JP2018182825A - Monitoring support system, monitoring support method, and monitoring support program - Google Patents

Monitoring support system, monitoring support method, and monitoring support program Download PDF

Info

Publication number
JP2018182825A
JP2018182825A JP2017075542A JP2017075542A JP2018182825A JP 2018182825 A JP2018182825 A JP 2018182825A JP 2017075542 A JP2017075542 A JP 2017075542A JP 2017075542 A JP2017075542 A JP 2017075542A JP 2018182825 A JP2018182825 A JP 2018182825A
Authority
JP
Japan
Prior art keywords
temperature
transformer
unit
current value
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017075542A
Other languages
Japanese (ja)
Other versions
JP6954718B2 (en
Inventor
由衣 星野
Yui Hoshino
由衣 星野
坂下 寛憲
Hironori Sakashita
寛憲 坂下
忠彰 安田
Tadaaki Yasuda
忠彰 安田
信彦 萩元
Nobuhiko Hagimoto
信彦 萩元
勝則 竹井
Katsunori Takei
勝則 竹井
義治 市川
Yoshiharu Ichikawa
義治 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Energy Systems and Solutions Corp
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Energy Systems and Solutions Corp, Tokyo Electric Power Co Holdings Inc filed Critical Toshiba Energy Systems and Solutions Corp
Priority to JP2017075542A priority Critical patent/JP6954718B2/en
Priority to PCT/JP2018/014582 priority patent/WO2018186470A1/en
Publication of JP2018182825A publication Critical patent/JP2018182825A/en
Application granted granted Critical
Publication of JP6954718B2 publication Critical patent/JP6954718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Protection Of Transformers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a monitoring support system, a monitoring support method, and a monitoring support program, capable of providing information for efficiently using the facility ability of a power transmission/transformation facility.SOLUTION: A monitoring support system of an embodiment includes a temperature acquisition unit, a current value acquisition unit, a state prediction unit, and a display control unit. The temperature acquisition unit acquires temperature information from a temperature sensor for measuring a temperature of a transformer. The current value acquisition unit acquires a value of current flowing through the transformer. On the basis of the temperature information acquired by the temperature acquisition unit and the value of current acquired by the current value acquisition unit, the state prediction unit predicts the transformer's state in the future. On the basis of the transformer's state in the future predicted by the state prediction unit, the display control unit generates information for making a display unit display at least one of a value of current suppliable to the transformer and a continuable time until the transformer's temperature reaches an allowable limit.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、監視支援システム、監視支援方法、および監視支援プログラムに関する。   Embodiments of the present invention relate to a monitoring support system, a monitoring support method, and a monitoring support program.

従来の電力系統の送変電設備では、設備運用を熱的に許容できる限界値以下で運用するため、発電機等の出力の抑制制御または設備の増強等が行われている。従来の送変電設備では、設備温度や外気温、送電設備の電気量情報等を取得し、現在の設備使用状態での設備温度の上昇予測値に基づく制御を行っていた。しかしながら、従来の技術では、設備温度や外気温は、夏期または冬期の過酷な外気温、あるいは年間を通した等価周囲温度の下で所定温度を超えない値が設定されている。そのため、送変電設備は、実際の設備使用温度よりも温度差が大きい状態で運用されていることが多く、上記の運用に基づく情報が表示部に表示されたとしても、運用者が現在の設備状況に適した運用を行えない場合があった。   In the transmission and transformation equipment of the conventional electric power system, in order to operate the equipment operation at a thermally acceptable limit value or less, suppression control of the output of a generator or the like or reinforcement of the equipment is performed. In the conventional power transmission and transformation equipment, the equipment temperature, the outside air temperature, the electricity quantity information of the power transmission equipment, and the like are acquired, and control is performed based on the predicted rise in equipment temperature in the current equipment usage state. However, in the prior art, the equipment temperature and the outside temperature are set to values that do not exceed the predetermined temperature under severe outside temperatures in summer or winter or equivalent ambient temperatures throughout the year. Therefore, transmission and transformation facilities are often operated in a state where the temperature difference is larger than the actual facility operating temperature, and even if the information based on the above operation is displayed on the display unit, the operator can There was a case that the operation suitable for the situation could not be performed.

特開昭63−314128号公報Japanese Patent Application Laid-Open No. 63-314128 特開平5−292651号公報Unexamined-Japanese-Patent No. 5-292651 特開平7−222345号公報Japanese Patent Application Laid-Open No. 7-222345

本発明が解決しようとする課題は、送変電設備の設備能力を効率的に活用するための情報を提供することができる監視支援システム、監視支援方法、および監視支援プログラムを提供することである。   The problem to be solved by the present invention is to provide a monitoring support system, a monitoring support method, and a monitoring support program that can provide information for efficiently utilizing the facility capacity of transmission and transformation facilities.

実施形態の監視支援システムは、温度取得部と、電流値取得部と、状態予測部と、表示制御部とを持つ。温度取得部は、変圧器の温度を計測する温度センサから温度情報を取得する。電流値取得部は、前記変圧器に流れる電流値を取得する。状態予測部は、前記温度取得部により取得された温度情報と、前記電流値取得部により取得された電流値とに基づいて、前記変圧器の将来の状態を予測する。表示制御部は、前記状態予測部により予測された前記変圧器の将来の状態に基づいて、前記変圧器に供給可能な電流値、または前記変圧器の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部に表示させるための情報を生成する。   The monitoring support system of the embodiment has a temperature acquisition unit, a current value acquisition unit, a state prediction unit, and a display control unit. The temperature acquisition unit acquires temperature information from a temperature sensor that measures the temperature of the transformer. The current value acquisition unit acquires a current value flowing through the transformer. The state prediction unit predicts the future state of the transformer based on the temperature information acquired by the temperature acquisition unit and the current value acquired by the current value acquisition unit. The display control unit can continue until the current value that can be supplied to the transformer or the temperature of the transformer reaches an allowable limit based on the future state of the transformer predicted by the state prediction unit Information is generated to display at least one of the times on the display unit.

第1の実施形態の監視支援システム100の一例を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows an example of the monitoring assistance system 100 of 1st Embodiment. 油温予測値を用いた継続可能時間の生成について説明するための図。The figure for demonstrating generation | occurrence | production of possible continuation time using an oil temperature predicted value. 寿命損失予測値を用いた継続可能時間の生成について説明するための図。The figure for demonstrating generation | occurrence | production of possible continuation time using a lifetime loss predicted value. 第1の実施形態の表示部220に表示される運用支援情報表示画面221について説明するための図。FIG. 7 is a view for explaining an operation support information display screen 221 displayed on the display unit 220 according to the first embodiment. 第1の実施形態の監視支援システム100における処理の流れの一例を示すフローチャート。6 is a flowchart showing an example of the flow of processing in the monitoring support system 100 of the first embodiment. 第2の実施形態の監視支援システム100Aの一例を示す図。A figure showing an example of surveillance supporting system 100A of a 2nd embodiment. 第2の実施形態の表示部220に表示される運用支援情報表示画面222について説明するための図。The figure for demonstrating the operation assistance information display screen 222 displayed on the display part 220 of 2nd Embodiment. 第3の実施形態の監視支援システム100Bの一例を示す図。The figure which shows an example of the monitoring assistance system 100B of 3rd Embodiment. 油温および巻線温度を用いた演算結果による運用支援情報の選択例について説明するための図。The figure for demonstrating the selection example of the operation assistance information by the calculation result using oil temperature and winding temperature. 第3の実施形態の監視支援システム100における処理の流れの一例を示すフローチャート。The flowchart which shows an example of the flow of the process in the monitoring assistance system 100 of 3rd Embodiment. 第4の実施形態の監視支援システム100Cの一例を示す図。The figure which shows an example of the monitoring assistance system 100C of 4th Embodiment. 予測演算部121で演算された油温予測値に基づいて生成される制御情報について説明するための図。The figure for demonstrating the control information produced | generated based on the oil temperature predicted value calculated by the prediction calculating part 121. FIG. 第4の実施形態の表示部220に表示される運用支援情報表示画面223について説明するための図。The figure for demonstrating the operation assistance information display screen 223 displayed on the display part 220 of 4th Embodiment. 第4の実施形態の監視支援システム100Cにおける処理の流れの一例を示すフローチャート。The flowchart which shows an example of the flow of the process in 100 A of monitoring assistance systems of 4th Embodiment. 第5の実施形態の監視支援システム100Dの一例を示す図。The figure which shows an example of monitoring assistance system 100D of 5th Embodiment. 第5の実施形態の表示部220に表示される運用支援情報表示画面224について説明するための図。The figure for demonstrating the operation assistance information display screen 224 displayed on the display part 220 of 5th Embodiment. 第5の実施形態の監視支援システム100Dにおける処理の流れの一例を示すフローチャート。The flowchart which shows an example of the flow of the process in monitoring assistance system 100D of 5th Embodiment. 第6の実施形態の監視支援システム100Eの一例を示す図。The figure which shows an example of the monitoring assistance system 100E of 6th Embodiment.

以下、実施形態の監視支援システム、監視支援方法、および監視支援プログラムを、図面を参照して説明する。   Hereinafter, a monitoring support system, a monitoring support method, and a monitoring support program of the embodiment will be described with reference to the drawings.

(第1の実施形態)
[全体構成]
図1は、第1の実施形態の監視支援システム100の一例を示す図である。図1に示す監視支援システム100は、変圧器10と、温度センサ20と、表示装置200とに接続される。
First Embodiment
[overall structure]
FIG. 1 is a diagram illustrating an example of a monitoring support system 100 according to the first embodiment. The monitoring support system 100 illustrated in FIG. 1 is connected to the transformer 10, the temperature sensor 20, and the display device 200.

変圧器10は、例えば、磁束の通路となる鉄心と、磁束と鎖交する電流の通路となる二つ以上の巻線とを備える。鉄心と二つ以上の巻線は、相互に位置を変えないように設置されている。また、鉄心と二つ以上の巻線は、例えば、絶縁強度や冷却効果を高めるための絶縁油が充填された容器内に収容されている。絶縁油は、例えば、シリコーン油または鉱油である。変圧器10は、外部から交流電力を受け、電磁誘導作用により電圧および電流を変成して、外部に交流電力を供給する。また、変圧器10は、例えば、電流センサ12を備える。電流センサ12は、変圧器10の巻線を流れる電流値を計測する。   The transformer 10 includes, for example, an iron core serving as a passage of magnetic flux and two or more windings serving as a passage of current linked to the magnetic flux. The iron core and the two or more windings are installed so as not to reposition each other. The iron core and the two or more windings are housed, for example, in a container filled with an insulating oil for enhancing the insulating strength and the cooling effect. The insulating oil is, for example, silicone oil or mineral oil. Transformer 10 receives AC power from the outside, denatures voltage and current by electromagnetic induction, and supplies AC power to the outside. The transformer 10 also includes, for example, a current sensor 12. The current sensor 12 measures the value of the current flowing through the winding of the transformer 10.

また、変圧器10は、例えば、巻線に取り付けられる出力電圧調整用の複数のタップ(不図示)と、タップを切り換えるタップ切換制御部(不図示)とを備える。タップ切換制御部は、受電電圧に応じて複数のタップの導通状態を切り換えて、巻線の巻数を変更することで変圧比を調整する。   The transformer 10 also includes, for example, a plurality of taps (not shown) for adjusting the output voltage attached to the winding, and a tap switching control unit (not shown) that switches the taps. The tap switching control unit switches the conduction state of the plurality of taps according to the received voltage, and adjusts the transformation ratio by changing the number of turns of the winding.

温度センサ20は、例えば、変圧器10の内部および/または外部に1又は複数設置され、変圧器10の温度を計測する。変圧器10の内部に設置された温度センサ20は、例えば、絶縁油の温度(以下、「油温」という)を計測する。また、変圧器10の外部に設置された温度センサ20は、例えば、変圧器10の周囲の温度(以下、「外気温」という)を計測する。温度センサ20は、例えば、測温抵抗体により得られる温度に比例した電気抵抗率に関する情報を、センサ情報として取得する。温度センサ20は、油温および外気温に関するセンサ情報を、計測時刻と対応付けて、監視支援システム100に出力する。   For example, one or more temperature sensors 20 are installed inside and / or outside of the transformer 10 to measure the temperature of the transformer 10. The temperature sensor 20 installed inside the transformer 10 measures, for example, the temperature of the insulating oil (hereinafter referred to as "oil temperature"). Further, the temperature sensor 20 installed outside the transformer 10 measures, for example, the temperature around the transformer 10 (hereinafter, referred to as “the outside air temperature”). The temperature sensor 20 acquires, for example, information on the electrical resistivity proportional to the temperature obtained by the resistance temperature detector as sensor information. The temperature sensor 20 outputs sensor information on the oil temperature and the outside air temperature to the monitoring support system 100 in association with the measurement time.

監視支援システム100は、例えば、取得部110と、状態予測部120と、表示制御部130と、通信部140とを備える。これらの機構は、例えばCPU(Central Processing Unit)等のプロセッサがプログラムメモリに格納されたプログラムを実行することにより機能するソフトウェア機能部である。これらの各機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現されてもよい。   The monitoring support system 100 includes, for example, an acquisition unit 110, a state prediction unit 120, a display control unit 130, and a communication unit 140. These mechanisms are software function units that function by execution of a program stored in a program memory by a processor such as a CPU (Central Processing Unit). Some or all of these functional units may be realized by hardware such as a large scale integration (LSI), an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA).

取得部110は、例えば、センサ情報取得部111と、温度取得部112と、電流値取得部113とを備える。センサ情報取得部111は、「センサインターフェース」の一例である。センサ情報取得部111は、温度センサ20により計測されたセンサ情報を取得する。   The acquisition unit 110 includes, for example, a sensor information acquisition unit 111, a temperature acquisition unit 112, and a current value acquisition unit 113. The sensor information acquisition unit 111 is an example of a “sensor interface”. The sensor information acquisition unit 111 acquires sensor information measured by the temperature sensor 20.

温度取得部112は、センサ情報取得部111に取得したセンサ情報を、状態予測部120で演算可能な温度値に換算する。また、温度取得部112は、例えば、温度センサ20がアナログ出力をする場合には、アナログ信号をデジタル信号に変更するAD変換器を含んでもよい。   The temperature acquisition unit 112 converts the sensor information acquired by the sensor information acquisition unit 111 into a temperature value that can be calculated by the state prediction unit 120. Further, the temperature acquisition unit 112 may include, for example, an AD converter that converts an analog signal into a digital signal when the temperature sensor 20 outputs an analog signal.

電流値取得部113は、変圧器10に設けられた電流センサ12により計測された電流値を取得する。電流センサ12による計測時間は、例えば、温度センサ20による計測時刻と対応付けられている。   The current value acquisition unit 113 acquires the current value measured by the current sensor 12 provided in the transformer 10. The measurement time by the current sensor 12 is, for example, associated with the measurement time by the temperature sensor 20.

状態予測部120は、例えば、温度取得部112により取得された温度値と、電流値取得部113により取得された電流値とに基づいて、変圧器10の将来の状態を予測する。状態予測部120は、例えば、予測演算部121と、運用支援情報生成部122とを備える。予測演算部121は、例えば、温度取得部112により取得された温度情報と、電流値取得部113により取得された電流値とに基づいて、時刻tごとの変圧器10の油温予測値、巻線温度予測値、または寿命損失予測値のうち、少なくとも一つの値を演算する。予測演算部121の機能の詳細については、後述する。   The state prediction unit 120 predicts the future state of the transformer 10 based on, for example, the temperature value acquired by the temperature acquisition unit 112 and the current value acquired by the current value acquisition unit 113. The state prediction unit 120 includes, for example, a prediction calculation unit 121 and an operation support information generation unit 122. The prediction calculation unit 121 calculates, for example, a predicted oil temperature value of the transformer 10 at each time t based on the temperature information acquired by the temperature acquisition unit 112 and the current value acquired by the current value acquisition unit 113. At least one of the line temperature prediction value and the life loss prediction value is calculated. Details of the function of the prediction calculation unit 121 will be described later.

運用支援情報生成部122は、電流値取得部113により取得された電流値および温度取得部112により取得された温度等の計測情報と、予測演算部121により演算された予測演算結果と、熱的許容限度とに基づいて、運用支援情報123を生成する。熱的許容限度とは、例えば、変圧器10に対して熱的に設備運用を許容できる限界値(例えば、温度限界値)である。   The operation support information generation unit 122 measures the current value acquired by the current value acquisition unit 113 and the measurement information such as the temperature acquired by the temperature acquisition unit 112, the prediction calculation result calculated by the prediction calculation unit 121, and the thermal The operation support information 123 is generated based on the allowable limit. The thermal tolerance is, for example, a limit (for example, a temperature limit) at which facility operation can be thermally permitted to the transformer 10.

運用支援情報123には、例えば、電流値と、温度と、連続許容電流値と、限時許容電流値と、継続可能時間とが含まれる。温度は、外気温、変圧器10の油温または巻線温度である。連続許容電流値は、例えば、熱的許容限度を超えずに設備に流せる最大の電流値である。また、限時許容電流値は、所定時間内において熱的許容限度を超えずに設備に流せる最大の電流値である。継続可能時間とは、例えば、現在の電流値を維持して運用を継続すると仮定した場合に、変圧器10の温度が熱的許容限度に到達するまでの時間である。   The operation support information 123 includes, for example, a current value, a temperature, a continuous allowable current value, a time-limited allowable current value, and a possible continuation time. The temperature is the outside air temperature, the oil temperature of the transformer 10 or the winding temperature. The continuous allowable current value is, for example, the maximum current value that can be supplied to the facility without exceeding the thermal allowable limit. In addition, the time limit allowable current value is the maximum current value that can be supplied to the facility without exceeding the thermal allowable limit within a predetermined time. The sustainable time is, for example, the time until the temperature of the transformer 10 reaches the thermal tolerance, assuming that the current value is maintained and the operation is continued.

表示制御部130は、運用支援情報生成部122により生成された運用支援情報123に基づいて、表示装置200の表示部220に表示させるための情報を生成する。表示部220に表示させるための情報は、例えば、画像情報でもよく、ブラウザ上で表示可能なHTML(Hyper Text Markup Language)ファイルでもよい。   The display control unit 130 generates information to be displayed on the display unit 220 of the display device 200 based on the operation support information 123 generated by the operation support information generation unit 122. The information to be displayed on the display unit 220 may be, for example, image information or an HTML (Hyper Text Markup Language) file that can be displayed on a browser.

通信部140は、表示装置200の通信部210と通信を行う。通信部140は、表示制御部130により生成された情報を、通信部210に送信する。   The communication unit 140 communicates with the communication unit 210 of the display device 200. The communication unit 140 transmits the information generated by the display control unit 130 to the communication unit 210.

表示装置200は、例えば、通信部210と、表示部220とを備える。表示装置200は、例えば、PC(Personal Computer)であるが、タブレット端末やスマートフォン等でもよい。通信部210は、監視支援システム100の通信部140と通信を行う。通信部210は、通信部140から表示部220に表示させるための情報を取得する。   The display device 200 includes, for example, a communication unit 210 and a display unit 220. The display device 200 is, for example, a PC (Personal Computer), but may be a tablet terminal or a smartphone. The communication unit 210 communicates with the communication unit 140 of the monitoring support system 100. The communication unit 210 acquires information to be displayed on the display unit 220 from the communication unit 140.

表示部220は、例えば、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)表示装置等である。表示部220は、通信部210が受信した情報を画面に表示する。表示部220に表示される情報の一例については、後述する。   The display unit 220 is, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display device. The display unit 220 displays the information received by the communication unit 210 on the screen. An example of the information displayed on the display unit 220 will be described later.

[状態予測]
ここで、上述した状態予測部120による状態予測処理について説明する。予測演算部121は、時刻tにおける変圧器10の油温、巻線温度、または寿命損失を演算する。
State prediction
Here, the state prediction processing by the above-described state prediction unit 120 will be described. The prediction calculation unit 121 calculates the oil temperature, winding temperature, or life loss of the transformer 10 at time t.

例えば、予測演算部121は、温度取得部112により取得された外気温θ[℃]および油温初期値θOS[℃]と、電流値取得部113により取得された変圧器10内の電流値Iとを(式1)に適用し、時刻tにおける変圧器10の油温計算値θot(t)を演算する。なお、外気温θ[℃]または油温初期値θOS[℃]のそれぞれを複数の温度センサ20から取得している場合は、例えば、それぞれの温度センサで計測された温度の平均値、または予め指定された温度センサ20から取得した値が用いられる。 For example, the prediction calculation unit 121 determines the current inside the transformer 10 acquired by the current value acquisition unit 113 and the outside air temperature θ a [° C.] and the oil temperature initial value θ OS [° C.] acquired by the temperature acquisition unit 112. The value I is applied to (Equation 1) to calculate the calculated oil temperature θ ot (t) of the transformer 10 at time t. When each of the outside air temperature θ a [° C.] or the oil temperature initial value θ OS [° C.] is obtained from a plurality of temperature sensors 20, for example, an average value of the temperatures measured by the respective temperature sensors Alternatively, a value acquired from the temperature sensor 20 specified in advance is used.

Figure 2018182825
(式1)において、τ0は油温変化の時定数を示す。また、θOLは油温最終到達温度[℃]を示し、例えば(式2)で算出される。
Figure 2018182825
In (Expression 1), τ0 represents a time constant of oil temperature change. Further, θ OL indicates the oil temperature final reached temperature [° C.], and is calculated by, for example, (Expression 2).

Figure 2018182825
(式2)において、θは、最高油温上昇値[K]を示し、例えば(式3)で算出される。
Figure 2018182825
In (Expression 2), θ 0 indicates the maximum oil temperature increase value [K], and is calculated by, for example, (Expression 3).

Figure 2018182825
(式3)において、θONは定格負荷時の最高油温上昇値[k]を示し、Kは変圧器10の負荷率(=現在の電流値I[A]/定格負荷時の電流値IN[A])を示し、Rは損失比(=定格負荷時の負荷損/無負荷損)を示し、mは冷却方式により定まる定数を示す。これにより、予測演算部121は、現在の変圧器使用状態の外気温および電流値を使用して、異なる時刻tについて上記の演算を行うことで、将来の複数の時点における油温計算値θOt(t)を演算して、変圧器10の将来の油温を予測することができる。
Figure 2018182825
In equation (3), θ ON indicates the maximum oil temperature increase value [k] at rated load, and K indicates the load factor of transformer 10 (= current current value I [A] / current value at rated load IN [A]) is shown, R indicates a loss ratio (= load loss at rated load / no load loss), and m indicates a constant determined by the cooling method. Thus, the prediction calculation unit 121 performs the above calculation at different times t using the current outside temperature and current value of the transformer usage state, to calculate the oil temperature calculated values θ Ot at a plurality of future points in time. (T) can be calculated to predict the future oil temperature of the transformer 10.

また、予測演算部121は、巻線温度の将来の値を予測する演算を行う場合、例えば、(式4)を用いて、将来の複数の時点における巻線温度[℃]を演算する。   In addition, when performing calculation to predict the future value of the winding temperature, the prediction calculation unit 121 calculates winding temperatures [° C.] at a plurality of future points in time using, for example, (Expression 4).

Figure 2018182825
(式4)において、θgは巻線温度上昇値[K]を示す。
Figure 2018182825
In Equation (4), θg represents a winding temperature rise value [K].

また、予測演算部121は、寿命損失予測値の演算を行ってもよい。寿命損失は、主に巻線温度θgt(t)の影響を受ける。例えば、巻線温度が95℃の状態で連続運用されるものと仮定した場合、変圧器10は、約30年の寿命が期待できる。一方、巻線温度が95[℃]より6[℃]上昇した状態で連続運用されるものと仮定した場合、変圧器10の寿命は、半減することが想定される。仮に、巻線温度149℃で運用した場合は、30分ほどで寿命が3%縮まることを表示する。これは、1年間に換算して約10日縮まる設備状態であることを示している。また、巻線温度が95[℃]よりも6[℃]下降した状態で連続運用するものと仮定した場合、変圧器10の寿命は、倍増することが想定される。したがって、予測演算部121は、(式5)を用いて、寿命損失[分/年]を演算することができる。 In addition, the prediction calculation unit 121 may calculate the life loss prediction value. The lifetime loss is mainly affected by the winding temperature θ gt (t). For example, assuming that the winding temperature is continuously operated at 95 ° C., the transformer 10 can be expected to have a life of about 30 years. On the other hand, it is assumed that the life of the transformer 10 is halved when it is assumed that the continuous operation is performed in a state where the winding temperature is increased by 6 ° C. from 95 ° C. If operating at a winding temperature of 149 ° C., it indicates that the life is reduced by 3% in about 30 minutes. This indicates that the equipment will shrink about 10 days in one year. Moreover, it is assumed that the lifetime of the transformer 10 doubles if it is assumed that continuous operation is performed in a state where the winding temperature is lowered by 6 [.degree. C.] from 95 [.degree. C.]. Therefore, the prediction calculation unit 121 can calculate the lifetime loss [minute / year] using (Equation 5).

Figure 2018182825
(式5)において、bは、寿命損失係数を示す。例えば、巻線温度が6℃上昇するごとに寿命が半減するものと仮定した場合、寿命損失係数は、(ln2)/6=0.1155となる。また、(式5)において、T1は監視期間の開始時刻を示し、T2は監視期間の終了時刻を示す。したがって、寿命損失予測値Vは、寿命損失の累積値として求めることができる。
Figure 2018182825
In Equation (5), b represents a life loss coefficient. For example, assuming that the life is reduced by half each time the winding temperature rises by 6 ° C., the life loss coefficient is (ln 2) /6=0.1155. Moreover, in (Formula 5), T1 shows the start time of a monitoring period, and T2 shows the completion | finish time of a monitoring period. Therefore, the life loss prediction value V can be obtained as an accumulated value of the life loss.

運用支援情報生成部122は、予測演算部121により予測された油温予測値、巻線温度予測値、および寿命損失予測値のうち、少なくとも一つの情報を用いて、運用支援情報123を生成する。   The operation support information generation unit 122 generates the operation support information 123 using at least one of the oil temperature predicted value, the winding temperature predicted value, and the life loss predicted value predicted by the prediction operation unit 121. .

図2は、油温予測値を用いた継続可能時間の生成について説明するための図である。図2の例において、横軸は、時間を示し、縦軸は油温を示す。図2の例では、時刻tごとの油温予測値を示している。運用支援情報生成部122は、例えば、油温計算値θot(t)の予測結果(複数時点の)を参照し、油温予測値が熱的許容限度の判定閾値に到達する時刻を取得する。判定閾値は、例えば、固定値でもよく、運用状況や運用者等によって任意に変更される値でもよい。また、運用支援情報生成部122は、現在時刻から判定閾値に到達する時刻までの時間を演算し、演算した時間を継続可能時間とする。 FIG. 2 is a diagram for describing generation of a possible continuation time using an oil temperature predicted value. In the example of FIG. 2, the horizontal axis indicates time, and the vertical axis indicates oil temperature. In the example of FIG. 2, the oil temperature predicted value for every time t is shown. The operation support information generation unit 122 refers to, for example, the prediction result (at multiple points in time) of the calculated oil temperature value θ ot (t), and acquires the time when the oil temperature predicted value reaches the judgment threshold of the thermal tolerance. . The determination threshold may be, for example, a fixed value, or may be a value arbitrarily changed by the operation status or the operator. In addition, the operation support information generation unit 122 calculates the time from the current time to the time to reach the determination threshold, and sets the calculated time as the continuable time.

図2の例では、時刻t1において、油温予測値が熱的許容限度の判定閾値に到達している。したがって、運用支援情報生成部122は、現在時刻t0から時刻t1までの時間(t1−t0)を継続可能時間として生成する。   In the example of FIG. 2, the oil temperature predicted value has reached the judgment threshold value of the thermal tolerance at time t1. Therefore, the operation support information generation unit 122 generates the time (t1-t0) from the current time t0 to the time t1 as the possible continuation time.

また、予測演算部121は、例えば、電流値取得部113により取得された変圧器10内の電流値Iに複数の仮想電流値を代入して、(式1)〜(式3)の演算を行う。そして、運用支援情報生成部122は、複数の仮想電流値を代入して演算された結果のうち、油温予測値が熱的許容限度値の判定閾値を超えない仮想電流の最大値を連続許容電流値として生成する。   Further, the prediction calculation unit 121 substitutes a plurality of virtual current values into the current value I in the transformer 10 acquired by the current value acquisition unit 113, for example, to calculate the expressions (1) to (3). Do. Then, the operation support information generation unit 122 continuously allows the maximum value of the virtual current at which the predicted oil temperature value does not exceed the determination threshold of the thermal allowable limit value among the results calculated by substituting the plurality of virtual current values. Generate as a current value.

また、予測演算部121は、例えば、複数の仮想電流値を代入した(式1)〜(式3)の演算を所定時間(例えば、現在時刻から1時間)の範囲内で行う。そして、運用支援情報生成部122は、複数の仮想電流値に基づく演算結果のうち、所定時間内で油温予測値が熱的許容限度値の判定閾値を超えない電流の最大値を限時許容電流値として生成する。   Further, the prediction calculation unit 121 performs, for example, calculation of (Expression 1) to (Expression 3) in which a plurality of virtual current values are substituted within a range of a predetermined time (for example, one hour from the current time). Then, the operation support information generation unit 122 sets, among the calculation results based on the plurality of virtual current values, the maximum value of the current at which the predicted oil temperature does not exceed the determination threshold of the thermal tolerance within the predetermined time. Generate as a value.

なお、巻線温度に対する将来の温度予測値(巻線温度予測値)についても図2に示す油温の予測結果と同様の結果が得られる。そのため、状態予測部120は、油温と同様に、巻線温度に対応する熱的許容限界の判定閾値を設定し、設定した判定閾値と、巻線温度予測値とに基づいて、巻線温度を基準とした、継続可能時間、連続許容電流値、限時許容電流値の各値うち、少なくとも一つの値を生成する。   In addition, the result similar to the prediction result of the oil temperature shown in FIG. 2 is obtained also about the temperature prediction value (winding temperature prediction value) of the future with respect to the winding temperature. Therefore, the state prediction unit 120 sets the judgment threshold value of the thermal tolerance limit corresponding to the winding temperature as well as the oil temperature, and based on the set judgment threshold value and the winding temperature predicted value, the winding temperature At least one value is generated among the values of the continuous available time, the continuous allowable current value, and the time-limited allowable current value based on.

また、状態予測部120は、寿命損失予測値に基づいて上述した継続可能時間、連続許容電流値、限時許容電流値の各値を生成してもよい。図3は、寿命損失予測値を用いた継続可能時間の生成について説明するための図である。図3の例において、横軸は、時間を示し、縦軸は、巻線温度(図3の左側の縦軸)を示すとともに、寿命損失(図3の右側の縦軸)を示す。   In addition, the state prediction unit 120 may generate each value of the above-described continuable time, the continuous allowable current value, and the time limit allowable current value based on the lifetime loss predicted value. FIG. 3 is a diagram for describing generation of the possible continuation time using the life loss prediction value. In the example of FIG. 3, the horizontal axis indicates time, and the vertical axis indicates winding temperature (vertical axis on the left side of FIG. 3) and life loss (vertical axis on the right side of FIG. 3).

寿命損失は、巻線温度の温度が所定値(例えば、95℃)を超えてからの経過時間および巻線温度の所定値からの増加量に基づいて、その累積値が予測される。予測演算部121は、(式5)において、巻線温度の温度が所定値を超えた時刻をT1、現在時刻をT2として演算を行う。また、予測演算部121は、巻線温度の温度が所定値を下回ったら演算を終了する。なお、予測演算部121は、ハンチング防止のためヒステリシスを設けてもよい。   The lifetime loss is predicted based on the elapsed time after the temperature of the winding temperature exceeds a predetermined value (e.g., 95 ° C.) and the amount of increase of the winding temperature from the predetermined value. In (Expression 5), the prediction operation unit 121 performs the operation with the time when the temperature of the winding temperature exceeds a predetermined value as T1 and the current time as T2. In addition, the prediction calculation unit 121 ends the calculation when the temperature of the winding temperature falls below a predetermined value. The prediction calculation unit 121 may be provided with hysteresis to prevent hunting.

図3の例において、運用支援情報生成部122は、予測演算部121により演算された寿命損失予測値が、寿命損失の判定閾値を超える時刻t2を取得する。そして、運用支援情報生成部122は、取得された時刻t0から時刻t2までの時間を演算し、演算された時間(t2−t0)を継続可能時間として生成する。   In the example of FIG. 3, the operation support information generation unit 122 acquires a time t2 at which the life loss prediction value calculated by the prediction calculation unit 121 exceeds the determination threshold of the life loss. Then, the operation support information generation unit 122 calculates the time from the acquired time t0 to the time t2, and generates the calculated time (t2-t0) as the possible continuation time.

また、予測演算部121は、電流値取得部113により取得された変圧器10内の電流値Iに複数の仮想電流値を代入して、上述した(式1)〜(式5)の演算を行う。そして、運用支援情報生成部122は、複数の仮想電流値を代入して演算された結果のうち、寿命損失予測値が、寿命損失の判定閾値を超えない電流の最大値を連続許容電流値として生成する。また、予測演算部121は、複数の仮想電流値を代入した(式1)〜(式5)の演算を所定時間の範囲内で行い、寿命損失予測値が、寿命損失の判定閾値を超えない電流の最大値を限時許容電流値として生成する。状態予測部120は、寿命損失に関する情報を予測することで、運用者は、寿命という観点から、過負荷による設備の状態を把握することができ、運転設備の優先順位を決定する場合や計画的な設備更新を行うための一つの目安にすることができる。   Further, the prediction calculation unit 121 substitutes a plurality of virtual current values into the current value I in the transformer 10 acquired by the current value acquisition unit 113, and performs the calculations of (Equation 1) to (Equation 5) described above. Do. Then, among the results calculated by substituting a plurality of virtual current values, the operation support information generation unit 122 sets the maximum value of the current whose life loss predicted value does not exceed the determination threshold of the life loss as the continuous allowable current value. Generate Further, the prediction calculation unit 121 performs the calculation of (Equation 1) to (Equation 5) in which a plurality of virtual current values are substituted within a predetermined time range, and the life loss prediction value does not exceed the judgment threshold of the life loss The maximum value of current is generated as the time limit allowable current value. The state prediction unit 120 predicts the information regarding the life loss, so that the operator can grasp the state of the facility due to the overload from the viewpoint of the life, and when the priority order of the operation facilities is determined or planned It can be one of the guidelines for performing equipment renewal.

[表示画面]
次に、第1の実施形態において表示部220に表示される画面例について説明する。図4は、第1の実施形態の表示部220に表示される運用支援情報表示画面221について説明するための図である。運用支援情報表示画面221は、例えば、常時運用情報表示領域221aと、計測データ表示領域221bと、運用概要情報表示領域221cとが示されている。
[Display screen]
Next, an example of a screen displayed on the display unit 220 in the first embodiment will be described. FIG. 4 is a diagram for describing the operation support information display screen 221 displayed on the display unit 220 according to the first embodiment. In the operation support information display screen 221, for example, a constant operation information display area 221a, a measurement data display area 221b, and an operation summary information display area 221c are shown.

常時運用情報表示領域221aには、運用支援情報生成部122により生成された連続許容電流値と、継続可能時間とが示されている。   In the continuous operation information display area 221a, the continuous allowable current value generated by the operation support information generation unit 122 and the possible continuous time are shown.

計測データ表示領域221bには、温度取得部112で取得された変圧器10の外気温測定値および油温測定値と、電流値取得部113により取得された電流値と、予測演算部121により演算された現在時刻における巻線温度および油温の計算値とが示されている。外気温測定値には、例えば、外気温測定用の二つの温度センサ(例えば、温度計1、2)でそれぞれ測定された外気温の値が示されている。また、油温測定値には、油温測定用の三つの温度センサ(例えば、第1相〜第3相)でそれぞれ測定された油温の値が示されている。   In the measurement data display area 221 b, the outside air measurement value and the oil temperature measurement value of the transformer 10 acquired by the temperature acquisition unit 112, the current value acquired by the current value acquisition unit 113, and the calculation by the prediction operation unit 121 The calculated values of the winding temperature and the oil temperature at the current time are shown. In the outside air temperature measurement value, for example, the value of the outside air temperature measured by each of two temperature sensors (for example, thermometers 1 and 2) for outside air temperature measurement is shown. Further, the oil temperature measurement value indicates the value of the oil temperature measured by each of three temperature sensors (for example, the first phase to the third phase) for oil temperature measurement.

運用概要情報表示領域221cには、常時運用情報表示領域221aおよび計測データ表示領域221bに表示されている情報のうち、一部または全部が示されている。運用支援情報表示画面221には、電流値に加えて(または、代わりに)、電力値[MW]が表示されてもよい。   The operation summary information display area 221c shows a part or all of the information displayed in the operation information display area 221a and the measurement data display area 221b. The operation support information display screen 221 may display the power value [MW] in addition to (or instead of) the current value.

なお、図4の例では、主に油温に基づく情報を示しているが、油温の代わりに巻線温度または寿命損失に基づく情報を表示してもよい。例えば、寿命損失に基づく値を表示する場合、表示制御部130は、30年の寿命のうち、何%を今までで消費したのかを積算した値を表示部220に表示させるための情報を生成する。油温、巻線温度、およぶ寿命損失の各要素のうち、どの要素に基づいた情報を表示するかについては、運用者が画面に表示させる少なくとも一つの要素を選択してもよく、監視支援システム100に予め表示させる少なくとも一つの要素が設定されていてもよい。   Although the example shown in FIG. 4 mainly shows information based on oil temperature, information based on winding temperature or life loss may be displayed instead of oil temperature. For example, when displaying a value based on the lifetime loss, the display control unit 130 generates information for causing the display unit 220 to display a value obtained by integrating what percentage of the 30-year lifetime has been consumed so far. Do. The operator may select at least one element to be displayed on the screen as to which of the elements of oil temperature, winding temperature, and life loss is to be displayed, and the monitoring support system At least one element to be displayed in advance in 100 may be set.

また、運用支援情報表示画面221には、現在の運用状態での変圧器10の巻線に流れる電流値が、連続許容電流値以内である場合に「連続値以内」と表示されてもよく、連続許容電流値を超えている場合に「限度値超過」と表示されてもよい。これらの表示情報も、表示制御部130により生成される。   Further, the operation support information display screen 221 may display “within continuous value” when the current value flowing through the winding of the transformer 10 in the current operation state is within the continuous allowable current value. When the continuous allowable current value is exceeded, "limit value exceeded" may be displayed. These display information is also generated by the display control unit 130.

運用者は、運用支援情報表示画面221を参照することで、常に変化する系統状態や外気温から求められる許容電流値や運転継続可能時間を把握することができ、現在の設備状態に合わせた運用を行うことができる。   By referring to the operation support information display screen 221, the operator can grasp the allowable current value and the operation continuable time required from the constantly changing system state and the outside air temperature, and the operation according to the current facility state It can be performed.

図5は、第1の実施形態の監視支援システム100における処理の流れの一例を示すフローチャートである。なお、図5に示す処理は、一例として、油温予測値に基づく運用支援情報の生成処理を示す。また、図5に示すフローチャートは、所定のタイミングで繰り返し実行される。   FIG. 5 is a flowchart illustrating an example of the flow of processing in the monitoring support system 100 according to the first embodiment. In addition, the process shown in FIG. 5 shows the production | generation process of the operation assistance information based on an oil temperature predicted value as an example. Further, the flowchart shown in FIG. 5 is repeatedly executed at a predetermined timing.

図5の例において、まず、温度取得部112は、温度センサ20から変圧器10の温度情報を取得する(ステップS100)。次に、電流値取得部113は、変圧器10に設置された電流センサ12から変圧器10の巻線に流れる電流値を取得する(ステップS110)。次に、予測演算部121は、外気温および油温と、電流値とに基づいて、変圧器10の時刻tごとの油温予測値を演算する(ステップS120)。   In the example of FIG. 5, first, the temperature acquisition unit 112 acquires temperature information of the transformer 10 from the temperature sensor 20 (step S100). Next, the current value acquisition unit 113 acquires the current value flowing to the winding of the transformer 10 from the current sensor 12 installed in the transformer 10 (step S110). Next, the prediction calculation unit 121 calculates a predicted oil temperature value for each time t of the transformer 10 based on the outside air temperature and the oil temperature, and the current value (step S120).

次に、運用支援情報生成部122は、演算された油温予測値と、熱的許容限度の判定閾値とに基づいて、継続可能時間を生成する(ステップS130)。次に、予測演算部を電流センサから取得した電流値の代わりに複数の仮想電流値を用いて、時刻tごとの油温予測値を演算する(ステップS140)。次に、運用支援情報生成部122は、演算された油温予測値と、熱的許容限度の判定閾値とに基づいて、連続許容電流値または限時許容電流値を生成する(ステップS150)。なお、運用支援情報生成部122は、連続許容電流値および限時許容電流値の両方を生成してもよい。   Next, the operation support information generation unit 122 generates the possible continuation time based on the calculated oil temperature predicted value and the judgment threshold value of the thermal tolerance (step S130). Next, the prediction calculation unit calculates a predicted oil temperature value at each time t using a plurality of virtual current values instead of the current value acquired from the current sensor (step S140). Next, the operation support information generation unit 122 generates a continuous allowable current value or a time-limited allowable current value based on the calculated oil temperature predicted value and the determination threshold of the thermal allowable limit (step S150). The operation support information generation unit 122 may generate both the continuous allowable current value and the time-limited allowable current value.

次に、運用支援情報生成部122は、実測された温度または電流値や、予測演算部121により演算された値に基づいて、運用支援情報123を生成する(ステップS160)。次に、表示制御部130は、表示装置200の表示部220に運用支援情報123を表示するための画像を生成し(ステップS170)、生成した画像を表示装置200に出力して(ステップS180)、本フローチャートの処理を終了する。これにより、表示装置200は、監視支援システム100により送信された情報を受信して表示部220に表示させることができる。   Next, the operation support information generation unit 122 generates the operation support information 123 based on the measured temperature or current value or the value calculated by the prediction calculation unit 121 (step S160). Next, the display control unit 130 generates an image for displaying the operation support information 123 on the display unit 220 of the display device 200 (step S170), and outputs the generated image to the display device 200 (step S180). , End the processing of this flowchart. Thus, the display device 200 can receive the information transmitted by the monitoring support system 100 and cause the display unit 220 to display the information.

なお、監視支援システム100は、複数の表示装置200と通信可能であってもよい。この場合、監視支援システム100は、複数の表示装置200に対して、運用支援情報123を表示するための情報を送信する。また、監視支援システム100は、表示部220の機能を備えていてもよい。   The monitoring support system 100 may be able to communicate with a plurality of display devices 200. In this case, the monitoring support system 100 transmits, to the plurality of display devices 200, information for displaying the operation support information 123. Further, the monitoring support system 100 may have the function of the display unit 220.

以上説明したように、第1の実施形態の監視支援システム100によれば、実測した温度情報と電流値とによって予測された変圧器10の将来の状態に基づいて、変圧器10に供給可能な電流値、または前記変圧器の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部220に表示させることで、送変電設備の設備能力を効率的に活用するための情報を提供することができる。これにより、監視支援システム100は、時間経過に伴って変化する系統状態や外気温から求められる許容電流値を表示装置200に表示させることができ、限界温度を超過する前に、運用者に発電出力の調整や系統切替を実施させることができる。   As described above, according to the monitoring support system 100 of the first embodiment, the transformer 10 can be supplied based on the future state of the transformer 10 predicted by the measured temperature information and the current value. Information for efficiently utilizing the facility capacity of the transmission and transformation equipment by displaying on the display unit 220 at least one of the current value or the continuous time until the temperature of the transformer reaches the allowable limit Can be provided. Thus, the monitoring support system 100 can display on the display device 200 the allowable current value obtained from the system status and the outside air temperature changing with the passage of time, and the operator can generate power before the limit temperature is exceeded. Adjustment of output and system switching can be implemented.

また、監視支援システム100は、連続許容電流値として設備そのものの許容値を提供するとともに、限時許容電流値として一時的な許容値を表示部220に表示させることができるため、変圧器10の定格容量を超えても運用可能な範囲を詳細に表示させることができる。そのため、運用者は、表示装置200に表示された連続許容電流値や限時許容電流値を指針として、現在の設備状態に合わせた運用が可能となる。また、監視支援システム100は、変圧器10に関する制御対象機器に対して制御の実行を行うまでの運転継続可能時間を表示装置200に表示させることができる。そのため、運用者は、設備の運転の時間的な裕度を把握することができ、設備を効率的に活用することができる。   Further, since the monitoring support system 100 can provide the allowable value of the facility itself as the continuous allowable current value and can display the temporary allowable value on the display unit 220 as the time-limited allowable current value, the rating of the transformer 10 can be obtained. Even if the capacity is exceeded, the operable range can be displayed in detail. Therefore, the operator can perform an operation in accordance with the current facility state using the continuous allowable current value and the time-limited allowable current value displayed on the display device 200 as a guideline. Further, the monitoring support system 100 can cause the display device 200 to display the operation continuation possible time until the control target device related to the transformer 10 is controlled. Therefore, the operator can grasp the temporal margin of operation of the facility, and can efficiently utilize the facility.

(第2の実施形態)
次に、監視支援システムの第2の実施形態について説明する。以下において、第1の実施形態と同様の機能を備える構成については、同一の名称および符号を用いることとし、具体的な説明は省略する。
Second Embodiment
Next, a second embodiment of the monitoring support system will be described. In the following, the same names and reference numerals are used for the configuration having the same function as that of the first embodiment, and the specific description is omitted.

図6は、第2の実施形態の監視支援システム100Aの一例を示す図である。監視支援システム100Aは、取得部110と、状態予測部120Aと、表示制御部130と、通信部140とを備える。以下の説明では、主に第1の実施形態との相違点である状態予測部120Aの構成を中心として説明する。   FIG. 6 is a diagram showing an example of a monitoring support system 100A of the second embodiment. The monitoring support system 100A includes an acquisition unit 110, a state prediction unit 120A, a display control unit 130, and a communication unit 140. In the following description, the configuration of the state prediction unit 120A that is the difference from the first embodiment is mainly described.

例えば、変圧器10の巻線温度に流れる電流値が大きいほど、油温予測値が熱的許容限度の判定閾値に到達するまでの時間は短くなり、変圧器10の巻線温度に流れる電流値が小さいほど、熱的許容限度の判定閾値に到達するまでの時間は長くなる。そのため、限時許容電流値を生成する場合、複数の時間を基準にした限時許容電流値を生成するのが好ましい。したがって、運用支援情報生成部122Aは、予測演算部121により演算された結果から、複数の経過時間(Tx)ごとに、熱的許容限度の判定閾値に到達するときの仮想電流値を取得し、取得した仮想電流値を、限時許容電流値として生成する。複数の経過時間とは、例えば、30分、1時間、2時間、4時間、8時間である。   For example, the larger the current value flowing to the winding temperature of transformer 10, the shorter the time for the oil temperature predicted value to reach the judgment threshold of the thermal tolerance, and the current value flowing to the winding temperature of transformer 10 The smaller the, the longer it takes to reach the thermal acceptance threshold. Therefore, when generating the time-limited allowable current value, it is preferable to generate the time-limited allowable current value based on a plurality of times. Therefore, the operation support information generation unit 122A acquires, from the result calculated by the prediction calculation unit 121, a virtual current value at the time of reaching the determination threshold of the thermal tolerance for each of a plurality of elapsed times (Tx), The acquired virtual current value is generated as a time limit allowable current value. The plurality of elapsed times are, for example, 30 minutes, 1 hour, 2 hours, 4 hours, and 8 hours.

また、運用支援情報生成部122Aは、電流値と、温度と、連続許容電流値と、複数の時間後の限時許容電流値と、継続可能時間とのうち、少なくとも一つを含む運用支援情報123Aを生成する。表示制御部130は、運用支援情報生成部122Aにより生成された運用支援情報123Aを表示部220に表示するための情報を生成する。   In addition, the operation support information generation unit 122A includes operation support information 123A including at least one of a current value, a temperature, a continuous allowable current value, a time limit allowable current value after a plurality of times, and a possible continuation time. Generate The display control unit 130 generates information for displaying the operation support information 123A generated by the operation support information generation unit 122A on the display unit 220.

図7は、第2の実施形態の表示部220に表示される運用支援情報表示画面222について説明するための図である。運用支援情報表示画面222は、例えば、常時運用情報表示領域222aと、計測データ表示領域222bと、運用概要情報表示領域222cとが示されている。計測データ表示領域222bおよび運用概要情報表示領域222cに表示される内容は、上述した運用支援情報表示画面221の計測データ表示領域221bおよび運用概要情報表示領域221cと同様であるため、具体的な説明な省略する。   FIG. 7 is a diagram for describing an operation support information display screen 222 displayed on the display unit 220 according to the second embodiment. In the operation support information display screen 222, for example, a constant operation information display area 222a, a measurement data display area 222b, and an operation summary information display area 222c are shown. The contents displayed in the measurement data display area 222 b and the operation summary information display area 222 c are the same as the measurement data display area 221 b and the operation summary information display area 221 c of the operation support information display screen 221 described above, I omit it.

常時運用情報表示領域222aには、運用支援情報生成部122Aにより生成された連続許容電流値と、継続可能時間と、複数の時間後における限時許容電流値とが示されている。運用者は、運用支援情報表示画面222を参照することで、現在時刻からの複数の経過時間に対する許容電流値を把握することができる。   In the continuous operation information display area 222a, the continuous allowable current value generated by the operation support information generation unit 122A, the continuous allowable time, and the time limit allowable current after a plurality of times are shown. The operator can grasp the allowable current values for a plurality of elapsed times from the current time by referring to the operation support information display screen 222.

第2の実施形態の監視支援システム100Aにおける処理の流れについては、第1の実施形態の監視支援システム100におけるステップS100〜S180の処理のうち、ステップS150の処理以外の処理については、同様の処理を行う。ステップS150の処理では、限時許容電流値を生成する場合に、複数の時間ごとの限時許容電流値を生成する。   Regarding the flow of processing in the monitoring support system 100A of the second embodiment, among the processing of steps S100 to S180 in the monitoring support system 100 of the first embodiment, the same processing is performed for processing other than the processing of step S150. I do. In the process of step S150, when generating a time-limited allowable current value, a plurality of time-limited allowable current values are generated.

以上説明したように、第2の実施形態の監視支援システム100Aによれば、第1の実施形態と同様の効果を奏する他、現在時刻を基準とした複数の経過時間に対する許容電流値が表示部220に表示されるため、運用者は、運用するために必要な時間に合わせて電流値を調整することができる。したがって、運用者は、送変電設備の設備能力を、より効率的に活用することができる。   As described above, according to the monitoring support system 100A of the second embodiment, in addition to the same effects as in the first embodiment, the allowable current values for a plurality of elapsed times based on the current time are displayed As displayed at 220, the operator can adjust the current value in accordance with the time required for operation. Therefore, the operator can utilize the facility capacity of the transmission and transformation equipment more efficiently.

(第3の実施形態)
次に、監視支援システムの第3の実施形態について説明する。なお、第3の実施形態においては、上述した第1の実施形態の監視支援システムと同様のシステム構成を適用することができる。
Third Embodiment
Next, a third embodiment of the monitoring support system will be described. In the third embodiment, a system configuration similar to that of the above-described monitoring support system of the first embodiment can be applied.

図8は、第3の実施形態の監視支援システム100Bの一例を示す図である。監視支援システム100Bは、取得部110と、状態予測部120Bと、表示制御部130と、通信部140とを備える。監視支援システム100Bは、第2の実施形態の監視支援システム100Aと比較すると、状態予測部120Bにおいて、予測演算部121と運用支援情報生成部122Aとの代わりに、予測演算部121Bと運用支援情報生成部122Bとを備える点、および予測値選択部124を備える点で相違する。したがって、以下の説明では、主に予測演算部121B、運用支援情報生成部122B、および予測値選択部124の構成を中心として説明する。また、この構成は、第2の実施形態に追加されてもよい。   FIG. 8 is a diagram showing an example of a monitoring support system 100B of the third embodiment. The monitoring support system 100B includes an acquisition unit 110, a state prediction unit 120B, a display control unit 130, and a communication unit 140. In the monitoring support system 100B, in comparison with the monitoring support system 100A of the second embodiment, in the state prediction unit 120B, instead of the prediction operation unit 121 and the operation support information generation unit 122A, the prediction operation unit 121B and the operation support information The difference is that the configuration includes the generation unit 122B and the prediction value selection unit 124. Therefore, in the following description, mainly the configurations of the prediction calculation unit 121B, the operation support information generation unit 122B, and the prediction value selection unit 124 will be mainly described. Also, this configuration may be added to the second embodiment.

図9は、油温および巻線温度を用いた演算結果による運用支援情報の選択例について説明するための図である。油温および巻線温度は、横軸を変圧器負荷率[%]とし、縦軸を変圧器10の外気温[℃]とした場合に、図9に示すような異なる関係性を示すものとする。この場合、図9に示すように、4つの領域A〜Dに区分される。領域Aは、油温予測値の演算結果と巻線温度による演算結果の両方が熱的許容限度に到達する領域である。領域Bは、油温による演算結果が巻線温度による演算結果よりも先に熱的許容限度に到達する領域である。油温による演算結果の方が先に熱的許容限度に到達するのは、外気温が高くなるほど油温が上昇することに起因する。領域Cは、巻線温度による演算結果が油温による演算結果よりも先に、熱的許容限度に到達する領域である。巻線温度による演算結果の方が先に熱的許容限度に到達するのは、負荷率が大きくなると、巻線温度が上昇することに起因する。領域Dは、油温による演算結果と巻線温度による演算結果の両方とも許容限度の限界を迎えてない領域である。このように、設備の使用状況によって、予測値が熱的許容限度に到達する時間が異なる場合がある。これは、上述した油温と巻線温度との関係だけでなく、変圧器10の油温または巻線温度と、寿命損失との関係についても同様のことがいえる。   FIG. 9 is a diagram for describing an example of selection of operation support information based on a calculation result using oil temperature and winding temperature. The oil temperature and the winding temperature have different relationships as shown in FIG. 9 when the horizontal axis is the transformer load factor [%] and the vertical axis is the outside temperature [° C.] of the transformer 10 Do. In this case, as shown in FIG. 9, it is divided into four regions A to D. The region A is a region in which both the calculation result of the oil temperature predicted value and the calculation result by the winding temperature reach the thermal tolerance. Region B is a region where the calculation result by the oil temperature reaches the thermal tolerance before the calculation result by the winding temperature. The calculation result by the oil temperature reaches the thermal tolerance earlier because the oil temperature rises as the outside air temperature rises. Region C is a region where the calculation result by the winding temperature reaches the thermal tolerance before the calculation result by the oil temperature. The calculation result by the winding temperature reaches the thermal tolerance earlier because the winding temperature rises as the load factor increases. Region D is a region in which both the calculation result by the oil temperature and the calculation result by the winding temperature have not reached the allowable limit. Thus, depending on the usage of the equipment, the time at which the predicted value reaches the thermal tolerance may differ. This applies not only to the above-described relationship between the oil temperature and the winding temperature, but also to the relationship between the oil temperature or the winding temperature of the transformer 10 and the life loss.

したがって、第3の実施形態において、予測演算部121Bは、油温予測、巻線温度予測、および寿命損失予測のうち、複数の予測の演算を行う。また、予測値選択部124は、予測演算部121Bにより予測された複数の演算結果のうち、最も短時間で熱的許容限度に到達する予測値に対する要素(油温、巻線温度、または寿命損失)を選択する。運用支援情報生成部122Bは、予測値選択部124により選択された要素に基づいて、継続可能時間、連続許容電流値、限時許容電流値等を含む運用支援情報123Bを生成する。表示制御部130は、最も短時間で熱的許容限度に到達する値に対する運用支援情報123Bを表示部220に表示するための情報を生成する。   Therefore, in the third embodiment, the prediction calculation unit 121B performs calculation of a plurality of predictions among oil temperature prediction, winding temperature prediction, and life loss prediction. Further, among the plurality of calculation results predicted by the prediction calculation unit 121B, the prediction value selection unit 124 selects an element (oil temperature, winding temperature, or life loss with respect to the prediction value that reaches the thermal tolerance in the shortest time). Choose). The operation support information generation unit 122B generates, based on the element selected by the prediction value selection unit 124, the operation support information 123B including the continuous available time, the continuous allowable current value, the time limit allowable current value, and the like. The display control unit 130 generates information for displaying, on the display unit 220, the operation support information 123B for the value that reaches the thermal tolerance in the shortest time.

図10は、第3の実施形態の監視支援システム100Bにおける処理の流れの一例を示すフローチャートである。なお、図10に示すフローチャートは、上述した図5に示すフローチャートと比較すると、ステップS120〜S150の処理がステップS121〜S151の処理に置き換わっている点で相違する。したがって、以下では、主にステップS131〜S151の処理を中心として説明する。   FIG. 10 is a flowchart illustrating an example of the flow of processing in the monitoring support system 100B of the third embodiment. The flowchart shown in FIG. 10 is different from the flowchart shown in FIG. 5 in that the process of steps S120 to S150 is replaced with the process of steps S121 to S151. Therefore, the following description will be mainly given of the processing of steps S131 to S151.

図10の処理において、予測演算部121Bは、外気温および油温と、電流値とに基づいて時刻tごとの油温予測値、巻線温度予測値、および寿命損失予測値を演算する(ステップS121)。次に、運用支援情報生成部122Bは、油温予測値、巻線温度予測値、および寿命予測値のそれぞれと、判定閾値とに基づいて継続可能時間を生成する(ステップS131)。次に、予測値選択部124は、油温予測値、巻線温度予測値、および寿命予測値の各継続可能時間のうち、継続可能時間が最も短い予測値の要素(油温、巻線温度、または寿命損失)を選択する(ステップS132)。   In the process of FIG. 10, the prediction calculation unit 121B calculates an oil temperature prediction value, a winding temperature prediction value, and a life loss prediction value for each time t based on the outside air temperature and oil temperature and the current value (step S121). Next, the operation support information generation unit 122B generates the possible continuation time based on each of the oil temperature prediction value, the winding temperature prediction value, and the life prediction value and the determination threshold (step S131). Next, the prediction value selection unit 124 selects one of the prediction value elements having the shortest possible continuation time (oil temperature, winding temperature, and the like) among the possible continuation times of the oil temperature prediction value, the winding temperature prediction value, and the life prediction value. Or life loss) is selected (step S132).

次に、予測演算部121Bは、電流値の代わりに複数の仮想電流値を用いて、選択された要素に対する時刻tごとの予測値を演算する(ステップS141)。次に、運用支援情報生成部122Bは、演算された予測値と、判定閾値とに基づいて連続許容電流値または限時許容電流値を生成し(ステップS151)、ステップS160以降の処理を実行する。   Next, the prediction calculation unit 121B calculates a predicted value at each time t with respect to the selected element, using a plurality of virtual current values instead of the current value (step S141). Next, the operation support information generation unit 122B generates a continuous allowable current value or a time-limited allowable current value based on the calculated predicted value and the determination threshold (step S151), and executes the processing of step S160 and subsequent steps.

以上説明したように、第3の実施形態の監視支援システム100Bによれば、第1および第2の実施形態と同様の効果を奏する他、油温、巻線温度、および寿命損失のうち、複数の要素の熱的許容限度を考慮した制御を行うことができる。したがって、監視支援システム100は、より安全な設備運用を実現することができる。   As described above, according to the monitoring support system 100B of the third embodiment, in addition to the same effects as those of the first and second embodiments, a plurality of oil temperatures, winding temperatures, and life losses are included. Control taking into account the thermal tolerance of the elements of Therefore, the monitoring support system 100 can realize safer facility operation.

(第4の実施形態)
次に、監視支援システムの第4の実施形態について説明する。以下において、第2の実施形態と同様の機能を備える構成については、同一の名称および符号を用いることとし、具体的な説明は省略する。
Fourth Embodiment
Next, a fourth embodiment of the monitoring support system will be described. In the following, the same names and reference numerals are used for the configuration having the same function as that of the second embodiment, and the specific description is omitted.

図11は、第4の実施形態の監視支援システム100Cの一例を示す図である。監視支援システム100Cは、変圧器10と、温度センサ20と、監視支援システム100Cと、表示装置200とを備える。監視支援システム100Cは、第2の実施形態の監視支援システム100Aと比較すると、運用支援情報生成部122Aの代わりに運用支援情報生成部122Cを備える点で相違する。したがって、以下の説明では、主に運用支援情報生成部122Cの構成を中心として説明する。また、この構成は、第1または第3の実施形態に追加されてもよい。   FIG. 11 is a diagram illustrating an example of a monitoring support system 100C of the fourth embodiment. The monitoring support system 100C includes a transformer 10, a temperature sensor 20, a monitoring support system 100C, and a display device 200. The monitoring support system 100C is different from the monitoring support system 100A of the second embodiment in that an operation support information generation unit 122C is provided instead of the operation support information generation unit 122A. Therefore, in the following description, mainly the configuration of the operation support information generation unit 122C will be mainly described. Also, this configuration may be added to the first or third embodiment.

運用支援情報生成部122Cは、例えば、電流値、温度、連続許容電流値、限時許容電流値、継続可能時間の他に、変圧器10に関連する制御対象機器に対する制御情報を含めて、これらの情報から少なくとも一つを含む運用支援情報123Bを生成する。変圧器10に関連する制御対象機器とは、例えば、設備内の発電機やその他の負荷システム、運用者が使用する端末装置であるが、変圧器10そのものであってもよい。制御情報とは、例えば、制御対象機器に対する警報情報、抑制指令、遮断指令、制御情報を出力する時間、現在時刻から制御情報を出力するまでの残り時間である。   The operation support information generation unit 122C includes, for example, control information for the control target device related to the transformer 10, in addition to the current value, the temperature, the continuous allowable current value, the time limit allowable current value, and the continuous available time. From the information, operation support information 123B including at least one is generated. The control target device related to the transformer 10 is, for example, a generator in the facility or other load system, a terminal device used by the operator, but may be the transformer 10 itself. The control information is, for example, a time for outputting alarm information, a suppression instruction, a shutoff instruction, control information to the control target device, and a remaining time from the current time until the control information is output.

図12は、予測演算部121で演算された油温予測値に基づいて生成される制御情報について説明するための図である。図12の例は、図2と同様に時間経過に伴う油温予測値を示している。運用支援情報生成部122Cは、油温予測値と、熱的許容限度の判定閾値とに基づいて、変圧器10に関連する制御対象機器に対する制御情報を生成する。   FIG. 12 is a diagram for describing control information generated based on the oil temperature predicted value calculated by the prediction calculation unit 121. The example of FIG. 12 shows the oil temperature predicted value with the passage of time similarly to FIG. The operation support information generation unit 122C generates control information for the control target device related to the transformer 10 based on the oil temperature predicted value and the determination threshold of the thermal tolerance limit.

図12の例において、運用支援情報生成部122Cは、油温予測値が熱的許容限度の判定閾値に到達する時刻t1に、発電機を遮断するための制御信号を生成する。また、運用支援情報生成部122Cは、時刻t1より所定時間(Ta1)前の時刻taにおいて、発電機を遮断するための遮断前警報を出力するための制御信号を生成する。なお、制御信号については、上記の内容に加えて発電機を抑制する制御信号や、抑制信号を出力する前の警告信号、変圧器10を遮断する制御信号等が含まれてもよい。   In the example of FIG. 12, the operation support information generation unit 122C generates a control signal for shutting off the generator at time t1 when the predicted oil temperature value reaches the determination threshold of the thermal tolerance limit. Further, the operation support information generation unit 122C generates a control signal for outputting a pre-cutoff alarm for shutting off the generator at time ta which is a predetermined time (Ta1) before time t1. The control signal may include, in addition to the above contents, a control signal for suppressing the generator, a warning signal before outputting the suppression signal, a control signal for blocking the transformer 10, and the like.

また、運用支援情報生成部122Cは、現在時刻から、各制御信号が出力されるまでの時間を算出してもよい。また、運用支援情報生成部122Cは、制御信号が出力されたと仮定された後の連続許容電流値や限時電流値、継続可能時間を生成してもよい。   In addition, the operation support information generation unit 122C may calculate, from the current time, a time until each control signal is output. In addition, the operation support information generation unit 122C may generate a continuous allowable current value, a time-limited current value, and a possible continuation time after it is assumed that the control signal is output.

表示制御部130は、運用支援情報123Cを表示部220に表示させるための情報を生成し、生成した情報を表示装置200に出力する。これにより、運用者は、制御情報が出力されるまでの制限時間を、現在の設備状態に応じた情報として把握することができる。   The display control unit 130 generates information for displaying the operation support information 123C on the display unit 220, and outputs the generated information to the display device 200. Thereby, the operator can grasp the time limit until the control information is output as the information according to the current facility state.

図13は、第4の実施形態の表示部220に表示される運用支援情報表示画面223について説明するための図である。運用支援情報表示画面223は、例えば、常時運用情報表示領域223aと、計測データ表示領域223bと、運用概要情報表示領域223cと、緊急時運用情報表示領域223dと、緊急動作状況表示領域223eとが示されている。常時運用情報表示領域223a、計測データ表示領域223b、および運用概要情報表示領域223cに示された内容は、上述した常時運用情報表示領域222a、計測データ表示領域222b、および運用概要情報表示領域222cに示された内容と同様であるため、具体的な説明な省略する。   FIG. 13 is a diagram for describing an operation support information display screen 223 displayed on the display unit 220 according to the fourth embodiment. The operation support information display screen 223 includes, for example, a regular operation information display area 223a, a measurement data display area 223b, an operation summary information display area 223c, an emergency operation information display area 223d, and an emergency operation status display area 223e. It is shown. The contents shown in the constant operation information display area 223a, the measurement data display area 223b, and the operation summary information display area 223c are in the above-described constant operation information display area 222a, measurement data display area 222b, and operation summary information display area 222c. Since the content is the same as that shown, the specific description is omitted.

緊急時運用情報表示領域223dには、例えば、発電機に対する抑制信号または遮断信号が出力されたと仮定された場合の緊急時において、複数の経過時間に対する限時許容電流値が示されている。緊急動作状況表示領域223eには、現時点を基準とした監視支援システム100Cの緊急動作状況に関する情報が示されている。緊急動作状況に関する情報とは、例えば、発電機抑制信号が出力されるまでの残り時間、発電機遮断信号が出力されるまでの残り時間、変圧器遮断信号が出力されるまでの残り時間である。図13の例では、緊急動作が行われていない状況を示しているため、緊急動作状況表示領域223eには、「緊急動作なし」の文字が示されている。   In the emergency operation information display area 223d, for example, time limit allowable current values for a plurality of elapsed times are shown in an emergency when it is assumed that the suppression signal or the shutoff signal to the generator is output. The emergency operation status display area 223e shows information on the emergency operation status of the monitoring support system 100C based on the current time. The information on the emergency operation condition is, for example, the remaining time until the generator suppression signal is output, the remaining time until the generator shutoff signal is output, and the remaining time until the transformer shutoff signal is output. . In the example of FIG. 13, since the situation in which the emergency operation is not performed is shown, in the emergency operation state display area 223e, the characters “no emergency operation” are shown.

図14は、第4の実施形態の監視支援システム100Cにおける処理の流れの一例を示すフローチャートである。なお、図14に示すフローチャートは、上述した図5に示すフローチャートと比較すると、ステップS152の処理が追加されている点で相違する。したがって、以下では、主にステップS152の処理を中心として説明する。   FIG. 14 is a flowchart showing an example of the flow of processing in the monitoring support system 100C of the fourth embodiment. The flowchart shown in FIG. 14 is different from the flowchart shown in FIG. 5 in that the process of step S152 is added. Therefore, in the following description, the process of step S152 will be mainly described.

図14の処理において、運用支援情報生成部122Cは、油温予測値と、熱的許容限度の判定閾値とに基づいて、連続許容電流値または限時許容電流値を生成する(ステップS150)。次に、運用支援情報生成部122Cは、変圧器10に関する制御対象機器に対する制御情報を生成する(ステップS152)。また、運用支援情報生成部122Cは、継続可能時間、連続許容電流値または限時許容電流値、制御情報を含む運用支援情報を生成し(ステップS160)、ステップS170以降の処理を実行する。   In the process of FIG. 14, the operation support information generation unit 122C generates a continuous allowable current value or a time-limited allowable current value based on the oil temperature predicted value and the determination threshold of the thermal tolerance (step S150). Next, the operation support information generation unit 122C generates control information for the control target device regarding the transformer 10 (step S152). In addition, the operation support information generation unit 122C generates operation support information including the continuous available time, the continuous allowable current value or the time limit allowable current value, and the control information (step S160), and executes the processing of step S170 and subsequent steps.

以上説明したように、第4の実施形態の監視支援システム100Cよれば、第1〜第3の実施形態と同様の効果を奏する他、運用者は、制御情報が出力されるまでの残り時間を、現在の設備状態に応じた情報として把握することが可能となる。したがって、監視支援システム100Bは、緊急運用に伴う制御情報が出力される前に、運用者に系統の切り替え等の潮流対策の実施を促すことができる。
(第5の実施形態)
次に、監視支援システムの第5の実施形態について説明する。以下において、第4の実施形態と同様の機能を備える構成については、同一の名称および符号を用いることとし、具体的な説明は省略する。
As described above, according to the monitoring support system 100C of the fourth embodiment, in addition to the same effects as in the first to third embodiments, the operator can calculate the remaining time until the control information is output. It becomes possible to grasp as information according to the present equipment state. Therefore, the monitoring support system 100B can urge the operator to carry out a countermeasure against the power flow such as switching of the system before the control information associated with the emergency operation is output.
Fifth Embodiment
Next, a fifth embodiment of the monitoring support system will be described. In the following, with respect to the configuration having the same function as that of the fourth embodiment, the same name and reference numeral will be used, and the specific description will be omitted.

図15は、第5の実施形態の監視支援システム100Dの一例を示す図である。監視支援システム100Dは、第4の実施形態の監視支援システム100Cと比較すると、取得部110Dに温度監視部114を備える点、および、運用支援情報生成部122Cの代わりに運用支援情報生成部122Dを備える点で相違する。したがって、以下の説明では、主に温度監視部114および運用支援情報生成部122Dの構成を中心として説明する。また、この構成は、第1〜第3のいずれの実施形態に追加されてもよい。   FIG. 15 is a diagram illustrating an example of a monitoring support system 100D according to the fifth embodiment. As compared with the monitoring support system 100C of the fourth embodiment, the monitoring support system 100D includes the temperature monitoring unit 114 in the acquisition unit 110D, and the operation support information generating unit 122D instead of the operation support information generating unit 122C. It differs in the point to prepare. Therefore, in the following description, mainly the configurations of the temperature monitoring unit 114 and the operation support information generation unit 122D will be mainly described. Also, this configuration may be added to any of the first to third embodiments.

例えば、温度センサ20が計測した温度に異常があった場合、正常時の測定値と実際の外気温の温度差が大きくなる可能性がある。また、異常値を用いて油温予測値や巻線温度、寿命損失予測値を演算すると、継続可能時間、連続許容電流値、限時許容電流値の各値も実際の値とは異なるため、適切な設備運用を行うことができない。   For example, when there is an abnormality in the temperature measured by the temperature sensor 20, there is a possibility that the temperature difference between the normal measurement value and the actual outside air temperature may be large. In addition, when the oil temperature prediction value, winding temperature, and life loss prediction value are calculated using abnormal values, each value of the continuous time, continuous allowable current value, and time limit allowable current value is also different from the actual value, so it is appropriate. Facilities can not be operated.

したがって、第5の実施形態において、温度監視部114は、温度取得部112により取得された油温または外気温が所定の温度範囲内にあるかを監視し、油温または外気温が所定の温度範囲内にない場合に、温度が異常であると判定し、予測演算部121に出力する温度情報を変更する。また、温度監視部114は、複数の温度センサ20により複数の油温または外気温を取得している場合、それぞれの油温の差分値または外気温の差分値が、所定の閾値以上である場合に、温度が異常であると判定してもよい。   Therefore, in the fifth embodiment, the temperature monitoring unit 114 monitors whether the oil temperature or the outside air temperature acquired by the temperature acquisition unit 112 is within a predetermined temperature range, and the oil temperature or the outside air temperature is a predetermined temperature. If the temperature is not within the range, it is determined that the temperature is abnormal, and the temperature information output to the prediction calculation unit 121 is changed. Further, when the temperature monitoring unit 114 acquires a plurality of oil temperatures or outside temperatures by the plurality of temperature sensors 20, the difference value between each oil temperature or the difference between the outside temperatures is equal to or greater than a predetermined threshold value It may be determined that the temperature is abnormal.

例えば、温度監視部114は、温度保持部115を備える。温度保持部115は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SDカード等の不揮発性の記憶媒体、或いは、RAM(Random Access Memory)、レジスタ等の揮発性の記憶媒体によって実現される。温度監視部114は、以前の測定で所定の範囲内にあった温度情報を温度保持部115に保持する。また、温度監視部114は、所定の温度範囲内にない状態が所定時間に到達するまでは、温度範囲を超える温度については、温度保持部115に保持された温度情報に変更する。更に、温度監視部114は、温度取得部112により取得された温度が所定の温度範囲内にない状態が所定時間以上継続する場合に、予め設定された固定値に変更する。温度監視部114は、例えば、変更された後の温度、および、固定値に変更されるまでの残り時間を運用支援情報生成部122Dに出力する。   For example, the temperature monitoring unit 114 includes a temperature holding unit 115. The temperature holding unit 115 is realized by, for example, a non-volatile storage medium such as a flash memory, a hard disk drive (HDD), or an SD card, or a volatile storage medium such as a random access memory (RAM) or a register. The temperature monitoring unit 114 holds, in the temperature holding unit 115, the temperature information that was within the predetermined range in the previous measurement. In addition, the temperature monitoring unit 114 changes the temperature exceeding the temperature range to the temperature information held by the temperature holding unit 115 until the state not within the predetermined temperature range reaches the predetermined time. Furthermore, when the state where the temperature acquired by the temperature acquisition unit 112 is not within the predetermined temperature range continues for a predetermined time or more, the temperature monitoring unit 114 changes the value to a preset fixed value. The temperature monitoring unit 114 outputs, for example, the temperature after being changed and the remaining time until being changed to a fixed value to the operation support information generating unit 122D.

また、運用支援情報生成部122Dは、上述した運用支援情報123Cに含まれる情報に加えて、温度監視部114による監視結果に基づく温度切替情報を含む運用支援情報123Dを生成可能とする。温度切替情報には、例えば、油温または外気温が所定の温度範囲内にあるかを監視した結果や、油温または外気温が所定の温度範囲内にない場合に、保持された以前の温度情報または予め設定された固定の温度情報、実測温度を他の値に変更するまでの残り時間が含まれる。   In addition to the information included in the operation support information 123C described above, the operation support information generation unit 122D can generate the operation support information 123D including temperature switching information based on the monitoring result by the temperature monitoring unit 114. The temperature switching information includes, for example, the result of monitoring whether the oil temperature or the outside air temperature is within the predetermined temperature range, or the previous temperature held when the oil temperature or the outside air temperature is not within the predetermined temperature range. It includes information or preset fixed temperature information, and the remaining time before changing the measured temperature to another value.

図16は、第5の実施形態の表示部220に表示される運用支援情報表示画面224について説明するための図である。運用支援情報表示画面224は、例えば、常時運用情報表示領域224aと、計測データ表示領域224bと、運用概要情報表示領域224cと、緊急時運用情報表示領域224dと、緊急動作状況表示領域224eとが示されている。計測データ表示領域224b以外の表示領域に示された内容は、図13に示す常時運用情報表示領域223aと、運用概要情報表示領域223cと、緊急時運用情報表示領域223dと、緊急動作状況表示領域223eとに示された内容と同様であるため、具体的な説明は省略する。   FIG. 16 is a diagram for describing an operation support information display screen 224 displayed on the display unit 220 according to the fifth embodiment. The operation support information display screen 224 includes, for example, a regular operation information display area 224a, a measurement data display area 224b, an operation summary information display area 224c, an emergency operation information display area 224d, and an emergency operation status display area 224e. It is shown. The contents shown in the display areas other than the measurement data display area 224b are the continuous operation information display area 223a, the operation summary information display area 223c, the emergency operation information display area 223d, and the emergency operation status display area shown in FIG. Since the contents are the same as the contents shown in 223e, the specific description will be omitted.

計測データ表示領域224bには、外気温測定値と、油温測定値と、現在電流値と、巻線温度計算値と、油温計算値とが示されている。ここで、温度監視部114は、外気温用の温度センサ20のうち、一つのセンサが温度範囲内にないと判定されたとする。この場合、外気温測定値の表示部分には、温度切替情報である前回の温度値20.0[℃]が表示される。また、計測データ表示領域224bには、温度情報の固定値(例えば、25.0[℃])に変更するまでの残り時間が表示される。また、固定値への変更までの残り時間が0(ゼロ)になった場合に、外気温測定値の表示部分に「25.0℃(固定値)」が表示される。   In the measurement data display area 224b, the outside air measurement value, the oil temperature measurement value, the current value, the winding temperature calculation value, and the oil temperature calculation value are shown. Here, it is assumed that the temperature monitoring unit 114 determines that one of the temperature sensors 20 for the outside air temperature is not within the temperature range. In this case, the previous temperature value 20.0 [° C.] which is the temperature switching information is displayed in the display portion of the outside air temperature measurement value. Further, in the measurement data display area 224b, the remaining time until changing to a fixed value (for example, 25.0 [° C.]) of the temperature information is displayed. In addition, when the remaining time until the change to the fixed value becomes 0 (zero), “25.0 ° C. (fixed value)” is displayed on the display portion of the measured value of the outside air temperature.

図17は、第5の実施形態の監視支援システム100Dにおける処理の流れの一例を示すフローチャートである。なお、図17に示すフローチャートは、上述した図5に示すフローチャートと比較すると、ステップS101〜S105の処理が追加されている点で相違する。したがって、以下では、主にステップS101〜S105の処理を中心として説明する。   FIG. 17 is a flow chart showing an example of the flow of processing in the monitoring support system 100D of the fifth embodiment. The flowchart shown in FIG. 17 is different from the flowchart shown in FIG. 5 in that the processes of steps S101 to S105 are added. Therefore, in the following, the description will be made mainly focusing on the processing of steps S101 to S105.

図17の処理において、ステップS100の処理後、温度監視部114は、温度取得部112により取得された油温および外気温が所定の温度範囲内であるか否かを判定する(ステップS101)。所定の温度範囲にある場合、温度監視部114は、正常な温度であるとして温度保持部115に温度値を保持させる(ステップS102)。   In the process of FIG. 17, after the process of step S100, the temperature monitoring unit 114 determines whether the oil temperature and the outside air temperature acquired by the temperature acquiring unit 112 are within a predetermined temperature range (step S101). If the temperature is within the predetermined temperature range, the temperature monitoring unit 114 determines that the temperature is normal and causes the temperature holding unit 115 to hold the temperature value (step S102).

また、油温および外気温が所定の温度範囲内にない場合、温度監視部114は、その取得した温度値を異常であるものとし、温度値の異常が所定時間以上継続しているか否かを判定する(ステップS103)。温度値の異常が所定時間以上継続していない場合、温度監視部114は、異常と判定された温度値を、温度保持部115に保持された温度に変更する(ステップS104)。また、温度値の異常が所定時間以上継続している場合、温度監視部114は、異常と判定された温度値を、予め設定された固定値の温度に変更する(ステップS105)。その後、監視支援システム100Dは、ステップS110以降の処理を実行する。   If the oil temperature and the outside air temperature are not within the predetermined temperature range, the temperature monitoring unit 114 determines that the acquired temperature value is abnormal, and whether or not the abnormality of the temperature value continues for a predetermined time or more. It determines (step S103). If abnormality of the temperature value has not continued for a predetermined time or more, the temperature monitoring unit 114 changes the temperature value determined to be abnormal to the temperature held by the temperature holding unit 115 (step S104). When the abnormality of the temperature value continues for a predetermined time or more, the temperature monitoring unit 114 changes the temperature value determined to be abnormal to the temperature of the preset fixed value (step S105). Thereafter, the monitoring support system 100D executes the process of step S110 and subsequent steps.

なお、第5の実施形態では、温度センサ20の測定値に対する監視を行ったが、電流値取得部113に電流値監視部を設けてもよい。この場合、電流値監視部は、電流センサ12から得られる電流値が異常であるかの監視を行い、異常であると判定された場合に、電流値を変更する処理を行う。   In the fifth embodiment, monitoring of the measurement value of the temperature sensor 20 is performed, but the current value acquisition unit 113 may be provided with a current value monitoring unit. In this case, the current value monitoring unit monitors whether the current value obtained from the current sensor 12 is abnormal, and when it is determined that the current value is abnormal, performs processing of changing the current value.

以上説明したように、第5の実施形態の監視支援システム100Dよれば、第1〜第4の実施形態と同様の効果を奏する他、運用者は、温度センサ20の異常を早期に把握することができる。したがって、運用者は、設備に対する負荷の切替や機器のメンテナンス等を適切なタイミングで実行することができる。   As described above, according to the monitoring support system 100D of the fifth embodiment, in addition to the same effects as in the first to fourth embodiments, the operator can quickly grasp the abnormality of the temperature sensor 20. Can. Therefore, the operator can execute switching of the load on the equipment, maintenance of the equipment, and the like at appropriate timing.

(第6の実施形態)
次に、監視支援システムの第6の実施形態について説明する。以下において、第1の実施形態と同様の機能を備える構成については、同一の名称および符号を用いることとし、具体的な説明は省略する。
Sixth Embodiment
Next, a sixth embodiment of the monitoring support system will be described. In the following, the same names and reference numerals are used for the configuration having the same function as that of the first embodiment, and the specific description is omitted.

図18は、第6の実施形態の監視支援システム100Eの一例を示す図である。この構成において、監視支援システム100Eは、第1の実施形態の監視支援システム100と比較すると、通信部140の代わりに通信部140Eを備える点で相違する。したがって、以下の説明では、主に通信部114Eの構成を中心として説明する。また、この構成は、第1〜第5のいずれの実施形態に追加されてもよい。   FIG. 18 is a diagram illustrating an example of a monitoring support system 100E according to the sixth embodiment. In this configuration, the monitoring support system 100E is different from the monitoring support system 100 of the first embodiment in that a communication unit 140E is provided instead of the communication unit 140. Therefore, in the following description, the configuration of the communication unit 114E will be mainly described. Also, this configuration may be added to any of the first to fifth embodiments.

通信部140Eは、表示制御部130により生成された表示部220に表示させるための情報だけでなく、運用支援情報生成部122により生成された運用支援情報123を表示装置200に送信する。   The communication unit 140E transmits not only the information to be displayed on the display unit 220 generated by the display control unit 130, but also the operation support information 123 generated by the operation support information generation unit 122 to the display device 200.

通信部210は、通信部140Eとの通信により取得した運用支援情報123を、表示部220に出力するとともに、取得した運用支援情報123と時間情報とを対応付けて、保持部230に保存する。   The communication unit 210 outputs the operation support information 123 acquired through communication with the communication unit 140E to the display unit 220, associates the acquired operation support information 123 with the time information, and stores the operation support information 123 in the storage unit 230.

保持部230は、例えば、フラッシュメモリ、HDD、SDカード等の不揮発性の記憶媒体、或いは、RAM、レジスタ等の揮発性の記憶媒体によって実現される。また、保持部230は、時刻情報に対応付けて運用支援情報123を保持することで、運用支援の履歴情報を保持することができる。したがって、運用者は、その履歴情報に基づいて統計処理等における詳細な分析や検証等を行うことができる。   The holding unit 230 is realized by, for example, a non-volatile storage medium such as a flash memory, an HDD, or an SD card, or a volatile storage medium such as a RAM or a register. Further, the holding unit 230 can hold the operation support history information by holding the operation support information 123 in association with the time information. Therefore, the operator can perform detailed analysis and verification in statistical processing and the like based on the history information.

第6の実施形態の監視支援システム100Eにおける処理の流れについては、第1の実施形態の監視支援システム100におけるステップS100〜S180の処理のうち、ステップS180の処理以外の処理については、同様の処理を行う。ステップS180の処理では、通信部140Eは、運用支援情報123を表示部に表示させるために生成された画像を表示装置200に送信(出力)するだけなく、運用支援情報123も表示装置200に送信する。これにより、監視支援システム100Eは、表示装置200に、運用支援情報123に関する情報を表示させるだけでなく、運用支援情報123を保持部230に保持させることができる。   Regarding the flow of processing in the monitoring support system 100E of the sixth embodiment, among the processing of steps S100 to S180 in the monitoring support system 100 of the first embodiment, similar processing is performed for processing other than the processing of step S180. I do. In the process of step S180, the communication unit 140E not only transmits (outputs) the image generated to display the operation support information 123 on the display unit to the display device 200, but also transmits the operation support information 123 to the display device 200. Do. As a result, the monitoring support system 100E can cause the holding unit 230 to hold the operation support information 123 as well as display information related to the operation support information 123 on the display device 200.

以上説明したように、第6の実施形態の監視支援システム100Eによれば、第1の実施形態と同様の効果を奏する他、表示部220に表示させるための情報のみを表示装置200に送信するのではなく、運用支援情報123を表示装置200に送信することで、表示装置200の使用者(例えば、運用者、現場の作業者)に、制御の妥当性の検証や、設備状態の推定に用いているパラメータ等の妥当性の検証等を行わせることができる。なお、上述した第1〜第6の実施形態は、それぞれ他の実施形態の一部または全部と組み合わせてもよい。   As described above, according to the monitoring support system 100E of the sixth embodiment, in addition to the same effect as that of the first embodiment, only information to be displayed on the display unit 220 is transmitted to the display device 200. Instead of transmitting the operation support information 123 to the display device 200, the user of the display device 200 (for example, the operator or the site worker) can verify the validity of the control or estimate the equipment state. Verification of the validity of the parameters used can be performed. The first to sixth embodiments described above may be combined with part or all of the other embodiments.

以上説明した少なくとも一つの実施形態によれば、変圧器10の温度を計測する温度センサ20から温度情報を取得する温度取得部112と、変圧器10に流れる電流値を取得する電流値取得部113と、温度取得部112により取得された温度情報と、電流値取得部113により取得された電流値とに基づいて、変圧器10の将来の状態を予測する状態予測部120と、状態予測部120により予測された変圧器10の将来の状態に基づいて、変圧器10に供給可能な電流値、または変圧器10の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部220に表示させるための情報を生成する表示制御部130と、を持つことにより、送変電設備の設備能力を効率的に活用するための情報を提供することができる。   According to at least one embodiment described above, the temperature acquisition unit 112 acquires temperature information from the temperature sensor 20 that measures the temperature of the transformer 10, and the current value acquisition unit 113 acquires the current value flowing through the transformer 10. State prediction unit 120 that predicts the future state of transformer 10 based on the temperature information acquired by temperature acquisition unit 112 and the current value acquired by current value acquisition unit 113; Display at least one of a current value that can be supplied to transformer 10 or a possible continuation time until the temperature of transformer 10 reaches an allowable limit, based on the future state of transformer 10 predicted by By having the display control unit 130 that generates information to be displayed on 220, it is possible to provide information for efficiently utilizing the facility capacity of the transmission and transformation equipment.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

10…変圧器、12…電流センサ、20…温度センサ、100…監視支援システム、110…取得部、111…センサ情報取得部、112…温度取得部、113…電流値取得部、114…温度監視部、115…温度保持部、120…状態予測部、121…予測演算部、122…運用支援情報生成部、130…表示制御部、140、210…通信部、220…表示部、230…保持部   DESCRIPTION OF SYMBOLS 10 ... Transformer, 12 ... Current sensor, 20 ... Temperature sensor, 100 ... Monitoring support system, 110 ... Acquisition part, 111 ... Sensor information acquisition part, 112 ... Temperature acquisition part, 113 ... Current value acquisition part, 114 ... Temperature monitoring Unit 115 Temperature holding unit 120 State prediction unit 121 Prediction operation unit 122 Operation support information generation unit 130 Display control unit 140, 210 Communication unit 220 Display unit 230 Holding unit

Claims (9)

変圧器の温度を計測する温度センサから温度情報を取得する温度取得部と、
前記変圧器に流れる電流値を取得する電流値取得部と、
前記温度取得部により取得された温度情報と、前記電流値取得部により取得された電流値とに基づいて、前記変圧器の将来の状態を予測する状態予測部と、
前記状態予測部により予測された前記変圧器の将来の状態に基づいて、前記変圧器に供給可能な電流値、または前記変圧器の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部に表示させるための情報を生成する表示制御部と、
を備える監視支援システム。
A temperature acquisition unit that acquires temperature information from a temperature sensor that measures the temperature of the transformer;
A current value acquisition unit that acquires a current value flowing to the transformer;
A state prediction unit that predicts a future state of the transformer based on the temperature information acquired by the temperature acquisition unit and the current value acquired by the current value acquisition unit;
Based on the future state of the transformer predicted by the state prediction unit, at least one of a current value that can be supplied to the transformer or a possible continuation time until the temperature of the transformer reaches an allowable limit A display control unit that generates information for causing one to be displayed on the display unit;
Monitoring support system provided with
前記表示制御部は、前記変圧器の温度が許容限度を超えずに連続して前記変圧器に供給可能な連続許容電流値と、所定時間内において前記許容限度を超えずに前記変圧器に供給可能な限時許容電流値とのうち、少なくとも一方を前記表示部に表示させるための情報を生成する、
請求項1に記載の監視支援システム。
The display control unit supplies the transformer with a continuous allowable current value that can continuously be supplied to the transformer without the temperature of the transformer exceeding the allowable limit, and does not exceed the allowable limit within a predetermined time. Generating information for causing the display unit to display at least one of possible time limit allowable current values;
The monitoring support system according to claim 1.
前記状態予測部は、現在時刻からの複数の経過時間に対応する前記限時許容電流値を予測する、
請求項2に記載の監視支援システム。
The state prediction unit predicts the time-limited allowable current value corresponding to a plurality of elapsed times from the current time.
The monitoring support system according to claim 2.
前記状態予測部は、前記変圧器の油温、巻線温度、または寿命損失のうち、複数の値を予測し、予測された値のうち、最も短時間で前記許容限度に到達する値に基づいて、前記変圧器に供給可能な電流値、または前記継続可能時間のうち、少なくとも一方を生成する、
請求項1から3のうち何れか1項に記載の監視支援システム。
The state prediction unit predicts a plurality of values among the oil temperature, the winding temperature, and the life loss of the transformer, and based on the predicted value, the value reaching the allowable limit in the shortest time. To generate at least one of a current value that can be supplied to the transformer, or the continuous time,
The surveillance support system according to any one of claims 1 to 3.
前記表示制御部は、前記連続許容電流値を超過した場合において、前記変圧器に関連する制御対象機器に対して制御を実施するまでの時間を、前記表示部に表示させるための情報を生成する、
請求項2または3に記載の監視支援システム。
The display control unit generates information for causing the display unit to display a time until the control target device related to the transformer is controlled when the continuous allowable current value is exceeded. ,
The surveillance support system according to claim 2 or 3.
前記温度取得部により取得された温度情報が所定の温度範囲に含まれるかを監視する温度監視部を更に備え、
前記表示制御部は、前記温度監視部により前記温度情報が所定の温度範囲に含まれないと判定された場合に、前記温度取得部により取得された温度情報を変更するまでの残り時間を前記表示部に表示させるための情報を生成する、
請求項1から5のうち何れか1項に記載の監視支援システム。
It further comprises a temperature monitoring unit that monitors whether the temperature information acquired by the temperature acquiring unit is included in a predetermined temperature range,
The display control unit displays the remaining time until the temperature information acquired by the temperature acquiring unit is changed when the temperature monitoring unit determines that the temperature information is not included in a predetermined temperature range. Generate information to be displayed on the department,
The monitoring support system according to any one of claims 1 to 5.
前記温度取得部により取得した温度情報と、前記電流値取得部により取得した電流値、前記変圧器に供給可能な電流値と、前記変圧器の温度が許容限度を超えるまでの継続可能時間とのうち、少なくとも一つを、前記表示部に対応する装置に送信する通信部を備える、
請求項1から6のうち何れか1項に記載の監視支援システム。
The temperature information acquired by the temperature acquisition unit, the current value acquired by the current value acquisition unit, the current value that can be supplied to the transformer, and the continuable time until the temperature of the transformer exceeds an allowable limit A communication unit configured to transmit at least one of them to a device corresponding to the display unit;
The monitoring support system according to any one of claims 1 to 6.
コンピュータが、
変圧器の温度を計測する温度センサから温度情報を取得し、
前記変圧器に流れる電流値を取得し、
取得された前記温度情報と、取得された前記電流値とに基づいて、前記変圧器の将来の状態を予測し、
予測された前記変圧器の将来の状態に基づいて、前記変圧器に供給可能な電流値、または前記変圧器の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部に表示させるための情報を生成する、
監視支援方法。
The computer is
Obtain temperature information from a temperature sensor that measures the temperature of the transformer,
Obtain the current value flowing to the transformer,
Predicting a future state of the transformer based on the acquired temperature information and the acquired current value;
Based on the predicted future state of the transformer, at least one of a current value that can be supplied to the transformer or a possible continuation time until the temperature of the transformer reaches an allowable limit is displayed on a display unit. Generate information for display,
Monitoring support method.
コンピュータに、
変圧器の温度を計測する温度センサから温度情報を取得させ、
前記変圧器に流れる電流値を取得させ、
取得された前記温度情報と、取得された前記電流値とに基づいて、前記変圧器の将来の状態を予測させ、
予測された前記変圧器の将来の状態に基づいて、前記変圧器に供給可能な電流値、または前記変圧器の温度が許容限度に到達するまでの継続可能時間のうち、少なくとも一方を表示部に表示させるための情報を生成させる、
監視支援プログラム。
On the computer
Get temperature information from a temperature sensor that measures the temperature of the transformer,
Get the current value flowing to the transformer,
Predicting a future state of the transformer based on the acquired temperature information and the acquired current value;
Based on the predicted future state of the transformer, at least one of a current value that can be supplied to the transformer or a possible continuation time until the temperature of the transformer reaches an allowable limit is displayed on a display unit. Generate information for display,
Monitoring support program.
JP2017075542A 2017-04-05 2017-04-05 Monitoring support system, monitoring support method, and monitoring support program Active JP6954718B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017075542A JP6954718B2 (en) 2017-04-05 2017-04-05 Monitoring support system, monitoring support method, and monitoring support program
PCT/JP2018/014582 WO2018186470A1 (en) 2017-04-05 2018-04-05 Monitoring assistance system, monitoring assistance method, and monitoring assistance program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075542A JP6954718B2 (en) 2017-04-05 2017-04-05 Monitoring support system, monitoring support method, and monitoring support program

Publications (2)

Publication Number Publication Date
JP2018182825A true JP2018182825A (en) 2018-11-15
JP6954718B2 JP6954718B2 (en) 2021-10-27

Family

ID=63713309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075542A Active JP6954718B2 (en) 2017-04-05 2017-04-05 Monitoring support system, monitoring support method, and monitoring support program

Country Status (2)

Country Link
JP (1) JP6954718B2 (en)
WO (1) WO2018186470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116953417A (en) * 2023-09-20 2023-10-27 国网湖北省电力有限公司经济技术研究院 Power transformer service life assessment device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7505846B2 (en) 2020-05-01 2024-06-25 一般財団法人電力中央研究所 Transformer evaluation device and transformer evaluation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714617U (en) * 1993-08-10 1995-03-10 株式会社明電舎 Transformer operation monitoring device
JPH0821290A (en) * 1994-07-06 1996-01-23 Honda Motor Co Ltd Sensor abnormality resolving device for electronic control system for internal combustion engine
JPH09219926A (en) * 1996-02-15 1997-08-19 Fuji Electric Co Ltd Method of calculating temperature of main engine, and overload protective relay
US20020180611A1 (en) * 2000-07-13 2002-12-05 Weekes Mark Anthony Apparatus for preventing thermal damage to an electrical power transformer
JP2012148629A (en) * 2011-01-18 2012-08-09 Jtekt Corp Electric power steering system
US20160252401A1 (en) * 2013-08-23 2016-09-01 Abb Inc. Oil-immersed transformer thermal monitoring and prediction system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714617U (en) * 1993-08-10 1995-03-10 株式会社明電舎 Transformer operation monitoring device
JPH0821290A (en) * 1994-07-06 1996-01-23 Honda Motor Co Ltd Sensor abnormality resolving device for electronic control system for internal combustion engine
JPH09219926A (en) * 1996-02-15 1997-08-19 Fuji Electric Co Ltd Method of calculating temperature of main engine, and overload protective relay
US20020180611A1 (en) * 2000-07-13 2002-12-05 Weekes Mark Anthony Apparatus for preventing thermal damage to an electrical power transformer
JP2012148629A (en) * 2011-01-18 2012-08-09 Jtekt Corp Electric power steering system
US20160252401A1 (en) * 2013-08-23 2016-09-01 Abb Inc. Oil-immersed transformer thermal monitoring and prediction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116953417A (en) * 2023-09-20 2023-10-27 国网湖北省电力有限公司经济技术研究院 Power transformer service life assessment device and method
CN116953417B (en) * 2023-09-20 2023-12-15 国网湖北省电力有限公司经济技术研究院 Power transformer service life assessment device and method

Also Published As

Publication number Publication date
JP6954718B2 (en) 2021-10-27
WO2018186470A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US10281338B2 (en) Oil-immersed transformer thermal monitoring and prediction system
Perez Fundamental principles of transformer thermal loading and protection
JP5127799B2 (en) Power demand monitoring apparatus and power demand monitoring method
EP3299783B1 (en) Thermal monitoring of a power device
JP6593769B2 (en) Storage battery remaining life estimation method, storage battery check date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
JP6954718B2 (en) Monitoring support system, monitoring support method, and monitoring support program
JP5212005B2 (en) Electronic circuit breaker
JP6251861B1 (en) Transformer degradation status display device
JP5450184B2 (en) Demand control apparatus, demand control method, and demand control program
JP6921593B2 (en) Control devices, control methods, and control programs
US10209289B2 (en) Predicting service life of electrical equipment
US20180328290A1 (en) Turbine analysis device, turbine analysis method, and program
JP6840306B1 (en) Digital Protective Relay and Digital Protective Relay Monitoring System
KR101133884B1 (en) Apparatus and method for managing load of distribution transformer
KR100995709B1 (en) Load management equipment for oil filled transformers
CN115575750A (en) Overload monitoring method for oil-immersed transformer and related equipment
JP6796533B2 (en) Demand control system
AU2020260535B2 (en) Operation plan creation apparatus, operation plan creation method, and program
JP2014023243A (en) Power management system, power management method, integrated management apparatus, facility controller, and program
JPH1097934A (en) Simulator for operation of transformer
JP3450188B2 (en) Power equipment operation and maintenance support system
JP4895794B2 (en) Core monitoring device
US20230243896A1 (en) Method and system for determining a characteristic variable
JP6883852B2 (en) Power supply unit equipped with lithium ion secondary battery and its control method
JP6225839B2 (en) Demand batch monitoring system, demand batch monitoring device, and demand monitoring device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6954718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150