JP6251861B1 - Transformer degradation status display device - Google Patents

Transformer degradation status display device Download PDF

Info

Publication number
JP6251861B1
JP6251861B1 JP2017066197A JP2017066197A JP6251861B1 JP 6251861 B1 JP6251861 B1 JP 6251861B1 JP 2017066197 A JP2017066197 A JP 2017066197A JP 2017066197 A JP2017066197 A JP 2017066197A JP 6251861 B1 JP6251861 B1 JP 6251861B1
Authority
JP
Japan
Prior art keywords
transformer
gradient
degree
polymerization
polymerization degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066197A
Other languages
Japanese (ja)
Other versions
JP2018151365A (en
Inventor
義和 寺上
義和 寺上
Original Assignee
義和 寺上
義和 寺上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義和 寺上, 義和 寺上 filed Critical 義和 寺上
Priority to JP2017066197A priority Critical patent/JP6251861B1/en
Application granted granted Critical
Publication of JP6251861B1 publication Critical patent/JP6251861B1/en
Publication of JP2018151365A publication Critical patent/JP2018151365A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】小容量変圧器を含めた変圧器全般について、変圧器の劣化状況を連続的に表示することが可能な変圧器劣化状況表示装置を提供する。【解決手段】設置場所温度と運転負荷率が中間の条件における重合度低下勾配を基準勾配Kcとし、被診断変圧器の重合度低下勾配Kが基準勾配Kcに勾配補正係数Rを乗ずる方法をとり、勾配補正係数Rの値を、設置場所温度差Td(被診断変圧器設置場所温度と基準温度との差)と絶縁紙温度差Tzs(被診断変圧器運転負荷率における絶縁紙温度と基準負荷率における絶縁紙温度との差)によるR=1/EXP(−H(Td+Tzs))で算出するものとし、絶縁紙温度差Tzsは、勾配補正係数Rの値が0.4〜2.5の範囲になるような運転負荷率Uに関する回帰式で求め、これによる勾配補正係数Rを基準負荷率に乗じた実勾配Kにて重合度が低下していく状況をグラフ表示する。【選択図】図2Disclosed is a transformer degradation status display device capable of continuously displaying the degradation status of a transformer for all transformers including a small capacity transformer. A method of multiplying the degree of polymerization decrease gradient at a place where the installation site temperature and the operating load factor are intermediate as a reference gradient Kc and multiplying the reference gradient Kc by a gradient correction coefficient R is used. , The gradient correction coefficient R, the installation location temperature difference Td (difference between the diagnosis transformer installation location temperature and the reference temperature) and the insulation paper temperature difference Tzs (insulation paper temperature and reference load at the diagnosis transformer operating load factor) R = 1 / EXP (−H (Td + Tzs)) based on the difference between the insulating paper temperature and the insulating paper temperature, and the insulating paper temperature difference Tzs is a slope correction coefficient R value of 0.4 to 2.5. A graph showing a state in which the degree of polymerization is decreased at an actual gradient K obtained by multiplying the reference load factor by a gradient correction coefficient R obtained by a regression equation related to the operating load factor U that falls within the range. [Selection] Figure 2

Description

本発明は、変圧器の劣化状況を変圧器巻線間等に装着される絶縁紙(以下絶縁紙と省略表記)の平均重合度(以下重合度と省略表記)の低下推移で表示する技術に関する。  The present invention relates to a technique for displaying a deterioration state of a transformer as a decrease in average polymerization degree (hereinafter abbreviated as polymerization paper) of insulating paper (hereinafter abbreviated as insulation paper) mounted between transformer windings and the like. .

絶縁紙の重合度低下状況によって余寿命を推定し、変圧器の寿命に至る前に変圧器を更新し劣化による事故を防止することが進められている。  The remaining life is estimated based on the degree of polymerization degree of the insulating paper, and the transformer is renewed before the life of the transformer is reached to prevent accidents due to deterioration.

絶縁紙劣化状況を調べる手段として、変圧器停電時に絶縁紙の一部を取り出して重合度を測定する公知の方法や、運転状態のままで重合度を推定する下記文献1及び文献2等の方法がとられている。
特許第4323396号 特許第5387877号
As means for investigating the state of deterioration of the insulating paper, a known method for taking out a part of the insulating paper and measuring the degree of polymerization at the time of a transformer power outage, or a method such as the following literature 1 and literature 2 for estimating the degree of polymerization while operating Has been taken.
Japanese Patent No. 4323396 Japanese Patent No. 5387877

絶縁紙の一部を取り出して重合度を測定する公知の方法は定期点検時にしか実施できず、変圧器運転再開後に変圧器使用条件の急激な悪化があった場合でも次の定期点検までは確認できないため重合度の加速的な低下兆候を見逃すこととなり、変圧器使用条件改善等の事故防止対策が遅れてしまうという欠点が有った。  A known method of taking out a part of insulating paper and measuring the degree of polymerization can only be carried out at the time of periodic inspection. Since this is not possible, the sign of an accelerated decrease in the degree of polymerization was missed, and there was a drawback that accident prevention measures such as improvement of transformer usage conditions were delayed.

変圧器運転時でも重合度を把握することができる特許文献1の方法は、被診断変圧器の負荷履歴と気象情報と点検時に測定した絶縁油温度とによる絶縁紙温度の推定熱履歴を、撤去変圧器絶縁紙の重合度測定値等より作成した絶縁紙の熱履歴と重合度の関係を示すマスターカーブと突き合わせて余寿命を求める方法をとっている。  The method of Patent Document 1 that can grasp the degree of polymerization even when the transformer is operating removes the estimated thermal history of the insulating paper temperature from the load history of the diagnostic transformer, weather information, and the insulating oil temperature measured at the time of inspection. A method is employed in which the remaining life is obtained by matching with a master curve indicating the relationship between the thermal history of the insulating paper and the degree of polymerization produced from the measured value of the degree of polymerization of the transformer insulating paper.

変圧器運転時でも重合度を把握することができる別の方法である特許文献2の方法は、被診断変圧器の定期点検時等に採取した絶縁油に含まれるCO、CO2、フルフラール等の劣化指標成分量と被診断変圧器の稼働年数、負荷率等の運転環境データを基にして重合度を推定し余寿命を求める方法をとっている。  The method of Patent Document 2, which is another method that can grasp the degree of polymerization even when the transformer is operating, is the deterioration of CO, CO2, furfural, etc. contained in the insulating oil collected during periodic inspection of the transformer to be diagnosed. A method is used in which the degree of polymerization is estimated based on the operating environment data such as the amount of the index component, the years of operation of the transformer to be diagnosed, and the load factor, and the remaining life is obtained.

しかしながら、前記特許文献1や特許文献2の方法は、絶縁紙や絶縁油からの絶縁劣化指標データ取得がなされる特定の変圧器に対する評価法であり、絶縁劣化指標データを取得しない変圧器には適用できないことと、点検時毎の断続的な評価法であることから、点検後に変圧器使用条件の急激な悪化があった場合の重合度の加速的低下兆候を見逃すこととなり、事故防止対策を適時に実施できないという欠点が有った。  However, the methods of Patent Document 1 and Patent Document 2 are evaluation methods for specific transformers that obtain insulation deterioration index data from insulating paper or insulating oil, and for transformers that do not obtain insulation deterioration index data. Because it is not applicable and is an intermittent evaluation method at every inspection, it will miss the sign of an accelerated decrease in the degree of polymerization when there is a sudden deterioration in transformer usage conditions after inspection, and prevent accidents. There was a drawback that it could not be implemented in a timely manner.

本発明はこのような事情に鑑みてなされたもので、絶縁劣化指標の取得がなされないことが多い小容量の変圧器も含めた変圧器全般にわたり、変圧器の使用開始から現在までの重合度低下状況を連続的に示すことで、変圧器運転条件の急激な変化による重合度低下兆候も見逃さず監視することを可能にし、変圧器運転条件の改善を適時に行えるようにすることを目的とする。  The present invention has been made in view of such circumstances, and the degree of polymerization from the start of use of the transformer to the present over all transformers including small-capacity transformers in which acquisition of an insulation deterioration index is often not made. By continuously showing the state of decline, it is possible to monitor signs of decreased polymerization due to sudden changes in transformer operating conditions, and to improve transformer operating conditions in a timely manner. To do.

前記目的を達成するために、請求項1に記載の方法は、日本国内で使用されている変圧器は国内規格(JEC−2200、JISC4304)に準拠して設計・製造されるものであり、使用する絶縁紙の材質や運転負荷率に対する変圧器の温度上昇値がほぼ同じとみなされることに着目し、日本国内で使用される変圧器の重合度経時低下経緯が日本国内で公表されている重合度経時低下グラフ群の最小勾配経路と最大勾配経路の範囲内を推移するとみなせるとの見地を基に、変圧器が最良の運転条件(変圧器設置場所の温度が日本国内の低気温地域の年間平均気温で変圧器の運転負荷率が日本国内における運転負荷率分布の最低負荷率)にて連続運転されるとした変圧器の重合度が前記重合度経時低下グラフ群中の最小勾配直線に沿って低下し、変圧器が最悪の運転条件(変圧器設置場所の温度が日本国内の高気温地域の年間平均気温で変圧器の運転負荷率が日本国内における運転負荷率分布の最高負荷率)にて連続運転されるとした変圧器の重合度が前記重合度経時低下グラフ群中の最大勾配直線に沿って低下し、変圧器が前記最良と最悪の中間の運転条件(変圧器設置場所の温度が前記低気温地域の年間平均気温と前記高気温地域の年間平均気温の中間の温度(以下基準温度Tc)で、運転負荷率が前記運転負荷率分布の平均負荷率(以下基準負荷率Uc))で連続運転されるとした変圧器の重合度が前記最小勾配経路と最大勾配経路の中間の勾配の直線に沿って低下し、運転条件が変化する被診断変圧器の重合度は、前記最小勾配直線と最大勾配直線の間を推移するとの重合度低下領域を設定し、被診断変圧器設置場所の温度Taを取得する手段と、前記設置場所温度Taと前記基準温度Tc(11〜13℃のうちのいずれか一つ)との設置場所温度差Tdを算出する手段と、被診断変圧器の運転電流Iを取得する手段と、前記運転電流Iより運転負荷率Uを算出する手段と、被診断変圧器の運転負荷率Uにおける絶縁紙の上昇温度Tzと前記基準負荷率Uc(35〜40%のうちのいずれか一つ)による絶縁紙の上昇温度Tzcとの絶縁紙温度差Tzsを算出する手段と、基準使用条件(変圧器設置場所の温度が前記基準温度Tc、運転負荷率が前記基準負荷率Uc)で一定して連続運転されるとした変圧器の重合度が、変圧器運転開始時の重合度(800〜1000のうちのいずれか一つ)から20/年〜30/年のうちのいずれか一つの勾配で低下するとした前記中間の運転条件における重合度低下直線の勾配を基準勾配Kcとし、被診断変圧器においては、重合度が前記基準勾配Kcに勾配補正係数Rを乗じた実勾配Kにて低下するとした重合度低下推移決定手段と、前記勾配補正係数Rを、前記変圧器設置場所温度差Tdと前記絶縁紙温度差Tzsに関連する計算式
R=1/exp(−H(Td+Tzs))・・・・・(式1)
(ただし、Hは0.0693(1/℃)〜0.1155(1/℃)のうちのいずれか一つ)により算出する手段と、(式1)中の絶縁紙温度差Tzsを、前記設置場所温度差Tdの温度幅が8℃(前記基準温度を中心に−4〜+4℃)で前記運転負荷率Uの範囲が40%(基準負荷率を中心に−20〜+20%)の場合に前記勾配補正係数Rの値が0.4〜2.5となるような運転負荷率Uに関する回帰式によって算出し、算出した絶縁紙温度差Tzsを前記勾配補正係数Rの算出式に代入して勾配補正係数Rを算出する手段と、算出した前記勾配補正係数を前記基準勾配Kc算出した前記勾配補正係数Rを前記基準勾配Kcに乗じて実勾配Kを算出する手段と、前記実勾配Kによって逐次低下する重合度の時間別重合度を算出して記憶部の時間別重合度記憶部に時刻毎に格納する手段と、前記時間別重合度の日毎最終値を記憶部の期日別重合度記憶部に期日毎に格納擦る手段と、現時刻以前の複数の時刻(例えば現時刻と前日19時と前日5時と前々日19時の時間別重合度算出に用いた複数の1時間当たり重合度低下勾配の平均値として現時刻以後の未来分重合度推移予想勾配を算出する手段と、入力部より入力した試算条件(変圧器の試算用設置場所温度と試算用運転負荷率)により現時刻以後の未来分重合度推移試算勾配を算出する手段と、前記期日別重合度記憶部及び前記時間別重合度記憶部から読み出した被診断変圧器の使用開始から現時刻までの重合度推移と前記現時刻以後の未来分重合度推移予想勾配に沿った現時刻以後の予想重合度推移と前記未来分重合度推移試算勾配に沿った現時刻以後の試算重合度推移を、被診断変圧器の使用開始から数10年までの長期重合度推移グラフに表示する手段もしくは、前記長期重合度推移グラフと現時点を基点とした数日前後の短期重合度推移グラフとを同時表示または交互表示する手段、を備えたことを特徴とする。
In order to achieve the above object, the method according to claim 1 is that the transformer used in Japan is designed and manufactured in accordance with a domestic standard (JEC-2200, JISC4304). Focusing on the fact that the temperature rise value of the transformer is considered to be almost the same for the insulation paper material and the operating load factor, the polymerization process that has been published in Japan has been published in Japan. Based on the view that it can be considered that the graph will be within the range of the minimum gradient path and maximum gradient path of the time-gradual decline graph group, the transformer is in the best operating condition (the temperature of the place where the transformer is installed is The degree of polymerization of the transformer is assumed to be continuously operated at the average temperature and the transformer operating load factor is the lowest load factor of the operating load factor distribution in Japan). Drop , The transformer operates continuously under the worst operating conditions (the temperature at the location where the transformer is installed is the annual average temperature in the high temperature region in Japan and the operating load factor of the transformer is the highest load factor of the operating load factor distribution in Japan) The degree of polymerization of the transformer is reduced along the maximum gradient line in the graph of the degree of polymerization aging deterioration, and the transformer is operated between the best and worst operating conditions (the temperature of the place where the transformer is installed is low). The operating load factor is continuous with the average load factor (hereinafter referred to as the reference load factor Uc) of the operating load factor distribution at a temperature intermediate between the annual average temperature in the temperature region and the annual average temperature in the high temperature region (hereinafter referred to as the reference temperature Tc). The degree of polymerization of the transformer to be operated decreases along a straight line intermediate between the minimum gradient path and the maximum gradient path, and the degree of polymerization of the transformer under diagnosis whose operating conditions change is the minimum gradient line. Polymerization with transition between maximum gradient straight lines A means for obtaining a temperature Ta at the installation location of the transformer to be diagnosed by setting a decrease region, and an installation site temperature difference between the installation site temperature Ta and the reference temperature Tc (any one of 11 to 13 ° C.) Means for calculating Td, means for obtaining the operating current I of the diagnostic transformer, means for calculating the operating load factor U from the operating current I, and increase in insulation paper at the operating load factor U of the diagnostic transformer Means for calculating an insulation paper temperature difference Tzs between the temperature Tz and the rising temperature Tzc of the insulation paper according to the reference load factor Uc (any one of 35 to 40%); The degree of polymerization of the transformer, which is assumed to be continuously operated with the temperature being the reference temperature Tc and the operation load factor being the reference load factor Uc), is the degree of polymerization at the start of transformer operation (any of 800 to 1000) 20 / year to 30 / The gradient of the degree-of-polymerization decrease line in the intermediate operating condition, which is assumed to decrease at any one of the gradients of the year, is defined as a reference gradient Kc. In the diagnostic transformer, the degree of polymerization is multiplied by the gradient correction coefficient R to the reference gradient Kc. The degree-of-polymerization transition transition determining means that is decreased at the actual gradient K, and the gradient correction coefficient R are calculated by the following formula R = 1 / exp (related to the transformer installation location temperature difference Td and the insulating paper temperature difference Tzs). -H (Td + Tzs)) (Equation 1)
(Where H is any one of 0.0693 (1 / ° C.) to 0.1155 (1 / ° C.) ), and the insulating paper temperature difference Tzs in (Expression 1) When the temperature range of the installation location temperature difference Td is 8 ° C. (−4 to + 4 ° C. centering on the reference temperature) and the range of the operating load factor U is 40% (−20 to + 20% centering on the reference load factor) Is calculated by a regression equation related to the operating load factor U such that the value of the gradient correction coefficient R is 0.4 to 2.5, and the calculated insulation paper temperature difference Tzs is substituted into the calculation formula of the gradient correction coefficient R. Means for calculating the gradient correction coefficient R; means for multiplying the reference gradient Kc by the gradient correction coefficient R calculated by calculating the reference gradient Kc with the calculated gradient correction coefficient; and the actual gradient K Calculate the degree of polymerization by time of the degree of polymerization that gradually decreases by the storage unit Means and, means for rubbing storing daily final value of another polymerization degree the time in each date on the date by polymerization degree storage unit of the storage unit, the current time earlier plurality of times to store the time for each time in a different polymerization degree storage unit (For example, as a mean value of a plurality of hourly polymerization degree decrease gradients used for calculating the hourly polymerization degree at 19:00 on the previous day, 15:00 on the previous day, and 19:00 on the previous day, prediction of future polymerization degree transition after the current time Means for calculating the gradient, means for calculating the future polymerization degree transition estimated gradient after the current time according to the calculation conditions (transformer calculation installation location temperature and calculation operation load factor) input from the input unit, and the date The polymerization degree transition from the start of use of the diagnostic transformer read from the separate polymerization degree storage unit and the hourly polymerization degree storage unit to the current time and the future polymerization degree transition after the current time after the current time along the expected gradient Expected polymerization degree transition and future degree of polymerization estimation Means for displaying the estimated polymerization degree transition after the current time along the estimated gradient in a long-term polymerization degree transition graph from the start of use of the diagnostic transformer to several tens of years, or based on the long-term polymerization degree transition graph and the current point And means for simultaneously or alternately displaying a short-term polymerization degree transition graph of several days.

本発明の方法によれば、日本国内で使用される変圧器全般にわたり、変圧器の使用開始から現在までの重合度劣化状況を連続的に示すことで使用条件の急激な悪化による重合度の加速的低下状況を見逃すこと無く重合度低下経緯と変圧器運転条件の良否評価を常時行うことが可能となり、変圧器運転条件の改善を適時に行って変圧器劣化に起因する事故発生の未然防止ができる。  According to the method of the present invention, over the entire transformer used in Japan, the degree of polymerization is accelerated by sudden deterioration of the use conditions by continuously showing the degree of polymerization degree deterioration from the start of use of the transformer to the present. It is possible to constantly evaluate the degree of polymerization reduction and the quality of transformer operating conditions without overlooking the state of degradation, and improve transformer operating conditions in a timely manner to prevent accidents caused by transformer deterioration. it can.

本発明における重合度の低下領域と基準勾配を示すグラフである。  It is a graph which shows the fall area | region and reference | standard gradient of the polymerization degree in this invention. 本発明による変圧器劣化表示装置の長期重合度推移表示グラフである。  4 is a graph showing a long-term polymerization degree transition of the transformer deterioration display device according to the present invention. 本発明による変圧器劣化表示装置の短期重合度推移表示グラフである。  It is a short-term polymerization degree transition display graph of the transformer deterioration display apparatus by this invention. 本発明による変圧器劣化表示装置の長期短期重合度推移複合表示グラフである。  3 is a long-term and short-term polymerization degree transition composite display graph of the transformer deterioration display device according to the present invention. 本発明の実施例による変圧器劣化表示装置の構成を示す構成図である。  It is a block diagram which shows the structure of the transformer degradation display apparatus by the Example of this invention. 本発明の実施例による変圧器劣化表示装置の処理過程を示すフロー図である。  It is a flowchart which shows the process of the transformer degradation display apparatus by the Example of this invention. JEM1463に記載の運転年数と平均重合度の関係を示すグラフである。  It is a graph which shows the relationship between the operation years described in JEM1463, and an average degree of polymerization. 変圧器メーカ技術資料記載に記載の運転年数と平均重合度の関係を示すグラフである。  It is a graph which shows the relationship between the number of years of operation and average polymerization degree which are described in transformer manufacturer technical data description. 日本電機工業会にて公表されている変圧器負荷率の業種別調査表である。  This is a survey table of transformer load factor according to type of industry published by the Japan Electrical Manufacturers' Association.

以下、添付図面に従って本発明に係る変圧器選定を実施するための最良の形態について詳説する。  Hereinafter, the best mode for carrying out selection of a transformer according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、変圧器絶縁紙重合度の経時的低下推移グラフとして日本国内で公表されている図7及び図8を基にして、本発明に係る前記重合度の低下領域と基準勾配を示したもので、直線1aを前記重合度低下推移グラフのうち最小勾配を表示している図7の重合度上限側の直線(運転開始時の重合度が900で、低下勾配が12.5/年)とし、直線1bを前記重合度低下推移グラフのうち最大勾配を表示している図8の重合度下限側の直線(運転開始時の重合度が900で、低下勾配が50/年)とし、直線1cを、前記最小勾配直線1aと最大勾配直線1bの中間の直線(運転開始時の重合度が900で、低下勾配が前記基準勾配K(25/年))として示している。  FIG. 1 is a graph showing a transition region and a reference gradient of the degree of polymerization according to the present invention, based on FIGS. In FIG. 7, the straight line 1a indicates the minimum gradient in the degree-of-polymerization transition graph (the degree of polymerization at the start of operation is 900 and the rate of decrease is 12.5 / year). The straight line 1b is the straight line on the lower limit side of the degree of polymerization shown in FIG. 8 showing the maximum gradient in the degree-of-polymerization transition graph (the degree of polymerization at the start of operation is 900, and the decrease gradient is 50 / year). 1c is an intermediate straight line between the minimum gradient straight line 1a and the maximum gradient straight line 1b (the polymerization degree at the start of operation is 900, and the decreasing gradient is the reference gradient K (25 / year)).

変圧器設置場所温度Taの範囲については、気象庁公表データによる過去40年間の年間平均気温から、最低温度を北海道地区における8℃、最高温度を九州地区における16℃とし、変圧器運転負荷率Uの範囲については、図9に示す変圧器負荷率の産業別調査表に1日当たりとして記載されている負荷率290例を引用し、前記負荷率の分布が正規分布であるとして算出した標準偏差値σ=8.93%と平均値37.3%より、最低負荷率を19.5%(37.3−2σ)、最高負荷率側を55.2%(37.3+2σ)としている。  Regarding the range of transformer installation temperature Ta, the minimum temperature is 8 ° C in the Hokkaido region and the maximum temperature is 16 ° C in the Kyushu region based on the annual average temperature for the past 40 years based on the data published by the Japan Meteorological Agency. For the range, the standard deviation value σ calculated by quoting 290 load factors described as per day in the industry survey table of transformer load factors shown in FIG. 9 and assuming that the load factor distribution is a normal distribution is σ. From the average value of 37.3%, the minimum load factor is 19.5% (37.3-2σ) and the maximum load factor is 55.2% (37.3 + 2σ).

勾配補正係数Rの算出式である前記(式1)中のHは、絶縁物の熱劣化に関するアレニウスの半減則によるもので、10℃半減則の場合の0.0693〜6℃半減則の場合の0.1155までのいずれか一つであり、A種絶縁材料への適合性が高いとされる8℃半減則(参考例:関東電気保安協会研究報告書概要版―自家用電気工作物における絶縁劣化統計と予防保全−第4章、劣化メカニズムの整理―絶縁材料の劣化要因―熱劣化。平成22年1月)の場合のH=0.08664を採択した勾配補正係数
R=1/exp(―0.08664(Td+Tzs))・・・・・(式3)
を適用している。
H in (Formula 1), which is the calculation formula of the gradient correction coefficient R, is based on the Arrhenius half law regarding the thermal degradation of the insulator, and in the case of the 0.0693-6 ° C. half law in the case of the 10 ° C. half law. Of 0.18 and half-rule of 8 ° C, which is considered to be highly compatible with Class A insulating materials (Example: Kanto Electrical Safety Association Research Report Summary Version-Insulation in private electrical works) Degradation Statistics and Preventive Maintenance-Chapter 4, Organizing Degradation Mechanisms-Degradation Factors for Insulating Materials-Thermal Degradation, H = 0.08664 adopted in the case of January 2010) Gradient correction coefficient R = 1 / exp ( -0.08664 (Td + Tzs)) (Equation 3)
Has been applied.

前記(式1)〜(式3)の絶縁紙温度差Tzsは、以下の(式4)や(式5)に示す回帰式等が、前記変圧器設置場所の温度Taと変圧器運転負荷率Uの採択範囲において前記勾配補正係数Rの範囲が0.4〜2.5となる条件を満たす例となる。
Tzs=A(U−Ucx)・・・・(式4)
(ただし、Aは20(℃)〜50(℃)のうちのいずれかで、は1〜3のうちのいずれか)
Tzs=C(α+U(1−α))−D・U−C(α+Uc(1−α))− D・Uc・・・・(式5)
(ただし、Cは30(℃)〜70(℃)のうちのいずれかで、αはケイ素鋼板鉄心変圧器の場合0.25、アモルファス鉄心変圧器の場合0.05で、Dはケイ素鋼板鉄心変圧器の場合10(℃)〜30(℃)のうちのいずれかで、アモルファス鉄心変圧器の場合30(℃)〜70(℃)のうちのいずれかで、 は2〜4)
実施例にあっては、勾配補正係数Rの範囲が0.5〜2になる
Tzs=23(U1.23−Uc1,23)・・・・(式6)
を採択している。
The insulation paper temperature difference Tzs in the above (Formula 1) to (Formula 3) is calculated by the following regression formula shown in (Formula 4) or (Formula 5), etc., the temperature Ta at the transformer installation location and the transformer operating load factor. This is an example of satisfying the condition that the range of the gradient correction coefficient R is 0.4 to 2.5 in the adopted range of U.
Tzs = A (U x −Uc x) (Expression 4)
(However, A is any one of 20 (° C.) to 50 (° C.) , and x is any one of 1 to 3)
Tzs = C (α + U 2 (1−α)) − D · U y −C (α + Uc 2 (1−α)) − D · Uc y (Equation 5)
(However, C is any one of 30 (° C.) to 70 (° C.) , α is 0.25 for a silicon steel core transformer, 0.05 for an amorphous iron core transformer, and D is a silicon steel core. In the case of a transformer, one of 10 (° C) to 30 (° C) , in the case of an amorphous iron core transformer, one of 30 (° C) to 70 (° C) , y is 2 to 4)
In Example, Tzs = 23 (U 1.23 -Uc 1,23) which range of slope correction coefficient R becomes 0.5 to 2 ... (6)
Has been adopted.

図2は、本発明による変圧器劣化状況の長期間表示グラフで、実線21は被診断変圧器の使用開始時から現時刻までの重合度推移を示しており、現時刻の時間別重合度Jhを、
Jh=Jh−Δh ・・・・ (式7)
(ただし、Jhは現時刻より1時間前の時間別重合度、Δhは後述の(式8)に示す1時間前から現時刻までの重合度低下分(1時間当たり重合度低下勾配))
Δh=Kcj×R ・・・・ (式8)
(ただし、Kcjは後述の(式9)に示す1時間あたりの基準勾配)
Kcj=25/8760=0.002854 ・・・ (式9)
によって算出し、算出した時間別重合度の日別最終値である期日別重合度の期間代表重合度(例えば各月最終日の期日別重合度や各年最終月最終日の期日別重合度等)による経緯で示している。
FIG. 2 is a graph showing a long-term display of the deterioration state of the transformer according to the present invention. A solid line 21 indicates a transition of the polymerization degree from the start of use of the diagnostic transformer to the current time. 2
Jh 2 = Jh 1 −Δh (Expression 7)
(However, Jh 1 is the degree of polymerization by hour one hour before the current time, Δh is the degree of polymerization degree reduction from one hour before to the current time shown in (Equation 8) described later (polymerization degree reduction gradient per hour))
Δh = Kcj × R (Equation 8)
(However, Kcj is a reference gradient per hour shown in (Equation 9) described later)
Kcj = 25/8760 = 0.005854 (formula 9)
Periodic degree of polymerization of due date polymerization degree, which is the final daily value of the calculated hourly degree of polymerization (for example , due date degree of polymerization on the last day of each month, degree of degree of polymerization on the last day of each month, etc.) ).

破線22は、現時刻以後の重合度低下予想勾配Kyによる重合度予想推移を示しており、重合度低下予想勾配Kyを複数の時刻における複数の1時間当たり重合度低下勾配の平均とした
Ky=(Kr+Kr+Kr+Kr)/4 ・・・・ (式10)
(ただし、Kr は現時刻の時間別重合度算出に用いた1時間当たり重合度低下勾配、Kr は前日19時の時間別重合度算出に用いた1時間当たり重合度低下勾配、Kr は前日5時の時間別重合度算出に用いた1時間当たり重合度低下勾配、Kr は前々日19時の時間別重合度算出に用いた1時間当たり重合度低下勾配)
としている。
Dashed line 22, Ky was an average of a plurality of 1 hour per degree of polymerization reduction gradient in the polymerization degree predicted transition indicates a degree of polymerization reduction expected gradient Ky multiple times by the degree of polymerization reduction expected gradient Ky the current time after = (Kr 1 + Kr 2 + Kr 3 + Kr 4 ) / 4 (Equation 10)
(Where Kr 1 is the gradient of decrease in polymerization degree per hour used for calculating the degree of polymerization by hour at the current time, Kr 2 is the gradient of decrease in polymerization degree per hour used for calculation of the degree of polymerization by hour at 19:00 the previous day, Kr 3 Is the lowering degree of polymerization degree per hour used to calculate the degree of polymerization by hour at 5 o'clock the previous day , and Kr 4 is the lowering degree of polymerization degree per hour used to calculate the degree of hourly degree of polymerization at 19:00 the day before)
It is said.

2点鎖線23は、試算条件(試算用設置場所温度差Tdt、試算用負荷率Ut)による重合度試算推移で、試算用勾配補正係数Rtを
Rt=1/exp(―0.08664(Tdt+Tzst))・・・・・(式11)
(ただしTzstは、後述の(式12)に示す試算条件による絶縁紙温度差)
Tzst=23(Ut1.23−Uc1.23) ・・・・(式12)
として算出し、算出した試算用勾配補正係数Rtを基準勾配Kに乗じた試算勾配Ktによる現時刻以後の試算重合度推移として示している。
A two-dot chain line 23 is a transition of the polymerization degree trial calculation under the trial calculation conditions (trial calculation installation location temperature difference Tdt, trial load factor Ut), and the trial slope correction coefficient Rt is Rt = 1 / exp (−0.08664 (Tdt + Tzst). (Equation 11)
(However, Tzst is the insulation paper temperature difference under the trial calculation condition shown in (Formula 12) described later)
Tzst = 23 (Ut 1.23 -Uc 1.23 ) (12)
And calculated as the estimated polymerization degree transition after the current time by the calculated gradient Kt obtained by multiplying the calculated gradient correction coefficient Rt by the reference gradient K.

鎖線1d及び1eは、JEM1463に示されている寿命レベル重合度と危険レベル重合度で、前記重合度予想推移や重合度試算推移に対する変圧器運転条件の良否評価に利用する。  The chain lines 1d and 1e are the life level polymerization degree and the dangerous level polymerization degree shown in JEM 1463, and are used for the quality evaluation of the transformer operating condition with respect to the expected polymerization degree transition and the estimated polymerization degree transition.

被診断変圧器が屋外に設置されている場合の日中の直射日光による加熱や夜間の大気への放射による絶縁紙温度への影響を考慮する場合は、輻射による絶縁紙温度影響分Trを1日平均では0となるようにモデル化した回帰式
Tr=θ(sin(0.1309H)−0.636)・・・・(式11)
(ただし、θは輻射による絶縁紙受放熱温度影響分の1日における変動幅(0〜8℃のうちのいずれか一つ)で、Hは時刻(1〜24))
によって算出し、算出した輻射による絶縁紙受放熱分温度影響分Trを(式3)に挿入した
R=1/exp(―0.08664(Td+Tzs+Tr))・・・・・(式12)
を、設置場所温度差と、変圧器運転電流による絶縁紙温度差に、輻射による絶縁紙温度影響分Trを加えた勾配補正係数とする。
When considering the influence on insulation paper temperature due to heating by direct sunlight during the day and radiation to the atmosphere at night when the transformer to be diagnosed is installed outdoors, the insulation paper temperature influence Tr by radiation is set to 1. Regression equation Tr = θ (sin (0.1309H) −0.636) (model 11) modeled so that the daily average is zero.
(However, θ is the fluctuation range (one of 0 to 8 ° C) per day of the influence of the insulating paper receiving and radiating temperature due to radiation, and H is the time (1 to 24))
R = 1 / exp (−0.08664 (Td + Tzs + Tr)) (Equation 12)
Is a gradient correction coefficient obtained by adding the insulating paper temperature influence Tr due to radiation to the insulating paper temperature difference due to the installation location temperature difference and the transformer operating current.

変圧器設置場所の温度を下げるために変圧器への外気通風を行う場合は、強制通風による絶縁紙温度影響分Tkを、変圧器設置場所の温度と外気温度との温度差Tgと風速V(変圧器全体を冷却するに十分な連続した風量がある場合の風速V)に関連する回帰式
Tk=Tg・ln(V)/2.7 ・・・・(式13)
(ただし、風速Vの単位はm/V)
などにより算出し、算出した強制通風絶縁紙温度影響分Tkを(式3)に挿入した
R=1/exp(―0.08664(Td+Ts+Tr+Tk))・・・・・(式13)
を、設置場所温度差と、変圧器運転電流による絶縁紙温度差と、輻射による温度影響に、強制通風による絶縁紙温度影響分Tkを加えた勾配補正係数とする。
In order to reduce the temperature at the transformer installation location, when the outside air is ventilated to the transformer, the temperature difference Tg between the temperature at the installation location of the transformer and the outside air temperature and the wind speed V ( Regression equation Tk = Tg · ln (V) /2.7 (Equation 13) related to the wind velocity V) when there is a continuous air flow sufficient to cool the entire transformer
(However, the unit of wind speed V is m / V)
R = 1 / exp (−0.08664 (Td + Ts + Tr + Tk)) (Equation 13)
Is a gradient correction coefficient obtained by adding the insulating paper temperature influence Tk due to forced ventilation to the installation place temperature difference, the insulation paper temperature difference due to the transformer operating current, and the temperature influence due to radiation.

既に運転中の変圧器の運転途中から劣化表示を行う場合は、運転開始から現時刻までの運転経歴(運転期間、被診断変圧器設置場所の運転期間平均温度、被診断変圧器の運転期間平均負荷率)を使用して、現時刻の時間別重合度を算出し、以後、図6における時間別重合度記憶部への格納や次なる時間別重合度演算の処理過程フローに入る。  When displaying the deterioration of a transformer that is already in operation from the middle of operation, the operation history from the start of operation to the current time (operating period, average operating period temperature of the diagnostic transformer installation location, average operating period of the diagnostic transformer Load degree) is used to calculate the hourly polymerization degree at the current time, and thereafter, the process enters the process flow of storage in the hourly polymerization degree storage unit and the next hourly polymerization degree calculation in FIG.

被診断変圧器について別の寿命診断方法による重合度や、過大電流通電経緯等による見直し重合度が示され、その値が妥当と判断される場合は、現時点の期日別重合度を見直し重合度に置き換え、以後、図6における時間別重合度記憶部への格納や次なる時間別重合度演算の処理過程フローに入る。  For the transformer to be diagnosed, the degree of polymerization according to another life diagnosis method and the degree of polymerization reviewed by overcurrent current flow are shown.If the value is judged to be appropriate, the current degree of polymerization is reviewed and the degree of polymerization is After the replacement, the processing flow of the storage in the hourly polymerization degree storage unit and the next hourly polymerization degree calculation in FIG. 6 is entered.

図3は、本発明による変圧器劣化状況の短期間表示グラフで、前記(式7)に示した時間別重合度Jhの現時刻分までを実線21y、前記重合度予想推移を破線22t、前記重合度試算推移を2点鎖線23tで示している。FIG. 3 is a short-term display graph of the transformer deterioration state according to the present invention. The solid line 21y represents the hourly polymerization degree Jh 2 shown in (Expression 7) up to the current time, and the polymerization degree expected transition is a broken line 22t. The estimated transition of the polymerization degree is indicated by a two-dot chain line 23t.

図4は、前記図2と前記図3を複合して表示するグラフで、短期表示重合度低下経緯と長期表示重合度低下推移とを同時表示することで、現在の使用条件のままで使用する際の重合度の将来予測値を認識しやすくしている。なお、図4では図3を全体的に表示し、図2を縮小表示しているが、図2を全体的に表示し図3を縮小表示しても良いし、図2と図3を交互に表示しても良い。  FIG. 4 is a graph that combines and displays FIG. 2 and FIG. This makes it easy to recognize the future predicted value of the degree of polymerization. In FIG. 4, FIG. 3 is displayed as a whole and FIG. 2 is displayed in a reduced size. However, FIG. 2 may be displayed as a whole and FIG. 3 may be displayed in a reduced size, or FIG. 2 and FIG. May be displayed.

図5は、本発明の実施例による変圧器劣化表示装置の構成を示す構成図で、変圧器設置場所温度や運転
電流を収集するデータ収集部51と、図示を省略した運転電流の実効値演算部を経て運転負荷率を算出する負荷率演算部52Uと、時間別重合度演算部52aと未来分重合度演算部52bを持つ演算処理部52と、時間別重合度記憶部53aと期日別重合度記憶部53aを持つ記憶部53と、重合度経緯グラフを作成するグラフ作成処理部54と、重合度経緯グラフを表示する表示部55と、被診断変圧器の定格電流や試算条件等を与える設定部56と、期日や時刻等を与える制御部57等により構成される。
FIG. 5 is a block diagram showing the configuration of the transformer deterioration display device according to the embodiment of the present invention. The data collecting unit 51 collects the transformer installation site temperature and the operation current, and the operation current effective value calculation is omitted. A load factor calculation unit 52U that calculates an operation load factor via the unit, an arithmetic processing unit 52 having an hourly polymerization degree calculation unit 52a and a future polymerization degree calculation unit 52b, an hourly polymerization degree storage unit 53a, and a daily polymerization A storage unit 53 having a degree storage unit 53a, a graph creation processing unit 54 that creates a degree of polymerization history graph, a display unit 55 that displays a degree of polymerization history graph, and the rated current and trial calculation conditions of the transformer to be diagnosed are given. It comprises a setting unit 56 and a control unit 57 that provides a date and time.

図6は、本発明における変圧器劣化表示装置の処理過程を示すフロー図で、被診断変圧器の設置場所温度や運転電流を取得するデータ取得部51から、収集データを基に刻々低下する重合度を算出する時間別重合度算出部52aを経て、算出した時間別重合度の時間別重合度記憶部53aへの時刻毎格納、前記時間別重合度の当日値の期日別重合度記憶部53bへの期日毎格納、前記時間別重合度記憶部53aや前記期日別重合度記憶部53bから未来分重合度演算部52bへの複数の時間別重合度や複数の期日別重合度の転送、重合度推移グラフ作成処理部54を経て表示部55までの処理フローを示している。  FIG. 6 is a flowchart showing the process of the transformer deterioration display device according to the present invention, and the polymerization is gradually reduced based on the collected data from the data acquisition unit 51 for acquiring the installation location temperature and the operating current of the diagnostic transformer. Through the hourly polymerization degree calculation unit 52a for calculating the degree, the calculated hourly polymerization degree is stored for each time in the hourly polymerization degree storage unit 53a, and the day-by-day polymerization degree storage unit 53b of the day value of the hourly polymerization degree. Storage by date, transfer of a plurality of polymerization degrees by time and a plurality of polymerization degrees by date from the polymerization degree storage unit 53a by date and the polymerization degree storage unit 53b by future date to the future polymerization degree calculation unit 52b, polymerization A processing flow from the degree transition graph creation processing unit 54 to the display unit 55 is shown.

図7は、JEM1463−1993「変圧器用絶縁紙の平均重合度評価基準」解説図4に記載の運転年数と平均重合度の関係を示すグラフで、グラフ中に示されたデータ群包絡線のうち、重合度が高い側の実線を本発明における最良使用条件における重合度経緯に相当するものとしている。  FIG. 7 is a graph showing the relationship between the number of years of operation and the average degree of polymerization described in JEM1463-1993 “Evaluation criteria for average degree of polymerization of insulating paper for transformers” in FIG. 4. The solid line on the higher degree of polymerization corresponds to the degree of polymerization under the best use conditions in the present invention.

図8は、メーカ技術資料(平成9年1月、日立製作所テクニカルノート、変圧器編「油入変圧器の経年劣化について」に記載の運転年数と平均重合度の関係を示すグラフで、グラフ中に示された線のうち、最大勾配の直線を本発明における最悪使用条件における重合度経緯に相当するものとしている。  Fig. 8 is a graph showing the relationship between the number of years of operation and the average degree of polymerization described in the manufacturer's technical data (January 1997, Hitachi Technical Note, Transformer "Aging deterioration of oil-filled transformers"). Among the lines shown in Fig. 1, the straight line with the maximum gradient corresponds to the degree of polymerization under the worst use conditions in the present invention.

図9は、日本国内で公表されている変圧器負荷率の業種別調査表(平成14年4月、日本電機工業会、総合エネルギー調査会、変圧器判断基準小委員会調査結果)で、表中に1日あたりとして記載されている負荷率290データを本発明における重合度算出用負荷率範囲の設定に引用している。  Fig. 9 is a table of surveys by industry of transformer load factors published in Japan (April 2002, Japan Electrical Manufacturers' Association, General Energy Research Committee, Transformer Judgment Subcommittee Survey Results). The load factor 290 data described as per day is cited in the setting of the load factor range for calculating the degree of polymerization in the present invention.

記号の説明Explanation of symbols

符号の説明
Ta・・・被診断変圧器の設置場所温度
Tc・・・変圧器設置場所基準温度
Td・・・変圧器設置場所温度差(被診断変圧器の設置場所温度と変圧器設置場所基準温度との温度差)
Tdt・・・試算用変圧器設置場所温度
Tz・・・運転時の絶縁紙温度
Tzc・・・基準負荷率における絶縁紙温度
Tzs・・・運転時の絶縁紙温度と基準負荷率における絶縁紙温度との絶縁紙温度差
Tzst・・・試算条件における絶縁紙温度差
Tr・・・輻射による絶縁紙受放熱分温度影響分
Tk・・・強制通風による絶縁紙温度影響分
θ ・・・1日における輻射影響温度の変動幅
H ・・・時刻(1〜24)
I ・・・被診断変圧器の運転電流
U ・・・負荷率
Uc・・・基準負荷率
Ut・・・試算用負荷率
K ・・・重合度低下実勾配
Kc・・・重合度低下基準勾配
Kcj・・・時間当たり重合度低下基準勾配
Ky・・・重合度低下予想勾配
Kt・・・重合度低下試算勾配
R ・・・勾配補正係数
Jh・・・現時刻の重合度
Jh・・・現時刻より1時間前の重合度
Δh・・・1時間前から現時刻までの重合度低下分(1時間当たり重合度低下勾配)
Kr ・・・現時刻の1時間当たり重合度低下勾配
Kr ・・・前日19時の1時間当たり重合度低下勾配
Kr ・・・前日5時の1時間当たり重合度低下勾配
Kr ・・・前々日19時の1時間当たり重合度低下勾配
1a・・・最小勾配重合度低下配直線
1b・・・最大勾配重合度低下直線
1c・・・基準勾配重合度低下直線
1d・・・JEM1463に示されている寿命レベル重合度
1e・・・JEM1463に示されている危険レベル重合度
21・・・現時刻までの重合度低下推移
21y・・・現時刻直前の短期重合度低下推移
22・・・現時刻以後の重合度低下予想推移
22t・・・現時刻以後の重合度低下予想短期推移
23・・・試算条件における現時刻以後の重合度低下推移
23t・・・試算条件における現時刻以後の重合度低下短期推移
50・・・変圧器劣化状況表示装置
51・・・データ取得部
52・・・演算処理部
52U・・・負荷率演算部
52a・・・時間別重合度演算部
52b・・・未来分重合度演算部
53・・・記憶部
53a・・・時間別重合度記憶部
53b・・・期日別重合度記憶部
54・・・グラフ作成処理部
55・・・表示部
56・・・設定部
57・・・制御部
Description of symbols Ta: installation location temperature Tc of the diagnostic transformer Tc: transformer installation location reference temperature Td: transformer installation location temperature difference (diagnostic transformer installation location temperature and transformer installation location standard Temperature difference)
Tdt: Transformer installation location temperature Tz: Insulating paper temperature during operation Tzc: Insulating paper temperature at reference load factor Tzs: Insulating paper temperature during operation and insulating paper temperature at reference load factor Insulating paper temperature difference Tzst ... Insulating paper temperature difference Tr in trial calculation conditions ... Insulating paper receiving / dissipating heat temperature effect Tk due to radiationTk ... Insulating paper temperature effect θ due to forced ventilation ... Radiation-affected temperature fluctuation range H Time (1 to 24)
I: Operating current U of the transformer to be diagnosed ... Load factor Uc ... Reference load factor Ut ... Trial load factor K ... Degradation degree actual gradient Kc ... Degree of polymerization degree reference gradient KCJ · · · time per degree of polymerization reduction reference slope Ky · · · polymerization degree reduction expected gradient Kt · · · polymerization degree reduction estimated gradient R · · · gradient correction coefficient Jh 2 · · · the current time of the polymerization degree Jh 1 · ·・ Degree of polymerization one hour before the current time
Δh ・ ・ ・ Decrease in polymerization degree from 1 hour before to the present time (polymerization degree decrease gradient per hour)
Kr 1: Degree of decrease in polymerization degree per hour at the current time
Kr 2 ... Degree of decrease in polymerization degree per hour at 19:00 on the previous day
Kr 3 ... Degree of decrease in polymerization degree per hour at 5 o'clock the previous day
Kr 4 : Degree of polymerization decrease per hour at 19:00 the day before the previous day 1a ... Minimum gradient polymerization degree decrease line 1b ... Maximum gradient polymerization degree decrease straight line 1c ... Reference gradient polymerization degree decrease straight line 1d ... Life level polymerization degree 1e shown in JEM 1463 ... Danger level polymerization degree 21 shown in JEM 1463 ... Transition degree decrease 21y until the current time 21y ... Short-term polymerization degree just before the current time Decreasing transition 22 ... Expected transition of polymerization degree after the current time 22t ... Expected short-term transition of polymerization degree after the current time 23 ... Decreasing transition degree of polymerization degree after the current time 23t ... Short-term transition of polymerization degree after current time in 50 ... Transformer degradation status display device 51 ... Data acquisition unit 52 ... Calculation processing unit 52U ... Load factor calculation unit 52a ... Degree of polymerization by time Calculation unit 52b ... Future polymerization degree calculation unit 53 ... Storage unit 53a ... Hourly polymerization degree storage unit 53b ... Due date polymerization degree storage unit 54 ... Graph creation processing unit 55 ... Display unit 56 ... Setting unit 57 ... Control unit

Claims (1)

被診断変圧器設置場所の温度Taを取得する手段と、前記設置場所温度Taと基準温度Tc(11〜13℃のうちのいずれか一つ)との設置場所温度差Tdを算出する手段と、被診断変圧器の運転電流Iを取得する手段と、前記運転電流Iより運転負荷率Uを算出する手段と、被診断変圧器の運転負荷率Uにおける絶縁紙の上昇温度Tzと基準負荷率Uc(35〜40%のうちのいずれか一つ)における絶縁紙の上昇温度Tzcとの絶縁紙温度差Tzsを算出する手段と、基準使用条件(変圧器設置場所の温度が前記基準温度Tc、運転負荷率が前記基準負荷率Uc)で一定して連続運転されるとした変圧器の絶縁紙の平均重合度(以下重合度と省略表記)が、変圧器運転開始時の重合度(800〜1000のうちのいずれか一つ)から20/年〜30/年のうちのいずれか一つの勾配で低下する直線の勾配を基準勾配Kcとし、運転条件が変化する被診断変圧器においては、重合度が前記基準勾配Kcに運転条件に関連して算出される勾配補正係数Rを乗じた実勾配Kにて低下するとした重合度推移決定手段と、前記勾配補正係数Rを、前記変圧器設置場所温度差Tdと前記絶縁紙温度差Tzsに関連する計算式R=1/exp(−H(Td+Tzs))により(ここにHは0.0693(1/℃)〜0.1155(1/℃)のうちの一つ)算出する手段と、前記計算式中の絶縁紙温度差Tzsを、前記設置場所温度差Tdの温度幅が8℃(前記基準温度を中心に−4〜+4℃)で前記運転負荷率Uの範囲が40%(基準負荷率を中心に−20〜+20%)の場合に前記勾配補正係数Rの値が0.4〜2.5の範囲内となるような運転負荷率に関する回帰式によって算出し、算出した絶縁紙温度差Tzsを前記勾配補正係数Rの算出式に代入して勾配補正係数Rを算出する手段と、算出した前記勾配補正係数Rを前記基準勾配Kcに乗じて実勾配Kを算出する手段と、前記実勾配Kによって逐次低下する重合度の時間別重合度を算出して記憶部の時間別重合度記憶部に時刻毎に格納する手段と、前記時間別重合度の日毎最終値を記憶部の期日別重合度記憶部に期日毎に格納する手段と、現時刻以前の複数の時刻(例えば現時刻と前日19時と前日5時と前々日19時)の時間別重合度算出に用いた複数の1時間当たり重合度低下勾配の平均値として現時刻以後の未来分重合度推移予想勾配を算出する手段と、入力部より入力した試算条件(変圧器の試算用設置場所温度と試算用運転負荷率)により現時刻以後の未来分重合度推移試算勾配を算出する手段と、前記期日別重合度記憶部及び前記時間別重合度記憶部から読み出した被診断変圧器の使用開始から現時刻までの重合度推移と前記現時刻以後の未来分重合度推移予想勾配に沿った重合度予想推移及び前記未来分重合度推移試算勾配に沿った現時刻以後の重合度試算推移を、被診断変圧器の使用開始から数10年までの長期重合度推移グラフに表示する手段もしくは、前記長期重合度推移グラフと現時点を基点とした数日前後の短期重合度推移グラフとを同時表示または交互表示する手段、を備えたことを特徴とする変圧器劣化状況表示装置。Means for obtaining the temperature Ta of the diagnostic transformer installation location, means for calculating an installation location temperature difference Td between the installation location temperature Ta and a reference temperature Tc (any one of 11 to 13 ° C.); Means for obtaining the operating current I of the transformer to be diagnosed, means for calculating the operating load factor U from the operating current I, the temperature rise Tz of the insulating paper at the operating load factor U of the diagnostic transformer, and the reference load factor Uc Means for calculating an insulating paper temperature difference Tzs from the rising temperature Tzc of the insulating paper (any one of 35 to 40%), and a reference use condition (the temperature at the place where the transformer is installed is the reference temperature Tc, operation) The average polymerization degree (hereinafter referred to as polymerization degree) of the insulating paper of the transformer, which is assumed to be continuously operated at a constant load rate of the reference load ratio Uc), is the polymerization degree at the start of transformer operation (800 to 1000). 20) In the transformer to be diagnosed in which the operating gradient changes, the degree of polymerization is calculated in the reference gradient Kc in relation to the operating condition. The degree-of-polymerization degree transition determining means that is decreased by the actual gradient K multiplied by the gradient correction coefficient R, and the gradient correction coefficient R is calculated in relation to the transformer installation location temperature difference Td and the insulating paper temperature difference Tzs. Means for calculating by the formula R = 1 / exp (−H (Td + Tzs)) (where H is one of 0.0693 (1 / ° C.) to 0.1155 (1 / ° C.)) , and the above formula Insulating paper temperature difference Tzs, the temperature range of the installation location temperature difference Td is 8 ° C. (−4 to + 4 ° C. centering on the reference temperature), and the range of the operating load factor U is 40% (reference load factor is In the case of -20 to + 20% in the center) Calculated value of the coefficient R is the regression equation relating to the operating load factor U such that in the range of 0.4 to 2.5, by substituting the calculated insulation paper temperature difference Tzs the calculation formula of the gradient correction factor R Means for calculating a gradient correction coefficient R; means for calculating the actual gradient K by multiplying the calculated gradient correction coefficient R by the reference gradient Kc; means for storing calculated in each time in a different polymerization degree storage unit time of the storage unit, means for storing for each date the daily final value of another polymerization degree the time deadline by polymerization degree storage unit of the storage unit, the current After the current time as an average value of a plurality of hourly polymerization degree gradients used for calculation of hourly polymerization degree at a plurality of times before the time (for example, the current time, the previous day at 19:00, the previous day at 5:00, and the previous day at 19:00) A means for calculating the expected gradient of future polymerization degree transition and input section Means for calculating a gradient of future polymerization degree transition from the current time according to the trial calculation conditions (transformer trial installation site temperature and trial operation load factor), the date-specific polymerization degree storage unit and the hourly Polymerization degree transition from the start of use of the diagnostic transformer read from the polymerization degree storage unit to the present time, future degree of polymerization degree transition after the present time, expected degree of polymerization along the expected gradient, and future degree of polymerization degree transition trial calculation Means for displaying the estimated polymerization degree transition after the current time along the gradient in the long-term polymerization degree transition graph from the start of use of the diagnosed transformer to several tens of years, or based on the long-term polymerization degree transition graph and the current point A transformer deterioration status display device comprising: means for simultaneously or alternately displaying short-term polymerization degree transition graphs for several days.
JP2017066197A 2017-03-13 2017-03-13 Transformer degradation status display device Active JP6251861B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066197A JP6251861B1 (en) 2017-03-13 2017-03-13 Transformer degradation status display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066197A JP6251861B1 (en) 2017-03-13 2017-03-13 Transformer degradation status display device

Publications (2)

Publication Number Publication Date
JP6251861B1 true JP6251861B1 (en) 2017-12-27
JP2018151365A JP2018151365A (en) 2018-09-27

Family

ID=60860009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066197A Active JP6251861B1 (en) 2017-03-13 2017-03-13 Transformer degradation status display device

Country Status (1)

Country Link
JP (1) JP6251861B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354042B1 (en) * 2018-01-18 2018-07-18 義和 寺上 Transformer degradation status display device
CN114325494A (en) * 2021-12-14 2022-04-12 西南交通大学 Method for calculating overload capacity evaluation factor of dry-type vehicle-mounted traction transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618361A (en) * 2019-10-12 2019-12-27 国网山东省电力公司莱芜供电公司 Transformer insulation test correction method and device based on lightning full-wave surge test and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
JP2012160670A (en) * 2011-02-02 2012-08-23 Chugoku Electric Power Co Inc:The Deterioration diagnosis device of oil-immersed transformer
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
JP2012160670A (en) * 2011-02-02 2012-08-23 Chugoku Electric Power Co Inc:The Deterioration diagnosis device of oil-immersed transformer
JP2012182245A (en) * 2011-02-28 2012-09-20 Tohoku Electric Power Co Inc Remaining life assessment method of power transformer using press board or winding insulating paper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354042B1 (en) * 2018-01-18 2018-07-18 義和 寺上 Transformer degradation status display device
JP2019125767A (en) * 2018-01-18 2019-07-25 義和 寺上 Transformer deterioration status display device
CN114325494A (en) * 2021-12-14 2022-04-12 西南交通大学 Method for calculating overload capacity evaluation factor of dry-type vehicle-mounted traction transformer
CN114325494B (en) * 2021-12-14 2022-08-26 西南交通大学 Method for calculating overload capacity evaluation factor of dry-type vehicle-mounted traction transformer

Also Published As

Publication number Publication date
JP2018151365A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6251861B1 (en) Transformer degradation status display device
US9568519B2 (en) Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data
JP5743881B2 (en) Power management system, power management method, customer terminal, and power management apparatus
US11719760B2 (en) Probabilistic determination of transformer end of life
CA2911803A1 (en) System and method for determining the current and future state of health of a power transformer
US20190094285A1 (en) Detection of deteriorated electrical connections in a meter using temperature sensing and time-variable thresholds
US10495333B2 (en) Providing demand response
Bhuiyan et al. Evaluating thermal aging characteristics of electric power transmission lines
JP2011259656A (en) Energy management apparatus, energy management method, and energy management program
US11333399B2 (en) Apparatus for managing hot water in a hot water storage tank heating system and associated method
JP2017169289A (en) Power prediction system, power prediction method, and program
JP2009225613A (en) Device and method for predicting power demand
JP2010218394A (en) Energy demand prediction device
JP5104567B2 (en) Energy demand forecasting device
JP6705716B2 (en) Power demand forecasting method and power demand forecasting program
JP7257117B2 (en) Photovoltaic power generation system distribution estimation device, photovoltaic power generation system distribution estimation method, and photovoltaic power generation output prediction device
JP6354042B1 (en) Transformer degradation status display device
Heckenbergerova et al. Identification of critical aging segments and hotspots of power transmission lines
JP6833303B1 (en) Power generation forecaster
JP2018113737A (en) Life estimation device of pole transformer
Soltanbayev et al. Automated dry-type transformer aging evaluation: A simulation study
KR20120033189A (en) Apparatus and method for managing load of distribution transformer
Arifin et al. Life Assessment of Aluminium and Copper Winding Distribution Transformers Using Loss of Life Analysis
Chinnaswamy Climate change impact reliability of large electric power transformers in the Northeast United States
JP7100215B1 (en) Life evaluation method for pole transformers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6251861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250