JP4895794B2 - Core monitoring device - Google Patents

Core monitoring device Download PDF

Info

Publication number
JP4895794B2
JP4895794B2 JP2006341798A JP2006341798A JP4895794B2 JP 4895794 B2 JP4895794 B2 JP 4895794B2 JP 2006341798 A JP2006341798 A JP 2006341798A JP 2006341798 A JP2006341798 A JP 2006341798A JP 4895794 B2 JP4895794 B2 JP 4895794B2
Authority
JP
Japan
Prior art keywords
core
value
process data
error
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341798A
Other languages
Japanese (ja)
Other versions
JP2008151711A (en
Inventor
達也 岩本
久之 白神
隆文 中
淳一 小山
Original Assignee
株式会社グローバル・ニュークリア・フュエル・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グローバル・ニュークリア・フュエル・ジャパン filed Critical 株式会社グローバル・ニュークリア・フュエル・ジャパン
Priority to JP2006341798A priority Critical patent/JP4895794B2/en
Publication of JP2008151711A publication Critical patent/JP2008151711A/en
Application granted granted Critical
Publication of JP4895794B2 publication Critical patent/JP4895794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、運転計画に従って運転する原子炉炉心を監視する炉心監視装置に関する。   The present invention relates to a core monitoring device that monitors a reactor core that operates according to an operation plan.

原子炉においては、一般に、所望の発電機出力を得るための運転計画を設定し、この運転計画及び現状の炉心特性に基づいた計算モデルによって炉心特性の経時変化を予測演算して安全性を確認する。そして、この運転計画に従って運転する原子炉炉心を監視するため、例えば、検出器等から取得した原子炉炉心の状態量に基づき炉心特性の実績値を演算し、運転制限値(例えば最大線出力密度や最小限界出力比といった熱的制限値)に達しないように監視する監視装置が知られている。   In a nuclear reactor, in general, an operation plan for obtaining a desired generator output is set, and a safety model is confirmed by predicting and calculating temporal changes in the core characteristics using this operation plan and a calculation model based on the current core characteristics. To do. In order to monitor the reactor core that operates in accordance with this operation plan, for example, the actual value of the core characteristics is calculated based on the state quantity of the reactor core obtained from the detector or the like, and the operation limit value (for example, the maximum linear power density) There is known a monitoring device for monitoring so as not to reach a thermal limit value such as a minimum limit output ratio.

また、従来、例えば運転計画の設定時に演算した炉心特性の予測値(運転計画データ)から実績値(運転実績データ)が逸脱したときに運転計画の再立案が必要と判定し、警報信号を出力する運転実績偏差判定手段を備えた装置が開示されている(例えば、特許文献1参照)。この運転実績偏差判定手段は、炉心特性の予測値と実績値とを対比して表示する表示手段と、炉心特性の予測値と実績値との偏差が所定の限界値を越えるとき、警報信号を出力するとともに、再立案に必要なデータを作成する評価手段とを備えている。   Conventionally, for example, when the actual value (operation result data) deviates from the predicted value (operation plan data) of the core characteristics calculated at the time of setting the operation plan, it is determined that the re-planning of the operation plan is necessary, and an alarm signal is output. An apparatus provided with driving performance deviation determination means is disclosed (for example, see Patent Document 1). The operation performance deviation determination means includes a display means for displaying the predicted value of the core characteristic and the actual value in comparison, and an alarm signal when the deviation between the predicted value of the core characteristic and the actual value exceeds a predetermined limit value. And an evaluation means for generating data necessary for re-planning.

特開平8−166487号公報(6頁〜7頁、図2〜図5)JP-A-8-166487 (pages 6 to 7, FIGS. 2 to 5)

上記原子炉炉心の計算モデルには、不確定パラメータが含まれている。具体例を説明すると、原子炉炉心の定常運転時は中性子の発生と消滅とのバランスがとれて臨界固有値が1.0となるものの、計算モデルではモデル上の近似誤差により臨界固有値が1.0とならない。また、臨界固有値は燃焼度や炉心流量等に依存して変化するが、計算モデルにおける臨界固有値は、過去のデータや経験等に基づいて設定するので誤差が生じてしまう。したがって、計算モデルに含まれるパラメータの誤差によって炉心特性の予測値に誤差が生じ、その誤差は時間の経過とともに変動する。   The calculation model for the reactor core includes uncertain parameters. A specific example will be described. Although the critical eigenvalue is 1.0 due to the balance between generation and annihilation of neutrons during steady operation of the reactor core, the critical eigenvalue is 1.0 due to the approximation error in the model in the calculation model. Not. In addition, the critical eigenvalue changes depending on the burnup, the core flow rate, etc., but the critical eigenvalue in the calculation model is set based on past data, experience, etc., and an error occurs. Therefore, an error occurs in the predicted value of the core characteristics due to an error in the parameters included in the calculation model, and the error varies with time.

ここで上記従来技術では、炉心特性の予測値と実績値との偏差が所定の限界値(固定値)を越えるときに運転計画の再立案が必要と判定し、警報信号を出力するとともに、再立案に必要なデータを作成するようになっている。そのため、例えば時間の経過とともに変動する予測値の誤差が原因で、炉心特性の実績値が予測値から逸脱した場合でも、運転計画の再立案が必要と判定するようになっている。したがって、例えば炉心特性に余裕があり現状の運転計画を継続することが可能な場合でも運転計画を変更するため、的確な判断方法とはいえなかった。かといって、例えば炉心特性の実績値が予測値からずれたときに、そのずれが予測値の誤差によるものかどうか、現状の運転計画において炉心特性はどのように推移し運転制限値にどれくらいまで近づくのか、運転計画を早期に変更したほうがよいかどうか等の的確な予測判断は、例えば監視者の経験等に依らなければならず、容易ではなかった。   Here, in the above prior art, when the deviation between the predicted value of the core characteristics and the actual value exceeds a predetermined limit value (fixed value), it is determined that the re-planning of the operation plan is necessary, and an alarm signal is output and Data necessary for planning is created. For this reason, for example, even when the actual value of the core characteristics deviates from the predicted value due to an error in the predicted value that fluctuates with time, it is determined that the re-planning of the operation plan is necessary. Therefore, for example, even when there is a margin in the core characteristics and the current operation plan can be continued, the operation plan is changed, so that it is not an accurate determination method. However, for example, when the actual value of the core characteristic deviates from the predicted value, whether the deviation is due to an error in the predicted value, how the core characteristic changes in the current operation plan, and how much it reaches the operation limit value. Precise prediction judgments such as whether to approach or whether it is better to change the operation plan at an early stage must be based on, for example, the experience of the supervisor, and is not easy.

本発明の目的は、監視者の負担を軽減しつつ、より付加価値の高い炉心監視装置を提供することにある。   An object of the present invention is to provide a core monitoring apparatus with higher added value while reducing the burden on the supervisor.

(1)上記目的を達成するために、本発明は、運転計画に従って運転する原子炉炉心を監視する炉心監視装置において、前記原子炉炉心のプロセスデータを取得するプロセスデータ取得手段と、前記プロセスデータ取得手段で取得したプロセスデータ及び前記運転計画に基づいた計算モデルにより炉心特性の予測値の経時変化を演算し、かつ前記計算モデルに含まれるパラメータの誤差に伴う炉心特性予測値の誤差範囲の経時変化を演算する炉心特性予測演算手段と、前記炉心特性予測演算手段で演算した炉心特性予測値の経時変化、その誤差上限値の経時変化及び誤差下限値の経時変化を、運転制限値とともに表示する画面を表示する表示手段とを備える。 (1) In order to achieve the above object, the present invention provides a process data acquisition means for acquiring process data of the nuclear reactor core in a reactor monitoring apparatus for monitoring a nuclear reactor core operating according to an operation plan, and the process data the time course of the predicted value of the core characteristics and computation by calculation model based on the acquired process data and the operation plan at the acquisition means, and the error range of core characteristics predicted value due to the error of the parameters included in the calculation model and core characteristics predictive operation means for calculating a time change, time change of the predicted value of core characteristics calculated in the core characteristics prediction operation unit, the time course and aging of the error limit value of the error limit, operational limits And display means for displaying a screen to be displayed.

れにより、例えば誤差範囲を表示しない場合に比べ、炉心特性が運転制限値に達する時期を前後の時間幅を持たせて、より的確に予測することができる。したがって、監視者の負担を軽減しつつ、より付加価値の高い炉心監視装置を実現することができる。 This ensures, for example, compared with the case of not displaying the error range, the timing of core characteristics reaches the operational limits by providing a longitudinal time width can be predicted more accurately. Therefore, it is possible to realize a core monitoring device with higher added value while reducing the burden on the supervisor.

(2)上記目的を達成するために、また本発明は、運転計画に従って運転する原子炉炉心を監視する炉心監視装置において、前記原子炉炉心のプロセスデータを取得するプロセスデータ取得手段と、前記プロセスデータ取得手段で取得したプロセスデータに基づき炉心特性の実績値を演算する炉心特性実績演算手段と、前記炉心特性実績演算手段で演算した炉心特性実績値を時系列で記憶する炉心特性実績記憶手段と、前記プロセスデータ取得手段で取得したプロセスデータ及び前記運転計画に基づいた計算モデルにより炉心特性の予測値の経時変化を演算し、かつ前記計算モデルに含まれるパラメータの誤差に伴う炉心特性予測値の誤差範囲の経時変化を演算する炉心特性予測演算手段と、前記炉心特性予測演算手段で演算した炉心特性予測値の経時変化、その誤差上限値の経時変化及び誤差下限値の経時変化、並びに前記炉心特性実績記憶手段で記憶した炉心特性実績値の経時変化を、運転制限値とともに表示する画面を表示する表示手段とを備える。 (2) In order to achieve the above object, the present invention also provides a process data acquisition means for acquiring process data of the reactor core in a core monitoring apparatus for monitoring a reactor core operated according to an operation plan, and the process A core characteristic result calculating means for calculating the actual value of the core characteristic based on the process data acquired by the data acquiring means; and a core characteristic result storing means for storing the core characteristic actual value calculated by the core characteristic actual result calculating means in time series; the process by calculation model based on the process data and the operation plan acquired by the data acquisition means and computation changes with time of the predicted value of the core characteristics and core characteristics predicted value due to the error of the parameters included in the calculation model and core characteristics predictive operation means for calculating a time change in the error range, the core characteristics calculated in the core characteristics predictive operation means Aging of Hakachi, aging and aging of the error limit value of the error limit, and the time course of the actual value of the core characteristics stored in the core characteristics record storage means, a display screen for displaying together with operational limits Display means.

これにより、上記(1)同様、例えば誤差範囲を表示しない場合に比べ、炉心特性が運転制限値に達する時期を前後の時間幅を持たせて、より的確に予測することができる。また本発明においては、例えば炉心特性の実績値が予測値からずれた場合でも、予測値誤差範囲にあるかどうかを判断することができる。また、炉心特性の予測値に対する実績値のずれ量がどのように推移し運転制限値にどれくらいまで近づくのかを予測することができ、運転計画を変更すべき時期を前後の時間幅を持たせて、より的確に判断することができる。したがって、監視者の負担を軽減しつつ、より付加価値の高い炉心監視装置を実現することができる。 Accordingly, the (1) Similarly, for example, compared with the case of not displaying the error range, the timing of core characteristics reaches the operational limits by providing a longitudinal time width can be predicted more accurately. In the present invention, even if it example example actual values of the core characteristics is deviated from the predicted value, it can be predicted value to determine whether the error range. In addition, it is possible to predict how much the deviation of the actual value from the predicted value of the core characteristics will change and how close it will be to the operation limit value. Can be judged more accurately. Therefore, while reducing the burden of the observer, it is possible to realize a high core monitoring device value-added.

)上記()において、好ましくは、前記炉心特性実績値と前記炉心特性予測値との差が前記誤差範囲の所定の割合に達したかどうかを判定する判定手段を備え、前記表示手段は、前記判定手段で前記炉心特性実績値と前記炉心特性予測値との差が前記誤差範囲の所定の割合に達したと判定されたことを表示する。 ( 3 ) In the above ( 2 ), preferably, the display unit includes a determination unit that determines whether a difference between the actual core characteristic value and the predicted core characteristic value has reached a predetermined ratio of the error range. Indicates that the determination means determines that the difference between the actual core characteristic value and the predicted core characteristic value has reached a predetermined ratio of the error range.

このように炉心特性予測演算手段の予測演算を設定された時間毎に行うことにより、時間の経過とともに増大する炉心特性予測値の誤差範囲を小さくすることができる。これにより、表示手段に表示される炉心特性予測値の誤差範囲が小さくなるので、監視者はより的確に判断することができる。   Thus, by performing the prediction calculation of the core characteristic prediction calculation means for each set time, the error range of the core characteristic prediction value that increases with the passage of time can be reduced. As a result, the error range of the core characteristic predicted value displayed on the display means is reduced, so that the supervisor can judge more accurately.

本発明によれば、監視者の負担を軽減しつつ、より付加価値の高い炉心監視装置を実現することができる。   According to the present invention, it is possible to realize a core monitoring apparatus with higher added value while reducing the burden on the supervisor.

以下、本発明の一実施形態を、図面を参照しつつ説明する。
図1は、本発明の炉心監視装置の一実施形態の機能構成を表すブロック図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a functional configuration of an embodiment of a core monitoring apparatus of the present invention.

この図1において、炉心監視装置1は、例えば運転計画に従って運転する原子炉炉心(図示せず)を運転員(監視者)が監視するためのものであり、プロセスデータ取得部2と、炉心特性実績演算部3と、炉心特性実績記憶部4と、運転計画記憶部5と、炉心特性予測演算部6と、炉心特性予測記憶部7と、表示制御部8と、及び表示部(モニタ)9とを備えている。   In FIG. 1, a core monitoring device 1 is for an operator (monitor) to monitor a nuclear reactor core (not shown) operated according to an operation plan, for example. Result calculation unit 3, core characteristic result storage unit 4, operation plan storage unit 5, core characteristic prediction calculation unit 6, core characteristic prediction storage unit 7, display control unit 8, and display unit (monitor) 9 And.

プロセスデータ取得部2は、例えば原子炉炉心に設けられた検出器等からのプロセスデータを取得するようになっている。炉心特性実績演算部3は、取得したプロセスデータに基づき炉心特性(詳細には、例えば発電機出力、炉心熱出力、炉心流量、制御棒の操作パターン、臨界固有値、線出力密度及び限界出力比、最大線出力密度及び最小限界出力比といった熱的制限値等)の実績値を演算し、この演算した炉心特性実績値を炉心特性実績記憶部4に時系列で記憶するようになっている。   The process data acquisition unit 2 acquires process data from, for example, a detector provided in the reactor core. Based on the acquired process data, the core characteristic performance calculation unit 3 determines the core characteristics (specifically, for example, generator output, core thermal output, core flow rate, control rod operation pattern, critical eigenvalue, linear power density and limit power ratio, The actual value of the thermal limit value such as the maximum linear power density and the minimum limit power ratio is calculated, and the calculated core characteristic actual value is stored in the core characteristic actual storage unit 4 in time series.

運転計画記憶部5には、運転計画データ(詳細には、例えば発電機出力、炉心熱出力、炉心流量、制御棒の操作パターン等)が記憶されており、この運転計画記憶部5に記憶された運転計画データに従って原子炉炉心が運転されている。炉心特性予測演算部6は、例えば設定された時間(例えば1日〜1週間)毎に、プロセスデータ取得部2で取得した最新のプロセスデータ及び運転計画データに基づいた計算モデルにより所定の期間(例えば1週間〜2ヶ月程度)における炉心特性の経時変化を予測演算するようになっている。また、炉心特性予測演算部6は、計算モデルに含まれるパラメータ(例えば臨界固有値、炉心の軸方向出力分布や径方向出力分布、及び燃料棒の局所出力分布等のうちのいずれか)の誤差範囲10が予め設定記憶されており(若しくは、運転員の操作入力によりパラメータの誤差範囲が設定されてもよい)、パラメータ誤差に伴う炉心特性予想値の経時変化の誤差範囲を演算するようになっている。具体例を説明すると、例えば臨界固有値の予測が±0.1%ずれる場合を想定して、炉心流量予測値の経時変化の誤差範囲を演算するようになっている。そして、これら演算した炉心特性予測値の経時変化及びその誤差範囲を炉心特性予測記憶部7に記憶するようになっている。   The operation plan storage unit 5 stores operation plan data (specifically, for example, generator output, core heat output, core flow rate, control rod operation pattern, etc.) and is stored in the operation plan storage unit 5. The reactor core is operating according to the operation plan data. For example, the core characteristic prediction calculation unit 6 performs a predetermined period (for example, every set time (for example, one day to one week) by a calculation model based on the latest process data and operation plan data acquired by the process data acquisition unit 2. For example, the time-dependent change of the core characteristics in about one week to two months) is predicted and calculated. The core characteristic prediction calculation unit 6 also includes an error range of a parameter included in the calculation model (for example, any one of a critical eigenvalue, a core axial power distribution and a radial power distribution, a fuel rod local power distribution, and the like). 10 is set and stored in advance (or the parameter error range may be set by the operator's operation input), and the error range of the temporal change of the core characteristic expected value accompanying the parameter error is calculated. Yes. A specific example will be described. For example, assuming that the critical eigenvalue is deviated by ± 0.1%, the error range of the temporal change in the core flow rate predicted value is calculated. The calculated temporal change of the core characteristic prediction value and its error range are stored in the core characteristic prediction storage unit 7.

表示制御部8は、炉心特性予測記憶部7に記憶された炉心特性予測値の経時変化及びその誤差範囲、並びに炉心特性実績記憶部4に記憶された炉心特性実績値を読み込むとともに、運転員の指示入力等に応じて表示部(モニタ)9の画面表示を制御するようになっている。図2は、表示部9に表示される第1画面を一例として表す図であり、図3は、表示部9に表示される第2画面を一例として表す図である。   The display control unit 8 reads the core characteristic predicted value stored in the core characteristic prediction storage unit 7 with time and its error range, and the core characteristic actual value stored in the core characteristic actual storage unit 4, and The screen display of the display unit (monitor) 9 is controlled in accordance with an instruction input or the like. FIG. 2 is a diagram illustrating a first screen displayed on the display unit 9 as an example, and FIG. 3 is a diagram illustrating a second screen displayed on the display unit 9 as an example.

図2に示す第1画面11は、炉心特性(図では炉心流量を例示している)の予測値の経時変化12a、予測値の誤差上限値の経時変化12b、予測値の誤差下限値の経時変化12c、及び炉心特性の運転制限値の経時変化12dを表示しており、現在時刻における炉心特性の予測値、誤差上限値、誤差下限値、及び運転制限値が明確となるように現在時刻が表示されている。   The first screen 11 shown in FIG. 2 shows a change 12a in predicted value of the core characteristics (the core flow rate is illustrated in the figure), a change 12b in the error upper limit value of the predicted value, and the error lower limit value in the predicted value. The change 12c and the time-dependent change 12d of the operation limit value of the core characteristics are displayed, and the current time is displayed so that the predicted value, the error upper limit value, the error lower limit value, and the operation limit value of the core characteristics at the current time are clear. It is displayed.

図3に示す第2画面13は、上記炉心特性の予測値の経時変化12a、予測値の誤差上限値の経時変化12b、予測値の誤差下限値の経時変化12c、及び炉心特性の運転制限値の経時変化12dに加えて、炉心特性の実績値14をプロットして表示しており、現在時刻における予測値、誤差上限値、誤差下限値、運転制限値、及び実績値が明確となるように現在時刻が表示されている。   The second screen 13 shown in FIG. 3 shows a change 12a in predicted value of the core characteristics with time, a change 12b in error upper limit value of the predicted value, a change 12c in error value lower limit value of the predicted value, and an operating limit value of the core characteristic. In addition to the time-dependent change 12d, the actual value 14 of the core characteristic is plotted and displayed so that the predicted value, error upper limit value, error lower limit value, operation limit value, and actual value at the current time are clear. The current time is displayed.

また、表示制御部8は、現在時刻における炉心特性の実績値と予測値との差が、現在時刻における誤差範囲(詳細には、炉心特性の予測値と誤差上限値との差、又は炉心特性の予測値と誤差下限値との差)の所定の割合(例えば80%)に達したどうかを判定する機能を有している。そして、例えば誤差範囲の所定の割合に達したと判定した場合、第2画面13に注意マーク(図示せず)を表示させるようになっている。   Further, the display control unit 8 determines that the difference between the actual value and the predicted value of the core characteristic at the current time is an error range at the current time (specifically, the difference between the predicted value of the core characteristic and the error upper limit value, or the core characteristic). The difference between the predicted value and the error lower limit value) has a function of determining whether or not a predetermined ratio (for example, 80%) has been reached. For example, when it is determined that a predetermined ratio of the error range has been reached, a caution mark (not shown) is displayed on the second screen 13.

以上のように構成された本実施形態においては、運手員は、表示部9の第1画面11により、炉心特性予測値の経時変化12a及びその誤差範囲12b,12cを知ることができ、運転員の経験等に依らずとも、例えば炉心特性が運転制限値に達する時期を前後の時間幅を持たせて、より的確に予測することができる。また、表示部9の第2画面13により、例えば炉心特性の実績値が予測値からずれた場合でも、予測値の誤差範囲にあるかどうかを判断することができる。また、炉心特性の予測値に対する実績値のずれ量がどのように推移し運転制限値にどれくらいまで近づくのかを予測することができ、運転計画を変更すべき時期を前後の時間幅を持たせて、より的確に判断することができる。特に、炉心特性予測値の誤差範囲は時間の経過とともに変動するものなので、例えば従来技術のように予測値と実績値の偏差が所定の限界値を越えたときに運転計画を変更すべきと判断する場合に比べ、運転計画を変更すべき時期をより的確に判断することができる。したがって本実施形態においては、監視者の負担を軽減しつつ、より付加価値の高い炉心監視装置を実現することができる。   In the present embodiment configured as described above, the operator can know the temporal change 12a of the core characteristic predicted value and its error ranges 12b and 12c from the first screen 11 of the display unit 9, and For example, the time when the core characteristic reaches the operation limit value can be predicted more accurately by giving a time width before and after the operation limit. Further, the second screen 13 of the display unit 9 can determine whether or not the error value of the predicted value is within the predicted value range even when the actual value of the core characteristics deviates from the predicted value. In addition, it is possible to predict how much the deviation of the actual value from the predicted value of the core characteristics will change and how close it will be to the operation limit value. Can be judged more accurately. In particular, since the error range of the core characteristic prediction value varies with time, it is determined that the operation plan should be changed when the deviation between the predicted value and the actual value exceeds a predetermined limit value as in the prior art, for example. Compared with the case where it does, it can judge more appropriately the time which should change an operation plan. Therefore, in the present embodiment, it is possible to realize a core monitoring apparatus with higher added value while reducing the burden on the supervisor.

また、炉心特性予測演算部6は設定された時間毎に予測演算を行うので、時間の経過とともに増大する炉心特性予測値の誤差範囲を小さくすることができる。これにより、表示部9の第1画面11及び第2画面13における炉心特性予測値の誤差範囲が比較的小さくなるので、監視者はより的確に判断することができる。   Moreover, since the core characteristic prediction calculation part 6 performs a prediction calculation for every set time, the error range of the core characteristic prediction value that increases with the passage of time can be reduced. Thereby, since the error range of the core characteristic prediction value on the first screen 11 and the second screen 13 of the display unit 9 becomes relatively small, the supervisor can judge more accurately.

なお、上記一実施形態においては、図2で示す第1画面11及び図3で示す第2画面13は、炉心特性予測値が線形変化し、その誤差範囲が単調に変化する場合を例にとって説明したが、これに限られない。すなわち、例えば図4に示す第2画面13Aのように、炉心特性(図では熱的制限値を例示している)の予測値が非線形で変化し、その誤差範囲が単調に変化しない場合もあり、特に、このような場合に上述した効果が顕著となる。また、上記一実施形態においては、炉心特性予測値の経時変化12a、誤差上限値の経時変化12b、誤差下限値の経時変化12c、及び運転制限値の経時変化12dを線グラフで表示し、炉心特性実績値14をプロットして表示する場合を例にとって説明したが、これに限られず、例えば数値表示等でもよい。この場合も、上記同様の効果を得ることができる。   In the above-described embodiment, the first screen 11 shown in FIG. 2 and the second screen 13 shown in FIG. 3 are described taking an example in which the core characteristic prediction value changes linearly and the error range changes monotonously. However, it is not limited to this. That is, for example, as shown in the second screen 13A shown in FIG. 4, the predicted value of the core characteristics (the thermal limit value is illustrated in the figure) changes nonlinearly, and the error range may not change monotonously. In particular, the above-described effect becomes remarkable in such a case. In the above embodiment, the core characteristic prediction value change with time 12a, the error upper limit change with time 12b, the error lower limit change with time 12c, and the operation limit value change with time 12d are displayed in a line graph. Although the case where the actual characteristic value 14 is plotted and displayed has been described as an example, the present invention is not limited to this, and may be, for example, a numerical display. In this case, the same effect as described above can be obtained.

また、上記一実施形態においては、炉心特性予測演算部6は、設定された時間毎に予測演算する場合を例にとって説明したが、これに限られず、例えば運転員の指示入力に応じて予測演算してもよいし、プロセスデータ取得部2のプロセスデータ取得のタイミングに合わせて予測演算するようにしてもよい。このような場合も、上記同様の効果を得ることができる。   Further, in the above-described embodiment, the core characteristic prediction calculation unit 6 has been described by way of an example of performing prediction calculation for each set time. However, the present invention is not limited to this, and for example, prediction calculation according to operator instruction input. Alternatively, the prediction calculation may be performed in accordance with the process data acquisition timing of the process data acquisition unit 2. In such a case, the same effect as described above can be obtained.

本発明の炉心監視装置の一実施形態の機能構成を表すブロック図である。It is a block diagram showing the functional structure of one Embodiment of the core monitoring apparatus of this invention. 本発明の炉心監視装置の一実施形態を構成する表示部に表示される第1画面の一例を表す図である。It is a figure showing an example of the 1st screen displayed on the display part which constitutes one embodiment of the core monitoring device of the present invention. 本発明の炉心監視装置の一実施形態を構成する表示部に表示される第2画面の一例を表す図である。It is a figure showing an example of the 2nd screen displayed on the display part which constitutes one embodiment of the core monitoring device of the present invention. 本発明の炉心監視装置の一実施形態を構成する表示部に表示される第2画面の他の例を表す図である。It is a figure showing the other example of the 2nd screen displayed on the display part which comprises one Embodiment of the core monitoring apparatus of this invention.

符号の説明Explanation of symbols

1 炉心監視装置
2 プロセスデータ取得部(プロセスデータ取得手段)
3 炉心特性実績演算部(炉心特性実績演算手段)
4 炉心特性実績記憶部(炉心特性実績記憶手段)
6 炉心特性予測演算部(炉心特性予測演算手段)
8 表示制御部(判定手段)
9 表示部(表示手段)
1 Core Monitoring Device 2 Process Data Acquisition Unit (Process Data Acquisition Unit)
3 Core Characteristic Result Calculation Unit (Core Characteristic Result Calculation Means)
4 Core characteristics results storage unit (core characteristics results storage means)
6 Core characteristic prediction calculation unit (core characteristic prediction calculation means)
8 Display controller (determination means)
9 Display section (display means)

Claims (3)

運転計画に従って運転する原子炉炉心を監視する炉心監視装置において、
前記原子炉炉心のプロセスデータを取得するプロセスデータ取得手段と、
前記プロセスデータ取得手段で取得したプロセスデータ及び前記運転計画に基づいた計算モデルにより炉心特性の予測値の経時変化を演算し、かつ前記計算モデルに含まれるパラメータの誤差に伴う炉心特性予測値の誤差範囲の経時変化を演算する炉心特性予測演算手段と、
前記炉心特性予測演算手段で演算した炉心特性予測値の経時変化、その誤差上限値の経時変化及び誤差下限値の経時変化を、運転制限値とともに表示する画面を表示する表示手段とを備えたことを特徴とする炉心監視装置。
In the core monitoring device that monitors the reactor core that operates according to the operation plan,
Process data acquisition means for acquiring process data of the reactor core;
Wherein the calculation model based on the acquired process data and the operation plan in process data acquisition means and computation changes with time of the predicted value of the core characteristics, and the core characteristics predicted value due to the error of the parameters included in the calculation model and core characteristics predictive operation means for calculating a time change in the error range,
Display means for displaying a screen for displaying the change with time of the predicted value of the core characteristic calculated by the core characteristic prediction calculation means, the change with time of the error upper limit value and the change with time of the error lower limit value together with the operation limit value . A reactor core monitoring device.
運転計画に従って運転する原子炉炉心を監視する炉心監視装置において、
前記原子炉炉心のプロセスデータを取得するプロセスデータ取得手段と、
前記プロセスデータ取得手段で取得したプロセスデータに基づき炉心特性の実績値を演算する炉心特性実績演算手段と、
前記炉心特性実績演算手段で演算した炉心特性実績値を時系列で記憶する炉心特性実績記憶手段と、
前記プロセスデータ取得手段で取得したプロセスデータ及び前記運転計画に基づいた計算モデルにより炉心特性の予測値の経時変化を演算し、かつ前記計算モデルに含まれるパラメータの誤差に伴う炉心特性予測値の誤差範囲の経時変化を演算する炉心特性予測演算手段と、
前記炉心特性予測演算手段で演算した炉心特性予測値の経時変化、その誤差上限値の経時変化及び誤差下限値の経時変化、並びに前記炉心特性実績記憶手段で記憶した炉心特性実績値の経時変化を、運転制限値とともに表示する画面を表示する表示手段とを備えたことを特徴とする炉心監視装置。
In the core monitoring device that monitors the reactor core that operates according to the operation plan,
Process data acquisition means for acquiring process data of the reactor core;
A core characteristic result calculating means for calculating an actual value of the core characteristic based on the process data acquired by the process data acquiring means;
Core characteristic result storage means for storing the core characteristic result value calculated by the core characteristic result calculation means in time series; and
Wherein the calculation model based on the acquired process data and the operation plan in process data acquisition means and computation changes with time of the predicted value of the core characteristics, and the core characteristics predicted value due to the error of the parameters included in the calculation model and core characteristics predictive operation means for calculating a time change in the error range,
Temporal change in the predicted value of the core characteristic calculated by the core characteristic prediction calculation means, temporal change in the error upper limit value and temporal change in the error lower limit value, and time course of the actual value of the core characteristic stored in the core characteristic result storage means A reactor core monitoring apparatus comprising: a display means for displaying a screen for displaying a change together with an operation limit value .
請求項記載の炉心監視装置において、
前記炉心特性実績値と前記炉心特性予測値との差が前記誤差範囲の所定の割合に達したかどうかを判定する判定手段を備え、
前記表示手段は、前記判定手段で前記炉心特性実績値と前記炉心特性予測値との差が前記誤差範囲の所定の割合に達したと判定されたことを表示することを特徴とする炉心監視装置。
In the core monitoring apparatus according to claim 2 ,
A determination means for determining whether a difference between the core characteristic actual value and the core characteristic prediction value has reached a predetermined ratio of the error range;
The display means displays that the determination means determines that the difference between the actual core characteristic value and the predicted core characteristic value has reached a predetermined ratio of the error range. .
JP2006341798A 2006-12-19 2006-12-19 Core monitoring device Active JP4895794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341798A JP4895794B2 (en) 2006-12-19 2006-12-19 Core monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341798A JP4895794B2 (en) 2006-12-19 2006-12-19 Core monitoring device

Publications (2)

Publication Number Publication Date
JP2008151711A JP2008151711A (en) 2008-07-03
JP4895794B2 true JP4895794B2 (en) 2012-03-14

Family

ID=39654016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341798A Active JP4895794B2 (en) 2006-12-19 2006-12-19 Core monitoring device

Country Status (1)

Country Link
JP (1) JP4895794B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027646A1 (en) * 2012-08-13 2014-02-20 三菱重工業株式会社 Nuclear reactor monitoring device, nuclear reactor control device, and nuclear power generation plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361630B2 (en) * 2015-10-29 2018-07-25 東京電力ホールディングス株式会社 Correction apparatus and evaluation apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970094A (en) * 1972-08-23 1974-07-06
JPS55135794A (en) * 1979-04-10 1980-10-22 Hitachi Ltd Method of monitoring nuclear reactor power
JPS6151208A (en) * 1984-08-20 1986-03-13 Hitachi Ltd Forcast simulator
JPH07134196A (en) * 1993-11-09 1995-05-23 Toshiba Corp Reactor monitoring device
JPH08166487A (en) * 1994-12-15 1996-06-25 Toshiba Syst Technol Kk Operation planning device
JPH08179078A (en) * 1994-12-19 1996-07-12 Toshiba Corp Nuclear power plant monitoring device
JPH08262184A (en) * 1995-03-17 1996-10-11 Toshiba Syst Technol Kk Device for monitoring atomic power station
JP2001099976A (en) * 1999-09-30 2001-04-13 Toshiba Corp Device and method for thermal operation margin monitoring for nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027646A1 (en) * 2012-08-13 2014-02-20 三菱重工業株式会社 Nuclear reactor monitoring device, nuclear reactor control device, and nuclear power generation plant
JP2014038006A (en) * 2012-08-13 2014-02-27 Mitsubishi Heavy Ind Ltd Nuclear reactor monitoring device and nuclear reactor control device

Also Published As

Publication number Publication date
JP2008151711A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP6312548B2 (en) Servo motor control device having self-measuring function and self-monitoring function of machine stiffness
KR101159444B1 (en) Device and method for monitoring dynamic characteristics of windmill
CN101676559B (en) Method of alarm mask generation and condition monitoring of wind turbines
TWI431638B (en) Methods of predicting a critical effective k for a nuclear reactor
JPH02302695A (en) Updating of parameter of core model and updating of parameter of analytic model
JP2018112903A (en) Plant operation support apparatus, plant operation support method, plant operation support program, and recording medium
CN110659755B (en) Modeling method, apparatus and storage medium for predicting motor temperature
EP3808516A1 (en) Robot control device, robot control method, and robot control program
JP2011061991A (en) Device and method for monitoring power demand
US11054330B2 (en) Calibration work support device, calibration work support method, and non-transitory computer readable storage medium
JP4895794B2 (en) Core monitoring device
EP1672200A2 (en) Method and apparatus for assessing gas turbine acceleration capability
JP5160178B2 (en) Waveform recording apparatus and waveform display method
JP2007040713A (en) Soundness diagnosis method and soundness diagnosis program of building based on microtremor measurement
US10883427B2 (en) Turbine analysis device, turbine analysis method, and program
JP2019096247A (en) Failure mode specifying system, failure mode specifying method, and program
JP4919791B2 (en) Core monitoring device
JP2005293169A (en) Apparatus for calculating operating state of plant, computer for plant simulation, system and method for optimizing plant operation, and program
EP3819723A1 (en) Simulation method and system for the management of a pipeline network
JPS6122278B2 (en)
JP7385548B2 (en) Reactor control device and reactor control method
JP5156775B2 (en) Plant monitoring / control device and maintenance support method thereof
JP2020030575A (en) Plant running assist system
JP2015123501A (en) Analyzer, analysis method, and analysis program
EP2157582A1 (en) Method for predicting xenon vibration and computer program for predicting xenon vibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250