JP2016161971A - Method for controlling feed shaft of machine tool and machine tool - Google Patents

Method for controlling feed shaft of machine tool and machine tool Download PDF

Info

Publication number
JP2016161971A
JP2016161971A JP2015037137A JP2015037137A JP2016161971A JP 2016161971 A JP2016161971 A JP 2016161971A JP 2015037137 A JP2015037137 A JP 2015037137A JP 2015037137 A JP2015037137 A JP 2015037137A JP 2016161971 A JP2016161971 A JP 2016161971A
Authority
JP
Japan
Prior art keywords
tool
control
angle
cutting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037137A
Other languages
Japanese (ja)
Other versions
JP6495682B2 (en
Inventor
昌洋 成松
Akihiro Narimatsu
昌洋 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2015037137A priority Critical patent/JP6495682B2/en
Publication of JP2016161971A publication Critical patent/JP2016161971A/en
Application granted granted Critical
Publication of JP6495682B2 publication Critical patent/JP6495682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To elongate the service life of a tool by optimizing a control start angle when cutting a side face.SOLUTION: In S1, each position and deflection amount of cutting edges of a tool is measured and input, and a control amount of each blade line at a rotation angle is calculated with the use of a predetermined formula. In S2, the amount of depth of cut (ae) in a radial direction and a tool radius are input. In S3, a preset formula is used for calculating the amount of angle correction θfor correcting a control position. In S4, the amount of angle correction θcalculated in S3 is added to a control position of each cutting edge. In S5, on the basis of a feed shaft command value obtained by correcting a control position, each feed shaft (control unit) is controlled and then processing is executed.SELECTED DRAWING: Figure 2

Description

本発明は、工作機械の加工中、特にチタン合金といった難削材の重切削加工中において、工具の切れ刃の振れ量を考慮して送り軸を制御することでびびり振動や工具チッピングの発生を抑制するために行う送り軸の制御方法と、当該制御方法を用いて切削加工を行う工作機械とに関する。   The present invention controls chatter vibration and tool chipping by controlling the feed shaft in consideration of the amount of tool edge runout during machining of machine tools, especially heavy cutting of difficult-to-cut materials such as titanium alloys. The present invention relates to a feed shaft control method performed for suppression, and a machine tool that performs cutting using the control method.

ミーリング加工で難削材を加工する場合、加工コスト低減のためにスローアウェイやインサートと呼ばれる脱着式の切れ刃を装着する工具が使用される。この工具においては、工具本体の切れ刃の取付座面や切れ刃自身の加工精度の影響により、装着した切れ刃の高さは均一にならず、切れ刃には振れ量(各切れ刃間の相対取付誤差)が生じる。この振れ量が大きな切れ刃の場合、工具チッピングが生じて工具寿命が短くなるという問題があった。そこで、本件出願人は、特許文献1において、切れ刃の各位置と予め測定した振れ量とに基づいて振幅や位相を設定して、振れ量をキャンセルするように主軸に同期させて送り軸を加工進行方向と逆方向に微小変位させることで、各切れ刃の1刃送り量を本来の指令通りの値に近づけて工具チッピングの抑制を図る発明を提供している。   When machining difficult-to-cut materials by milling, a tool for attaching a detachable cutting blade called a throwaway or insert is used to reduce machining costs. In this tool, the height of the mounted cutting edge does not become uniform due to the mounting seating surface of the cutting edge of the tool body and the processing accuracy of the cutting edge itself. Relative mounting error) occurs. In the case of a cutting edge with a large amount of runout, there is a problem that tool chipping occurs and the tool life is shortened. Therefore, in the case of Patent Document 1, the present applicant sets the amplitude and phase based on each position of the cutting edge and the pre-measured shake amount, and synchronizes with the main shaft so as to cancel the shake amount. There is provided an invention in which tool chipping is suppressed by making a slight displacement in the direction opposite to the machining progress direction to bring the one-blade feed amount of each cutting edge closer to the original command value.

特開2013−240837号公報JP 2013-240837 A

上記特許文献1の加工方法においては、加工進行方向と逆方向に振れ量だけ制御するので、溝切削では十分な効果を発揮する。
しかし、側面切削においては、被加工物に対する工具径方向の切込み量(以下「ae」と表記する。)によって切削の開始角度が変わり、切削力が均一でなくなるため十分な工具寿命を得ることができなかった。
In the machining method of Patent Document 1, since only the amount of deflection is controlled in the direction opposite to the machining progress direction, a sufficient effect is exhibited in groove cutting.
However, in side cutting, the starting angle of cutting changes depending on the amount of cutting in the tool radial direction (hereinafter referred to as “ae”) to the workpiece, and the cutting force is not uniform, so that a sufficient tool life can be obtained. could not.

そこで、本発明は、側面切削を行う場合にも制御開始角度を最適化して工具の長寿命化を図ることができる工作機械における送り軸の制御方法及び工作機械を提供することを目的としたものである。   Therefore, the present invention has an object to provide a feed axis control method and a machine tool in a machine tool that can achieve a long tool life by optimizing the control start angle even when performing side cutting. It is.

上記目的を達成するために、請求項1に記載の発明は、同心円上に複数配置される切れ刃の段を軸方向へ少なくとも1段装着してなる工具を回転させて被加工物を加工する工作機械において、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する送り軸の制御方法であって、
前記工具の径方向の切込み量に基づいて前記制御の開始角度を補正する角度補正量を算出し、算出した前記角度補正量から前記開始角度を補正して、前記工具による側面加工を行う際には、補正した前記開始角度に基づいて前記微小変位の制御を重畳することを特徴とするものである。
請求項2に記載の発明は、請求項1の構成において、前記角度補正量θは、以下の計算式で算出されることを特徴とするものである。
ae<Rの場合:θ=sin−1{1−(ae/R)}
ae≧Rの場合:θ=0
ae:径方向の切込み量(mm)、R:工具半径(mm)
上記目的を達成するために、請求項3に記載の発明は、同心円上に複数配置される切れ刃の段を軸方向へ少なくとも1段装着してなる工具を回転させて被加工物を加工すると共に、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する工作機械であって、
前記工具の径方向の切込み量に基づいて前記制御の開始角度を補正する角度補正量を算出する角度補正量算出手段と、前記角度補正量算出手段で算出した前記角度補正量から前記開始角度を補正する開始角度補正手段と、前記工具による側面加工を行う際に、前記開始角度補正手段で補正した前記開始角度に基づいて前記微小変位の制御を重畳する制御手段と、を備えることを特徴とするものである。
請求項4に記載の発明は、請求項3の構成において、前記角度補正量算出手段は、前記角度補正量θを以下の計算式で算出することを特徴とするものである。
ae<Rの場合:θ=sin−1{1−(ae/R)}
ae≧Rの場合:θ=0
ae:径方向の切込み量(mm)、R:工具半径(mm)
In order to achieve the above object, according to the first aspect of the present invention, a workpiece is machined by rotating a tool having at least one stage of cutting blades arranged on a concentric circle in the axial direction. In a machine tool, a feed shaft control method that superimposes a control for minutely displacing the feed shaft in the machining reverse direction based on the amount of deflection of the cutting edge measured in advance with respect to the feed shaft being processed,
When calculating the angle correction amount for correcting the control start angle based on the cutting depth in the radial direction of the tool, correcting the start angle from the calculated angle correction amount, and performing side machining with the tool Is characterized by superimposing the control of the minute displacement based on the corrected start angle.
According to a second aspect of the present invention, in the configuration of the first aspect, the angle correction amount θ C is calculated by the following calculation formula.
When ae <R: θ C = sin −1 {1- (ae / R)}
When ae ≧ R: θ C = 0
ae: Radial depth of cut (mm), R: Tool radius (mm)
In order to achieve the above object, according to a third aspect of the present invention, a workpiece is machined by rotating a tool formed by mounting at least one stage of cutting blades arranged on a concentric circle in the axial direction. In addition, a machine tool that superimposes a control for finely displacing the feed shaft in the machining reverse direction based on the amount of deflection of the cutting edge measured in advance with respect to the feed shaft being processed,
An angle correction amount calculating means for calculating an angle correction amount for correcting a start angle of the control based on a cutting amount in the radial direction of the tool, and the start angle from the angle correction amount calculated by the angle correction amount calculating means. A starting angle correcting means for correcting; and a control means for superimposing the control of the minute displacement based on the starting angle corrected by the starting angle correcting means when performing side machining with the tool. To do.
According to a fourth aspect of the present invention, in the configuration of the third aspect, the angle correction amount calculation means calculates the angle correction amount θ C by the following calculation formula.
When ae <R: θ C = sin −1 {1- (ae / R)}
When ae ≧ R: θ C = 0
ae: Radial depth of cut (mm), R: Tool radius (mm)

本発明によれば、工具の径方向の切込み量に基づいて制御の開始角度を補正する角度補正量を算出し、算出した角度補正量から開始角度を補正して、工具による側面加工を行う際には、補正した開始角度に基づいて微小変位の制御を重畳する。よって、側面切削を行う場合にも制御開始角度を最適化して工具の長寿命化を図ることができる。   According to the present invention, when calculating the angle correction amount for correcting the control start angle based on the cutting amount in the radial direction of the tool, correcting the start angle from the calculated angle correction amount, and performing side machining with the tool Is superimposed on the control of minute displacement based on the corrected start angle. Therefore, even when performing side cutting, the control start angle can be optimized to extend the tool life.

工作機械の構成図である。It is a block diagram of a machine tool. 送り軸制御方法のフローチャートである。It is a flowchart of a feed axis control method. 工具の横断面図である。It is a cross-sectional view of a tool. ミーリング工具による側面加工の説明図である。It is explanatory drawing of the side surface process by a milling tool. 刃数4で1段の切れ刃を使用して加工する場合の制御量(制御の位置及び切れ刃振れ量)である。This is a control amount (control position and cutting blade runout amount) when machining using one cutting edge with 4 blades. 径方向の切込み量と工具半径とから計算した角度補正量である。This is the angle correction amount calculated from the cutting depth in the radial direction and the tool radius. 角度補正量を加えた制御量(制御の位置及び制御量)である。This is a control amount (control position and control amount) to which an angle correction amount is added. 通常の場合の切削力の測定結果である。It is a measurement result of the cutting force in a normal case. 角度補正をしない従来の制御での切削力の測定結果である。It is a measurement result of the cutting force in the conventional control without angle correction. 側面切削を考慮した本制御での切削力の測定結果である。It is a measurement result of cutting force in this control in consideration of side cutting.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る送り軸の制御方法を実施する工作機械の一例を示す構成図である。同図において、1はベッド、2はコラムで、コラム2の前面には、主軸頭3が、X軸制御ユニット4及びZ軸制御ユニット5によってX軸方向及びZ軸方向へ移動制御可能に設けられて、主軸頭3の下部で下向きに設けた主軸6に、工具7が装着されている。一方、ベッド1上には、Y軸制御ユニット8によってY軸方向へ移動制御可能なテーブル9が設けられて、テーブル9上に被加工物10が固定可能となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of a machine tool that implements a feed shaft control method according to the present invention. In the figure, 1 is a bed, 2 is a column, and a spindle head 3 is provided on the front surface of the column 2 so that movement can be controlled in the X-axis direction and Z-axis direction by an X-axis control unit 4 and a Z-axis control unit 5 Thus, a tool 7 is mounted on a main shaft 6 provided downward at the lower portion of the main shaft head 3. On the other hand, a table 9 that can be controlled to move in the Y-axis direction by the Y-axis control unit 8 is provided on the bed 1, and the workpiece 10 can be fixed on the table 9.

工作機械の制御系は、主軸6の回転速度を制御する主軸回転制御装置11と、送り軸(各制御ユニット4,5,8)の制御量を演算する、角度補正量算出手段及び開始角度補正手段としての演算装置12と、送り軸を制御する制御手段としての数値制御装置13と、図示しない記憶装置と、を含んでなり、演算装置12には、外部入力装置14によって後述する工具7の切れ刃の振れ量や径方向の切込み量ae、工具半径等が入力可能となっている。   The control system of the machine tool includes a spindle rotation control device 11 that controls the rotation speed of the spindle 6, an angle correction amount calculation means that calculates a control amount of the feed shaft (each control unit 4, 5, 8), and a start angle correction. And a numerical control device 13 as a control means for controlling the feed axis, and a storage device (not shown). The arithmetic device 12 includes a tool 7 described later by an external input device 14. The amount of runout of the cutting edge, radial cutting depth ae, tool radius, etc. can be input.

このように構成された工作機械においては、図2のフローチャートに基づいて加工が実施される。なお、工具7は、図3に示すように、4枚の切れ刃7a,7a・・を90°間隔で備えた同心円上の段を軸方向に所定間隔をおいて3段設けてなり、軸方向の各列(図3に示す丸数字)の切れ刃7aは、工具7の先端から回転方向前方側へ徐々にずれて取り付けられて、各列丸数字1〜4では3つの切れ刃7a,7a・・がねじれ方向に配列されている。
まず、S1において、工具7の切れ刃7aの各位置とその振れ量を測定して外部入力装置14を介して演算装置12に入力し、演算装置12において、所定の計算式を使用して回転角度における各刃列の制御量及び制御位置を計算する。この制御量の計算は、例えば以下の通り行われる。
In the machine tool configured as described above, machining is performed based on the flowchart of FIG. As shown in FIG. 3, the tool 7 is provided with three concentric steps provided with four cutting edges 7a, 7a,... At intervals of 90.degree. The cutting edges 7a in each row of directions (the circle numbers shown in FIG. 3) are attached with gradually shifting from the tip of the tool 7 to the front side in the rotational direction. In each row circle numbers 1 to 4, three cutting edges 7a, 7a are arranged in the twist direction.
First, in S1, each position of the cutting edge 7a of the tool 7 and the amount of deflection thereof are measured and input to the arithmetic device 12 via the external input device 14, and the arithmetic device 12 rotates using a predetermined calculation formula. The control amount and control position of each blade row at an angle are calculated. This calculation of the control amount is performed as follows, for example.

まず、刃列の番号添え字をi(1≦i≦Z、Z:刃数)
各刃列内の切れ刃7aの段番号添え字をj(1≦j≦N、N:刃列内で実加工に使用する切れ刃段数)
測定した各切れ刃振れ量をCi,j(μm)
とすると、各切れ刃における実際の加工代の増減分Di,jは、以下の式(1)で算出できる。
i,j=Ci,j−Ci−1,j ・・(1)
但し、i−1がゼロの場合はZに置き換える。
つまり、各切れ刃7aの振れ量の大小が各切れ刃7aにおける実際の加工代ではなく、各切れ刃7aの振れ量の差(増減分)が実際の加工代の差となる。この差が大きな切れ刃7aほどチッピングが早く進行して工具寿命が短くなるため、この値を計算するのである。
First, the number suffix of the blade row is i (1 ≦ i ≦ Z, Z: number of blades)
The step number suffix of the cutting edge 7a in each blade row is j (1 ≦ j ≦ N, N: the number of cutting blade steps used for actual machining in the blade row).
C i, j (μm)
Then, the increase or decrease D i, j of the actual machining allowance at each cutting edge can be calculated by the following equation (1).
D i, j = C i, j −C i−1, j (1)
However, if i-1 is zero, it is replaced with Z.
That is, the magnitude of the deflection amount of each cutting edge 7a is not the actual machining allowance in each cutting edge 7a, but the difference (increase / decrease) in the deflection amount of each cutting edge 7a is the difference in actual machining allowance. This value is calculated because the cutting edge 7a having a larger difference advances the chipping earlier and shortens the tool life.

そして、各刃列における制御量Qを以下の式(2)により計算する。
=0として、
=(Di,1からDi,jまでの最大値)−{各刃列iにおける(Di,1からDi,jまでの最大値)の総和を刃数Zで除した値}+Qi−1 ・・(2)
なお、この計算式は、刃列内の実加工代最大値は、各刃列で計算した最大値の平均値より小さくならないことを意味している。
Then, calculated by Equation (2) below a control quantity Q i in each blade array.
As Q 1 = 0,
Q i = (D i, 1 from D i, the maximum value of up to j) - {value obtained by dividing the sum by the number of blades Z of the respective blade row i (the maximum value from D i, 1 to D i, j) } + Q i-1 (2)
Note that this calculation formula means that the actual machining allowance maximum value in the blade row is not smaller than the average value of the maximum values calculated in each blade row.

制御の位置(開始角度)は、刃列内の各段における振れ量を測定した位置(基準位置からの回転角度(図3のα))から、例えば、実際に加工に使用する切れ刃7aのみの回転角度平均値を使用する。切れ刃7aの各位置と工具7の本体との位相関係は、例えば、主軸6に接続されているエンコーダで把握するようにしてもよい。このエンコーダの出力に基づいて、主軸回転制御装置11が切れ刃7aの位相情報を得ることができる。   The control position (starting angle) is, for example, only the cutting edge 7a actually used for machining from the position (rotation angle from the reference position (α in FIG. 3)) where the deflection amount at each stage in the blade row is measured. Use the average rotation angle. You may make it grasp | ascertain the phase relationship between each position of the cutting edge 7a and the main body of the tool 7 with the encoder connected to the main axis | shaft 6, for example. Based on the output of this encoder, the spindle rotation control device 11 can obtain the phase information of the cutting edge 7a.

但し、ミーリング加工での側面切削においては、図4に示すように、径方向の切込み量aeによって切削の開始位置が変わるため、その開始位置で制御を行う必要がある。なお、図4において、矢印Aは加工進行方向、矢印Bは工具回転方向を示している。
そこで、S2において、予め径方向の切込み量ae(mm)と工具半径R(mm)とを外部入力装置14を介して入力しておき、演算装置12は、S3において、予め設定した計算式から、制御の位置を補正するための角度補正量θを計算する。この角度補正量θは、以下の計算式で計算される。
θ=sin−1{1−(ae/R)}
但し、この計算はae<Rの場合に限り、ae≧Rの場合は、角度補正量θの計算は行わず(θ=0)、角度補正も行わない。これは、加工進行方向で切削力が最大となるからである。
However, in the side cutting in the milling process, as shown in FIG. 4, since the starting position of cutting varies depending on the cutting depth ae in the radial direction, it is necessary to perform control at the starting position. In FIG. 4, the arrow A indicates the machining progress direction, and the arrow B indicates the tool rotation direction.
Therefore, in S2, the cutting depth ae (mm) and the tool radius R (mm) in the radial direction are input in advance via the external input device 14, and the arithmetic unit 12 uses the calculation formula set in advance in S3. Then, an angle correction amount θ C for correcting the control position is calculated. This angle correction amount θ C is calculated by the following calculation formula.
θ C = sin −1 {1- (ae / R)}
However, this calculation is performed only when ae <R, and when ae ≧ R, the angle correction amount θ C is not calculated (θ C = 0) and the angle correction is not performed. This is because the cutting force is maximized in the processing progress direction.

そして、S4で、演算装置12は、S3で計算した角度補正量θを各切れ刃における制御の位置に加算する。よって、数値制御装置13は、S5において、制御の位置を補正した送り軸指令値に基づいて各送り軸(制御ユニット)を制御して加工を実施する。例えばX−Y平面における加工であれば、加工進行方向に対して計算した制御量をX軸、Y軸方向に分配して加工逆方向に送り軸を制御する。このS4,5の処理は、S6で加工終了となるまで繰り返される。
この制御により、送り動作に対して微小な強制振動が重畳されるが、この強制振動は、工具7の振れに等しい振動数となるため、主軸6の1回転内における工具7の振れ量を抑制するように送り軸に振動を重畳でき、工具振れ量の影響をキャンセルするよう作用させることができる。その結果、切れ刃7aに作用する最大切削力を削減して工具チッピングの発生割合を低減することができる。また、最大切削力の削減によってびびり振動の抑制にも繋がる。
Then, in S4, the arithmetic unit 12 adds the angle correction amount theta C calculated in step S3 to the position of the control at each cutting edge. Therefore, in S5, the numerical controller 13 controls each feed axis (control unit) based on the feed axis command value in which the control position is corrected, and performs machining. For example, in the case of machining on the XY plane, the control amount calculated with respect to the machining progress direction is distributed in the X-axis and Y-axis directions to control the feed axis in the machining reverse direction. The processes in S4 and S5 are repeated until the processing is finished in S6.
By this control, a minute forced vibration is superimposed on the feed operation, but this forced vibration has a frequency equal to the vibration of the tool 7, so that the amount of vibration of the tool 7 within one rotation of the spindle 6 is suppressed. Thus, the vibration can be superimposed on the feed shaft, and the influence of the tool runout amount can be canceled. As a result, the maximum cutting force acting on the cutting edge 7a can be reduced and the occurrence rate of tool chipping can be reduced. In addition, reduction of the maximum cutting force leads to suppression of chatter vibration.

以下、具体例を説明する。
図5は、刃数が4で1段の切れ刃を有する工具を使用することを想定した場合の各切れ刃振れ量測定値を示したものである。
図6は、図5の工具において、切込み量aeと工具半径とから計算した角度補正量θを示したもので、図7が、図4の測定値に角度補正量θを加えて制御の位置を補正した制御量である。
このように、側面切削中に適切な制御の位置で各軸方向の工具振れ量を送り軸側にて補正するので、工具振れ量の影響を抑制して加工できることになり、工具寿命が向上する。
Specific examples will be described below.
FIG. 5 shows the measured values of the amount of run-out of each cutting edge when it is assumed that the number of cutting edges is 4 and a tool having one cutting edge is used.
6 shows the angle correction amount θ C calculated from the cutting depth ae and the tool radius in the tool of FIG. 5, and FIG. 7 is controlled by adding the angle correction amount θ C to the measured value of FIG. Is a control amount obtained by correcting the position of.
As described above, since the tool runout amount in each axis direction is corrected on the feed shaft side at an appropriately controlled position during side cutting, the influence of the tool runout amount can be suppressed, and the tool life is improved. .

本制御の効果を確認するために、直径φ50mmインサートタイプのミーリング工具にてチタン合金加工を実施した。切削速度V:45m/min、1刃当たり送り量f:0.1mm/刃、軸方向切込みap:8mm、径方向切込みae:15mmの側面切削といった切削条件で、図8が通常の場合の切削力の測定結果、図9が角度補正をしない従来の制御での切削力の測定結果、図10が、側面切削を考慮した本制御での切削力の測定結果となっている。
図10で明らかなように、角度補正を行った場合、切削力が均一になるため、工具寿命が向上することになる。
In order to confirm the effect of this control, titanium alloy processing was carried out with an insert type milling tool having a diameter of 50 mm. When cutting speed V C : 45 m / min, feed rate per tooth f Z : 0.1 mm / tooth, axial cutting depth ap: 8 mm, radial cutting depth ae: 15 mm, cutting conditions such as side cutting, FIG. 8 is normal FIG. 9 shows the cutting force measurement result in the conventional control without angle correction, and FIG. 10 shows the cutting force measurement result in the main control considering the side cutting.
As is apparent from FIG. 10, when the angle correction is performed, the cutting force becomes uniform, so that the tool life is improved.

このように、上記形態の送り軸の制御方法及び工作機械によれば、工具の径方向の切込み量aeに基づいて制御の開始角度を補正する角度補正量θを算出し、算出した角度補正量θから開始角度を補正して、工具7による側面加工を行う際には、補正した開始角度に基づいて微小変位の制御を重畳することで、側面切削を行う場合にも制御開始角度を最適化して工具の長寿命化を図ることができる。 Thus, according to the feed shaft control method and machine tool of the above embodiment, the angle correction amount θ C for correcting the control start angle is calculated based on the cutting depth ae in the radial direction of the tool, and the calculated angle correction When the start angle is corrected from the amount θ C and the side surface machining is performed by the tool 7, the control start angle can be set even when the side cutting is performed by superimposing the fine displacement control based on the corrected start angle. The tool life can be extended by optimization.

なお、工具における切れ刃の段数や1つの段内の切れ刃の数は上記形態に限らず、適宜増減可能である。また、上記形態では制御方向は加工進行方向となっているが、加工進行方向に角度補正量θを加味した方向でも可能である。
工作機械も、同心円上に複数配置される切れ刃の段を軸方向へ少なくとも1段装着してなる工具を回転させて送り軸制御して加工を行うものであれば、複合加工機やマシニングセンタ等、特に機種を限定するものではない。
Note that the number of cutting edges in a tool and the number of cutting edges in one stage are not limited to the above-described form, and can be appropriately increased or decreased. Moreover, in the said form, although the control direction is a process progress direction, the direction which considered the angle correction amount (theta) C in the process progress direction is also possible.
As long as a machine tool performs machining by rotating a tool with at least one stage of cutting blades arranged on concentric circles in the axial direction and controlling the feed axis, a multi-task machine, machining center, etc. The model is not particularly limited.

1・・ベッド、2・・コラム、3・・主軸頭、4・・X軸制御ユニット、5・・Z軸制御ユニット、6・・主軸、7・・工具、7a・・切れ刃、8・・Y軸制御ユニット、9・・テーブル、10・・被加工物、11・・主軸回転制御装置、12・・演算装置、13・・数値制御装置、14・・外部入力装置。   1 .... bed, 2 .... column, 3 .... head spindle, 4 .... X axis control unit, 5 .... Z axis control unit, 6 .... spindle, 7 .... tool, 7a ..., cutting edge, 8 .... -Y-axis control unit, 9-Table, 10-Workpiece, 11-Spindle rotation control device, 12-Arithmetic device, 13-Numerical control device, 14-External input device

Claims (4)

同心円上に複数配置される切れ刃の段を軸方向へ少なくとも1段装着してなる工具を回転させて被加工物を加工する工作機械において、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する送り軸の制御方法であって、
前記工具の径方向の切込み量に基づいて前記制御の開始角度を補正する角度補正量を算出し、算出した前記角度補正量から前記開始角度を補正して、前記工具による側面加工を行う際には、補正した前記開始角度に基づいて前記微小変位の制御を重畳することを特徴とする工作機械における送り軸の制御方法。
In a machine tool for processing a workpiece by rotating a tool in which a plurality of cutting blade steps arranged on concentric circles are mounted in the axial direction, the cutting edge measured in advance with respect to the feed shaft being processed A feed shaft control method that superimposes a control for finely displacing the feed shaft in the machining reverse direction based on the amount of blade deflection,
When calculating the angle correction amount for correcting the control start angle based on the cutting depth in the radial direction of the tool, correcting the start angle from the calculated angle correction amount, and performing side machining with the tool Is a method for controlling a feed axis in a machine tool, wherein the control of the minute displacement is superimposed on the basis of the corrected start angle.
前記角度補正量θは、以下の計算式で算出されることを特徴とする請求項1に記載の工作機械における送り軸の制御方法。
ae<Rの場合:θ=sin−1{1−(ae/R)}
ae≧Rの場合:θ=0
ae:径方向の切込み量(mm)、R:工具半径(mm)
2. The feed axis control method for a machine tool according to claim 1, wherein the angle correction amount [theta] C is calculated by the following formula.
When ae <R: θ C = sin −1 {1- (ae / R)}
When ae ≧ R: θ C = 0
ae: Radial depth of cut (mm), R: Tool radius (mm)
同心円上に複数配置される切れ刃の段を軸方向へ少なくとも1段装着してなる工具を回転させて被加工物を加工すると共に、加工中の送り軸に対して予め測定した前記切れ刃の振れ量に基づいて前記送り軸を加工逆方向に微小変位させる制御を重畳する工作機械であって、
前記工具の径方向の切込み量に基づいて前記制御の開始角度を補正する角度補正量を算出する角度補正量算出手段と、前記角度補正量算出手段で算出した前記角度補正量から前記開始角度を補正する開始角度補正手段と、前記工具による側面加工を行う際に、前記開始角度補正手段で補正した前記開始角度に基づいて前記微小変位の制御を重畳する制御手段と、を備えることを特徴とする工作機械。
The work piece is machined by rotating a tool formed by mounting at least one stage of cutting edges arranged concentrically in the axial direction, and the cutting edge measured in advance with respect to the feed shaft being machined is processed. A machine tool that superimposes a control for minutely displacing the feed shaft in the machining reverse direction based on a deflection amount,
An angle correction amount calculating means for calculating an angle correction amount for correcting a start angle of the control based on a cutting amount in the radial direction of the tool, and the start angle from the angle correction amount calculated by the angle correction amount calculating means. A starting angle correcting means for correcting; and a control means for superimposing the control of the minute displacement based on the starting angle corrected by the starting angle correcting means when performing side machining with the tool. Machine tool to do.
前記角度補正量算出手段は、前記角度補正量θを以下の計算式で算出することを特徴とする請求項3に記載の工作機械。
ae<Rの場合:θ=sin−1{1−(ae/R)}
ae≧Rの場合:θ=0
ae:径方向の切込み量(mm)、R:工具半径(mm)
The machine tool according to claim 3, wherein the angle correction amount calculating means calculates the angle correction amount θ C by the following calculation formula.
When ae <R: θ C = sin −1 {1- (ae / R)}
When ae ≧ R: θ C = 0
ae: Radial depth of cut (mm), R: Tool radius (mm)
JP2015037137A 2015-02-26 2015-02-26 Method for controlling feed axis in machine tool and machine tool Active JP6495682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037137A JP6495682B2 (en) 2015-02-26 2015-02-26 Method for controlling feed axis in machine tool and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037137A JP6495682B2 (en) 2015-02-26 2015-02-26 Method for controlling feed axis in machine tool and machine tool

Publications (2)

Publication Number Publication Date
JP2016161971A true JP2016161971A (en) 2016-09-05
JP6495682B2 JP6495682B2 (en) 2019-04-03

Family

ID=56845255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037137A Active JP6495682B2 (en) 2015-02-26 2015-02-26 Method for controlling feed axis in machine tool and machine tool

Country Status (1)

Country Link
JP (1) JP6495682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181059A (en) * 2017-04-17 2018-11-15 オークマ株式会社 Method of controlling feed shaft of machine tool, and machine tool
CN109605120A (en) * 2018-12-15 2019-04-12 浙江大学自贡创新中心 A method of it improving aerial blade and processes yields

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032879A1 (en) * 2006-10-23 2010-02-11 Siemens Aktiengesellschaft Machine tool
WO2013038529A1 (en) * 2011-09-14 2013-03-21 株式会社ジェイテクト Machining error computation device, machining error computation method, machining control device and machining control method
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032879A1 (en) * 2006-10-23 2010-02-11 Siemens Aktiengesellschaft Machine tool
WO2013038529A1 (en) * 2011-09-14 2013-03-21 株式会社ジェイテクト Machining error computation device, machining error computation method, machining control device and machining control method
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181059A (en) * 2017-04-17 2018-11-15 オークマ株式会社 Method of controlling feed shaft of machine tool, and machine tool
CN109605120A (en) * 2018-12-15 2019-04-12 浙江大学自贡创新中心 A method of it improving aerial blade and processes yields

Also Published As

Publication number Publication date
JP6495682B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5908342B2 (en) Machining vibration suppression method and machining vibration suppression device for machine tool
JP6366563B2 (en) Position control device of feed axis in machine tool
JP6243260B2 (en) Spindle motor control device
JP2012213830A5 (en)
JP5359320B2 (en) Machine Tools
WO2010103672A1 (en) Method for controlling rotation of main spindle and controller of machine tool
JP6514876B2 (en) Control method of feed axis in machine tool and machine tool
JP5984183B2 (en) Machine Tools
JP6700061B2 (en) Turning method and machine tool using the same
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP5929065B2 (en) NC data correction device
JP5862111B2 (en) Machining data correction method
JP7036786B2 (en) Numerical control device, program and control method
JP7225715B2 (en) Gear processing method and gear processing device
JP6766922B2 (en) Cutting equipment and cutting method
JP2022550719A (en) A method for generating or processing by cutting an identical set of teeth on each of a plurality of workpieces, and a machine group and control program therefor
JP2021111026A (en) Machine tool machining control method
JP2014061568A (en) Chattering vibration suppression method and machine tool
JP2006150504A (en) Machining device capable of predicting/preventing chattering oscillation and method for predicting/preventing chattering oscillation used for the same
JP6866213B2 (en) Control method of feed shaft in machine tool and machine tool
JP2014061567A (en) Machine tool
JP7318315B2 (en) Gear processing device and gear processing method
JP2023053762A (en) Work-piece turning method and machine tool, and processing program
JP7075584B2 (en) Radius end mills, machine tools using them, and design methods and processing methods for radius end mills.
JP5339244B2 (en) Cutting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6495682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150