおける車線数の特定の誤りが一定のしきい値以上であると判定したときに、画像の所定の撮影範囲を変更するようにしてもよい。
なお、本実施例では、端末装置200はデジタルタコグラフとしたが、これに限ることなく、例えば、乗用車に搭載され、車両の周囲を撮影できるカメラを有するカーナビゲーションシステムの車載装置などが挙げられる。また、走行履歴データは、例えば、ETC(Electronic Toll Collection System)が取得する位置情報と、当該車両に搭載され、車両の周囲を撮影できるカメラにより撮影した画像と、により構成するようにしてもよい。
図15は、動線特定システム10が行う処理の流れの一例を示すシーケンス図である。
ここでは、図15のシーケンス図を参照しながら、端末装置200が、自車の位置情報及び画像をサーバ装置100に送信してから、車両数及び車線位置を特定するまでの処理について説明する。
ステップS101では、端末装置200は、端末装置200を搭載する移動体の走行履歴データ(位置情報及び画像)を取得してサーバ装置100に送信し、処理をS102に移行する。なお、本実施例では、端末装置200は、走行履歴データを1秒間毎に取得する。
ステップS102では、サーバ装置100は、受信した走行履歴データがどのLAの範囲内であるかについて推定するLA推定処理を行う。
また、サーバ装置100は、LA推定処理を行った結果、走行履歴データの取得地点が「LA未設定」であるか否かを判定する。サーバ装置100は、走行履歴データの取得地点が「LA未設定」であると判定すると処理をS103に移行し、「LA未設定」ではないと判定すると処理をS105に移行する。
ステップS103では、サーバ装置100は、LA未設定の領域で複数車両の走行履歴データを一定量取得した後、LAを新たに生成するLA生成処理を行い、処理をS104に移行する。
ステップS104では、サーバ装置100は、S103で生成したLAに対してチューニング処理を行い、当該LAにおける車両数を特定すると処理をS105に移行する。
ステップS105では、端末装置200は、車線数を特定するための第1の条件を満たしているか否かを判定することにより車線数を導出する車線数導出処理を行う。端末装置200は、導出した車線数の情報をサーバ装置100に送信し、処理をS106に移行する。
ステップS106では、端末装置200は、車線位置を特定するための第2の条件を満たしているか否かを判定することにより車線位置を導出する車線位置導出処理を行う。端末装置200は、導出した車線位置の情報をサーバ装置100に送信する。
また、サーバ装置100は、受信した走行履歴データで、LAにおける走行履歴データの取得が終了したか否かを判定する。サーバ装置100は、受信した走行履歴データで、当該LAにおける走行履歴データの取得が終了したと判定すると処理をS107に移行する。また、サーバ装置100は、S104でチューニング処理を行っていれば、処理をS109に移行し、当該LAにおける走行履歴データの取得が終了していないと判定すると処理をS101に戻す。
ステップS107では、サーバ装置100は、当該LAにおける車線数を導出する処理を行う。
また、サーバ装置100は、S107で導出した当該LAにおける車線数と、導出前の当該LAにおける車線数とを比較し、一致していれば処理をS101に戻し、一致していなければ処理をS108に移行する。
ステップS108では、サーバ装置100は、S104の処理と同様に、チューニング処理を行い、処理をS109に移行する。
ステップS109では、サーバ装置100は、S104又はS108においてチューニング処理を行った場合、第1の条件及び第2の条件を導出して端末装置200に送信し、処理をS101に戻す。
なお、サーバ装置100は、車両から受信した車線数の情報といずれの車線に位置しているかの情報との少なくともいずれかの特定の誤りが一定のしきい値以上であると判定したときに、第1の条件、及び/又は、第2の条件を再度導出するようにしてもよい。
また、端末装置200は、所定の範囲における車線数の特定の誤りが一定のしきい値以上であると判定したときに、画像の所定の撮影範囲を変更するようにしてもよい。
次に、サーバ装置100が行う処理について説明する。
図16は、サーバ装置100が行う処理の流れの一例を示すフローチャートである。
ここでは、図16に示すフローチャートを参照して、サーバ装置100が行う処理の流れについて説明する。
ステップS201では、サーバ装置100は、端末装置200が取得した走行履歴データを受信し、処理をS202に移行する。
ステップS202(S102に該当)では、サーバ装置100は、受信した走行履歴データがどのLAの範囲内であるかについて推定するLA推定処理を行い、処理をS203に移行する。
ステップS203では、サーバ装置100は、LA推定処理を行った結果、走行履歴データの取得地点が「LA設定済み」であるか否かを判定する。サーバ装置100は、走行履歴データの取得地点が「LA設定済み」であると判定すると処理をS206に移行し、「LA設定済み」ではないと判定すると処理をS204に移行する。
ステップS204(S103に該当)では、サーバ装置100は、LA未設定の領域で複数車両の走行履歴データを一定量取得した後、LAを新たに生成するLA生成処理を行い、処理をS205に移行する。
ステップS205(S104に該当)では、サーバ装置100は、S204で生成したLAに対してチューニング処理を行い、当該LAにおける車両数を特定すると処理をS206に移行する。
ステップS206では、サーバ装置100は、端末装置200が導出した車線数のデータを受信し、処理をS207に移行する。
ステップS207では、サーバ装置100は、端末装置200が導出した車線位置のデータを受信し、処理をS208に移行する。
ステップS208(S107に該当)では、サーバ装置100は、当該LAにおける車線数を導出する処理を行うと処理をS209に移行する。
ステップS209では、サーバ装置100は、S107で導出した当該LAにおける車線数と、導出前の当該LAにおける車線数とを比較し、一致していれば処理をS201に戻し、一致していなければ処理をS210に移行する。
ステップS210(S108に該当)では、サーバ装置100は、S205の処理と同様に、チューニング処理を行い、処理をS211に移行する。
ステップS211(S109に該当)では、サーバ装置100は、第1の条件及び第2の条件を導出して端末装置200に送信し、処理をS201に戻す。
ステップS212では、サーバ装置100は、S205でチューニング処理を行ったか否かを判定する。サーバ装置100は、S205でチューニング処理を行ったと判定すると処理をS211に移行させ、S205でチューニング処理を行っていないと判定すると処理をS201に戻す。
次に、端末装置200が行う処理について説明する。
図17は、端末装置200が行う処理の流れの一例を示すフローチャートである。
ここでは、図17に示すフローチャートを参照して、端末装置200が行う処理のフローを説明する。
なお、端末装置200は、あらかじめサーバ装置100から第1の条件及び第2の条件を受信した状態とする。また、端末装置200は、サーバ装置100がチューニング処理を行った場合には、サーバ装置100から第1の条件及び第2の条件を受信する。
ステップS301(S101に該当)では、端末装置200は、端末装置200を搭載する移動体の走行履歴データ(位置情報及び画像)を取得してサーバ装置100に送信し、処理をS302に移行する。
ステップS302(S105に該当)では、端末装置200は、車線数を特定するための第1の条件を満たしているか否かを判定することにより車線数を導出する車線数導出処理を行う。端末装置200は、導出した車線数の情報をサーバ装置100に送信し、処理をS302に移行する。
ステップS303(S106に該当)では、端末装置200は、車線位置を特定するための第2の条件を満たしているか否かを判定することにより車線位置を導出する車線位置導出処理を行う。端末装置200は、導出した車線位置の情報をサーバ装置100に送信する。
以上説明したように、動線特定システムは、車両の位置情報及びその位置の周辺画像を送信する端末装置と、複数の車両から受信した位置情報及び画像から、所定の範囲毎に車線数を特定するための条件を導出して端末装置に送信する装置とにより車線数を特定する。
(第2の実施例)
第2の実施例では、第1の実施例と比較すると、車線数及び車線位置の導出方法が異なり、図3のサーバ装置100の条件導出部143、及び、図14の端末装置200の特定部243に、人工知能を有する。
サーバ装置100の条件導出部143は、図15のS109における条件導出において、教師画像データ群と教師正解データ群とによるディープラーニングの手法を用いて、第1の条件を導出する車線数学習処理と、第2の条件を導出する車線位置学習処理とを行う。この点が第1の実施例と異なる。条件導出部143は、これらの学習処理により、第1の条件としての第1の学習済み重みパラメータ、及び、第2の条件としての第2の学習済み重みパラメータを導出して、端末装置200の特定部243に送信する。
端末装置200の特定部243は、条件導出部143から受信した第1の学習済み重みパラメータ及び第2の学習済み重みパラメータを用いて、車線数及び車線位置を推論して特定する点も第1の実施例と異なる。
[学習処理]
まず、サーバ装置100において、図2のGPU103及びVRAM104を用いた、条件導出部143が行う学習処理について説明する。
条件導出部143は、例えば、図9〜図11に示すような状態で自車から撮影した画像から、路上の白線、周辺の他車などを抽出し、抽出した白線の本数、周辺の他車の位置などにより車線数を特定できるように、第1の学習済み重みパラメータを導出する。
条件導出部143は、車線数と同様に、車線位置も特定できるように、第2の学習済み重みパラメータを導出する。
条件導出部143は、導出した2つの学習済み重みパラメータを、端末装置200の特定部243に送信する。なお、サーバ装置100が、2つの学習済み重みパラメータを用いて車線数及び車線位置を特定してもよい。
[推論処理]
次に、端末装置200の特定部243が行う推論処理について説明する。
特定部243は、条件導出部143が得た2つの学習済み重みパラメータを用いて、生成した画像の特徴の類否を行い、車線数及び車線位置を特定する。
これにより、端末装置200は、2つの学習済み重みパラメータを用いた推論処理により、車線数及び車線位置を精度良く特定することができる。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信する制御部を有する端末装置と、
複数の前記移動体のそれぞれから受信した前記位置情報及び前記画像を用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、前記所定の範囲毎の前記第1の条件を前記端末装置に送信する制御部を有するサーバ装置と、
を有することを特徴とする動線特定システム。
(付記2)
前記サーバ装置は、複数の前記移動体のそれぞれから受信した前記位置情報及び前記画像を用いて、前記位置情報及び前記画像を送信した一の前記移動体が、前記位置情報により特定される前記所定の範囲において、いずれの動線に位置しているかを特定するために導出した第2の条件を前記端末装置に送信することを特徴とする、付記1に記載の動線特定システム。
(付記3)
前記端末装置は、当該端末装置を搭載した前記移動体が位置する、動線数を前記第1の条件に基づいて特定するとともに、いずれの動線かを前記第2の条件に基づいて特定し、
特定した結果である動線数の情報及びいずれの動線に位置しているかの情報を、前記位置情報と、前記位置情報に示される位置において撮影された前記画像との対応を識別可能な状態で前記サーバ装置に送信することを特徴とする、付記2に記載の動線特定システム。
(付記4)
前記サーバ装置は、前記移動体から受信した動線数の情報及びいずれの動線に位置しているかの情報の少なくともいずれかの特定の誤りが一定のしきい値以上であると判定したときに、前記第1の条件、及び/又は、前記第2の条件を再度導出するタイミングを決定することを特徴とする、付記3に記載の動線特定システム。
(付記5)
前記端末装置は、前記所定の範囲における動線数の特定の誤りが一定のしきい値以上であると判定したときに、前記画像の前記所定の撮影範囲を変更することを特徴とする、付記3又は4に記載の動線特定システム。
(付記6)
前記サーバ装置は、前記第1の条件に基づいて前記所定の範囲毎に特定した前記動線数の情報を、前記動線数の情報を含む移動路地図として出力することを特徴とする、付記3から5のいずれか一項に記載の動線特定システム。
(付記7)
複数の移動体が搭載する端末装置のそれぞれから受信した前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、前記所定の範囲毎の前記第1の条件を前記端末装置に送信する制御部を有することを特徴とするサーバ装置。
(付記8)
移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信することを特徴とする端末装置。
(付記9)
移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信する、
処理をコンピュータに実行させることを特徴とする動線特定プログラム。
(付記10)
移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信する、
処理をコンピュータが実行することを特徴とする動線特定方法。
10 車線判定システム
100 サーバ装置
140、240 制御部
200 端末装置
A、B、C 車両(移動体)

Claims (10)

  1. 移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信する制御部を有する端末装置と、
    複数の前記移動体のそれぞれから受信した前記位置情報及び前記画像を用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、前記所定の範囲毎の前記第1の条件を前記端末装置に送信する制御部を有するサーバ装置と、
    を有することを特徴とする動線特定システム。
  2. 前記サーバ装置は、複数の前記移動体のそれぞれから受信した前記位置情報及び前記画像を用いて、前記位置情報及び前記画像を送信した一の前記移動体が、前記位置情報により特定される前記所定の範囲において、いずれの動線に位置しているかを特定するために導出した第2の条件を前記端末装置に送信することを特徴とする、請求項1に記載の動線特定システム。
  3. 前記端末装置は、当該端末装置を搭載した前記移動体が位置する、動線数を前記第1の条件に基づいて特定するとともに、いずれの動線かを前記第2の条件に基づいて特定し、
    特定した結果である動線数の情報及びいずれの動線に位置しているかの情報を、前記位置情報と、前記位置情報に示される位置において撮影された前記画像との対応を識別可能な状態で前記サーバ装置に送信することを特徴とする、請求項2に記載の動線特定システム。
  4. 前記サーバ装置は、前記移動体から受信した動線数の情報及びいずれの動線に位置しているかの情報の少なくともいずれかの特定の誤りが一定のしきい値以上であると判定したときに、前記第1の条件、及び/又は、前記第2の条件を再度導出するタイミングを決定することを特徴とする、請求項3に記載の動線特定システム。
  5. 前記端末装置は、前記所定の範囲における動線数の特定の誤りが一定のしきい値以上であると判定したときに、前記画像の前記所定の撮影範囲を変更することを特徴とする、請求項3又は4に記載の動線特定システム。
  6. 前記サーバ装置は、前記第1の条件に基づいて前記所定の範囲毎に特定した前記動線数の情報を、前記動線数の情報を含む移動路地図として出力することを特徴とする、請求項3から5のいずれか一項に記載の動線特定システム。
  7. 複数の移動体が搭載する端末装置のそれぞれから受信した前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するための第1の条件を導出し、前記所定の範囲毎の前記第1の条件を前記端末装置に送信する制御部を有することを特徴とするサーバ装置。
  8. 移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
    複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信することを特徴とする端末装置。
  9. 移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
    複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信する、
    処理をコンピュータに実行させることを特徴とする動線特定プログラム。
  10. 移動体に搭載され、前記移動体の位置情報と、前記位置情報に示される位置において所定の撮影範囲を撮影した画像とを送信し、
    複数の前記移動体のそれぞれから受信した前記位置情報と前記画像とを用いて、地理的に隣り合う所定の範囲毎に移動路の動線数を特定するために導出された第1の条件を受信する、
    処理をコンピュータが実行することを特徴とする動線特定方法。

JP2017090391A 2017-04-28 2017-04-28 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム Active JP6916438B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090391A JP6916438B2 (ja) 2017-04-28 2017-04-28 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090391A JP6916438B2 (ja) 2017-04-28 2017-04-28 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム

Publications (2)

Publication Number Publication Date
JP2018189436A true JP2018189436A (ja) 2018-11-29
JP6916438B2 JP6916438B2 (ja) 2021-08-11

Family

ID=64479934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090391A Active JP6916438B2 (ja) 2017-04-28 2017-04-28 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム

Country Status (1)

Country Link
JP (1) JP6916438B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098853A (ja) * 2003-09-25 2005-04-14 Toyota Motor Corp 地図データ更新方法および地図データ更新装置
JP2007288444A (ja) * 2006-04-14 2007-11-01 Toyota Motor Corp 車載カメラ制御装置および車載カメラ制御方法。
US20110196608A1 (en) * 2010-02-06 2011-08-11 Bayerische Motoren Werke Aktiengesellschaft Method for Position Determination for a Motor Vehicle
JP2012221291A (ja) * 2011-04-11 2012-11-12 Hitachi Ltd データ配信システム、データ配信サーバ及びデータ配信方法
JP2014122859A (ja) * 2012-12-21 2014-07-03 Aisin Aw Co Ltd 道路情報収集装置及び道路情報収集プログラム
JP2016018540A (ja) * 2014-07-11 2016-02-01 株式会社日本自動車部品総合研究所 走行区画線認識装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098853A (ja) * 2003-09-25 2005-04-14 Toyota Motor Corp 地図データ更新方法および地図データ更新装置
JP2007288444A (ja) * 2006-04-14 2007-11-01 Toyota Motor Corp 車載カメラ制御装置および車載カメラ制御方法。
US20110196608A1 (en) * 2010-02-06 2011-08-11 Bayerische Motoren Werke Aktiengesellschaft Method for Position Determination for a Motor Vehicle
JP2012221291A (ja) * 2011-04-11 2012-11-12 Hitachi Ltd データ配信システム、データ配信サーバ及びデータ配信方法
JP2014122859A (ja) * 2012-12-21 2014-07-03 Aisin Aw Co Ltd 道路情報収集装置及び道路情報収集プログラム
JP2016018540A (ja) * 2014-07-11 2016-02-01 株式会社日本自動車部品総合研究所 走行区画線認識装置

Also Published As

Publication number Publication date
JP6916438B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
CN109215433B (zh) 用于自动驾驶仿真的基于视觉的驾驶场景生成器
CN111061261B (zh) 使用标准导航地图与基于车辆的先前轨迹确定的车道配置的自动驾驶方法
CN108732589B (zh) 利用3d lidar和定位自动采集用于对象识别的训练数据
KR102078488B1 (ko) 차량 주변의 컨텍스트에 기초하여 차량의 하나 이상의 궤적을 예측하는 방법 및 시스템
KR102062608B1 (ko) 자율 주행 차량의 제어 피드백에 기초한 맵 업데이트 방법 및 시스템
JP6742224B2 (ja) 自律走行車間に車両間通信を提供するためのシステム、および方法
US9933268B2 (en) Method and system for improving accuracy of digital map data utilized by a vehicle
CN110895147B (zh) 自动驾驶车辆的用相机捕获图像数据的图像数据获取逻辑
JP2018084573A (ja) 頑健で効率的な車両測位用のアルゴリズム及びインフラ
KR20190141081A (ko) 자율 주행 차량의 v2x 통신 기반의 차량 차로 시스템
US9709414B2 (en) Personalized suggestion of automated driving features
JP6792160B2 (ja) 移動支援システム、移動支援装置、移動支援端末、移動支援方法、地図作成システム、地図作成装置、及び情報取得端末
CN110110029B (zh) 用于匹配车道的方法和装置
EP3660735B1 (en) A compressive environmental feature representation for vehicle behavior prediction
US12067869B2 (en) Systems and methods for generating source-agnostic trajectories
JP2022052875A (ja) 自動運転装置
JP2021076593A (ja) 構築及び位置特定技術分野に焦点を当てた動的マップ生成
EP3859281B1 (en) Apparatus and method for collecting data for map generation
JP6916438B2 (ja) 動線特定システム、サーバ装置、端末装置、動線特定方法、及び動線特定プログラム
JP2019036263A (ja) 移動体評価装置、及び、移動体制御装置
JP2021086169A (ja) 自動運転制御システム、サーバ装置、及びプログラム
JP2019109653A (ja) 自己位置推定装置
US11798411B2 (en) Systems and methods for transforming high-definition geographical map data into messages for vehicle communications
EP4375620A1 (en) Method, apparatus, and computer program product for intelligent gap placement within mobility data using junctions inferred by features of the mobility data
EP4382865A1 (en) Method, apparatus, and computer program product for intelligent trajectory configurations within mobility data using junctions inferred by features of the mobility data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6916438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150