JP2018186286A - 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 - Google Patents

電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 Download PDF

Info

Publication number
JP2018186286A
JP2018186286A JP2018127096A JP2018127096A JP2018186286A JP 2018186286 A JP2018186286 A JP 2018186286A JP 2018127096 A JP2018127096 A JP 2018127096A JP 2018127096 A JP2018127096 A JP 2018127096A JP 2018186286 A JP2018186286 A JP 2018186286A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
sheet
heat conductive
fibrous
wave absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018127096A
Other languages
English (en)
Other versions
JP6379320B1 (ja
Inventor
久村 達雄
Tatsuo Hisamura
達雄 久村
佑介 久保
Yusuke Kubo
佑介 久保
荒巻 慶輔
Keisuke Aramaki
慶輔 荒巻
弘幸 良尊
Hiroyuki Yoshitaka
弘幸 良尊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2018127096A priority Critical patent/JP6379320B1/ja
Application granted granted Critical
Publication of JP6379320B1 publication Critical patent/JP6379320B1/ja
Publication of JP2018186286A publication Critical patent/JP2018186286A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】優れた熱伝導性及び電磁波吸収性を有する、電磁波吸収熱伝導シートを提供する。【解決手段】上記課題を解決するべく、本発明の電磁波吸収熱伝導シートは、高分子マトリックス成分と、磁性金属粉と、一方向に配向している繊維状の熱伝導性充填剤とを含むことを特徴とする。【選択図】図2

Description

本発明は、優れた熱伝導性及び電磁波吸収性を有する、電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置に関するものである。
近年、電子機器は、小型化の傾向をたどる一方、アプリケーションの多様性のために電力消費量をそれほど変化させることができないため、機器内における放熱対策がより一層重要視されている。
上述した電子機器における放熱対策として、銅やアルミ等といった熱伝導率の高い金属材料で作製された放熱板やヒートパイプ、あるいはヒートシンク等が広く利用されている。これらの熱伝導性に優れた放熱部品は、放熱効果又は機器内の温度緩和を図るため、電子機器内における発熱部である半導体パッケージ等の電子部品に近接するようにして配置される。また、これらの熱伝導性に優れた放熱部品は、発熱部である電子部品から低温の場所へ亘って配置される。
ただし、電子機器内における発熱部は、電流密度が高い半導体素子等の電子部品であり、電流密度が高いということは、不要輻射の成分となり得る電界強度又は磁界強度が大きいことが考えられる。このため、金属で作製された放熱部品を電子部品の近辺に配置すると、熱の吸収を行うとともに、電子部品内を流れる電気信号の高調波成分をも拾ってしまうという問題があった。具体的には、放熱部品が金属材料で作製されているため、それ自体が高調波成分のアンテナとして機能したり、高調波ノイズ成分の伝達経路として働いてしまうような場合である。
そのような問題を解決するべく、熱伝導性シートに、磁界のカップリングを断ち切るために、磁性材料を含有するもの技術が開発されている。
例えば特許文献1には、CPU等の半導体とヒートシンクに挟んで用いる電磁吸収熱伝導シートであって、シリコーン樹脂に軟磁性粉末と熱伝導フィラーを混ぜることによって、軟磁性粉末の磁気吸収効果と、熱伝導フィラーの熱伝導特性で電磁波吸収と熱伝導特性の両立を図る、という技術が開示されている。
しかしながら、特許文献1の技術では、電磁波吸収効果について一定の効果はみられるものの、シートの垂直方向に対する熱伝導率が1.5W/(m・K)程度であり、近年の放熱に対する要求に対しては十分な特性とはなっていない。
また、特許文献2には、繊維状導電性カーボンとカルボニル鉄を含んだ電磁波干渉抑制シートであって、繊維状導電性カーボンとカルボニル鉄との体積比率を3〜10:50〜70とすることでシート強度、柔軟性を確保しつつ電磁波吸収量を増やす、という技術が開示されている。
しかしながら、特許文献2の技術では、繊維状導電性カーボンが10体積%を超えると、分散が不良となり均一なシートが得られなくなるという問題があり、熱伝導性に関しては十分な考慮がされていなかった。
さらに、特許文献3には、樹脂マトリックス中に、炭素繊維と磁性粉とを含んだ電磁波干渉抑制シートを用いることで、電磁ノイズの抑制及び熱伝導率の向上を図る技術が開示されている。
しかしながら、特許文献3の技術では、良好な熱伝導性が得られるものの、電磁ノイズの抑制という点では十分な効果が得られておらず、実用化の点を考慮するとさらなる改良を図ることが望まれていた。
特開2001−68312号公報 特許第5103780号公報 特開2011−134755号公報
本発明は、かかる事情に鑑みてなされたものであって、優れた熱伝導性及び電磁波吸収性を有する、電磁波吸収熱伝導シート及びその製造方法を提供することを目的とする。また、本発明の他の目的は、かかる電磁波吸収熱伝導シートを用い、放熱性及び電磁波抑制に優れた半導体装置を提供することを目的とする。
本発明者らは、上記の課題を解決するべく鋭意研究を重ねた結果、高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含み、該繊維状の熱伝導性充填剤を一方向に配向させるとともに、配向する方向を調整することによって、従来に比べて高いレベルで熱伝導性及び電磁波吸収性を両立できることを見出した。
本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
(1)高分子マトリックス成分と、磁性金属粉と、一方向に配向している繊維状の熱伝導性充填剤とを含むことを特徴とする、電磁波吸収熱伝導シート。
上記構成によって、優れた熱伝導性及び電磁波吸収性を実現できる。
(2)前記繊維状の熱伝導性充填剤の配向方向が、シートの長手方向に対して60°超え〜90°の範囲であることを特徴とする、上記(1)に記載の電磁波吸収熱伝導シート。
(3)前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が5W/(m・K)以上、3GHzでの伝送吸収率が30%以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、上記(1)に記載の電磁波吸収熱伝導シート。
(4)前記繊維状の熱伝導性充填剤の配向方向が、シートの長手方向に対して30°超え〜60°の範囲であることを特徴とする、上記(1)に記載の電磁波吸収熱伝導シート。
(5)前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が2.7W/(m・K)以上、3GHzでの伝送吸収率が39%以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、上記(4)に記載の電磁波吸収熱伝導シート。
(6)前記繊維状の熱伝導性充填剤の配向方向が、シートの長手方向に対して0°〜30°の範囲であることを特徴とする、上記(1)に記載の電磁波吸収熱伝導シート。
(7)前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が1.5W/(m・K)以上、3GHzでの伝送吸収率が68%以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、上記(6)に記載の電磁波吸収熱伝導シート。
(8)前記繊維状の熱伝導性充填剤の含有量が4〜40体積%、前記磁性金属粉の含有量が35〜75体積%であることを特徴とする、前記(1)〜(7)のいずれかに記載の電磁波吸収熱伝導シート。
(9)前記繊維状の熱伝導性充填剤の含有量が5〜30体積%、前記磁性金属粉の含有量が40〜65体積%であることを特徴とする、上記(8)に記載の電磁波吸収熱伝導シート。
(10)前記繊維状の熱伝導性充填剤が、炭素繊維であることを特徴とする、前記(1)〜(9)のいずれかに記載の電磁波吸収熱伝導シート。
(11)前記電磁波吸収熱伝導シートが、無機物フィラーをさらに含むことを特徴とする、前記(1)〜(10)のいずれかに記載の電磁波吸収熱伝導シート。
(12)高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
前記繊維状の熱伝導性充填剤を配向させる工程と、
前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°〜90°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
を含むことを特徴とする、電磁波吸収熱伝導シートの製造方法。
上記構成によって、優れた熱伝導性及び電磁波吸収性を有する電磁波吸収熱伝導シートを提供できる。
(13)前記繊維状の熱伝導性充填剤を配向させる工程が、中空状の型内に、前記シート用組成物を、高剪断力下で押し出すこと又は圧入することによって行われ、
前記シート用成形体を作製する工程が、前記高分子マトリックス成分を熱硬化させることによって行われることを特徴とする、上記(12)に記載の電磁波吸収熱伝導シートの製造方法。
(14)高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
前記繊維状の熱伝導性充填剤を配向させる工程と、
前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、60°超え〜90°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
を含むことを特徴とする、上記(1)、(4)又は(7)に記載の電磁波吸収熱伝導シートの製造方法。
(15)高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
前記繊維状の熱伝導性充填剤を配向させる工程と、
前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、30°超え〜60°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
を含むことを特徴とする、上記(2)、(5)又は(8)に記載の電磁波吸収熱伝導シートの製造方法。
(16)高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
前記繊維状の熱伝導性充填剤を配向させる工程と、
前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°〜30°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
を含むことを特徴とする、上記(3)、(6)又は(9)に記載の電磁波吸収熱伝導シートの製造方法。
(17)熱源と、放熱部材と、該熱源と該放熱部材との間に挟持された電磁波吸収熱伝導シートを備える半導体装置であって、
前記電磁波吸収熱伝導シートが、上記(1)〜(13)のいずれか1項に記載の電磁波吸収熱伝導シートであることを特徴とする、半導体装置。
上記構成によって、優れた放熱性及び電磁波抑制を実現できる。
本発明によれば、優れた熱伝導性及び電磁波吸収性を有する、電磁波吸収熱伝導シート及びその製造方法を提供することが可能となる。また、かかる電磁波吸収熱伝導シートを用い、放熱性及び電磁波抑制に優れた半導体装置を提供することが可能となる。
本発明の電磁波吸収熱伝導シートの一実施形態を模式的に説明した図である。 本発明の電磁波吸収熱伝導シートを作製する工程において、シート用成形体を切断する際の状態を模式的に示した図である。 (a)本発明の半導体装置の一実施形態を模式的に示した図であり、(b)本発明の半導体装置の他の実施形態を模式的に示した図である。 実施例1、比較例4及び比較例1の、周波数に応じた伝送吸収率(%)を示す図である。 実施例4、比較例4及び比較例2の、周波数に応じた伝送吸収率(%)を示す図である。 実施例7、比較例4及び比較例3の、周波数に応じた伝送吸収率(%)を示す図である。 伝送吸収率(%)の測定に用いた測定系を示した図である。
以下、本発明の実施形態の一例を具体的に説明する。
<電磁波吸収熱伝導シート>
まず、本発明の電磁波吸収熱伝導シートについて説明する。
本発明は、高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含む、電磁波吸収熱伝導シートである。
(高分子マトリックス成分)
本発明の電磁波吸収熱伝導シートに含まれる高分子マトリックス成分は、電磁波吸収熱伝導シートの基材となる高分子成分のことである。その種類については、特に限定されず、公知の高分子マトリックス成分を適宜選択することができる。
例えば、高分子マトリックス成分の一つとして、熱硬化性ポリマーが挙げられる。
前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、これら熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。
前記シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。
上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。
前記付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si−H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。
なお、前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、質量比で、主剤:硬化剤=35:65〜65:35であることが好ましい。
また、本発明の電磁波吸収熱伝導シートにおける前記高分子マトリックス成分の含有量は、特に制限されず、目的に応じて適宜選択することができるが、シートの成形加工性や、シートの密着性等を確保する観点からは、20体積%〜50体積%程度であることが好ましく、30体積%〜40体積%であることがより好ましい。
(熱伝導性充填剤)
本発明の電磁波吸収熱伝導シートに含まれる熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。熱伝導性充填剤の種類については、繊維状の熱伝導性充填剤であること以外は、特に限定されず、公知の熱伝導性充填剤を適宜選択することができる。
図1は、本発明の電磁波吸収熱伝導シートについて、断面状態を模式的に示したものである。図1に示すように、本発明の電磁波吸収熱伝導シート1では、前記繊維状の熱伝導性充填剤12が、一方向(図1では方向X)に配向していることを特徴とする。
図1に示すように、繊維状の熱伝導性充填剤12を配向させることによって、電磁波吸収熱伝導シート1において、繊維状の熱伝導性充填剤12が規則正しく配設されることに加えて、磁性金属粉13が、規則正しく均一に分散されることとなる。その結果、繊維状の熱伝導性充填剤12及び磁性金属粉13の効果が、より効率的に発揮できるため、熱伝導性及び電磁波吸収性を高いレベルで実現できる。
なお、本発明における前記繊維状の熱伝導性充填剤の「繊維状」とは、アスペクト比の高い(およそ6以上)の形状のことをいう。そのため、本発明では、繊維状や棒状等の熱伝導性充填剤だけでなく、アスペクト比の高い粒状の充填材や、フレーク状の熱伝導性充填剤等も繊維状の熱伝導性充填剤に含まれる。
ここで、前記繊維状の熱伝導性充填剤の種類については、繊維状で且つ熱伝導性の高い材料であれば特に限定はされず、例えば、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス、炭素繊維等が挙げられる。
これらの繊維状の熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。
なお、前記熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも繊維状の熱伝導性充填剤であってもよいし、繊維状の熱伝導性充填剤と別の形状の熱伝導性充填剤とを混合して用いてもよい。
前記炭素繊維の種類について特に制限はなく、目的に応じて適宜選択することができる。例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(沢媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、高い熱伝導性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。
また、前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理等が挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。
さらに、前記炭素繊維の平均繊維長(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm〜300μmの範囲であることが好ましく、75μm〜275μmの範囲であることがより好ましく、90μm〜250μmの範囲であることが特に好ましい。
さらにまた、前記炭素繊維の平均繊維径(平均短軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、4μm〜20μmの範囲であることが好ましく、5μm〜14μmの範囲であることがより好ましい。
前記炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)については、確実に高い熱伝導性を得る点から、6以上であることが好ましく、7〜30であることがより好ましい。前記アスペクト比が小さい場合でも熱伝導率等の改善効果はみられるが、配向性が低下するなどにより大きな特性改善効果が得られないため、アスペクト比は6以上が好ましい。一方、30を超えると、電磁波吸収熱伝導シート中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。
ここで、前記炭素繊維の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。
また、前記電磁波吸収熱伝導シートにおける前記繊維状の熱伝導性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%〜40体積%であることが好ましく、5体積%〜30体積%であることがより好ましく、6体積%〜20体積%であることが特に好ましい。前記含有量が、4体積%未満であると、十分に低い熱抵抗を得ることが困難になるおそれがあり、40体積%を超えると、前記熱伝導シートの成型性及び前記繊維状の熱伝導性充填剤の配向性に影響を与えてしまうおそれがある。
また、本発明の電磁波吸収熱伝導シート1では、図1に示すように、前記繊維状の熱伝導性充填剤12が配向しており、その配向方向Xが、シートの長手方向Lに対して、特定の角度αを形成することが好ましい。前記電磁波吸収熱伝導シート1の配向方向Xを調整することで、本発明の電磁波吸収熱伝導シート1の熱伝導性及び/又は電磁波吸収性を、より高いレベルで実現できる。
ここで、前記シートの長手方向Lとは、その名の通り電磁波吸収熱伝導シート1の長手方向のことであり、後述するシート用成形体から電磁波吸収熱伝導シートを切り出した際の切断面の方向又は該切断面と直交する方向のことである。なお、前記電磁波吸収熱伝導シート1が正方形の場合にはどちらが長手方向であってもよく、円形等の場合には最も長い直径を長手方向Lとする。
なお、各繊維状の熱伝導性充填剤12の配向方向Xについては、完全一致する必要はなく、本発明では、配向方向Xが±10°以内のズレであれば、一方向に配向しているといえる。
例えば、前記繊維状の熱伝導性充填剤12の配向方向Xが、前記シートの長手方向Lに対して60°超え〜90°の範囲(角度α:60°超え〜90°の範囲)とすることは、熱伝導性をより大きく向上できる点から好ましい。
前記繊維状の熱伝導性充填剤12の配向方向Xが前記シートの長手方向Lに対して60°超え〜90°の範囲である場合、電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が5W/(m・K)以上、3GHzでの伝送吸収率が30%以上、6GHzでの伝送吸収率が70%以上となる。なお、上記伝送吸収率については、φ20mmの円盤状に切り出した、厚さ1mmの電磁波吸収熱伝導シートを用い、マイクロストリップライン法によって測定した値である。
また、前記繊維状の熱伝導性充填剤12の配向方向Xが、前記シートの長手方向Lに対して30°超え〜60°の範囲(角度α:30°超え〜60°の範囲)とすることは、熱伝導性及び電磁波吸収性をバランスよく向上できる点から好ましい。
前記繊維状の熱伝導性充填剤12の配向方向Xが前記シートの長手方向Lに対して30°超え〜60°の範囲である場合、電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が2.7W/(m・K)以上、3GHzでの伝送吸収率が39%以上、6GHzでの伝送吸収率が70%以上となる。なお、上記伝送吸収率については、φ20mmの円盤状に切り出した、厚さ1mmの電磁波吸収熱伝導シートを用い、マイクロストリップライン法によって測定した値である。
例えば、前記繊維状の熱伝導性充填剤12の配向方向Xが、前記シートの長手方向Lに対して0°〜30°の範囲(角度α:0°〜30°の範囲)とすることは、電磁波吸収性をより大きく向上できる点から好ましい。
前記繊維状の熱伝導性充填剤12の配向方向Xが前記シートの長手方向Lに対して0°〜30°の範囲である場合、電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が1.5W/(m・K)以上、3GHzでの伝送吸収率が68%以上、6GHzでの伝送吸収率が70%以上となる。この例では、前記繊維状の熱伝導性充填剤12の配向方向Xが小さいので厚さ方向への熱伝導率は低くなるが、面内方向での熱伝導率は高いのでヒートスプレッダとして機能する。なお、上記伝送吸収率については、φ20mmの円盤状に切り出した、厚さ1mmの電磁波吸収熱伝導シートを用い、マイクロストリップライン法によって測定した値である。
なお、前記繊維状の熱伝導性充填剤12の配向方向Xを変える方法については、本発明の電磁波吸収熱伝導シートの製造方法の説明の中で詳細に説明するが、電磁波吸収熱伝導シートの元になるシート用成形体において、熱伝導性充填剤12を配向させた状態で、切り出し角度を調整することによって、前記繊維状の熱伝導性充填剤12の配向方向Xを調整できる。
(無機物フィラー)
本発明の電磁波吸収熱伝導シートは、無機物フィラーをさらに含むことが好ましい。電磁波吸収熱伝導シートの熱伝導性をより高め、シートの強度を向上できるからである。
前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
前記無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、酸化アルミニウム、金属粒子等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。
また、前記無機物フィラーは、表面処理が施されたものを用いることができる。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シートの柔軟性が向上する。
前記無機物フィラーの平均粒径については、無機物の種類等に応じて適宜選択することができる。
前記無機物フィラーがアルミナの場合、その平均粒径は、1μm〜10μmであることが好ましく、1μm〜5μmであることがより好ましく、4μm〜5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、前記熱伝導シートの熱抵抗が大きくなるおそれがある。
さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm〜6.0μmであることが好ましく、0.3μm〜2.0μmであることがより好ましく、0.5μm〜1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、前記熱伝導シートの熱抵抗が大きくなるおそれがある。
なお、前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。
(磁性金属粉)
本発明の電磁波吸収熱伝導シートに含まれる磁性金属粉は、シートの電磁波吸収性を向上させるための成分である。
磁性金属粉の種類については、電磁波吸収性有すること以外は、特に限定されず、公知の磁性金属粉を適宜選択することができる。例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe−Si−B−Cr系、Fe−Si−B系、Co−Si−B系、Co−Zr系、Co−Nb系、Co−Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe−Ni系、Fe−Co系、Fe−Al系、Fe−Si系、Fe−Si−Al系、Fe−Ni−Si−Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いてもよい。
なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。
また、磁性金属粉については、球状、扁平状等を調整することが好ましい。例えば、充填性を高くする場合には、粒径が数μm〜数十μmであって、球状である磁性金属粉を用いることが好ましい。このような磁性金属粉末は、例えばアトマイズ法や、金属カルボニルを熱分解する方法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法によりアモルファス磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を10-6(K/s)程度にすることが好ましい。
上述したアトマイズ法により、アモルファス合金粉を製造した場合には、アモルファス合金粉の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス合金粉を磁性金属粉として用いると、バインダ樹脂に対して充填性を高めることができる。さらに、カップリング処理を行うことで充填性をより向上できる。
(その他成分)
本発明の電磁波吸収熱伝導シートは、上述した、高分子マトリックス成分、繊維状の熱伝導性充填剤、無機物フィラー及び磁性金属粉に加えて、目的に応じてその他の成分を適宜含むこともできる。
その他の成分としては、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
なお、本発明の電磁波吸収熱伝導シートの厚さについては、特に限定はされず、シートを用いる場所等によって適宜変更でき、例えばシートの密着性や強度を考慮すると、0.2mm〜5mmの範囲にすることができる。
<電磁波吸収熱伝導シートの製造方法>
次に、本発明の電磁波吸収熱伝導シートの製造方法について説明する。
本発明の電磁波吸収熱伝導シートの製造方法は、高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程(シート用組成物調製工程)と、
前記繊維状の熱伝導性充填剤を配向させる工程(充填剤配向工程)と、
前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程(シート用成形体作製工程)と、
前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°〜90°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程(電磁波吸収熱伝導シート作製工程)と、
を含むことを特徴とする。
上記各工程を経ることで、本発明の電磁波吸収熱伝導シートを得ることができる。得られた電磁波吸収熱伝導シートについては、上述したように、熱伝導性及び電磁波吸収性に優れる。
(シート用組成物調製工程)
本発明の電磁波吸収熱伝導シートの製造方法は、シート用組成物調製工程を含む。
このシート用組成物調製工程では、上述した、高分子マトリックス成分、繊維状の熱伝導性充填剤及び磁性金属粉、さらに、無機物フィラー及び/又はその他成分を配合し、シート用組成物を調製する。なお、各成分を配合、調製する手順については特に限定はされず、例えば、前記高分子マトリックス成分に、高分子マトリックス成分、繊維状の熱伝導性充填剤、無機物フィラー、磁性金属粉、その他成分を添加し、混合することにより、シート用組成物の調製が行われる。
(充填剤配向工程)
本発明の電磁波吸収熱伝導シートの製造方法は、シート用組成物調製工程を含む。
前記繊維状の熱伝導性充填剤を配向させる方法については、一方向に配向させることができる手段であれば特に限定はされない。
前記繊維状の熱伝導性充填剤を一方向に配向させるための方法として、中空状の型内に、前記シート用組成物を、高剪断力下で押し出すこと又は圧入することによって行うことが挙げられる。この方法によって、比較的容易に前記繊維状の熱伝導性充填剤を配向させることができ、前記繊維状の熱伝導性充填剤の配向は同一(±10°以内)となる。
上述した、中空状の型内に、前記シート用組成物を、高剪断力下で押し出すこと又は圧入する方法として、具体的には、押出し成型法又は金型成型法が挙げられる。
前記押出し成型法において、前記シート用組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、前記バインダ樹脂が流動し、その流動方向に沿って炭素繊維が配向する。この際、ダイの先端にスリットを取り付けると炭素繊維がより配向されやすくなる。
成形体(ブロック状の成形体)の大きさ及び形状は、求められる電磁波吸収熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5cm〜15cmで横の大きさが0.5cm〜15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。
(シート用成形体作製工程)
本発明の電磁波吸収熱伝導シートの製造方法は、シート用成形体作製工程を含む。
ここで、前記シート用成形体とは、所定のサイズに切断して得られる本発明の電磁波吸収熱伝導シートの元となるシート(成形体)のことをいう。前記シート用成形体の作製は、上述した充填剤配向工程にて行われた繊維状の熱伝導性充填剤の配向状態を維持したまま、前記高分子マトリックス成分を硬化させることによって行われる。
前記高分子マトリックス成分を硬化させる方法や条件については、高分子マトリックス成分の種類に応じて変えることができる。例えば、前記高分子マトリックス成分が熱硬化樹脂の場合、熱硬化における硬化温度を調整することができる。さらに、該熱硬化性樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有するものである場合、80℃〜120℃の硬化温度で硬化を行うことが好ましい。また、熱硬化における硬化時間としては、特に制限はないが、1時間〜10時間とすることができる。
(電磁波吸収熱伝導シート作製工程)
本発明の電磁波吸収熱伝導シートの製造方法は、電磁波吸収熱伝導シート作製工程を含む。
前記電磁波吸収熱伝導シート作製工程では、図2に示すように、前記配向した繊維状の熱伝導性充填剤12の長軸方向Jに対して、0°〜90°の角度βとなるように、前記シート用成形体を切断する。
図2に示すように、前記シート用成形体作製工程で得られたシート用成形体10は、繊維状の熱伝導性充填剤12の長軸が一定の方向Jに配向された状態となっている(図2では見やすくするために金属磁性粉13を省いた状態を示している。)。前記炭素繊維12の長軸方向Jに対し、一定の切断角度βにてシート状に切断することで、図1に示される電磁波吸収熱伝導シート1を得ることができる。
なお、前記炭素繊維12の長軸方向Jに対する切断角度βについては、得られた電磁波吸収熱伝導シート1における炭素繊維12の配向方向X(シート長手方向に対する角度α)に応じて、適宜調整することができる。
例えば、前記電磁波吸収熱伝導シート1における炭素繊維12の配向方向Xが、シートの長手方向に対して30°(α=30°)の場合には、記炭素繊維12の長軸方向Jに対する切断角度βも30°とすればよい。
また、前記シート用成形体の切断については、スライス装置を用いて行われる。
スライス装置については、前記シート用成形体を切断できる手段であれば特に限定はされず、公知のスライス装置を適宜用いることができる。例えば、超音波カッター、かんな(鉋)等を用いることができる。
(プレス工程)
本発明の電磁波吸収熱伝導シートの製造方法は、さらに、前記電磁波吸収熱伝導シートの表面を平滑化し、密着性を増し、軽荷重時の界面接触抵抗を軽減するべく、前記電磁波吸収熱伝導シートをプレスする工程(プレス工程)を含むことができる。
前記プレスについては、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用してプレスを行ってもよい。
前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるため、0.1MPa〜100MPaの圧力範囲とすることが好ましく、0.5MPa〜95MPaの圧力範囲とすることがより好ましい。
<半導体装置>
次に、本発明の半導体装置について説明する。
本発明の半導体装置は、熱源と、放熱部材と、該熱源と該放熱部材との間に挟持された電磁波吸収熱伝導シートを備える半導体装置であって、前記電磁波吸収熱伝導シートが、上述した本発明の電磁波吸収熱伝導シートであることを特徴とする。
本発明の電磁波吸収熱伝導シートを用いることによって、得られた半導体装置は、高い放熱性を有しつつ、電磁波抑制効果にも優れる。
ここで、前記熱源としては、半導体装置において熱を発するものであれば、特に制限はない。例えば、電子部品等が挙げられ、該電子部品としては、CPU、MPU、グラフィック演算素子、イメージセンサ等が挙げられる。
また、前記放熱部材としては、前記熱源から発生する熱を伝導して外部に放散させるものである。例えば、放熱器、冷却器、ヒートシンク、ヒートスプレッダ、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等が挙げられる。
本発明の半導体装置の一例について、図3(a)及び(b)を用いて説明する。
図3(a)は、本発明の半導体装置の一例を示す断面模式図である。半導体装置は、電磁波吸収熱伝導シート1と、ヒートスプレッダ2と、電子部品3と、ヒートシンク5と、配線基板6とを備える。
電磁波吸収熱伝導シート1は、電子部品3で発生する不要電磁波や、他の部品から放射された電磁波を吸収するとともに、電子部品3の発する熱を放熱するものであり、図3(a)に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、電磁波吸収熱伝導シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。
ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに電磁波吸収熱伝導シート1が設けられ、また主面2aと反対側の他の面2cに電磁波吸収熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良い銅やアルミニウムを用いて形成することができる。
電子部品3は、例えば、BGA等の半導体パッケージであり、配線基板6へ実装される。また、ヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。
そして、ヒートスプレッダ2の主面2aに、電磁波吸収熱伝導シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する。ヒートスプレッダ2と電磁波吸収熱伝導シート1との接着は、電磁波吸収熱伝導シート1自身の粘着力によって行うことができる。
図3(b)は、本発明の半導体装置の他の一例を示す断面模式図である。
半導体装置は、電磁波吸収熱伝導シート1と、ヒートスプレッダ2と、電子部品3と、ヒートシンク5と、配線基板6とを備える。
電磁波吸収熱伝導シート1は、電子部品3で発生する不要電磁波や、他の部品から放射された電磁波を吸収するとともに、電子部品3の発する熱を放熱するものであり、図3(b)に示すように、電子部品3の上面3aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持される。
次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
実施例1では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(「熱伝導性繊維」 日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。
2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19:16の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型30mm×30mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。
次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度β:90°(配向角度α:90°)にて超音波カッターで切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(実施例2)
実施例2では、上記のシリコーン硬化物を切断角度β:75°(配向角度α:75°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(実施例3)
実施例3では、上記のシリコーン硬化物を切断角度β:60°(配向角度α:60°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(実施例4)
実施例4では、上記のシリコーン硬化物を切断角度β:45°(配向角度α:45°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(実施例5)
実施例5では、上記のシリコーン硬化物を切断角度β:30°(配向角度α:30°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(実施例6)
実施例6では、上記のシリコーン硬化物を切断角度β:15°(配向角度α:15°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(実施例7)
実施例7では、上記のシリコーン硬化物を切断角度β:0°(配向角度α:0°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合及び他の工程は実施例1と同じ条件としている。
(比較例1)
比較例1では、上記のシリコーン硬化物を切断角度90°(配向角度α:90°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。この例では金属磁性粉の代わりに3〜5μmのシリカ粉末を用いており、配合は体積比で、2液性の付加反応型液状シリコーン樹脂:シリカ粉末:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。他の工程は実施例1と同じ条件としている。
(比較例2)
比較例2では、上記のシリコーン硬化物を切断角度45°(配向角度α:45°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。この例では金属磁性粉の代わりに3〜5μmのシリカ粉末を用いており、配合は体積比で、2液性の付加反応型液状シリコーン樹脂:シリカ粉末:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。他の工程は実施例1と同じ条件としている。
(比較例3)
比較例3では、上記のシリコーン硬化物を切断角度0°(配向角度α:0°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。この例では金属磁性粉の代わりに3〜5μmのシリカ粉末を用いており、配合は体積比で、2液性の付加反応型液状シリコーン樹脂:シリカ粉末:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。他の工程は実施例1と同じ条件としている。
(比較例4)
比較例4では、上記のシリコーン硬化物を切断角度0°(配向角度α:0°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。この例では炭素繊維を含まず、シリコーン樹脂と金属磁性粉のみで構成され、配合は体積比で2液性の付加反応型液状シリコーン樹脂:金属磁性粉=47vol%:53vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。他の工程は実施例1と同じ条件としている。
(比較例5)
比較例5では、金型中に押し出してシリコーン成形体の成形を行わなかった。そのため、得られた電磁波吸収熱伝導シート中の炭素繊維は一方向に配向していない。他の工程は実施例1と同じ条件としている。
(比較例6)
比較例6では、金型中に押し出してシリコーン成形体の成形を行わなかった。そのため、得られた電磁波吸収熱伝導シート中の炭素繊維は一方向に配向していない。また、この例では金属磁性粉の代わりに3〜5μmのシリカ粉末を用いており、配合は体積比で、2液性の付加反応型液状シリコーン樹脂:シリカ粉末:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーン樹脂組成物(シート用組成物)を調製した。他の工程は実施例1と同じ条件としている。
(実施例8〜11)
実施例8〜11では、上記のシリコーン硬化物を切断角度90°(配向角度α:90°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合は体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維が、表2に示すような割合となる。他の工程は実施例1と同じ条件としている。
(実施例12〜15)
実施例12〜15では、上記のシリコーン硬化物を切断角度45°(配向角度α:45°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合は体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維が、表2に示すような割合となる。他の工程は実施例1と同じ条件としている。
(実施例16〜19)
実施例16〜19では、上記のシリコーン硬化物を切断角度0°(配向角度α:0°)で切断し、厚み1mmの電磁波吸収熱伝導シートのサンプルを得た。配合は体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維が、表2に示すような割合となる。他の工程は実施例1と同じ条件としている。
(評価)
得られた電磁波吸収熱伝導シートの各サンプルについて、以下の評価を行った。評価結果を表1に示す。
(1)熱伝導率
各サンプルを、φ20mmの円盤状に切り出し熱抵抗を測定した。各電磁波吸収熱伝導シートの熱抵抗は、ASTM D 5470に準拠して、熱伝導率測定装置(ソニー株式会社製)を用い、荷重1.5kgf/cm2をかけて測定。この値から熱伝導率を算出した。結果を表1、表2に示した。
(2)伝送吸収率
IEC62333−2に記載されているマイクロストリップライン法を用いた。測定系100は、図7に示したものを用い、ネットワークアナライザ110により反射信号(S11)と透過信号(S21)を測定している。マイクロストリップライン112は、100×100×1.6mmの誘電体基板(裏面銅)の表面に幅4mmで形成されたもので特性インピーダンス50Ωに調整されている。各サンプル111を、φ20mmの円盤状に切り出し、マイクロストリップライン中央部に張り付け、S11、S21を測定し吸収率を算出した。
この際、電磁波吸収熱伝導シートを設置しない場合の損失を差し引き、電磁波吸収熱伝導シートの効果のみの値として算出した。1、3、6GHzでの値を抽出し、表1及び表2に示した。
また、実施例1、比較例4及び比較例1について、周波数に応じた伝送吸収率(%)を示したものを図4に示し、実施例4、比較例4及び比較例2について、周波数に応じた伝送吸収率(%)を示したものを図5に示し、実施例7、比較例4及び比較例3について、周波数に応じた伝送吸収率(%)を示したものを図6に示した。
Figure 2018186286
Figure 2018186286
表1の結果から、実施例1、2では、熱伝導率が6W/(m・K)以上と高く、伝送吸収率も、特に3GHz帯で35%以上、6GHz帯では76%以上となり、特に高周波領域で優れた特性を示している。実施例3、4では、熱伝導率が3.8W/(m・K)以上と比較的高く、伝送吸収率も、3GHz帯で約40%以上、6GHz帯では75%以上となり、少し低い周波数領域の特性が向上している。実施例5〜7では、熱伝導率が2.7〜1.5W/(m・K)と少し低くなるものの、伝送吸収率が、1GHz帯でも5弱以上、3GHz帯より高周波領域では、70%弱以上と特に優れた特性を示すことがわかった。
このように、実施例1〜7では、優れた熱伝導率及び伝送吸収率が得られ、更に炭素繊維の配向角により、熱伝導率と伝送吸収率の適切なバランス設定が可能となることがわかった。
一方比較例を見ると、磁性体を含まず炭素繊維とシリカだけで構成した、比較例1及び2では、伝送吸収率が著しく小さく、比較例3では、熱伝導率及び伝送吸収率が共に小さくなっていることがわかった。磁性体のみで構成した比較例4では、熱伝導率が著しく小さくなっていることがわかった。また、炭素繊維の配向処理をしていない比較例5、6では、炭素繊維又は熱伝導フィラーの配向がないこと以外は同様の条件である実施例1及び比較例1と比べると、熱伝導性に劣ることがわかった。
また、表2では、炭素繊維配向角90°、45°、0°における炭素繊維と磁性体の含有割合を変えた場合の、熱伝導率及び伝送吸収率の特性値を示しているが、炭素繊維の配向角と共に、炭素繊維と磁性体の含有割合を調整することにより、多様な熱伝導率及び伝送吸収率の特性値設定ができることがわかった。
また、図4〜6では、伝送吸収率の周波数特性を比較したが、炭素繊維のどの配向角αにおいても、炭素繊維で構成された比較例及び磁性体で構成された比較例に比べて、炭素繊維及び磁性体の両方を混在させた実施例では、相乗効果によってより優れた伝送吸収率を示すことがわかった。
本発明によれば、優れた熱伝導性及び電磁波吸収性を有する、電磁波吸収熱伝導シート及びその製造方法を提供することが可能となる。また、かかる電磁波吸収熱伝導シートを用い、放熱性及び電磁波抑制に優れた半導体装置を提供することが可能となる。
1 電磁波吸収熱伝導シート
2 ヒートスプレッダ
2a 主面
2b 側壁
2c 他の面
3 電子部品
3a 上面
5 ヒートシンク
6 配線基板
10 電磁波吸収熱伝導シート
11 高分子マトリックス成分
12 炭素繊維
13 磁性金属粉
100 測定系
110 ネットワークアナライザ
111 電磁波吸収熱伝導シートのサンプル
112 マイクロストリップライン

Claims (17)

  1. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して60°超え〜90°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が5W/(m・K)以上、1GHzでの伝送吸収率が3.6%以上であることを特徴とする、電磁波吸収熱伝導シート。
  2. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して30°超え〜60°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が2.7W/(m・K)以上、1GHzでの伝送吸収率が3.8%以上であることを特徴とする、電磁波吸収熱伝導シート。
  3. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して0°〜30°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が1.5W/(m・K)以上、1GHzでの伝送吸収率が4.8%以上であることを特徴とする、電磁波吸収熱伝導シート。
  4. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して60°超え〜90°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が5W/(m・K)以上、3GHzでの伝送吸収率が30%以上であることを特徴とする、電磁波吸収熱伝導シート。
  5. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して30°超え〜60°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が2.7W/(m・K)以上、3GHzでの伝送吸収率が39%以上であることを特徴とする、電磁波吸収熱伝導シート。
  6. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して0°〜30°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が1.5W/(m・K)以上、3GHzでの伝送吸収率が68%以上であることを特徴とする、電磁波吸収熱伝導シート。
  7. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して60°超え〜90°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が5W/(m・K)以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、電磁波吸収熱伝導シート。
  8. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して30°超え〜60°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が2.7W/(m・K)以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、電磁波吸収熱伝導シート。
  9. 高分子マトリックス成分と、磁性金属粉と、繊維状の熱伝導性充填剤とを含む電磁波吸収熱伝導シートであって、
    前記繊維状の熱伝導性充填剤が、シート面の延在方向に対して0°〜30°の範囲に配向し、前記電磁波吸収熱伝導シートの、厚さ方向の熱伝導率が1.5W/(m・K)以上、6GHzでの伝送吸収率が70%以上であることを特徴とする、電磁波吸収熱伝導シート。
  10. 前記繊維状の熱伝導性充填剤の含有量が4〜40体積%、前記磁性金属粉の含有量が35〜75体積%であることを特徴とする、請求項1〜9のいずれか1項に記載の電磁波吸収熱伝導シート。
  11. 前記繊維状の熱伝導性充填剤の含有量が5〜30体積%、前記磁性金属粉の含有量が40〜65体積%であることを特徴とする、請求項10に記載の電磁波吸収熱伝導シート。
  12. 前記繊維状の熱伝導性充填剤が、炭素繊維であることを特徴とする、請求項1〜11のいずれか1項に記載の電磁波吸収熱伝導シート。
  13. 前記電磁波吸収熱伝導シートが、無機物フィラーをさらに含むことを特徴とする、請求項1〜12のいずれか1項に記載の電磁波吸収熱伝導シート。
  14. 高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
    前記繊維状の熱伝導性充填剤を配向させる工程と、
    前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
    前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、60°超え〜90°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
    を含むことを特徴とする、請求項1、4又は7に記載の電磁波吸収熱伝導シートの製造方法。
  15. 高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
    前記繊維状の熱伝導性充填剤を配向させる工程と、
    前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
    前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、30°超え〜60°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
    を含むことを特徴とする、請求項2、5又は8に記載の電磁波吸収熱伝導シートの製造方法。
  16. 高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含むシート用組成物を調製する工程と、
    前記繊維状の熱伝導性充填剤を配向させる工程と、
    前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、シート用成形体を作製する工程と、
    前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°〜30°の角度となるように、前記シート用成形体を切断し、電磁波吸収熱伝導シートを作製する工程と、
    を含むことを特徴とする、請求項3、6又は9に記載の電磁波吸収熱伝導シートの製造方法。
  17. 熱源と、放熱部材と、該熱源と該放熱部材との間に挟持された電磁波吸収熱伝導シートを備える半導体装置であって、
    前記電磁波吸収熱伝導シートが、請求項1〜13のいずれか1項に記載の電磁波吸収熱伝導シートであることを特徴とする、半導体装置。
JP2018127096A 2018-07-03 2018-07-03 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 Active JP6379320B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127096A JP6379320B1 (ja) 2018-07-03 2018-07-03 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127096A JP6379320B1 (ja) 2018-07-03 2018-07-03 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016062335A Division JP6366627B2 (ja) 2016-03-25 2016-03-25 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Publications (2)

Publication Number Publication Date
JP6379320B1 JP6379320B1 (ja) 2018-08-22
JP2018186286A true JP2018186286A (ja) 2018-11-22

Family

ID=63250116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127096A Active JP6379320B1 (ja) 2018-07-03 2018-07-03 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Country Status (1)

Country Link
JP (1) JP6379320B1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432595A (zh) * 2019-01-09 2020-07-17 可成科技股份有限公司 散热结构及其制造方法
WO2020166584A1 (ja) * 2019-02-15 2020-08-20 積水テクノ成型株式会社 放熱体、放熱構造体及び電子機器
WO2021025089A1 (ja) * 2019-08-08 2021-02-11 積水ポリマテック株式会社 熱伝導性シート及びその製造方法
WO2023042497A1 (ja) * 2021-09-15 2023-03-23 信越ポリマー株式会社 熱伝導性シートおよびその製造方法
JP7379649B2 (ja) 2019-04-26 2023-11-14 東レプラスチック精工株式会社 ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材および遮蔽部材
JP7496981B2 (ja) 2020-04-13 2024-06-10 国立大学法人東北大学 磁歪複合材料および磁歪複合材料の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220173494A1 (en) * 2019-03-29 2022-06-02 Dexerials Corporation Antenna array for 5g communications, antenna structure, noise-suppressing thermally conductive sheet, and thermally conductive sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088472A (ja) * 2007-10-01 2009-04-23 Doo Sung Industrial Co Ltd 放熱特性と電磁波及び衝撃吸収特性が向上したロールタイプ(rolltype)の複合シート及びその製造方法
JP2009278137A (ja) * 2003-04-18 2009-11-26 Nitta Ind Corp 電磁波吸収材料
JP2010251377A (ja) * 2009-04-10 2010-11-04 Bridgestone Corp 電磁波吸収シート及びその製造方法
JP2011134755A (ja) * 2009-12-22 2011-07-07 Tdk Corp 電磁ノイズ対策部材
JP2012023335A (ja) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp 熱伝導性シート及びその製造方法
JP2015220300A (ja) * 2014-05-16 2015-12-07 パナソニックIpマネジメント株式会社 熱伝導体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278137A (ja) * 2003-04-18 2009-11-26 Nitta Ind Corp 電磁波吸収材料
JP2009088472A (ja) * 2007-10-01 2009-04-23 Doo Sung Industrial Co Ltd 放熱特性と電磁波及び衝撃吸収特性が向上したロールタイプ(rolltype)の複合シート及びその製造方法
JP2010251377A (ja) * 2009-04-10 2010-11-04 Bridgestone Corp 電磁波吸収シート及びその製造方法
JP2011134755A (ja) * 2009-12-22 2011-07-07 Tdk Corp 電磁ノイズ対策部材
JP2012023335A (ja) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp 熱伝導性シート及びその製造方法
JP2015220300A (ja) * 2014-05-16 2015-12-07 パナソニックIpマネジメント株式会社 熱伝導体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432595A (zh) * 2019-01-09 2020-07-17 可成科技股份有限公司 散热结构及其制造方法
WO2020166584A1 (ja) * 2019-02-15 2020-08-20 積水テクノ成型株式会社 放熱体、放熱構造体及び電子機器
JP7379649B2 (ja) 2019-04-26 2023-11-14 東レプラスチック精工株式会社 ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材および遮蔽部材
WO2021025089A1 (ja) * 2019-08-08 2021-02-11 積水ポリマテック株式会社 熱伝導性シート及びその製造方法
JP6858437B1 (ja) * 2019-08-08 2021-04-14 積水ポリマテック株式会社 熱伝導性シート及びその製造方法
JP7496981B2 (ja) 2020-04-13 2024-06-10 国立大学法人東北大学 磁歪複合材料および磁歪複合材料の製造方法
WO2023042497A1 (ja) * 2021-09-15 2023-03-23 信越ポリマー株式会社 熱伝導性シートおよびその製造方法

Also Published As

Publication number Publication date
JP6379320B1 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6366627B2 (ja) 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置
JP6379320B1 (ja) 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置
WO2018079240A1 (ja) 熱伝導シート、熱伝導シートの製造方法及び半導体装置
WO2018061712A1 (ja) 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置
WO2019193868A1 (ja) 半導体装置
JP6363687B2 (ja) 半導体装置
WO2018047828A1 (ja) 熱伝導シート、及び半導体装置
JP2020167667A (ja) 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート
WO2019244950A1 (ja) 半導体装置及び半導体装置の製造方法
WO2020202939A1 (ja) 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート
WO2018147228A1 (ja) 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置
KR102445111B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
WO2022176725A1 (ja) 熱伝導性シート、および電子機器
JP6379319B1 (ja) 半導体装置
WO2022176823A1 (ja) 熱伝導シート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180703

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6379320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250