JP2018181059A - Method of controlling feed shaft of machine tool, and machine tool - Google Patents

Method of controlling feed shaft of machine tool, and machine tool Download PDF

Info

Publication number
JP2018181059A
JP2018181059A JP2017081493A JP2017081493A JP2018181059A JP 2018181059 A JP2018181059 A JP 2018181059A JP 2017081493 A JP2017081493 A JP 2017081493A JP 2017081493 A JP2017081493 A JP 2017081493A JP 2018181059 A JP2018181059 A JP 2018181059A
Authority
JP
Japan
Prior art keywords
control
amount
tool
machine tool
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081493A
Other languages
Japanese (ja)
Other versions
JP6866213B2 (en
Inventor
亮太 犬飼
Ryota Inukai
亮太 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2017081493A priority Critical patent/JP6866213B2/en
Publication of JP2018181059A publication Critical patent/JP2018181059A/en
Application granted granted Critical
Publication of JP6866213B2 publication Critical patent/JP6866213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To carry out an infinitesimal displacement superposition control with a tool having a large stage number of a cutting edge and a larger torsion angle thereof by optimizing a control start angle and a control amount.SOLUTION: The present invention is directed to a machine tool for processing a work piece 10 by rotating a tool 7 mounted with a plurality of stages of cutting edges provided on a concentric circle in a shaft direction and for superposing infinitesimal displacement control of a feed shaft in a process reverse direction on the basis of a swing amount of the cutting edge pre-measured relative to the feed shaft under processing. An arithmetic apparatus 12 calculates an increased or decreased amount of a processing margin actually processed by each of the cutting edges, divides a one circle amount of the tool 7 by a predetermined control number (larger than one), calculates a maximum value of the increased or decrease amount of the processing margin of the cutting edge fixed in the divided control range for each of the control ranges, calculates a control amount and a control position which can average it for each of the control ranges, and superposes the infinitesimal displacement control on the basis of the control amount and the control position.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の加工中、特にチタン合金といった難削材の重切削加工において、工具の切れ刃の振れ量を考慮して送り軸を制御することでびびり振動や工具チッピングの発生を抑制するために行う送り軸の制御方法と、当該制御方法を用いて切削加工を行う工作機械とに関する。   The present invention suppresses the generation of chatter vibration and tool chipping by controlling the feed axis in consideration of the amount of deflection of the cutting edge of the tool, particularly in heavy cutting of difficult-to-cut materials such as titanium alloys during machining of machine tools. And a machine tool that performs cutting using the control method.

ミーリングで難削材を加工する場合、加工コスト低減のためにスローアウェイやインサートと呼ばれる脱着式の切れ刃を装着するタイプの工具を使用するが、工具本体の切れ刃取付け座面や切れ刃自身の加工精度の影響で、装着した刃には振れ量(各刃間の相対取付け誤差)が生じる。この値は小さくないため、刃振れ量の大きな切れ刃から工具チッピングが生じて工具寿命が短くなるといった問題があった。この対策として、特許文献1において、工具の刃振れ量を予め測定し、加工進行方向と逆方向に刃振れ量だけ送り軸を制御することでその影響を抑制するといった加工方法を提供している。   When machining difficult-to-cut materials by milling, a type of tool with a detachable cutting edge called throwaway or insert is used to reduce machining cost, but the cutting edge mounting surface of the tool body or cutting edge itself Due to the influence of the processing accuracy of (4), the mounted blade has a swing amount (a relative attachment error between the blades). Since this value is not small, there has been a problem that tool chipping occurs from a cutting edge having a large amount of runout and tool life is shortened. As a countermeasure, in Patent Document 1, a processing method is provided in which the amount of blade deflection of the tool is measured in advance, and the influence is suppressed by controlling the feed shaft by the amount of blade deflection in the direction opposite to the processing advancing direction. .

特許第5908342号公報Patent No. 5908342 特開2016−83728号公報JP, 2016-83728, A

上記特許文献1の加工方法においては、切れ刃1刃列ごとに送り軸の微小変位制御を重畳して加工を行う。このとき、制御量と制御タイミングの計算には、上記特許文献2に記載の手法を用い、各刃列における実加工代の最大値を平均化する最適な値を算出する。この手法において、各最適値の計算は切れ刃の刃列ごとに行うため、同刃列に装着する切れ刃の段数が少ない場合には、同刃列内における切れ刃の取り付け位置(工具回転角度)の差が小さく、全ての切れ刃において制御が十分に効果を発揮する。
しかし、切れ刃の段数が多い場合は、工具ねじれ角により、同刃列内における各切れ刃取り付け位置の位相差が大きく、制御位置から大きく外れる切れ刃が発生してしまい、十分な効果を得ることができなかった。
In the processing method of Patent Document 1, processing is performed by superimposing minute displacement control of the feed shaft for each cutting edge row of cutting edges. At this time, for the calculation of the control amount and the control timing, an optimum value is calculated by averaging the maximum values of the actual machining allowances in the respective blade rows, using the method described in Patent Document 2 above. In this method, since the calculation of each optimum value is performed for each blade row of the cutting edge, when the number of stages of the cutting edge mounted on the same blade row is small, the mounting position of the cutting blade in the same blade row (tool rotation angle Difference is small, and control is sufficiently effective in all cutting edges.
However, when the number of steps of the cutting edge is large, the phase difference of each cutting edge attachment position in the same cutting edge row is large due to the tool twist angle, and a cutting edge largely deviates from the control position is generated. I could not.

そこで、本発明は、切れ刃の段数・ねじれ角が大きい工具においても、制御開始角度及び制御量を最適化して微小変位重畳制御が行うことができる送り軸の制御方法及び工作機械を提供することを目的としたものである。   Therefore, the present invention provides a feed axis control method and machine tool capable of performing micro displacement superposition control by optimizing the control start angle and the control amount even in a tool having a large number of cutting edges and a twist angle. Purpose.

上記目的を達成するために、請求項1に記載の発明は、同心円上に複数配置される切れ刃の段を軸方向へ複数段装着してなる工具を回転させて被加工物を加工する工作機械において、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する送り軸の制御方法であって、
各前記切れ刃が実際に加工する加工代の増減分を計算する加工代算出ステップと、
前記工具の1周分を所定の制御回数(1回は除く)で分割し、分割した制御範囲内に取り付けられた前記切れ刃の前記加工代の増減分の最大値を分割した制御範囲ごとに求め、これを平均化する制御量と制御位置とを各前記制御範囲ごとに算出する制御量算出ステップと、
前記制御量及び前記制御位置に基づいて前記微小変位の制御を重畳する重畳ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記制御量は、所定の制御回数での前記制御範囲内の前記加工代の増減分の最大値から、各前記制御範囲それぞれにおける前記加工代の増減分の最大値の平均を減算して、当該制御回数の前回の前記制御回数での前記制御量を加えたものであることを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記制御位置は、前記制御範囲内での各前記切れ刃の取り付け位置の平均であることを特徴とする。
上記目的を達成するために、請求項4に記載の発明は、同心円上に複数配置される切れ刃の段を軸方向へ複数段装着してなる工具を回転させて被加工物を加工すると共に、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する工作機械であって、
各前記切れ刃が実際に加工する加工代の増減分を計算する加工代算出手段と、
前記工具の1周分を所定の制御回数(1回は除く)で分割し、分割した制御範囲内に取り付けられた前記切れ刃の前記加工代の増減分の最大値を分割した制御範囲ごとに求め、これを平均化する制御量と制御位置とを各前記制御範囲ごとに算出する制御量算出手段と、
前記制御量及び前記制御位置に基づいて前記微小変位の制御を重畳する重畳手段と、を備えることを特徴とする。
請求項5に記載の発明は、請求項4の構成において、前記制御量算出手段は、前記制御量を、所定の制御回数での前記制御範囲内の前記加工代の増減分の最大値から、各前記制御範囲それぞれにおける前記加工代の増減分の最大値の平均を減算して、当該制御回数の前回の前記制御回数での前記制御量を加えて算出することを特徴とする。
請求項6に記載の発明は、請求項4又は5の構成において、前記制御量算出手段は、前記制御位置を、前記制御範囲内での各前記切れ刃の取り付け位置の平均とすることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a machine that processes a workpiece by rotating a tool in which a plurality of steps of cutting edges disposed on a plurality of concentric circles are axially mounted. A control method of a feed shaft which superimposes control of minutely displacing the feed shaft in the reverse direction of processing based on the deflection amount of the cutting edge measured in advance with respect to the feed shaft being processed in a machine.
A machining allowance calculation step of calculating an increase or decrease of a machining allowance that each of the cutting blades actually machine;
One round of the tool is divided by a predetermined number of controls (except once), and the maximum value of the machining allowance of the cutting edge attached within the divided control range is divided for each control range A control amount calculating step of calculating a control amount and a control position which are calculated and averaged for each control range;
And performing a superimposing step of superposing the control of the minute displacement based on the control amount and the control position.
The invention according to claim 2 is characterized in that, in the configuration according to claim 1, the control amount is the maximum value of the machining allowance within the control range at a predetermined number of control times, in each of the control ranges. It is characterized in that the average of the maximum values of the increase and decrease of the machining allowance is subtracted and the control amount in the previous control number of the control number is added.
The invention according to claim 3 is characterized in that, in the configuration according to claim 1 or 2, the control position is an average of attachment positions of the cutting edges within the control range.
In order to achieve the above object, the invention according to claim 4 processes a workpiece by rotating a tool in which a plurality of steps of cutting edges disposed on a plurality of concentric circles are axially mounted. A machine tool that superimposes control to slightly displace the feed shaft in the reverse direction of processing based on the deflection amount of the cutting edge measured in advance with respect to the feed shaft being processed,
A machining allowance calculation unit that calculates an increase or decrease in a machining allowance that each of the cutting blades is actually machined;
One round of the tool is divided by a predetermined number of controls (except once), and the maximum value of the machining allowance of the cutting edge attached within the divided control range is divided for each control range Control amount calculating means for calculating a control amount and a control position which are calculated and averaged for each control range;
And D. superimposing means for superimposing the control of the minute displacement based on the control amount and the control position.
The invention according to claim 5 is the configuration according to claim 4, wherein the control amount calculation means determines the control amount from the maximum value of the increase or decrease of the machining allowance within the control range at a predetermined number of control times. It calculates by adding the said control amount in the said control frequency of the control frequency | count of the said control frequency by subtracting the average of the maximum value of the increase / decrease in the said processing allowance in each said each control range.
The invention according to claim 6 is characterized in that, in the configuration according to claim 4 or 5, the control amount calculating means sets the control position as an average of attachment positions of the cutting edges within the control range. I assume.

本発明によれば、切れ刃の段数やねじれ角が大きい工具においても、刃振れ量を送り軸にて補正して加工する、微小変位重畳制御における加工代最大値を分割した制御範囲ごとに求め、これを平均化する制御量が、簡単な演算により得られる。これにより、刃振れ量の影響を好適に抑制して加工でき、工具の長寿命化を図ることができる。   According to the present invention, even for a tool with a large number of cutting edges and a large twist angle, processing is performed by correcting the amount of blade deflection with the feed shaft, and determined for each control range obtained by dividing the machining allowance maximum value in micro displacement superposition control. The control amount that averages this is obtained by a simple calculation. Thereby, the influence of the amount of runout can be suitably suppressed and processed, and the life extension of the tool can be achieved.

工作機械の構成図である。It is a block diagram of a machine tool. 工具の縦断面・横断面図である。It is a longitudinal cross-sectional view of a tool. 刃数4列で6段の切れ刃を使用して加工する場合の各切れ刃の振れ量の測定結果及び実加工代の増減分の計算結果である。It is a measurement result of the amount of runouts of each cutting edge at the time of processing using six steps of cutting edges by four rows of blades, and a calculation result of an increase or decrease in actual processing cost. 従来手法によって得られた、刃数4列で6段の切れ刃を使用して加工する場合の微小変位重畳制御量の計算値と、当該計算値に基づいて制御した場合の実加工代増減分の計算値とを示したものである。Calculated value of micro displacement superposition control amount in case of processing with 6 rows of cutting edges with 4 rows of blades obtained by the conventional method, and increase / decrease in actual processing allowance when controlled based on the calculated value And the calculated value of. 本発明手法によって得られた、刃数4列で6段の切れ刃を使用して加工する場合の微小変位重畳制御量の計算値と、当該計算値に基づいて制御した場合の実加工代増減分の計算値とを示したものである(主軸1回転中に入る重畳制御回数は6回)。Calculated value of micro displacement superposition control amount in case of processing with 6 rows of cutting edges with 4 rows of blades obtained by the method of the present invention, and increase or decrease in actual processing cost when controlled based on the calculated value The calculated value of the minutes is shown (the number of times of superimposition control which enters during one rotation of the main spindle is six).

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る送り軸の制御方法を実施する工作機械の一例を示す構成図である。同図において、1はベッド、2はコラムで、コラム2の前面には、主軸頭3が、X軸制御ユニット4及びZ軸制御ユニット5によって、X軸方向及びZ軸方向へ移動制御可能に設けられている。主軸頭3の下部で下向きに設けられた主軸6には、工具7が装着されている。
一方、ベッド1上には、Y軸制御ユニット8によってY軸方向へ移動制御可能なテーブル9が設けられて、テーブル9上に被加工物10が固定可能となっている。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a block diagram showing an example of a machine tool that implements a feed axis control method according to the present invention. In the figure, 1 is a bed, 2 is a column, and the spindle head 3 can be controlled to move in the X-axis direction and Z-axis direction by the X-axis control unit 4 and the Z-axis control unit 5 on the front of the column 2 It is provided. A tool 7 is mounted on a spindle 6 provided downward at the lower part of the spindle head 3.
On the other hand, a table 9 which can be controlled to move in the Y-axis direction by the Y-axis control unit 8 is provided on the bed 1 so that the workpiece 10 can be fixed on the table 9.

工作機械の制御系は、主軸6の回転速度を制御する主軸回転制御装置11と、送り軸(各制御ユニット4、5、8)の制御量及び制御位置を演算する演算装置12と、送り軸を制御する数値制御装置13と、図示しない記憶装置と、を含んでなる。演算装置12には、外部入力装置14によって後述する工具7の切れ刃の振れ量入力が可能となっている。   The control system of the machine tool includes a spindle rotation control device 11 that controls the rotation speed of the spindle 6, an arithmetic device 12 that calculates control amounts and control positions of feed axes (each control unit 4, 5, 8), and feed axes And a storage device (not shown). The shake amount of the cutting edge of the tool 7 described later can be input to the calculation device 12 by the external input device 14.

このように構成された工作機械において、演算装置12は、工具7の各切れ刃が実際に加工する加工代の増減分を計算し(加工代算出ステップ)、工具7の1周分を所定の制御回数(1回は除く)で分割し、分割した制御範囲内に取り付けられた切れ刃の加工代の最大値を平均化する制御量と制御位置とを各制御範囲ごとに算出し(制御量算出ステップ)、計算した制御量を各軸方向に変換して、各軸制御装置によるNCプログラム指令の軸送り量に対して重畳させる(重畳ステップ)。すなわち、演算装置12は、加工代算出手段、制御量算出手段、重畳手段としての機能を有する。
そして、数値制御装置13は、演算装置12で制御量を重畳させた軸送り量に基づいて各送り軸を加工逆方向に微小変位させる制御を加えて加工を実施する。例えばX−Y平面における加工であれば、加工進行方向に対して計算した制御量をX軸、Y軸方向に分配して加工逆方向に送り軸を制御する。
In the machine tool configured as described above, the arithmetic unit 12 calculates an increase or decrease in the machining allowance actually machined by each cutting edge of the tool 7 (machining allowance calculation step). Calculate the control amount and control position that divide the number of times of control (except once) and average the maximum value of the machining allowance of the cutting edge attached within the divided control range for each control range (Control amount Calculation step) The calculated control amount is converted in each axis direction and superimposed on the axis feed amount of NC program command by each axis control device (superimposition step). That is, the computing device 12 has functions as a machining allowance calculation unit, a control amount calculation unit, and a superposition unit.
Then, the numerical control device 13 carries out machining by adding control of causing the feed axes to be slightly displaced in the reverse direction based on the axial feed amount on which the control amount is superimposed by the arithmetic device 12. For example, in the case of processing in the X-Y plane, the control amount calculated in the processing advancing direction is distributed in the X-axis and Y-axis directions to control the feed axis in the processing reverse direction.

この制御を行うためには予め工具切れ刃の各位置とその刃振れ量を測定し、最適な制御量と制御の位置(工具回転角度)を計算しておく必要がある。
このとき使用する工具の一例として、刃列数Z=4、刃段数N=6の工具7を挙げる。工具7は、図2(1)に示すように、4枚の切れ刃7a,7a・・が90°間隔で同心円上に配置されたもの(図2(1)における丸数字1〜4)を同刃段として(図2(2)7b)、これを軸方向に6段設けてなるものである。但し、軸方向の同刃列の切れ刃7aは、工具7の先端から回転方向前方側へ徐々にずれて配列されるようになっている(図2(2)7c)。
In order to perform this control, it is necessary to measure in advance each position of the tool cutting edge and its deflection amount, and to calculate the optimum control amount and the control position (tool rotation angle).
As an example of the tool used at this time, the tool 7 having the number of blade rows Z = 4 and the number of blade steps N = 6 will be mentioned. The tool 7 has four cutting edges 7a, 7a, ... arranged concentrically at 90 ° intervals (circled numbers 1 to 4 in Fig. 2 (1)) as shown in Fig. 2 (1) As the same blade stage (Fig. 2 (2) 7b), six stages are provided in the axial direction. However, the cutting edges 7a of the same blade row in the axial direction are arranged so as to be gradually shifted forward in the rotational direction from the tip of the tool 7 (FIG. 2 (2) 7c).

まず、工具7の切れ刃7a毎の振れ量を測定して、外部入力装置14を介して予め演算装置12に入力しておく。演算装置12は所定の計算式を使用して回転角度における制御量を計算する。
従来の微小変位重畳制御においては、切れ刃1刃列ごとに制御量と制御タイミングとの最適値計算を行うため、段数が多い場合は、図2(2)7cに示すように、工具ねじれ角により、同刃列内における各切れ刃位置の差が大きく、制御位置から大きく外れる切れ刃が発生してしまい、十分な効果を得ることが難しかった。
そこで、本発明は、装着する切れ刃の段数・ねじれ角が大きい工具においても、制御開始角度および制御量を最適化するため、工具1周分を制御回数で分割し、分割した範囲内に取り付けられた切れ刃ごとに制御量と制御位置との最適値を算出する。
First, the deflection amount of each cutting edge 7 a of the tool 7 is measured and input to the arithmetic device 12 in advance via the external input device 14. Arithmetic unit 12 calculates the control amount at the rotation angle using a predetermined calculation formula.
In the conventional small displacement superposition control, in order to calculate the optimum value of the control amount and the control timing for each cutting edge row, when the number of steps is large, as shown in FIG. 2 (2) 7c, the tool twist angle As a result, the difference between the positions of the cutting edges in the same blade row is large, and a cutting edge largely deviates from the control position is generated, which makes it difficult to obtain a sufficient effect.
Therefore, according to the present invention, even for a tool having a large number of stages and twist angles of the cutting edge to be mounted, in order to optimize the control start angle and the control amount, one round of the tool is divided by the number of controls and installed within the divided range. The optimum value of the control amount and the control position is calculated for each of the determined cutting edges.

この制御量の計算は以下の通りである。
ここで、刃列の番号を添え字i(1≦i≦Z、Z:刃列数)、刃段の番号を添え字j(1≧j≧N、N:刃段数)、測定した各切れ刃の振れ量をCi,J(μm)、各刃位置(工具回転角度)をPi,J(°)とする。
まず、各切れ刃における実際の加工代の増減分Di,Jは以下の式1により算出することができる。
The calculation of this control amount is as follows.
Here, the number of the blade row is suffixed i (1 ≦ i Z Z, Z: number of blade rows), the number of the blade step is suffixed j (1 j j N N, N: number of blade steps), each cut measured Let the deflection amount of the blade be C i, J (μm), and the position of each blade (tool rotation angle) be P i, J (°).
First, the increase or decrease Di, J of the actual machining allowance at each cutting edge can be calculated by the following equation 1.

Figure 2018181059
Figure 2018181059

つまり、各切れ刃の振れ量の大小が各切れ刃における実際の加工代ではなく、振れ量の差(増減分)が実際の加工代の差となる。この差が大きな切れ刃ほどチッピングが早く進行して工具寿命が短くなる。   That is, the magnitude of the swing amount of each cutting edge is not the actual machining allowance at each cutting edge, but the difference (increase or decrease) in the deflection amount is the difference between the actual machining allowances. The larger the difference is, the faster the chipping progresses and the tool life becomes shorter.

そこで、この値を平均化するために、主軸1回転の間にL回、制御量Rの送り軸制御を制御位置Q(工具回転角度)において重畳する。所定の重畳制御k回目(k=1,2・・L)の最適制御量・制御位置の算出に用いる切れ刃は、図2(1)7dに示す制御範囲ごとで分けられる。
例えば、図2(1)に示す工具において、L=6の場合、制御範囲はi〜viで6分割される。
ここで、制御回数kに用いる切れ刃の取り付け位置(工具回転角度)Pi,Jの範囲は、以下の式2となる。
Therefore, in order to average this value, feed axis control of the control amount R k is superimposed at control position Q k (tool rotation angle) L times during one rotation of the spindle. The cutting edges used to calculate the optimal control amount and control position of the predetermined k-th (k = 1, 2 ·· L) superposition control are divided into control ranges shown in FIG. 2 (1) 7d.
For example, in the tool shown in FIG. 2 (1), in the case of L = 6, the control range is divided into six by i to vi.
Here, the range of the attachment position (tool rotation angle) P i, J of the cutting edge used for the number of times of control k is Equation 2 below.

Figure 2018181059
Figure 2018181059

このとき、主軸1回転中に入る微小変位重畳制御の回数Lは、加工する主軸回転速度と数値制御装置の制御周期から、動作が保障できる最大の値とする。
そして、所定の重畳制御k回目における制御範囲内の各切れ刃の実加工代の増減分をDi,j,kとすると、制御量Rは以下の式3により得られる。
=(k回目制御範囲内の実加工代増減分Di,j,kの最大値)
−(全ての制御回数(k=1,2・・L) それぞれにおける実加工代増減分Di,j,kの最大値の平均)
+(k−1回目の制御量Rk−1
(但し、k=1の場合、R=0とする) ・・式3
At this time, the number of times L of micro displacement superposition control which enters during one rotation of the spindle is set to a maximum value that can ensure the operation from the spindle rotational speed to be machined and the control cycle of the numerical controller.
Then, assuming that Di , j, k is an increase or decrease in the actual machining allowance of each cutting edge within the control range in the predetermined k-th superposition control, the control amount R k is obtained by the following equation 3.
R k = (maximum value of real machining allowance increase / decrease Di, j, k within the kth control range)
− (Average of maximum values of increases and decreases in actual machining allowance Di , j, k at all control times (k = 1, 2 ·· L))
+ (K-1st control amount R k-1 )
(However, in the case of k = 1, R 1 = 0.)

なお、この計算式は、制御回数k回目における切れ刃の実加工代増減分の最大値は、各制御回数で計算した実加工代増減分の最大値の平均値より小さくならないことを意味している。
また、切れ刃の取り付け位置に関しても同様に、所定の重畳制御k回目における制御範囲内の各切れ刃の取り付け位置をPi,j,kとすると、制御位置QはPi,j,kの平均として得られる。
ここで、切れ刃7aの各位置と工具7の本体との位相関係は、例えば、主軸6に接続されているエンコーダで把握する。このエンコーダの出力に基づいて、主軸回転制御装置11が切れ刃7aの位相情報を得ることができる。
In this calculation formula, it is meant that the maximum value of the increase / decrease in the actual cutting allowance of the cutting edge in the kth control does not become smaller than the average value of the maximum values of the increase / decrease in the actual cutting allowance calculated in each control frequency. There is.
Similarly, with regard to the mounting position of the cutting edge, assuming that the mounting position of each cutting edge within the control range in the predetermined k-th superposition control is P i, j, k , the control position Q k is P i, j, k Obtained as an average of
Here, the phase relationship between each position of the cutting edge 7 a and the main body of the tool 7 is grasped by, for example, an encoder connected to the main shaft 6. The spindle rotation control device 11 can obtain phase information of the cutting edge 7a based on the output of the encoder.

図3は、1段の刃数が4列で6段の切れ刃を有する工具を使用することを想定した場合の刃振れ量測定値と実加工代の増減分の計算値とを示したものである。この場合、相対的に実加工代が最も大きい切れ刃は2列目の3段で20μmである(太枠部)。
図4は、図3と同じ工具において、切れ刃の振れ量をもとに従来の刃列ごとに算出した制御量の計算値と、実加工代の増減分を示したものである。この場合、制御量が最適化できておらず、実加工代増減分の最大値は20μm(太枠部)で、制御なしから変化していない。
FIG. 3 shows the measured values of the amount of runout and the calculated values of the increase and decrease of the actual machining allowance when it is assumed that a tool having 4 rows of blades per stage and 6 stages of cutting edges is used. It is. In this case, the cutting edge with the largest actual machining allowance is 20 μm in the third row of the second row (thick frame portion).
FIG. 4 shows the calculated values of the control amount calculated for each conventional blade row based on the deflection amount of the cutting edge and the increase / decrease of the actual machining cost in the same tool as FIG. 3. In this case, the control amount can not be optimized, and the maximum value of the increase or decrease in the machining allowance is 20 μm (thick frame portion), and does not change from no control.

これに対し、図5は、図3と同じ工具において、振れ量をもとに本発明手法によって得られた制御量の計算値と、当該計算値に基づいて制御した場合の振れ量の計算値、実加工代増減分の計算値を示したものである。この場合、相対的に実加工代増減分が最も大きい切れ刃は6段目、取り付け位置163°で13μmとなる(太枠部)。
なお、図5において制御量R=0となっていないのは、実際の工作機械で制御量が0以上となるように加算しているためである。但し、制御量は各制御範囲で相対的な差が同じであればよいので、加算は必須ではなく、上述の計算で得たRの値のままであっても差し支えない。
On the other hand, FIG. 5 shows the calculated values of the control amount obtained by the method of the present invention based on the shake amount and the calculated values of the shake amount when controlled based on the calculated value in the same tool as FIG. The calculated values of the increase and decrease of the actual machining cost are shown. In this case, the cutting edge having the largest relative increase or decrease in the machining allowance is 13 μm at the sixth stage, where the mounting position is 163 ° (thick frame portion).
The reason why the control amount R 1 is not 0 in FIG. 5 is because the control amount is 0 or more in an actual machine tool. However, since the control amount only needs to have the same relative difference in each control range, addition is not essential, and the value of R k obtained by the above calculation may be left as it is.

このように、上記形態の送り軸の制御方法を実行する工作機械によれば、各切れ刃の振れ量と取り付け位置の測定結果に基づいて得られた、実際の加工代増減分によって、加工代増減分の最大値が平均化する制御量を算出する際、工具1周分を制御回数で分割し、分割した制御範囲内に取り付けられた切れ刃ごとに制御量と制御位置との計算を行うようにしている。これにより、切れ刃の段数・ねじれ角が大きい工具7においても、簡単な演算により、加工中に工具位置(回転角度)に応じた各軸方向の工具振れ量を送り軸側にて補正することで、実際の加工代の最大値が平均化される制御量が得られる。よって、工具振れ量の影響を好適に抑制して加工でき、工具7の長寿命化を図ることができる。   As described above, according to the machine tool that executes the feed axis control method of the above embodiment, the machining cost is increased or decreased by the increase or decrease in the actual machining cost obtained based on the measurement results of the deflection amount and the mounting position of each cutting edge. When calculating the control amount at which the maximum value of the increase or decrease averages, one tool rotation is divided by the number of controls, and the control amount and control position are calculated for each cutting edge attached within the divided control range It is like that. As a result, even with the tool 7 having a large number of cutting edges and a large twist angle, the tool runout amount in each axial direction corresponding to the tool position (rotation angle) is corrected on the feed shaft side during machining by simple calculation. Thus, a controlled variable is obtained in which the maximum value of the actual machining allowance is averaged. Therefore, the influence of the tool runout amount can be suppressed suitably, and it can process, and lifetime improvement of the tool 7 can be achieved.

なお、工具における切れ刃の段数や1つの段内の切れ刃の数、制御回数は上記形態に限らず、適宜増減可能である(但し、発明の趣旨から制御回数1回は除かれる)。
工作機械も、同心円上に複数配置される切れ刃の段を軸方向へ複数段装着してなる工具を回転させて送り軸制御して加工を行うものであれば、複合加工機やマシニングセンタ等、特に機種を限定するものではない。
The number of cutting edges in the tool, the number of cutting edges in one cutting edge, and the number of controls are not limited to those described above, but can be increased or decreased appropriately (however, one control is excluded for the purpose of the invention).
A machine tool is also capable of processing by rotating a tool formed by mounting a plurality of steps of cutting edges disposed concentrically in a plurality of stages in the axial direction and performing feed axis control, such as a complex processing machine or a machining center, etc. There is no particular limitation on the model.

1・・ベッド、2・・コラム、3・・主軸頭、4・・X軸制御ユニット、5・・Z軸制御ユニット、6・・主軸、7・・工具、7a・・切れ刃、7b・・刃段、7c・・刃列、7d・・制御範囲、8・・Y軸制御ユニット、9・・テーブル、10・・被加工物、11・・主軸回転制御装置、12・・演算装置、13・・数値制御装置、14・・外部入力装置。   1 bed 2 column 3 spindle head 4 X axis control unit 5 Z axis control unit 6 spindle 7 tool 7a cutting edge 7b Blade stage 7c Blade row 7d Control range 8 Y-axis control unit 9 Table 10 Workpiece 11 Spindle rotation control device 12 Arithmetic unit 13 · · Numerical control device, · · · External input device.

Claims (6)

同心円上に複数配置される切れ刃の段を軸方向へ複数段装着してなる工具を回転させて被加工物を加工する工作機械において、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する送り軸の制御方法であって、
各前記切れ刃が実際に加工する加工代の増減分を計算する加工代算出ステップと、
前記工具の1周分を所定の制御回数(1回は除く)で分割し、分割した制御範囲内に取り付けられた前記切れ刃の前記加工代の増減分の最大値を分割した制御範囲ごとに求め、これを平均化する制御量と制御位置とを各前記制御範囲ごとに算出する制御量算出ステップと、
前記制御量及び前記制御位置に基づいて前記微小変位の制御を重畳する重畳ステップと、
を実行することを特徴とする工作機械における送り軸の制御方法。
In a machine tool for processing a workpiece by rotating a tool formed by mounting a plurality of steps of cutting edges arranged concentrically in a plurality of steps in the axial direction, the cutting edge measured in advance with respect to a feed shaft during processing And a control method of a feed shaft on which control for slightly displacing the feed shaft in the processing reverse direction based on the amount of deflection of
A machining allowance calculation step of calculating an increase or decrease of a machining allowance that each of the cutting blades actually machine;
One round of the tool is divided by a predetermined number of controls (except once), and the maximum value of the machining allowance of the cutting edge attached within the divided control range is divided for each control range A control amount calculating step of calculating a control amount and a control position which are calculated and averaged for each control range;
Superimposing step of superposing control of the minute displacement based on the control amount and the control position;
A control method of a feed axis in a machine tool, characterized in that
前記制御量は、所定の制御回数での前記制御範囲内の前記加工代の増減分の最大値から、各前記制御範囲それぞれにおける前記加工代の増減分の最大値の平均を減算して、当該制御回数の前回の前記制御回数での前記制御量を加えたものであることを特徴とする請求項1に記載の工作機械における送り軸の制御方法。   The control amount is obtained by subtracting the average of the maximum value of the increase and decrease of the machining allowance in each of the control ranges from the maximum value of the increase and decrease of the machining allowance within the control range at a predetermined number of control times. The control method of a feed axis in a machine tool according to claim 1, wherein the control amount in the previous control number of the control number is added to the control number. 前記制御位置は、前記制御範囲内での各前記切れ刃の取り付け位置の平均であることを特徴とする請求項1又は2に記載の工作機械における送り軸の制御方法。   The control method of a feed axis in a machine tool according to claim 1 or 2, wherein the control position is an average of attachment positions of the cutting edges within the control range. 同心円上に複数配置される切れ刃の段を軸方向へ複数段装着してなる工具を回転させて被加工物を加工すると共に、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する工作機械であって、
各前記切れ刃が実際に加工する加工代の増減分を計算する加工代算出手段と、
前記工具の1周分を所定の制御回数(1回は除く)で分割し、分割した制御範囲内に取り付けられた前記切れ刃の前記加工代の増減分の最大値を分割した制御範囲ごとに求め、これを平均化する制御量と制御位置とを各前記制御範囲ごとに算出する制御量算出手段と、
前記制御量及び前記制御位置に基づいて前記微小変位の制御を重畳する重畳手段と、を備えることを特徴とする工作機械。
A tool formed by mounting a plurality of steps of a plurality of cutting edges arranged concentrically in the axial direction is rotated to process a workpiece, and the deflection of the cutting edge measured in advance with respect to a feed axis during processing A machine tool that superimposes control to slightly displace the feed shaft in the processing reverse direction based on an amount,
A machining allowance calculation unit that calculates an increase or decrease in a machining allowance that each of the cutting blades is actually machined;
One round of the tool is divided by a predetermined number of controls (except once), and the maximum value of the machining allowance of the cutting edge attached within the divided control range is divided for each control range Control amount calculating means for calculating a control amount and a control position which are calculated and averaged for each control range;
A machine tool comprising: superimposing means for superimposing control of the minute displacement based on the control amount and the control position.
前記制御量算出手段は、前記制御量を、所定の制御回数での前記制御範囲内の前記加工代の増減分の最大値から、各前記制御範囲それぞれにおける前記加工代の増減分の最大値の平均を減算して、当該制御回数の前回の前記制御回数での前記制御量を加えて算出することを特徴とする請求項4に記載の工作機械。   The control amount calculation means determines the control amount as the maximum value of the increase and decrease of the machining allowance in each of the control ranges from the maximum value of the increase and decrease of the machining allowance within the control range at a predetermined number of control times. The machine tool according to claim 4, wherein the machine tool is calculated by subtracting an average and adding the control amount at the previous control number of the control number. 前記制御量算出手段は、前記制御位置を、前記制御範囲内での各前記切れ刃の取り付け位置の平均とすることを特徴とする請求項4又は5に記載の工作機械。   The machine tool according to claim 4 or 5, wherein the control amount calculating means sets the control position as an average of attachment positions of the cutting edges within the control range.
JP2017081493A 2017-04-17 2017-04-17 Control method of feed shaft in machine tool and machine tool Active JP6866213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081493A JP6866213B2 (en) 2017-04-17 2017-04-17 Control method of feed shaft in machine tool and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081493A JP6866213B2 (en) 2017-04-17 2017-04-17 Control method of feed shaft in machine tool and machine tool

Publications (2)

Publication Number Publication Date
JP2018181059A true JP2018181059A (en) 2018-11-15
JP6866213B2 JP6866213B2 (en) 2021-04-28

Family

ID=64275734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081493A Active JP6866213B2 (en) 2017-04-17 2017-04-17 Control method of feed shaft in machine tool and machine tool

Country Status (1)

Country Link
JP (1) JP6866213B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020394A (en) * 2010-06-16 2012-02-02 Hitachi Tool Engineering Ltd Edge-interchangeable rotary cutting tool
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool
JP2014184505A (en) * 2013-03-22 2014-10-02 Jtekt Corp Gear machining apparatus
JP2016083728A (en) * 2014-10-27 2016-05-19 オークマ株式会社 Feed shaft control method in machine tool, and machine tool
JP2016161971A (en) * 2015-02-26 2016-09-05 オークマ株式会社 Method for controlling feed shaft of machine tool and machine tool
JP2017016623A (en) * 2014-12-19 2017-01-19 オークマ株式会社 Position controller of feed shaft in machine tool
JP2017154202A (en) * 2016-03-01 2017-09-07 三菱電機株式会社 Processing method and processing device by end mill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020394A (en) * 2010-06-16 2012-02-02 Hitachi Tool Engineering Ltd Edge-interchangeable rotary cutting tool
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool
JP2014184505A (en) * 2013-03-22 2014-10-02 Jtekt Corp Gear machining apparatus
JP2016083728A (en) * 2014-10-27 2016-05-19 オークマ株式会社 Feed shaft control method in machine tool, and machine tool
JP2017016623A (en) * 2014-12-19 2017-01-19 オークマ株式会社 Position controller of feed shaft in machine tool
JP2016161971A (en) * 2015-02-26 2016-09-05 オークマ株式会社 Method for controlling feed shaft of machine tool and machine tool
JP2017154202A (en) * 2016-03-01 2017-09-07 三菱電機株式会社 Processing method and processing device by end mill

Also Published As

Publication number Publication date
JP6866213B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP5908342B2 (en) Machining vibration suppression method and machining vibration suppression device for machine tool
JP6514876B2 (en) Control method of feed axis in machine tool and machine tool
JP5299582B1 (en) Machining control device and machining control method
JP2017016623A (en) Position controller of feed shaft in machine tool
JP5359320B2 (en) Machine Tools
WO2010103672A1 (en) Method for controlling rotation of main spindle and controller of machine tool
JP6523723B2 (en) Grinding method of bevel gear by single tooth index grinding method
JP5984183B2 (en) Machine Tools
TWI781353B (en) Machine tools and controls
JP5413913B2 (en) Non-circular machining method by turning
JP6565399B2 (en) Gear processing equipment
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
US9778644B2 (en) Method and device for control of a drive for a tool or workpiece
JP2014061568A (en) Chattering vibration suppression method and machine tool
US20230103408A1 (en) Turning method for workpiece, machine tool, and non-transitory computer-readable storage medium storing machining program
JP7225715B2 (en) Gear processing method and gear processing device
JP6866213B2 (en) Control method of feed shaft in machine tool and machine tool
JP2014151396A (en) Non-circular working method with turning
JP2021111026A (en) Machine tool machining control method
KR101271222B1 (en) CNC lathe
JP2006150504A (en) Machining device capable of predicting/preventing chattering oscillation and method for predicting/preventing chattering oscillation used for the same
JP7073721B2 (en) Gear processing equipment and gear processing method
WO2020110573A1 (en) Lathe
JP2020196057A (en) Gear processing device and gear processing method
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6866213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150