JP2020196057A - Gear processing device and gear processing method - Google Patents

Gear processing device and gear processing method Download PDF

Info

Publication number
JP2020196057A
JP2020196057A JP2019101912A JP2019101912A JP2020196057A JP 2020196057 A JP2020196057 A JP 2020196057A JP 2019101912 A JP2019101912 A JP 2019101912A JP 2019101912 A JP2019101912 A JP 2019101912A JP 2020196057 A JP2020196057 A JP 2020196057A
Authority
JP
Japan
Prior art keywords
rotation speed
spindle
work
gear
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019101912A
Other languages
Japanese (ja)
Other versions
JP7318315B2 (en
Inventor
雅人 蔦岡
Masato Tsutaoka
雅人 蔦岡
嘉太郎 大▲崎▼
Yoshitaro Osaki
嘉太郎 大▲崎▼
尊広 水野
Takahiro Mizuno
尊広 水野
友和 山下
Tomokazu Yamashita
友和 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2019101912A priority Critical patent/JP7318315B2/en
Publication of JP2020196057A publication Critical patent/JP2020196057A/en
Application granted granted Critical
Publication of JP7318315B2 publication Critical patent/JP7318315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a gear processing device and a gear processing method that are able to prevent abnormal stop of the gear processing device.SOLUTION: A control device 100 for a gear processing device 1 comprises: a work-piece main shaft rotational speed control unit 110 that controls a rotational speed of a work-piece main shaft 70; a tool main shaft rotational speed control unit 120 that controls a rotational speed of a tool main shaft 40; an inertia calculation unit 140 by which a rotational speed change command to change a rotational speed of one of the work-piece main shaft and the tool main shaft is input from one of the work-piece main shaft rotational speed control unit and the tool main shaft rotational speed control unit, and inertia, in a rotating direction, of the work-piece main shaft and the tool main shaft is calculated based on the rotational speed change command; and an allowable maximum acceleration calculation unit 150 that, based on the calculated inertia, calculates an allowable maximum acceleration of one of the work-piece main shaft and the tool main shaft.SELECTED DRAWING: Figure 3

Description

本発明は、歯車加工装置及び歯車加工方法に関する。 The present invention relates to a gear processing apparatus and a gear processing method.

工作機械においては、切削工具と工作物の相対回転速度を上昇させたり、切込量を大きくすると、工作物にびびり振動が発生し易くなる。そこで、例えば、特許文献1には、工作物の動的ひずみを求め、動的ひずみの大きさに基づいて、工作物のびびり振動の判定を行って工作物の加工を行う技術が記載されている。特許文献2には、工作物の固有振動と切削工具の振動成分とが共振しない回転数で切削工具を回転させることで、工作物のびびり振動の発生を防止して工作物の加工を行う技術が記載されている。 In a machine tool, if the relative rotation speed between the cutting tool and the workpiece is increased or the depth of cut is increased, the workpiece is likely to vibrate. Therefore, for example, Patent Document 1 describes a technique for obtaining a dynamic strain of a work piece, determining the chatter vibration of the work piece based on the magnitude of the dynamic strain, and processing the work piece. There is. Patent Document 2 describes a technique for processing a work piece by preventing the occurrence of chatter vibration of the work piece by rotating the cutting tool at a rotation speed at which the natural vibration of the work piece and the vibration component of the cutting tool do not resonate. Is described.

特許文献3には、工作物又は切削工具の回転を慣性回転にして切削工具と工作物を相対送りすることで、工作物のびびり振動の発生を防止して工作物の加工を行う技術が記載されている。特許文献4には、工作物に対する切削工具の切込深さを減少させることで、工作物のびびり振動の発生を防止して工作物の加工を行う技術が記載されている。しかし、上述の各技術は、スカイビング加工により工作物に歯車を創成する歯車加工装置(歯車加工方法)に対して適用可能か否かは不明である。 Patent Document 3 describes a technique for processing a workpiece by preventing the occurrence of chatter vibration of the workpiece by bilaterally feeding the workpiece or the workpiece by making the rotation of the workpiece or the cutting tool an inertial rotation. Has been done. Patent Document 4 describes a technique for processing a workpiece by reducing the depth of cut of the cutting tool with respect to the workpiece to prevent the occurrence of chatter vibration of the workpiece. However, it is unclear whether each of the above techniques can be applied to a gear processing device (gear processing method) that creates gears in a workpiece by skiving.

本発明者は、スカイビング加工を行う歯車加工装置(歯車加工方法)において、工作物のびびり振動を抑制して工作物に歯車を創成する技術(特許文献5)を見い出した。すなわち、特許文献5には、工作物主軸(工作物)及び工具主軸(歯切り工具)の回転速度を変動させて同期回転させながら、工作物の回転軸線方向に歯切り工具を工作物に対して相対移動させることにより、工作物のびびり振動を抑制して工作物に歯車を創成する技術が記載されている。 The present inventor has found a technique (Patent Document 5) for creating a gear in a work by suppressing chatter vibration of the work in a gear processing device (gear processing method) for skiving. That is, in Patent Document 5, the gear cutting tool is applied to the workpiece in the direction of the rotation axis of the workpiece while the rotation speeds of the workpiece spindle (workpiece) and the tool spindle (gear cutting tool) are varied and synchronously rotated. A technique for creating gears in a workpiece by suppressing chatter vibration of the workpiece by moving them relative to each other is described.

特開2000−237932号公報JP 2000-237932 特開2009−274179号公報Japanese Unexamined Patent Publication No. 2009-274179 特開昭63−127801号公報Japanese Unexamined Patent Publication No. 63-127801 特許第5929065号公報Japanese Patent No. 5929065 特開2018−62056号公報JP-A-2018-62056

特許文献5に記載の歯車加工装置(歯車加工方法)では、工作物主軸及び工具主軸の回転速度の変動条件の一つである変動振幅が大きいほど、工作物のびびり振動を抑制できる。なお、回転速度の変動条件の一つである変動周波数は、低過ぎると工作物のびびり振動の抑制効果は低下するので、一定値以上は必要である。ところが、回転速度の変動振幅が大き過ぎると、工作物主軸又は工具主軸の慣性による影響で、加速時に工作物主軸用モータ又は工具主軸用モータの電流値が定格電流値を超え、歯車加工装置が異常停止してしまうおそれがあった。 In the gear processing apparatus (gear processing method) described in Patent Document 5, the larger the fluctuation amplitude, which is one of the fluctuation conditions of the rotation speed of the work spindle and the tool spindle, the more the chatter vibration of the work can be suppressed. If the fluctuation frequency, which is one of the fluctuation conditions of the rotation speed, is too low, the effect of suppressing the chatter vibration of the workpiece will be reduced, so a certain value or more is required. However, if the fluctuation amplitude of the rotation speed is too large, the current value of the work spindle motor or tool spindle motor exceeds the rated current value during acceleration due to the influence of the inertia of the work spindle or tool spindle, and the gear processing device becomes There was a risk of abnormal stoppage.

本発明は、歯車加工装置の異常停止を防止できる歯車加工装置及び歯車加工方法を提供することを目的とする。 An object of the present invention is to provide a gear processing device and a gear processing method capable of preventing an abnormal stop of the gear processing device.

本発明の歯車加工装置は、工作物と歯切り工具とを同期回転させながら、前記工作物の回転軸線方向に前記歯切り工具を前記工作物に対して相対移動させることにより、前記工作物に歯車を創成する歯車加工装置であって、工作物を回転可能に支持する工作物主軸と、歯切り工具が装着される回転可能な工具主軸と、前記工作物主軸の回転速度を制御する工作物主軸回転速度制御部と、前記工具主軸の回転速度を制御する工具主軸回転速度制御部と、前記工作物主軸回転速度制御部及び前記工具主軸回転速度制御部の何れか一方から、前記工作物主軸及び前記工具主軸の何れか一方の回転速度を変動させる回転速度変動指令を入力し、前記回転速度変動指令に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の回転方向の慣性を算出する慣性算出部と、算出した前記慣性に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する許容最大加速度算出部と、を備える。 The gear processing apparatus of the present invention moves the gear cutting tool relative to the work piece in the direction of the rotation axis of the work piece while rotating the work piece and the gear cutting tool synchronously, thereby moving the work piece to the work piece. A gear processing device that creates gears, a workpiece spindle that rotatably supports a workpiece, a rotatable tool spindle on which a gear cutting tool is mounted, and a workpiece that controls the rotation speed of the workpiece spindle. From either the spindle rotation speed control unit, the tool spindle rotation speed control unit that controls the rotation speed of the tool spindle, the work spindle rotation speed control unit, or the tool spindle rotation speed control unit, the work spindle And a rotation speed fluctuation command for changing the rotation speed of either one of the tool spindles is input, and the inertia in the rotation direction of either the work spindle or the tool spindle is calculated based on the rotation speed fluctuation command. A permissible maximum acceleration calculation unit for calculating the permissible maximum acceleration of either the work spindle or the tool spindle based on the calculated inertia is provided.

本発明の歯車加工方法は、工作物を回転可能に支持する工作物主軸と歯切り工具が装着される回転可能な工具主軸とを同期回転させながら、前記工作物の回転軸線方向に前記歯切り工具を前記工作物に対して相対移動させることにより、前記工作物に歯車を創成する歯車加工方法であって、前記工作物主軸及び前記工具主軸の回転速度を変動させる回転速度変動工程と、前記回転速度の変動中において、前記工作物主軸及び前記工具主軸の何れか一方の回転方向の慣性を算出する慣性算出工程と、算出した前記慣性に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する許容最大加速度算出工程と、を備える。 In the gear machining method of the present invention, the gear cutting method is performed in the direction of the rotation axis of the workpiece while synchronously rotating the workpiece spindle that rotatably supports the workpiece and the rotatable tool spindle on which the gear cutting tool is mounted. A gear processing method for creating a gear in the work piece by moving the tool relative to the work piece, the rotation speed fluctuation step of changing the rotation speed of the work piece spindle and the tool spindle, and the above-mentioned An inertia calculation step for calculating the inertia in the rotation direction of either the work spindle or the tool spindle while the rotation speed fluctuates, and any of the workpiece spindle and the tool spindle based on the calculated inertia. A step of calculating the allowable maximum acceleration for calculating one of the allowable maximum accelerations is provided.

本発明の歯車加工装置及び歯車加工方法によれば、工作物主軸又は工具主軸の回転速度の限界加速度を見極めているので、従来のように工作物主軸又は工具主軸の慣性による影響で歯車加工装置が異常停止してしまうことを防止できる。 According to the gear processing device and the gear processing method of the present invention, the critical acceleration of the rotation speed of the work spindle or the tool spindle is determined. Therefore, as in the conventional case, the gear processing device is affected by the inertia of the work spindle or the tool spindle. Can be prevented from stopping abnormally.

本発明の実施形態における歯車加工装置の斜視図である。It is a perspective view of the gear processing apparatus in embodiment of this invention. 第一実施形態においてスカイビング加工を行う際の歯切り工具を拡大した一部断面図である。It is an enlarged partial cross-sectional view of the gear cutting tool at the time of performing skiving processing in 1st Embodiment. 歯車加工装置の制御装置のブロック図である。It is a block diagram of the control device of a gear processing apparatus. 制御装置により実行される歯車加工処理のフローチャートである。It is a flowchart of the gear machining process executed by a control device. 第一実施形態においてスカイビング加工を行う際の歯切り工具と工作物との動作を示す図である。It is a figure which shows the operation of a gear cutting tool and a work piece at the time of performing skiving processing in 1st Embodiment. 制御装置で制御される工作物主軸の回転速度を正弦波で変動させるときのグラフである。It is a graph when the rotation speed of the work spindle controlled by a control device is changed by a sine wave. 制御装置で制御される工作物主軸の回転速度を正弦波で変動させるときの工作物主軸用モータの電流値の変動を示すグラフである。It is a graph which shows the fluctuation of the current value of the motor for the work spindle when the rotation speed of the work spindle controlled by the control device is changed by a sine wave. 制御装置で算出される工作物主軸の回転速度変動条件(回転速度変動振幅と回転速度変動周波数との関係)を示すグラフである。It is a graph which shows the rotation speed fluctuation condition (relationship between rotation speed fluctuation amplitude and rotation speed fluctuation frequency) of the work spindle calculated by a control device. 第一変形例における歯切り工具及び工作物の回転速度の変動を示すグラフである。It is a graph which shows the fluctuation of the rotation speed of a gear cutting tool and a work piece in the 1st modification. 第二変形例における歯切り工具及び工作物の回転速度の変動を示すグラフである。It is a graph which shows the fluctuation of the rotation speed of a gear cutting tool and a work piece in the 2nd modification. 第三変形例における歯切り工具及び工作物の回転速度の変動を示すグラフである。It is a graph which shows the fluctuation of the rotation speed of a gear cutting tool and a work piece in the 3rd modification. 第二実施形態においてホブ加工を行う際の歯切り工具と工作物との動作を示す図である。It is a figure which shows the operation of a gear cutting tool and a work piece when hobbing is performed in 2nd Embodiment.

<1.第一実施形態>
(1−1.歯車加工装置の概略構成)
本発明に係る第一実施形態の歯車加工装置の概略構成について図1を参照して説明する。図1に示すように、歯車加工装置1は、相互に直交する3つの直進軸(X軸、Y軸及びZ軸)と2つの回転軸(A軸及びC軸)を駆動軸として有するマシニングセンタである。歯車加工装置1は、ベッド10と、コラム20と、サドル30と、工具主軸40と、テーブル50と、チルトテーブル60と、工作物主軸70と、制御装置100と、を主に備える。
<1. First Embodiment>
(1-1. Schematic configuration of gear processing equipment)
The schematic configuration of the gear processing apparatus of the first embodiment according to the present invention will be described with reference to FIG. As shown in FIG. 1, the gear processing device 1 is a machining center having three linear axes (X-axis, Y-axis and Z-axis) and two rotating axes (A-axis and C-axis) orthogonal to each other as drive axes. is there. The gear processing device 1 mainly includes a bed 10, a column 20, a saddle 30, a tool spindle 40, a table 50, a tilt table 60, a workpiece spindle 70, and a control device 100.

ベッド10は、床上に配置される。このベッド10の上面には、コラム20が設けられる。コラム20は、ベッド10内に収容されるX軸モータ21及びX軸モータ21に連結されるボールねじ22により、X軸線方向(水平方向)へ移動可能に設けられる。さらに、コラム20の側面には、サドル30が設けられる。 The bed 10 is arranged on the floor. A column 20 is provided on the upper surface of the bed 10. The column 20 is provided so as to be movable in the X-axis direction (horizontal direction) by the X-axis motor 21 housed in the bed 10 and the ball screw 22 connected to the X-axis motor 21. Further, a saddle 30 is provided on the side surface of the column 20.

サドル30は、コラム20内に収容されるY軸モータ11(図3参照)及びY軸モータ11に連結されるボールねじ(図示省略)によりY軸線方向(鉛直方向)に移動可能に設けられる。工具主軸40は、サドル30内に収容される工具主軸用モータ41(図3参照)によりZ軸線回りに回転可能に設けられる。工具主軸40の先端には、歯切り工具42が装着され、歯切り工具42は、工具主軸40の回転に伴って回転する。 The saddle 30 is provided so as to be movable in the Y-axis direction (vertical direction) by a Y-axis motor 11 (see FIG. 3) housed in the column 20 and a ball screw (not shown) connected to the Y-axis motor 11. The tool spindle 40 is rotatably provided around the Z axis by a tool spindle motor 41 (see FIG. 3) housed in the saddle 30. A gear cutting tool 42 is attached to the tip of the tool spindle 40, and the gear cutting tool 42 rotates as the tool spindle 40 rotates.

ここで、図2を参照しながら、歯切り工具42について説明する。図2に示すように、歯切り工具42は、外周面に複数の刃42aを備えるスカイビングカッタであり、各々の刃42aの端面は、すくい角γを有するすくい面を構成する。各々の刃42aのすくい面は、歯切り工具42の中心軸線を中心としたテーパ状としてもよく、刃42aごとに異なる方向を向く面状に形成してもよい。 Here, the gear cutting tool 42 will be described with reference to FIG. As shown in FIG. 2, the gear cutting tool 42 is a skiving cutter having a plurality of blades 42a on the outer peripheral surface, and the end surface of each blade 42a constitutes a rake face having a rake angle γ. The rake face of each blade 42a may be tapered around the central axis of the gear cutting tool 42, or may be formed so that each blade 42a faces in a different direction.

図1に示すように、ベッド10の上面には、テーブル50が設けられる。テーブル50は、ベッド10内に収容されるZ軸モータ12(図3参照)及びZ軸モータ12に連結されるボールねじ(図示省略)によりZ軸線方向(水平方向)に移動可能に設けられる。テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部61が設けられる。そして、チルトテーブル支持部61には、チルトテーブル60がA軸線(X軸線と平行)回りに揺動可能に設けられる。 As shown in FIG. 1, a table 50 is provided on the upper surface of the bed 10. The table 50 is provided so as to be movable in the Z-axis direction (horizontal direction) by a Z-axis motor 12 (see FIG. 3) housed in the bed 10 and a ball screw (not shown) connected to the Z-axis motor 12. A tilt table support portion 61 that supports the tilt table 60 is provided on the upper surface of the table 50. Then, the tilt table 60 is provided on the tilt table support portion 61 so as to be swingable around the A axis (parallel to the X axis).

チルトテーブル60の底面には、工作物主軸70及び工作物主軸用モータ71が設けられる。工作物主軸70は、工作物主軸用モータ71によりA軸線に直交するC軸線回りに回転可能に設けられる。工作物主軸70の先端には、工作物Wが保持され、工作物Wは、工作物主軸70の回転に伴って回転する。 A work spindle 70 and a work spindle motor 71 are provided on the bottom surface of the tilt table 60. The work spindle 70 is rotatably provided around the C axis orthogonal to the A axis by the work spindle motor 71. The workpiece W is held at the tip of the workpiece spindle 70, and the workpiece W rotates as the workpiece spindle 70 rotates.

(1−2.制御装置の構成)
制御装置100は、スカイビング加工により工作物Wに歯車を創成する。具体的には、図5に示すように、制御装置100は、チルトテーブル60をA軸線回りに揺動させることにより、工作物Wの回転軸線Cを、歯切り工具42の回転軸線Oに対して傾斜させる。この工作物Wの回転軸線Cに対する歯切り工具42の回転軸線Oの傾斜角度を交差角δと称す。
(1-2. Configuration of control device)
The control device 100 creates a gear in the workpiece W by skiving. Specifically, as shown in FIG. 5, the control device 100 swings the tilt table 60 around the A axis to cause the rotation axis C of the workpiece W to rotate with respect to the rotation axis O of the gear cutting tool 42. And tilt. The inclination angle of the rotation axis O of the gear cutting tool 42 with respect to the rotation axis C of the workpiece W is referred to as an intersection angle δ.

そして、制御装置100は、工作物主軸70(工作物W)の回転速度V1、工具主軸40(歯切り工具42)の回転速度V2、及び歯切り工具42の工作物Wに対する工作物Wの回転軸線(中心軸線C)方向への送り速度V4を制御する。工具主軸40の回転速度V2は、工作物主軸70の回転速度V1と同期させる。 Then, the control device 100 has a rotation speed V1 of the work spindle 70 (workpiece W), a rotation speed V2 of the tool spindle 40 (tooth cutting tool 42), and rotation of the work piece W with respect to the work piece W of the gear cutting tool 42. The feed speed V4 in the axial direction (central axis C) is controlled. The rotation speed V2 of the tool spindle 40 is synchronized with the rotation speed V1 of the work spindle 70.

また、切削速度V3は、歯車加工に要する加工時間(サイクルタイム)、歯切り工具42の諸元、工作物Wの材質、及び工作物Wに形成する歯車のねじれ角等に基づいて設定される。すなわち、切削速度V3は、歯車加工を行う際の加工能率及び歯切り工具42の工具寿命等を勘案し、最適な速度に設定される。スカイビング加工においては、切削速度V3を速くするほど、加工能率が向上する一方、面性状等の品質が低下する傾向がある。 The cutting speed V3 is set based on the machining time (cycle time) required for gear machining, the specifications of the gear cutting tool 42, the material of the workpiece W, the twist angle of the gear formed on the workpiece W, and the like. .. That is, the cutting speed V3 is set to an optimum speed in consideration of the machining efficiency when machining the gear, the tool life of the gear cutting tool 42, and the like. In skiving processing, the higher the cutting speed V3, the higher the processing efficiency, but the lower the quality such as surface texture.

本例では、制御装置100は、工作物主軸70の回転速度V1を例えば図6Aに示す正弦波で変動させる。これに伴い、工具主軸40の回転速度V2を変動させ、工作物主軸70の回転速度V1と同期させる。そして、工作物主軸70の回転速度V1と同期するように送り速度V4を変動させて歯切り工具42を工作物Wの回転軸線C方向へ送ることで歯車加工を行う。この制御によれば、歯切り工具42が工作物Wに接触する周期が不規則となるため、工作物主軸70及び工具主軸40の回転速度が変動せずに一定である場合と比べて、工作物Wに発生するびびり振動の増幅が抑制される。 In this example, the control device 100 fluctuates the rotation speed V1 of the work spindle 70 with, for example, the sine wave shown in FIG. 6A. Along with this, the rotation speed V2 of the tool spindle 40 is changed to synchronize with the rotation speed V1 of the workpiece spindle 70. Then, the gear machining is performed by feeding the gear cutting tool 42 in the direction of the rotation axis C of the workpiece W by varying the feed speed V4 so as to be synchronized with the rotation speed V1 of the workpiece spindle 70. According to this control, the period in which the gear cutting tool 42 comes into contact with the workpiece W becomes irregular, so that the rotation speeds of the workpiece spindle 70 and the tool spindle 40 do not fluctuate and are constant, as compared with the case where the machining is performed. The amplification of chatter vibration generated in the object W is suppressed.

しかし、解決課題でも述べたように、図6Aに示す工作物主軸70の中心回転速度V1oを基準とする回転速度変動振幅Sが大き過ぎると、工作物主軸70の慣性による影響で、図6Bに示すように、加速時に工作物主軸用モータ71の電流値Iが定格電流値Imax,−Imaxを超え、歯車加工装置1が異常停止してしまうおそれがあった。そこで、制御装置100は、最適な回転速度変動条件を求めて歯車加工に反映するようにしている。 However, as described in the problem to be solved, if the rotation speed fluctuation amplitude S based on the central rotation speed V1o of the work spindle 70 shown in FIG. 6A is too large, the inertia of the work spindle 70 affects the work spindle 70, and FIG. 6B shows. As shown, the current value I of the work spindle motor 71 may exceed the rated current values Imax and −Imax during acceleration, and the gear machining apparatus 1 may stop abnormally. Therefore, the control device 100 seeks the optimum rotation speed fluctuation condition and reflects it in the gear machining.

次に、制御装置100の具体的構成について説明する。図3に示すように、制御装置100は、工作物主軸回転速度制御部110と、工具主軸回転速度制御部120と、送り速度制御部130を備える。さらに、制御装置100は、慣性算出部140と、許容最大加速度算出部150と、回転速度変動条件算出部160と、回転速度変動条件決定部170と、加工電流値推定部180を備える。 Next, a specific configuration of the control device 100 will be described. As shown in FIG. 3, the control device 100 includes a workpiece spindle rotation speed control unit 110, a tool spindle rotation speed control unit 120, and a feed speed control unit 130. Further, the control device 100 includes an inertia calculation unit 140, a maximum allowable acceleration calculation unit 150, a rotation speed fluctuation condition calculation unit 160, a rotation speed fluctuation condition determination unit 170, and a machining current value estimation unit 180.

工作物主軸回転速度制御部110は、工作物主軸用モータ71を駆動制御し、工作物主軸70の回転速度V1を変動させる。工具主軸回転速度制御部120は、工具主軸用モータ41を駆動制御し、工具主軸40の回転速度V2を変動させると共に、工具主軸40の回転速度V2を工作物主軸70の回転速度V1に同期させる。送り速度制御部130は、Y軸モータ11及びZ軸モータ12を駆動制御し、工作物主軸70の回転速度V1に同期させて送り速度V4を変動させつつ、歯切り工具42と工作物Wとの相対距離を調整する。 The work spindle rotation speed control unit 110 drives and controls the work spindle motor 71 to change the rotation speed V1 of the work spindle 70. The tool spindle rotation speed control unit 120 drives and controls the tool spindle motor 41 to change the rotation speed V2 of the tool spindle 40 and synchronize the rotation speed V2 of the tool spindle 40 with the rotation speed V1 of the workpiece spindle 70. .. The feed rate control unit 130 drives and controls the Y-axis motor 11 and the Z-axis motor 12, and changes the feed rate V4 in synchronization with the rotation speed V1 of the work spindle 70, while the gear cutting tool 42 and the work piece W Adjust the relative distance of.

慣性算出部140は、工作物主軸回転速度制御部110から工作物主軸70の回転速度V1を変動させる指令を入力し、当該回転速度変動指令に基づいて、工作物主軸70の回転方向の慣性を算出する。慣性算出部140には、複数の変化させた回転速度変動指令が入力されるので、慣性算出部140は、回転速度変動指令の入力毎に工作物主軸70の回転方向の慣性を算出する。回転速度変動指令を変化させて複数入力する理由は、後述する工作物主軸70の回転速度変動条件を求めるためである。 The inertia calculation unit 140 inputs a command to change the rotation speed V1 of the work spindle 70 from the work spindle rotation speed control unit 110, and based on the rotation speed fluctuation command, calculates the inertia of the work spindle 70 in the rotation direction. calculate. Since a plurality of changed rotation speed fluctuation commands are input to the inertia calculation unit 140, the inertia calculation unit 140 calculates the inertia of the work spindle 70 in the rotation direction each time the rotation speed fluctuation command is input. The reason for changing and inputting a plurality of rotation speed fluctuation commands is to obtain the rotation speed fluctuation conditions of the work spindle 70, which will be described later.

具体的には、慣性算出部140は、工作物主軸70の回転速度V1が正弦波で変動して工作物主軸70が空転しているときの工作物主軸用モータ71に供給する電流値Iを工作物主軸回転速度制御部110から入力し、次式(1)で表される工作物主軸用モータ71のトルクTを算出する。なお、式(1)におけるKは、工作物主軸用モータ71固有の換算係数である。 Specifically, the inertia calculation unit 140 determines the current value I supplied to the work spindle motor 71 when the rotation speed V1 of the work spindle 70 fluctuates in a sinusoidal wave and the work spindle 70 is idling. The torque T of the work spindle motor 71 represented by the following equation (1) is calculated by inputting from the work spindle rotation speed control unit 110. In addition, K in the formula (1) is a conversion coefficient peculiar to the motor 71 for the work spindle.

そして、工作物主軸用モータ71の回転位置情報を工作物主軸用モータ71のエンコーダから入力し、当該回転位置情報を2階微分して工作物主軸用モータ71の回転加速度αを算出し、次式(2)で表される工作物主軸70の慣性miを算出する。上述のように、工作物主軸70の慣性miは、複数算出される。 Then, the rotation position information of the work spindle motor 71 is input from the encoder of the work spindle motor 71, the rotation position information is differentiated to the second order to calculate the rotational acceleration α of the work spindle motor 71, and then The inertia mi of the work spindle 70 represented by the equation (2) is calculated. As described above, a plurality of inertia mis of the work spindle 70 are calculated.

Figure 2020196057
Figure 2020196057

Figure 2020196057
Figure 2020196057

加工電流値推定部180は、予め入力された工具諸元、歯車諸元及び加工条件から算出される推定加工抵抗を基に、工作物主軸用モータ71の推定加工電流値を算出する。具体的には、加工電流値推定部180は、歯切り工具42で工作物Wを加工するときに切り取られる断面積と比切削抵抗から推定加工抵抗を算出する。切り取られる断面積は、工作物Wに創成される歯の歯形状と、歯切り工具42の切込深さと、歯切り工具42の刃数と工作物Wに創成される歯数の比から求められる。比切削抵抗は実測値から求められる。そして、推定加工電流値Icは、一般的な方法で推定加工抵抗を換算することで求められる。 The machining current value estimation unit 180 calculates the estimated machining current value of the workpiece spindle motor 71 based on the estimated machining resistance calculated from the tool specifications, gear specifications, and machining conditions input in advance. Specifically, the machining current value estimation unit 180 calculates the estimated machining resistance from the cross-sectional area and the specific cutting resistance cut when the workpiece W is machined with the gear cutting tool 42. The cross-sectional area to be cut is obtained from the ratio of the tooth shape of the tooth created in the workpiece W, the cutting depth of the gear cutting tool 42, and the number of blades of the gear cutting tool 42 to the number of teeth created in the workpiece W. Be done. The specific cutting resistance is obtained from the measured value. Then, the estimated machining current value Ic is obtained by converting the estimated machining resistance by a general method.

許容最大加速度算出部150は、慣性算出部140で算出した工作物主軸70の慣性、加工電流値推定部180で算出した推定加工電流値及び工作物主軸用モータ71の定格電流値Imax,−Imaxに基づいて、工作物主軸70の許容最大加速度を算出する。許容最大加速度算出部150には、複数の慣性が順次入力されるので、許容最大加速度算出部150は、慣性の入力毎に工作物主軸70の許容最大加速度を算出する。これにより、工作物主軸70の回転速度の限界加速度を見極めているので、従来のように工作物主軸70の慣性による影響で歯車加工装置1が異常停止してしまうことを防止できる。 The allowable maximum acceleration calculation unit 150 includes the inertia of the work spindle 70 calculated by the inertial calculation unit 140, the estimated machining current value calculated by the machining current value estimation unit 180, and the rated current values Imax and −Imax of the work spindle motor 71. The maximum allowable acceleration of the work spindle 70 is calculated based on the above. Since a plurality of inertias are sequentially input to the allowable maximum acceleration calculation unit 150, the allowable maximum acceleration calculation unit 150 calculates the allowable maximum acceleration of the work spindle 70 for each inertia input. As a result, since the limit acceleration of the rotational speed of the work spindle 70 is determined, it is possible to prevent the gear processing device 1 from abnormally stopping due to the influence of the inertia of the work spindle 70 as in the conventional case.

具体的には、許容最大加速度算出部150は、工作物主軸用モータ71の定格電流値Imaxを工作物主軸回転速度制御部110から入力し、次式(3)で表される工作物主軸用モータ71の最大トルクTmaxを算出する。そして、慣性算出部140から工作物主軸70の慣性miを入力し、次式(4)で表される工作物主軸用モータ71の許容最大加速度αmaxを算出する。上述のように、工作物主軸用モータ71の許容最大加速度αmaxは、複数算出される。 Specifically, the allowable maximum acceleration calculation unit 150 inputs the rated current value Imax of the motor 71 for the work spindle from the work spindle rotation speed control unit 110, and is for the work spindle represented by the following equation (3). The maximum torque Tmax of the motor 71 is calculated. Then, the inertia mi of the work spindle 70 is input from the inertia calculation unit 140, and the allowable maximum acceleration αmax of the work spindle motor 71 represented by the following equation (4) is calculated. As described above, a plurality of allowable maximum accelerations αmax of the work spindle motor 71 are calculated.

Figure 2020196057
Figure 2020196057

Figure 2020196057
Figure 2020196057

回転速度変動条件算出部160は、許容最大加速度算出部150で算出した許容最大加速度αmaxに基づいて、工作物主軸70の回転速度変動条件を算出する。具体的には、回転速度変動条件算出部160には、複数の許容最大加速度αmaxが順次入力されるので、回転速度変動条件算出部160は、複数の許容最大加速度αmaxに基づいて、工作物主軸70の回転速度変動条件、すなわち図7に示すように、回転速度変動振幅S(%)と回転速度変動周波数F(Hz)との次式(5)で表される反比例の関係を算出する。なお、回転速度変動振幅S(%)は、回転速度変動周波数F(Hz)が高まるにつれて0%に漸近する。なお、式(5)におけるKiは、工作物主軸用モータ71の加工電流値に関する定数である。 The rotation speed fluctuation condition calculation unit 160 calculates the rotation speed fluctuation condition of the work spindle 70 based on the permissible maximum acceleration αmax calculated by the permissible maximum acceleration calculation unit 150. Specifically, since a plurality of allowable maximum accelerations αmax are sequentially input to the rotation speed fluctuation condition calculation unit 160, the rotation speed fluctuation condition calculation unit 160 is based on the plurality of allowable maximum accelerations αmax. The rotation speed fluctuation condition of 70, that is, as shown in FIG. 7, the inverse proportional relationship between the rotation speed fluctuation amplitude S (%) and the rotation speed fluctuation frequency F (Hz) is calculated by the following equation (5). The rotation speed fluctuation amplitude S (%) gradually approaches 0% as the rotation speed fluctuation frequency F (Hz) increases. Ki in the equation (5) is a constant related to the machining current value of the motor for the spindle of the workpiece 71.

Figure 2020196057
Figure 2020196057

回転速度変動条件決定部170は、回転速度変動条件算出部160で算出した回転速度変動振幅S(%)と回転速度変動周波数F(Hz)との関係のうち、使用可能範囲内で所定の回転速度変動条件を決定する。使用可能範囲内とは、高能率加工、すなわち加工抵抗が高い場合は、図7のクロス線部であり、低能率加工、すなわち加工抵抗が低い場合は、図7のクロス線部を含む斜線部である。そして、工作物主軸回転速度制御部110に対し、決定した所定の回転速度変動条件に基づいて、工作物主軸70の回転速度変動の変更指令を入力する。 The rotation speed fluctuation condition determination unit 170 rotates a predetermined rotation within the usable range of the relationship between the rotation speed fluctuation amplitude S (%) calculated by the rotation speed fluctuation condition calculation unit 160 and the rotation speed fluctuation frequency F (Hz). Determine the speed fluctuation conditions. The usable range is the cross-line portion of FIG. 7 when high-efficiency machining, that is, high machining resistance, and the shaded portion including the cross-line portion of FIG. 7 when low-efficiency machining, that is, low machining resistance. Is. Then, a command for changing the rotation speed fluctuation of the work spindle 70 is input to the work spindle rotation speed control unit 110 based on the determined predetermined rotation speed fluctuation condition.

上述の歯車加工装置1によれば、工作物主軸70の回転速度変動条件の使用可能範囲が明確化できるので、この使用可能範囲内で最適な工作物主軸70の回転速度変動条件を決定して歯車加工できる。よって、従来のように工作物主軸70の慣性による影響で歯車加工装置1が異常停止してしまうことを防止でき、歯車加工の生産性を高めることができる。 According to the gear processing device 1 described above, the usable range of the rotation speed fluctuation condition of the work spindle 70 can be clarified. Therefore, the optimum rotation speed fluctuation condition of the work spindle 70 is determined within this usable range. Can process gears. Therefore, it is possible to prevent the gear processing device 1 from abnormally stopping due to the influence of the inertia of the work spindle 70 as in the conventional case, and it is possible to increase the productivity of gear processing.

(1−3.制御装置による歯車加工処理)
次に、制御装置100により実行される歯車加工処理(歯車加工方法)について図を参照して説明する。なお、歯車加工処理を実行するにあたり、工作物主軸70には、工作物Wが保持され、工具主軸40には、歯切り工具42が装着されているものとする。また、工作物Wの回転軸線Cに対する歯切り工具42の回転軸線Oの傾斜角度は、交差角δに設定され、歯切り工具42は、工作物Wの加工開始位置に位置決めされているものとする。
(1-3. Gear processing by control device)
Next, the gear processing (gear processing method) executed by the control device 100 will be described with reference to the drawings. In executing the gear machining process, it is assumed that the workpiece W is held on the workpiece spindle 70 and the gear cutting tool 42 is mounted on the tool spindle 40. Further, the inclination angle of the rotation axis O of the gear cutting tool 42 with respect to the rotation axis C of the workpiece W is set to the intersection angle δ, and the gear cutting tool 42 is positioned at the machining start position of the workpiece W. To do.

工作物主軸回転速度制御部110は、工作物主軸70の回転速度V1を正弦波で変動させて工作物主軸70を空転させる(図4のステップS1、回転速度変動工程)。そして、慣性算出部140は、工作物主軸70の空転中に工作物主軸70の慣性を算出する(図4のステップS2、慣性算出工程)。加工電流値推定部180は、予め入力された工具諸元、歯車諸元及び加工条件から算出される推定加工抵抗を基に、工作物主軸用モータ71の推定加工電流値を算出する(図4のステップS3、加工電流値推定工程)。許容最大加速度算出部150は、慣性算出部140で算出した工作物主軸70の慣性、加工電流値推定部180で算出した推定加工電流値及び工作物主軸用モータ71の定格電流値Imax,−Imaxに基づいて、工作物主軸70の許容最大加速度を算出する(図4のステップS4、許容最大加速度算出工程)。 The work spindle rotation speed control unit 110 fluctuates the rotation speed V1 of the work spindle 70 with a sine wave to cause the work spindle 70 to idle (step S1 in FIG. 4, rotation speed fluctuation step). Then, the inertia calculation unit 140 calculates the inertia of the work spindle 70 while the work spindle 70 is idling (step S2 in FIG. 4, the inertia calculation step). The machining current value estimation unit 180 calculates the estimated machining current value of the motor for workpiece spindle 71 based on the estimated machining resistance calculated from the tool specifications, gear specifications, and machining conditions input in advance (FIG. 4). Step S3, processing current value estimation step). The allowable maximum acceleration calculation unit 150 includes the inertia of the work spindle 70 calculated by the inertial calculation unit 140, the estimated machining current value calculated by the machining current value estimation unit 180, and the rated current values Imax and −Imax of the work spindle motor 71. Based on the above, the allowable maximum acceleration of the work spindle 70 is calculated (step S4 in FIG. 4, the allowable maximum acceleration calculation step).

回転速度変動条件算出部160は、所定数の工作物主軸70の許容最大加速度が算出されたか否かを判断し(図4のステップS5)、所定数の工作物主軸70の許容最大加速度が算出されていないときはステップS1に戻って上述の処理を繰り返す。一方、所定数の工作物主軸70の許容最大加速度が算出されたときは、許容最大加速度算出部150で算出した許容最大加速度αmaxに基づいて、工作物主軸70の回転速度変動条件を算出する(図4のステップS6、回転速度変動条件算出工程)。 The rotation speed fluctuation condition calculation unit 160 determines whether or not the allowable maximum acceleration of the predetermined number of workpiece spindles 70 has been calculated (step S5 in FIG. 4), and calculates the allowable maximum acceleration of the predetermined number of workpiece spindles 70. If not, the process returns to step S1 and the above process is repeated. On the other hand, when the allowable maximum acceleration of a predetermined number of workpiece spindles 70 is calculated, the rotation speed fluctuation condition of the workpiece spindle 70 is calculated based on the allowable maximum acceleration αmax calculated by the allowable maximum acceleration calculation unit 150 ( Step S6 of FIG. 4, rotation speed fluctuation condition calculation step).

回転速度変動条件決定部170は、回転速度変動条件算出部160で算出した変動振幅(%)と変動周波数(Hz)との関係のうち、使用可能範囲内(図7のクロス線部又はクロス線部を含む斜線部)で所定の回転速度変動条件を決定する(図4のステップS7)。そして、工作物主軸回転速度制御部110に対し、決定した所定の回転速度変動条件に基づいて、工作物主軸70の回転速度変動の変更指令を入力する(図4のステップS8)。なお、同一形状の歯車を複数加工する場合、工作物主軸70の回転速度変動の変更指令の入力は、加工開始直前に一回のみ行えばよい。 The rotation speed fluctuation condition determination unit 170 is within the usable range of the relationship between the fluctuation amplitude (%) and the fluctuation frequency (Hz) calculated by the rotation speed fluctuation condition calculation unit 160 (cross line portion or cross line in FIG. 7). A predetermined rotation speed fluctuation condition is determined by the shaded portion including the portion) (step S7 in FIG. 4). Then, a command for changing the rotation speed fluctuation of the work spindle 70 is input to the work spindle rotation speed control unit 110 based on the determined predetermined rotation speed fluctuation condition (step S8 in FIG. 4). When machining a plurality of gears having the same shape, the command for changing the rotation speed fluctuation of the work spindle 70 may be input only once immediately before the start of machining.

工作物主軸回転速度制御部110は、入力した工作物主軸70の回転速度変動の変更指令に基づいて、工作物主軸70の回転速度V1を設定する(図4のステップS9)。さらに、工具主軸回転速度制御部120は、工作物主軸回転速度制御部110により設定された工作物主軸70の回転速度V1に同期するように、工具主軸40の回転速度V2を設定する(図4のステップS10)。そして、送り速度制御部130は、送り速度V4が工作物主軸70の回転速度V1の変動周波数と同期するように、送り速度V4を設定する(図4のステップS11)。 The work spindle rotation speed control unit 110 sets the rotation speed V1 of the work spindle 70 based on the input change command of the rotation speed fluctuation of the work spindle 70 (step S9 in FIG. 4). Further, the tool spindle rotation speed control unit 120 sets the rotation speed V2 of the tool spindle 40 so as to be synchronized with the rotation speed V1 of the workpiece spindle 70 set by the workpiece spindle rotation speed control unit 110 (FIG. 4). Step S10). Then, the feed rate control unit 130 sets the feed rate V4 so that the feed rate V4 is synchronized with the fluctuation frequency of the rotation speed V1 of the workpiece spindle 70 (step S11 in FIG. 4).

以上の処理により、歯切り工具42は、工作物Wに噛合しながら、工作物Wに連続的な歯車加工を行い、工作物Wに歯面形状を創成する(図4のステップS12)。そして、一の工作物Wの歯車加工が完了したか否かを判断し(図4のステップS13)、一の工作物Wの歯車加工が完了したら、次の工作物Wの歯車加工の有無を確認する(図4のステップS14)。そして、次の工作物Wの歯車加工が有るときは、ステップS12に戻って上述の処理を繰り返し、次の工作物Wの歯車加工が無いときは、全ての処理を終了する。 Through the above processing, the gear cutting tool 42 continuously gears the workpiece W while meshing with the workpiece W to create a tooth surface shape on the workpiece W (step S12 in FIG. 4). Then, it is determined whether or not the gear processing of one workpiece W is completed (step S13 in FIG. 4), and when the gear processing of one workpiece W is completed, the presence or absence of gear machining of the next workpiece W is determined. Confirm (step S14 in FIG. 4). Then, when there is gear machining of the next workpiece W, the process returns to step S12 and the above process is repeated. When there is no gear machining of the next workpiece W, all the processes are completed.

この歯車加工処理によれば、工作物主軸70の回転速度変動条件の使用可能範囲が明確化できるので、この使用可能範囲内で最適な工作物主軸70の回転速度変動条件を決定して歯車加工できる。よって、従来のように工作物主軸70の慣性による影響で歯車加工装置1が異常停止してしまうことを防止でき、歯車加工の生産性を高めることができる。 According to this gear machining process, the usable range of the rotation speed fluctuation condition of the work spindle 70 can be clarified. Therefore, the optimum rotation speed fluctuation condition of the work spindle 70 is determined within this usable range to perform gear machining. it can. Therefore, it is possible to prevent the gear processing device 1 from abnormally stopping due to the influence of the inertia of the work spindle 70 as in the conventional case, and it is possible to increase the productivity of gear processing.

そして、工作物主軸70の回転速度を変動させているので、工作物Wに発生するびびり振動の増幅が抑制される。その結果、工作物Wに対する歯切り工具42の切込量を大きく設定することができる。よって、工作物Wに形成された加工面の面性状の向上と加工能率の向上との両立を図れる。 Since the rotation speed of the work spindle 70 is changed, the amplification of the chatter vibration generated in the work W is suppressed. As a result, the depth of cut of the gear cutting tool 42 with respect to the workpiece W can be set large. Therefore, it is possible to achieve both improvement of the surface texture of the machined surface formed on the work piece W and improvement of the machining efficiency.

(1−4.第一実施形態の変形例)
上記第一実施形態の実施例においては、工作物主軸70の回転速度V1を正弦波で変動させる場合について説明したが、図8Aに示す第一変形例のように、工作物主軸70の回転速度V1を三角波で変動させてもよい。この場合、工作物主軸回転速度制御部110は、上述の正弦波と同様に、回転速度変動条件算出部160で算出した変動振幅(%)と変動周波数(Hz)との関係のうち、使用可能範囲内で決定された所定の回転速度変動条件で工作物主軸70の回転速度V1を制御する。同様に、工作物主軸70の回転速度V1を放物線が波状に変化するように変動させてもよい。
(1-4. Modified example of the first embodiment)
In the embodiment of the first embodiment, the case where the rotation speed V1 of the work spindle 70 is changed by a sine wave has been described, but as in the first modification shown in FIG. 8A, the rotation speed of the work spindle 70 has been described. V1 may be varied by a triangular wave. In this case, the work spindle rotation speed control unit 110 can be used in the relationship between the fluctuation amplitude (%) and the fluctuation frequency (Hz) calculated by the rotation speed fluctuation condition calculation unit 160, similarly to the above-mentioned sine wave. The rotation speed V1 of the work spindle 70 is controlled under a predetermined rotation speed fluctuation condition determined within the range. Similarly, the rotation speed V1 of the work spindle 70 may be changed so that the parabola changes in a wavy shape.

また、工作物主軸70の回転速度V1を直線的に加速又は減速させてもよい。例えば、工作物主軸回転速度制御部110は、図8Bに示す第二変形例のように、工作物主軸70の回転速度V1を一定の加速度で加速させてもよい。同様に、工作物主軸回転速度制御部110は、図8Cに示す第三変形例のように、工作物主軸70の回転速度V1を一定の減速度で減速させてもよい。 Further, the rotation speed V1 of the work spindle 70 may be linearly accelerated or decelerated. For example, the work spindle rotation speed control unit 110 may accelerate the rotation speed V1 of the work spindle 70 at a constant acceleration as in the second modification shown in FIG. 8B. Similarly, the work spindle rotation speed control unit 110 may reduce the rotation speed V1 of the work spindle 70 at a constant deceleration as in the third modification shown in FIG. 8C.

この場合、工作物主軸回転速度制御部110は、工作物主軸70の回転速度変動条件として、許容される工作物主軸70の回転速度V1である上限値及び下限値である限界速度上限値及び限界速度下限値、並びに回転速度V1の加速度又は減速度(直線の傾き)を算出する。そして、工作物主軸回転速度制御部110は、回転速度V1の限界速度上限値及び限界速度下限値、並びに回転速度V1の加速度又は減速度(直線の傾き)と加工時間とに基づき、歯車加工時の回転速度V1が限界速度上限値及び限界速度下限値を超えないように、歯車加工の開始時及び終了時における回転速度V1を設定する。 In this case, the work spindle rotation speed control unit 110 sets the upper limit value and the lower limit value of the allowable rotation speed V1 of the work spindle 70 as the rotation speed fluctuation condition of the work spindle 70. The lower limit of the speed and the acceleration or deceleration (slope of a line) of the rotation speed V1 are calculated. Then, the workpiece spindle rotation speed control unit 110 is at the time of gear machining based on the limit speed upper limit value and the limit speed lower limit value of the rotation speed V1, the acceleration or deceleration (slope of a line) of the rotation speed V1, and the machining time. The rotation speed V1 at the start and end of gear machining is set so that the rotation speed V1 does not exceed the upper limit value and the lower limit value of the limit speed.

以上のように、各変形例において、工作物主軸70の回転速度変動条件の使用可能範囲が明確化できるので、この使用可能範囲内で最適な工作物主軸70の回転速度変動条件を決定して歯車加工できる。よって、従来のように工作物主軸70の慣性による影響で歯車加工装置1が異常停止してしまうことを防止でき、歯車加工の生産性を高めることができる。そして、歯車加工時において、歯切り工具42を高速回転させつつ、工作物Wに発生する再生びびり振動の増幅を抑制できるので、工作物Wに形成された加工面の面性状の向上と加工能率の向上との両立を図れる。 As described above, since the usable range of the rotation speed fluctuation condition of the work spindle 70 can be clarified in each modification, the optimum rotation speed fluctuation condition of the work spindle 70 is determined within this usable range. Can process gears. Therefore, it is possible to prevent the gear processing device 1 from abnormally stopping due to the influence of the inertia of the work spindle 70 as in the conventional case, and it is possible to increase the productivity of gear processing. Then, during gear machining, the gear cutting tool 42 can be rotated at high speed while suppressing the amplification of the regenerated chatter vibration generated in the workpiece W, so that the surface texture of the workpiece formed on the workpiece W can be improved and the machining efficiency can be improved. It is possible to achieve both improvement and improvement.

また、各変形例では、工作物主軸70の回転速度V1を一定の加速度又は減速度で変動させることにより、工具主軸回転速度制御部120による工具主軸40の回転速度V2の同期制御、及び、送り速度制御部130による送り速度V4の同期制御を簡素化できる。その結果、工作物主軸70の回転速度V1と、工具主軸40の回転速度V2及び送り速度V4との同期誤差を抑制できる。 Further, in each modification, by varying the rotation speed V1 of the work spindle 70 with a constant acceleration or deceleration, the tool spindle rotation speed control unit 120 synchronously controls the rotation speed V2 of the tool spindle 40 and feeds it. Synchronous control of the feed rate V4 by the speed control unit 130 can be simplified. As a result, it is possible to suppress a synchronization error between the rotation speed V1 of the work spindle 70 and the rotation speed V2 and the feed rate V4 of the tool spindle 40.

<2.第二実施形態>
次に、図9を参照して、第二実施形態について説明する。第一実施形態において、歯切り工具42がスカイビングカッタであり、歯車加工装置1は、スカイビング加工による歯車加工を行う場合について説明した。これに対し、第二実施形態では、歯切り工具242がホブカッタであり、歯車加工装置1が、ホブ加工による歯車加工を行う場合を説明する。なお、上記した第一実施形態と同一の部品には同一の符号を付し、その説明を省略する。
<2. Second Embodiment>
Next, the second embodiment will be described with reference to FIG. In the first embodiment, the case where the gear cutting tool 42 is a skiving cutter and the gear processing device 1 performs gear processing by skiving processing has been described. On the other hand, in the second embodiment, the case where the gear cutting tool 242 is a hobb cutter and the gear processing device 1 performs gear processing by hobbing will be described. The same parts as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

歯車加工装置1は、歯切り工具242の回転軸線Oと工作物Wの回転軸線であるC軸とが交差するように、歯切り工具242及び工作物Wを配置する。なお、図9には、歯切り工具242の回転軸線Oと工作物Wの回転軸線であるC軸とが直交するように、歯切り工具242及び工作物Wが配置されている。そして、歯車加工装置1は、歯車加工時において、工作物W及び歯切り工具42をそれぞれ回転させながら、歯切り工具42を工作物Wの中心軸線であるZ軸方向へ送る(相対移動させる)ことにより、工作物Wに歯車を創成する。 The gear processing device 1 arranges the gear cutting tool 242 and the workpiece W so that the rotation axis O of the gear cutting tool 242 and the C axis which is the rotation axis of the workpiece W intersect. In FIG. 9, the gear cutting tool 242 and the workpiece W are arranged so that the rotation axis O of the gear cutting tool 242 and the C axis which is the rotation axis of the workpiece W are orthogonal to each other. Then, the gear processing device 1 sends (relatively moves) the gear cutting tool 42 in the Z-axis direction, which is the central axis of the workpiece W, while rotating the workpiece W and the gear cutting tool 42, respectively, during gear machining. By doing so, a gear is created in the workpiece W.

この歯車加工においても、工作物主軸70の回転速度変動条件の使用可能範囲が明確化できるので、この使用可能範囲内で最適な工作物主軸70の回転速度変動条件を決定して歯車加工できる。よって、従来のように工作物主軸70の慣性による影響で歯車加工装置1が異常停止してしまうことを防止でき、歯車加工の生産性を高めることができる。そして、歯車加工装置1は、歯切り工具242を高速回転させつつ、工作物Wに発生する再生びびり振動の増幅を抑制できるので、工作物Wに形成された加工面の面性状の向上と加工能率の向上との両立を図れる。 Also in this gear machining, the usable range of the rotation speed fluctuation condition of the work spindle 70 can be clarified, so that the optimum rotation speed fluctuation condition of the work spindle 70 can be determined within this usable range and the gear can be machined. Therefore, it is possible to prevent the gear processing device 1 from abnormally stopping due to the influence of the inertia of the work spindle 70 as in the conventional case, and it is possible to increase the productivity of gear processing. Then, the gear processing device 1 can suppress the amplification of the regenerated chatter vibration generated in the workpiece W while rotating the gear cutting tool 242 at high speed, so that the surface texture of the processed surface formed on the workpiece W can be improved and processed. It is possible to achieve both efficiency improvement.

<3.その他>
上記各実施形態においては、歯車加工前に工作物主軸70の回転速度変動条件を算出する構成としたが、歯車加工途中、すなわち荒加工と仕上げ加工の途中で、工作物主軸70の回転速度変動条件を算出する構成としてもよい。これにより、荒加工で重量変化が生じた工作物Wに対して工作物Wに発生する再生びびり振動の増幅を抑制できるので、工作物Wに形成された加工面の面性状のさらなる向上を図れる。なお、歯車加工前及び歯車加工途中で、工作物主軸70の回転速度変動条件を算出する構成としてもよい。また、工作物主軸70の回転速度変動条件を算出する構成としたが、工具主軸40の回転速度変動条件を算出する構成としてもよい。
<3. Others>
In each of the above embodiments, the rotation speed fluctuation condition of the work spindle 70 is calculated before the gear machining, but the rotation speed fluctuation of the work spindle 70 is performed during the gear machining, that is, during the roughing and finishing. It may be configured to calculate the condition. As a result, it is possible to suppress the amplification of the regenerated chatter vibration generated in the workpiece W with respect to the workpiece W whose weight has changed due to rough machining, so that the surface texture of the machined surface formed on the workpiece W can be further improved. .. The rotation speed fluctuation condition of the work spindle 70 may be calculated before and during the gear machining. Further, although the configuration is such that the rotation speed fluctuation condition of the work spindle 70 is calculated, the rotation speed fluctuation condition of the tool spindle 40 may be calculated.

また、上記各実施形態では、歯車加工装置1は、コラム20がX軸線方向へ移動可能な構成を説明したが、コラム20の代わりにテーブル50がX軸線方向へ移動可能に構成されてもよい。また、テーブル50がZ軸線方向へ移動可能な構成を説明したが、テーブル50の代わりにコラム20がZ軸線方向へ移動可能に構成されていてもよい。また、歯車加工装置1として横型のマシニングセンタについて説明したが、縦型のマシニングセンタにも本発明は適用可能である。また、工作機械全般に本発明を適用可能である。 Further, in each of the above embodiments, the gear processing device 1 has described the configuration in which the column 20 can be moved in the X-axis direction, but the table 50 may be configured to be movable in the X-axis direction instead of the column 20. .. Further, although the configuration in which the table 50 is movable in the Z-axis direction has been described, the column 20 may be configured to be movable in the Z-axis direction instead of the table 50. Further, although the horizontal machining center has been described as the gear machining center 1, the present invention can also be applied to the vertical machining center. Further, the present invention can be applied to all machine tools.

1:歯車加工装置、 40:工具主軸、 41:工具主軸用モータ、 42:歯切り工具、 70:工作物主軸、 71:工作物主軸用モータ、 100:制御装置、 110:工作物主軸回転速度制御部、 120:工具主軸回転速度制御部、 130:送り速度制御部、 140:慣性算出部、 150:許容最大加速度算出部、 160:回転速度変動条件算出部、 170:回転速度変動条件決定部、 180:加工電流値推定部、 W:工作物 1: Gear processing device, 40: Tool spindle, 41: Tool spindle motor, 42: Gear cutting tool, 70: Work spindle, 71: Work spindle motor, 100: Control device, 110: Work spindle rotation speed Control unit, 120: Tool spindle rotation speed control unit, 130: Feed speed control unit, 140: Inertivity calculation unit, 150: Allowable maximum acceleration calculation unit, 160: Rotation speed fluctuation condition calculation unit, 170: Rotation speed fluctuation condition determination unit , 180: Machining speed estimation unit, W: Work piece

Claims (9)

工作物と歯切り工具とを同期回転させながら、前記工作物の回転軸線方向に前記歯切り工具を前記工作物に対して相対移動させることにより、前記工作物に歯車を創成する歯車加工装置であって、
工作物を回転可能に支持する工作物主軸と、
歯切り工具が装着される回転可能な工具主軸と、
前記工作物主軸の回転速度を制御する工作物主軸回転速度制御部と、
前記工具主軸の回転速度を制御する工具主軸回転速度制御部と、
前記工作物主軸回転速度制御部及び前記工具主軸回転速度制御部の何れか一方から、前記工作物主軸及び前記工具主軸の何れか一方の回転速度を変動させる回転速度変動指令を入力し、前記回転速度変動指令に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の回転方向の慣性を算出する慣性算出部と、
算出した前記慣性に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する許容最大加速度算出部と、
を備える、歯車加工装置。
A gear processing device that creates gears in the work by moving the gear cutting tool relative to the work in the direction of the rotation axis of the work while rotating the work and the gear cutting tool synchronously. There,
A work spindle that rotatably supports the work piece,
A rotatable tool spindle on which a gear cutting tool is mounted and
A work spindle rotation speed control unit that controls the rotation speed of the work spindle,
A tool spindle rotation speed control unit that controls the rotation speed of the tool spindle,
From either one of the work spindle rotation speed control unit and the tool spindle rotation speed control unit, a rotation speed fluctuation command for varying the rotation speed of either the work spindle or the tool spindle is input, and the rotation An inertia calculation unit that calculates the inertia in the rotation direction of either the work spindle or the tool spindle based on the speed fluctuation command.
A permissible maximum acceleration calculation unit that calculates the permissible maximum acceleration of either the work spindle or the tool spindle based on the calculated inertia.
A gear processing device.
前記歯車加工装置は、さらに、予め入力された工具諸元、歯車諸元及び加工条件から算出される推定加工抵抗を基に推定加工電流値を算出する加工電流値推定部を備え、
前記許容最大加速度算出部は、算出した前記慣性及び算出した前記推定加工電流値に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する、請求項1に記載の歯車加工装置。
The gear machining apparatus further includes a machining current value estimation unit that calculates an estimated machining current value based on an estimated machining resistance calculated from tool specifications, gear specifications, and machining conditions input in advance.
The maximum allowable acceleration according to claim 1, wherein the allowable maximum acceleration calculation unit calculates the allowable maximum acceleration of either the workpiece spindle or the tool spindle based on the calculated inertia and the calculated estimated machining current value. Gear processing equipment.
前記歯車加工装置は、さらに、算出した前記許容最大加速度に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の回転速度変動条件を算出する回転速度変動条件算出部を備える、請求項1又は2に記載の歯車加工装置。 The gear processing device further includes a rotation speed fluctuation condition calculation unit that calculates a rotation speed fluctuation condition of either the workpiece spindle or the tool spindle based on the calculated maximum allowable acceleration. Or the gear processing apparatus according to 2. 前記歯車加工装置は、さらに、算出した前記回転速度変動条件の使用可能範囲内で所定の回転速度変動条件を決定し、前記工作物主軸回転速度制御部及び前記工具主軸回転速度制御部に対し、決定した前記所定の回転速度変動条件に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の回転速度変動の変更指令を入力する回転速度変動条件決定部を備える、請求項3に記載の歯車加工装置。 The gear processing device further determines a predetermined rotation speed fluctuation condition within the usable range of the calculated rotation speed fluctuation condition, and causes the workpiece spindle rotation speed control unit and the tool spindle rotation speed control unit to be subjected to. The third aspect of claim 3, further comprising a rotation speed fluctuation condition determining unit for inputting a rotation speed fluctuation change command for either the workpiece spindle or the tool spindle based on the determined predetermined rotation speed fluctuation condition. Gear processing equipment. 前記慣性算出部は、前記工作物主軸及び前記工具主軸の何れか一方の空転中に前記慣性の算出を行う、請求項1−4の何れか一項に記載の歯車加工装置。 The gear processing device according to any one of claims 1-4, wherein the inertia calculation unit calculates the inertia while one of the work spindle and the tool spindle is idling. 前記歯切り工具は、スカイビングカッタであり、
前記歯車加工装置は、前記工作物の回転軸線を前記歯切り工具の回転軸線に対して傾斜させた状態で、前記歯切り工具を前記工作物に対して前記工作物の回転軸線方向に相対移動させることにより、前記工作物に歯車のスカイビング加工を行う、請求項1−5の何れか一項に記載の歯車加工装置。
The gear cutting tool is a skiving cutter.
The gear processing device moves the gear cutting tool relative to the work in the direction of the rotation axis of the work in a state where the rotation axis of the work is inclined with respect to the rotation axis of the gear cutting tool. The gear processing apparatus according to any one of claims 1 to 5, wherein the workpiece is skived with gears.
工作物を回転可能に支持する工作物主軸と歯切り工具が装着される回転可能な工具主軸とを同期回転させながら、前記工作物の回転軸線方向に前記歯切り工具を前記工作物に対して相対移動させることにより、前記工作物に歯車を創成する歯車加工方法であって、
前記工作物主軸及び前記工具主軸の回転速度を変動させる回転速度変動工程と、
前記回転速度の変動中において、前記工作物主軸及び前記工具主軸の何れか一方の回転方向の慣性を算出する慣性算出工程と、
算出した前記慣性に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する許容最大加速度算出工程と、
を備える、歯車加工方法。
While synchronously rotating the work spindle that rotatably supports the work piece and the rotatable tool main shaft on which the gear cutting tool is mounted, the gear cutting tool is moved to the work piece in the direction of the rotation axis of the work piece. A gear processing method that creates gears in the workpiece by moving them relative to each other.
A rotation speed fluctuation process that changes the rotation speed of the work spindle and the tool spindle, and
An inertia calculation step of calculating the inertia in the rotation direction of either the work spindle or the tool spindle while the rotation speed fluctuates.
A maximum allowable acceleration calculation step for calculating the maximum allowable acceleration of either the work spindle or the tool spindle based on the calculated inertia.
A gear processing method.
前記歯車加工方法は、さらに、予め入力された工具諸元、歯車諸元及び加工条件から算出される推定加工抵抗を基に推定加工電流値を算出する加工電流値推定工程を備え、
前記許容最大加速度算出工程は、算出した前記慣性及び算出した前記推定加工電流値に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の許容最大加速度を算出する、請求項7に記載の歯車加工方法。
The gear machining method further includes a machining current value estimation step of calculating an estimated machining current value based on an estimated machining resistance calculated from tool specifications, gear specifications, and machining conditions input in advance.
The allowable maximum acceleration calculation step according to claim 7, wherein the allowable maximum acceleration of either the workpiece spindle or the tool spindle is calculated based on the calculated inertia and the calculated estimated machining current value. Gear processing method.
前記歯車加工方法は、さらに、算出した前記許容最大加速度に基づいて、前記工作物主軸及び前記工具主軸の何れか一方の回転速度変動条件を算出する回転速度変動条件算出工程を備える、請求項7又は8に記載の歯車加工方法。 7. The gear processing method further includes a rotation speed fluctuation condition calculation step of calculating the rotation speed fluctuation condition of either the workpiece spindle or the tool spindle based on the calculated maximum allowable acceleration. Or the gear processing method according to 8.
JP2019101912A 2019-05-31 2019-05-31 Gear processing device and gear processing method Active JP7318315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101912A JP7318315B2 (en) 2019-05-31 2019-05-31 Gear processing device and gear processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101912A JP7318315B2 (en) 2019-05-31 2019-05-31 Gear processing device and gear processing method

Publications (2)

Publication Number Publication Date
JP2020196057A true JP2020196057A (en) 2020-12-10
JP7318315B2 JP7318315B2 (en) 2023-08-01

Family

ID=73649492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101912A Active JP7318315B2 (en) 2019-05-31 2019-05-31 Gear processing device and gear processing method

Country Status (1)

Country Link
JP (1) JP7318315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196646A1 (en) * 2021-03-18 2022-09-22 ファナック株式会社 Control device for machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091283A (en) * 2010-10-27 2012-05-17 Okuma Corp Machine tool
JP2013006264A (en) * 2011-05-26 2013-01-10 Fanuc Ltd Oscillation controller for oscillating body having function of adjusting acceleration
JP2014079867A (en) * 2012-10-18 2014-05-08 Okuma Corp Method of suppressing chattering vibration and machine tool
JP2018062056A (en) * 2016-10-13 2018-04-19 株式会社ジェイテクト Gear machining apparatus and gear machining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091283A (en) * 2010-10-27 2012-05-17 Okuma Corp Machine tool
JP2013006264A (en) * 2011-05-26 2013-01-10 Fanuc Ltd Oscillation controller for oscillating body having function of adjusting acceleration
JP2014079867A (en) * 2012-10-18 2014-05-08 Okuma Corp Method of suppressing chattering vibration and machine tool
JP2018062056A (en) * 2016-10-13 2018-04-19 株式会社ジェイテクト Gear machining apparatus and gear machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196646A1 (en) * 2021-03-18 2022-09-22 ファナック株式会社 Control device for machine tool

Also Published As

Publication number Publication date
JP7318315B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US11059115B2 (en) Gear machining apparatus and gear machining method
JP2994753B2 (en) Tool feed method in gear manufacturing process
TW201600220A (en) Control device for machine tool, and machine tool provided with said control device
US9662727B2 (en) Machine tool for threading processes
US9690283B2 (en) Machine tool for a threading process
JP4664029B2 (en) Creation method and machine for spiral bevel gears
JP7225715B2 (en) Gear processing method and gear processing device
JP7318315B2 (en) Gear processing device and gear processing method
JP2019123029A (en) Gear processing device and gear processing method
US20220402085A1 (en) Machining method
JP7036786B2 (en) Numerical control device, program and control method
JP7230996B2 (en) Gear processing device and gear processing method
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP2020069621A (en) Gear processing device and gear processing method
JP7073721B2 (en) Gear processing equipment and gear processing method
JP7395868B2 (en) Gear processing equipment and gear processing method
JP7439411B2 (en) Gear processing equipment and gear processing method
JP2021111026A (en) Machine tool machining control method
JP7400377B2 (en) Gear processing equipment and gear processing method
JP7456219B2 (en) Gear processing equipment and gear processing method
JP7347028B2 (en) Gear processing equipment and gear processing method
JP7375382B2 (en) Gear processing equipment and gear processing method
JP6866213B2 (en) Control method of feed shaft in machine tool and machine tool
JP2022092549A (en) Gear processing method and gear processing device
JP2023080047A (en) Machining method and machining apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150