JP2018180241A - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
JP2018180241A
JP2018180241A JP2017078788A JP2017078788A JP2018180241A JP 2018180241 A JP2018180241 A JP 2018180241A JP 2017078788 A JP2017078788 A JP 2017078788A JP 2017078788 A JP2017078788 A JP 2017078788A JP 2018180241 A JP2018180241 A JP 2018180241A
Authority
JP
Japan
Prior art keywords
electrode
conductive
liquid crystal
basic
basic electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017078788A
Other languages
English (en)
Other versions
JP6380597B1 (ja
Inventor
佳勲 陳
Jiaxun Chen
佳勲 陳
名鴻 黄
Ming-Hung Huang
名鴻 黄
将之 齋藤
Masayuki Saito
将之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2017078788A priority Critical patent/JP6380597B1/ja
Priority to TW107104103A priority patent/TWI746790B/zh
Application granted granted Critical
Publication of JP6380597B1 publication Critical patent/JP6380597B1/ja
Publication of JP2018180241A publication Critical patent/JP2018180241A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】隣り合う櫛歯状の電極を千鳥配置に配置した場合よりも透過光量が多く、FFS方式よりも応答時間を向上させた液晶表示素子を提供する。【解決手段】本発明の液晶表示素子1は、第1基板10と第2基板20の間に液晶層30を備え、第1基板10上に第1電極部40を備え、第1電極部40は、少なくとも1つの基本電極部41を備え、基本電極部41は、第1基本電極部42と第2基本電極部43を備え、第1基本電極部42は、基板面に沿った第1方向Xに延在し、第1方向Xに直交する第2方向Yに離間した一対の第1導電部42Aと、一対の第1導電部42Aのそれぞれの一端42AAに対して接続された一対の他端42BBを有し、第1導電部42Aの延在方向とは反対方向に屈曲部42BAを有するくの字形状の第2導電部42Bを備え、第2基本電極部43は、第1基本電極部42の開口部OPの近傍から第1方向Xに延在する第3導電部43Aを備える。【選択図】図3

Description

本発明は液晶表示素子に関する。
特許文献1では、各種の電子機器などに搭載される液晶表示素子において、横電界型として、IPS(In−Plane−Switching)やFFS(Fringe Field Switching)等の方式(モードともいう)があり、横電界型は、縦電界型に比べ、視野角の広さや開口率(1画素領域のうち表示に有効な領域の面積率)等の点で有利であると記載されている。
また、特許文献1では、FFSに関する先行技術例として、特開2008−52161号公報(特許文献2)等があることが示されているとともに、その特許文献2では、構成を複雑にすることなく開口率の高い明るい表示を実現するFFS方式の液晶表示素子について記載されていることが説明されている。
なお、IPS方式及びFFS方式は、上記のとおり、どちらも横電界型に分類されるが、IPS方式では、一般に共通電極と画素電極が同じ層に形成されて横電界が形成されるのに対し、FFS方式では、共通電極と画素電極が絶縁膜を挟んで別の層に設けられ、上層側になる電極がスリット状とされ、正確には横電界と縦電界の両成分を含む斜め電界になっており、その電界はフリンジ電界といわれている。
そして、特許文献1では、FFS方式の液晶表示素子の応答時間の遅さを解決するために、液晶表示素子の画素電極の構造を、隣り合う櫛歯状の電極部が千鳥配置に配置されるようにした液晶表示素子が開示されている。
特開2014−71309号公報 特開2008−52161号公報
しかしながら、隣り合う櫛歯状の電極部を千鳥配置に配置した画素電極の場合、従来のFFS方式に比べて液晶表示素子を透過する透過光量が低下するという問題がある。
本発明は、このような事情に鑑みてなされたものであり、隣り合う櫛歯状の電極を千鳥配置に配置した画素電極の場合よりも透過光量が多く、従来のFFS方式の液晶表示素子よりも応答時間を向上させた液晶表示素子を提供することを目的とする。
本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の液晶表示素子は、対向する第1基板と第2基板の間に液晶層を備え、前記第1基板上に第1電極部を備え、前記第1電極部は、少なくとも1つの基本電極部を備え、前記基本電極部は、第1基本電極部と第2基本電極部を備え、前記第1基本電極部は、基板面に沿った第1方向に延在し、第1方向に直交する第2方向に離間した一対の第1導電部と、前記一対の第1導電部のそれぞれの一端に対して接続された一対の他端を有し、前記第1導電部の延在方向とは反対方向に屈曲部を有するくの字形状の第2導電部と、を備え、前記第2基本電極部は、前記第1基本電極部の開口部の近傍から第1方向に延在する第3導電部を備えている。
(2)上記(1)の構成において、前記第1電極部は、第1方向に複数の前記基本電極部を備え、第1方向の任意の隣り合う前記基本電極部は、前記第2導電部の前記屈曲部と前記第3導電部の他端で接続されている。
(3)上記(1)又は(2)の構成において、前記第1電極部は、第2方向に複数の前記基本電極部を備え、第2方向の任意の隣り合う前記基本電極部は、前記一対の第1導電部のうち前記基本電極部の間に位置することになる前記第1導電部を共有している。
(4)上記(1)から(3)のいずれか1つの構成において、末端に配置された前記第1基本電極部が、前記第2導電部の前記屈曲部から第1方向とは反対方向に延在する第4導電部をさらに備えている。
(5)上記(1)から(4)のいずれか1つの構成において、末端に配置された前記第2基本電極部の第1方向に設けられ、前記第2導電部の前記屈曲部が、末端に配置された前記第2基本電極部の前記第3導電部の他端に接続された前記第1基本電極部をさらに備えている。
(6)上記(1)から(5)のいずれか1つの構成において、絶縁層を介して前記第1電極部よりも第1基板側に設けられたベタ電極の第2電極部を備え、前記第1電極部および前記第2電極部の一方が画素電極であり、もう一方が共通電極である。
(7)本発明の液晶表示素子は、対向する第1基板と第2基板の間に液晶層と、前記第1基板上に設けられ、少なくとも1つの第1基本電極部を有する第1電極部と、前記第1基板上に設けられ、少なくとも1つの第2基本電極部を有する第2電極部と、を備え、前記第1基本電極部は、基板面に沿った第1方向に延在し、第1方向に直交する第2方向に離間した一対の第1導電部と、前記一対の第1導電部のそれぞれの一端に対して接続された一対の他端を有し、第1方向とは反対方向に屈曲部を有するくの字形状の第2導電部と、を備え、前記第2基本電極部は、前記第基本電極部の開口部の近傍から第1方向に延在する第3導電部を備えている。
(8)上記(7)の構成において、前記第1電極部は、第2方向に複数の前記第1基本電極部を備え、前記第2電極部は、第2方向に前記第1基本電極部に対応する複数の前記第2基本電極部を備え、第2方向の任意の隣り合う前記第1基本電極部は、前記一対の第1導電部のうち前記第1基本電極部の間に位置することになる前記第1導電部を共有している。
(9)上記(7)又は(8)の構成において、前記第2基本電極部は、付加電極部を備え、前記付加電極部は、前記第3導電部の第1方向側に設けられ、第2方向に離間した一対の第4導電部と、前記一対の第4導電部のそれぞれの一端に対して接続された一対の他端を有し、第1方向とは反対方向に前記第3導電部の他端が接続される屈曲部を有するくの字形状の第5導電部と、を備え、前記付加電極部が、第2方向に複数ある場合、第2方向の任意の隣り合う前記付加電極部は、前記一対の第4導電部のうち前記付加電極部の間に位置することになる前記第4導電部を共有している。
(10)上記(9)の構成において、前記第1基本電極部は、前記第2導電部の前記屈曲部から第1方向とは反対方向に延在する第6導電部を備えている。
(11)上記(10)の構成において、前記第2基本電極部が間に位置するように前記第1基本電極部が第1方向に繰り返し設けられている。
(12)上記(8)から(11)のいずれか1つの構成において、前記第1電極部又は前記第2電極部の一方が画素電極であり、前記第1電極部又は前記第2電極部の残る他方が共通電極である。
本発明によれば、隣り合う櫛歯状の電極を千鳥配置に配置した画素電極の場合よりも透過光量が多く、従来のFFS方式の液晶表示素子よりも応答時間を向上させた液晶表示素子を提供することができる。
本発明に係る第1実施形態の液晶表示素子の一部断面図である。 本発明に係る第1実施形態の液晶表示素子の電極構造を説明するための平面図である。 本発明に係る第1実施形態の第1電極部を示す平面図である。 本発明に係る第1実施形態の第1電極部の接続導電部の変形例を示す平面図である。 図3に対応する第1電極部の平面図であり、シミュレーションの結果を示す図7から図12のグラフに用いられているパラメータ等を説明するための図である。 図7から図9の応答時間の定義を説明するための図である。 本発明に係る第1実施形態の応答時間に関するシミュレーションの結果を示す第1グラフである。 本発明に係る第1実施形態の応答時間に関するシミュレーションの結果を示す第2グラフである。 本発明に係る第1実施形態の応答時間に関するシミュレーションの結果を示す第3グラフである。 本発明に係る第1実施形態の透過率に関するシミュレーションの結果を示す第1グラフである。 本発明に係る第1実施形態の透過率に関するシミュレーションの結果を示す第2グラフである。 本発明に係る第1実施形態の透過率に関するシミュレーションの結果を示す第3グラフである。 比較用の従来のFFS方式の画素電極を示す図である。 比較用の隣り合う櫛歯状の電極部が千鳥配置に配置される画素電極を示す図である。 本発明に係る第1実施形態の第1電極部と第2電極部の間に電位差を発生させ、フリンジ電界を発生させたときの液晶分子の状態を説明するための図である。 本発明に係る第2実施形態の液晶表示素子の一部断面図である。 本発明に係る第2実施形態の液晶表示素子の電極構造を説明するための平面図である。 本発明に係る第2実施形態の第1電極部を複数の画素領域ごとの単位又は全画素領域の単位で設けた場合を模式的に示す平面図である。 本発明に係る第3実施形態の液晶表示素子の電極構造を説明するための平面図である。
以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態)について詳細に説明する。
なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。
(第1実施形態)
図1は本発明に係る第1実施形態の液晶表示素子1の一部断面図であり、図2は本発明に係る第1実施形態の液晶表示素子1の電極構造を説明するための平面図である。
なお、図1及び図2は液晶表示素子1の画素のRGBの1つの部分に対応するサブ画素に対応する図になっており、図1は図2のA−A線に対応する位置の液晶表示素子1の断面図になっている。
また、図2では、枠線で第2電極部12の範囲を示すに留め、構成がわかるように、第2電極部12の下側に位置する部分も図示するようにしている。
そして、液晶表示素子1は、面内に図1及び図2を参照して後ほど説明する電極構造が縦方向及び横方向に多数設けられたものになっており、縦方向又は横方向に並んで形成される3つの電極構造が1つの画素に対応するものになっている。
図1に示すように、液晶表示素子1は、液晶表示装置で用いられるときに、バックライト側に位置することになる第1基板10と、第1基板10と対向して配置される第2基板20と、第1基板10と第2基板20の間に設けられる液晶層30と、を備えている。
第1基板10及び第2基板20は、バックライトからの光を透過することができる材料で形成されており、例えば、第1基板10及び第2基板20にはガラス基板を用いることができる。
また、液晶表示素子1は、液晶層30から離れた側の第1基板10上に設けられた偏光子となる第1偏光板11と、液晶層30から離れた側の第2基板20上に設けられた検光子となる第2偏光板21と、を備えている。
そして、第1編光板11は、透過軸(以下、第1透過軸ともいう。)が第1基板10及び第2基板20の平面に沿った図1及び図2に示すX軸(以下、第1方向Xともいう。)に沿って配置されている。
また、第2編光板21は、透過軸(以下、第2透過軸ともいう。)がX軸に直交する第1基板10及び第2基板20の平面に沿ったY軸(以下、第2方向Yともいう。)に沿って配置されている。
つまり、第1編光板11と第2編光板21はクロスニコルに配置されている。
ただし、第1編光板11と第2編光板21がクロスニコルに配置になっていればよく、第1編光板11の第1透過軸が第2方向Yに沿って設けられるように第1偏光板11が設けられ、第2編光板21の第2透過軸が第1方向Xに沿って設けられるように第2編光板21が設けられていてもよい。
さらに、液晶表示素子1は、液晶層30側の第1基板10上に設けられた液晶層の液晶分子の配向方向を制御するための電極構造等(第1電極部40、第2電極部12、データ線13、薄膜トランジスタ14(図2参照)、ゲート線15(図2参照)及び共通電極線16(図2参照)等)を備えている。
具体的には、図1に示すように、液晶表示素子1は、第1基板10上に形成されたデータ線13、薄膜トランジスタ14(図2参照)、ゲート線15(図2参照)及び共通電極線16(図2参照)等の層と、その上に形成された保護層及び平坦化層として機能する絶縁層17と、絶縁層17上に形成されたベタ電極の第2電極部12と、第2電極部12を覆うように形成された絶縁層18と、絶縁層18上に形成された第1電極部40と、を備えている。
本実施形態では、第1電極部40が画素電極であり、絶縁層18を介して第1電極部40と絶縁するように、第1電極部40よりも第1基板10側に設けられた第2電極部12が共通電極である場合になっている。
ただし、後ほど第2実施形態として説明するように第1電極部40を共通電極として第2電極部12を画素電極とすることも可能である。
なお、本実施形態では、サブ画素に対応する領域にそれぞれベタ電極の第2電極部12を設けた場合について示しているが、第2電極部12は共通電極であるため、1画素領域ごとの単位、複数の画素領域の単位及び全画素領域の単位(この場合、第2電極部12は1つのベタ電極となる。)といったより広い範囲に形成されたベタ電極であってもよい。
このため、図2に示すように、画素電極となる第1電極部40はビアホールVHを通じて薄膜トランジスタ14のドレイン電極に電気的に接続されるとともに、ゲート線15が薄膜トランジスタ14のゲート電極に電気的に接続され、データ線13が薄膜トランジスタ14のソース電極に電気的に接続されている。
一方、共通電極となる第2電極部12は共通電極線16に電気的に接続されている。
なお、液晶表示素子1が液晶表示装置に用いられるときに、ゲート線15は液晶表示装置のゲートドライバに接続され、データ線13はデータドライバに接続される。
第1電極部40及び第2電極部12は、導電性で、かつ、光を透過する材料で形成されている。
例えば、第1電極部40及び第2電極部12を形成する材料には、ITO(酸化インジウムスズ)やIZO(酸化インジウム酸化亜鉛)等を好適に用いることができる。
また、図1に示すように、液晶表示素子1は、絶縁層18上に第1電極部40を覆うように設けられた第1配向膜19を備えており、この第1配向膜19の液晶層30側の表面には、液晶層30の液晶の配向方向が所定の方向に向くようにラビング処理が施されている。
なお、液晶層30の液晶としては、正の誘電率異方性を有する液晶組成物(以下、単にポジ型液晶ともいう。)を用いてもよく、負の誘電率異方性を有する液晶組成物(以下、単にネガ型液晶ともいう。)を用いてもよい。
例えば、液晶層30の液晶がポジ型液晶である場合、第1電極部40と第2電極部12の間に電位差が発生していない状態(フリンジ電界が発生していない状態)のときに、後述する第1電極部40のパターンに合わせて第1方向Xに沿って液晶分子が配向するように、ラビング処理が施される。
なお、本実施形態では、ポジ型液晶を液晶層30に用いており、図1はフリンジ電界を発生させていない状態を示しているため、液晶分子を正面から見た円形状の分子形状に図示しているが、フリンジ電界を発生させると、液晶分子がX軸とY軸で規定される平面内で回転し、Y軸に沿った棒状の形状に見えるようになる。
逆に、液晶層30の液晶がネガ型液晶である場合、フリンジ電界が発生していない状態のときに、後述する第1電極部40のパターンに合わせて第2方向Yに沿って液晶分子が配向するように、ラビング処理が施される。
一方、液晶表示素子1は、液晶層30側の第2基板20上に直接設けられた色層22(カラー層)及びブラックマトリックス23と、色層22及びブラックマトリックス23を覆うように設けられた平坦化膜24と、平坦化膜24上に設けられた第2配向膜25と、を備えている。
色層22は、RGBに対応したカラー層であり、例えば、図1及び図2に示すサブ画素に対応する部分がRGBのRに対応する場合には色層22は赤とされ、Gに対応する場合には色層22は緑とされ、Bに対応する場合には青とされる。
なお、上述したように、液晶表示素子1には、多数のサブ画素に対応する構成が設けられているので、色層22は、それぞれのサブ画素に対応するように第2基板20上にマトリックス状に設けられている。
ブラックマトリックス23は、サブ画素間のクロストークを低減するために、各サブ画素の外周に対応して設けられる格子状の枠であり、遮光性の材料で形成されている。
そして、第2配向膜25は、第1配向膜19と同様に、液晶層30側の表面に液晶層30の液晶の配向方向が所定の方向に向くようにラビング処理が施されている。
この第2配向膜25のラビング処理も第1配向膜19のラビング処理と同様であり、液晶層30の液晶がポジ型液晶である場合、フリンジ電界が発生していない状態のときに、後述する第1電極部40のパターンに合わせて第1方向Xに沿って液晶分子が配向するように、ラビング処理が施される。
逆に、液晶層30の液晶がネガ型液晶である場合には、フリンジ電界が発生していない状態のときに、後述する第1電極部40のパターンに合わせて第2方向Yに沿って液晶分子が配向するように、ラビング処理が施される。
次に、第1電極部40の平面図である図3を参照しながら、第1電極部40についてより詳細に説明する。
なお、図3に示すX軸(第1方向X)、Y軸(第2方向Y)及びZ軸は、図1及び図2に示されるものと同じである。
第1電極部40は、第1基本電極部42と第2基本電極部43を備えた基本となる電極パターンである基本電極部41を備えている。
第1基本電極部42は、第1基板10(図1参照)の基板面に沿った第1方向Xに延在し、第1方向Xに直交する第2方向Yに離間した一対の第1導電部42Aを備えている。
また、第1基本電極部42は、一対の第1導電部42Aのそれぞれの一端42AAに対して接続された一対の他端42BBを有し、第1導電部42Aの延在方向とは反対方向にくの字形状の一端となる屈曲部42BAを有するくの字形状の第2導電部42Bを備えている。
一方、第2基本電極部43は、第1基本電極部42の開き側となる開口部OPの近傍から第1方向Xに延在する第3導電部43Aを備えている。
なお、図3では、第3導電部43Aは、第3導電部43Aの一端43AAが開口部OPよりも第1方向Xに、若干、離間するように設けられているが、第3導電部43Aは、第3導電部43Aの一端43AAが開口部OPよりも、若干、開口部OP内(第1基本電極部42寄り)に位置するように設けられていてもよい。
本実施形態では、第1電極部40が、第1方向Xに複数の基本電極部41を備えるとともに、第2方向Yにも複数の基本電極部41を備えるものになっている。
具体的には、第1方向X及び第2方向Yに、それぞれ2つの基本電極部41が並ぶように設けられている。
そして、第1方向Xの任意の隣り合う基本電極部41同士について見れば、基本電極部41は、第2導電部42Bの屈曲部42BAと第3導電部43Aの他端43ABで接続されている(点線の丸囲み部分S参照)。
また、第2方向Yの任意の隣り合う基本電極部41同士について見れば、基本電極部41は、一対の第1導電部42Aのうち基本電極部41の間に位置することになる第1導電部42Aを共有している(斜めハッチング部分参照)。
さらに、本実施形態では、末端に配置された第1基本電極部42(図左側の基本電極部41参照)が、第2導電部42Bの屈曲部42BAから第1方向Xとは反対方向に延在する第4導電部44をさらに備えている。
加えて、本実施形態では、末端に配置された第2基本電極部43(図右側の基本電極部41参照)の第1方向Xに設けられ、第2導電部42Bの屈曲部42BAが末端に配置された第2基本電極部43(図右側の基本電極部41参照)の第3導電部43Aの他端43ABに接続された第1基本電極部42(二点鎖線の囲み部分参照)をさらに備えている。
そして、第1電極部40は、外周を形成する矩形状の接続導電部45を備え、その接続導電部45が第1導電部42A、第2導電部42B、第3導電部43A及び第4導電部44で形成される導電パターンを電気的に接続している。
また、接続導電部45は、第1方向Xとは反対側に位置する一端側となる第1辺45Aから第1方向Xとは反対側に延在する接続部45Bを備えている。
そして、この接続部45Bが、先に図2を参照して説明した通り、ビアホールVHを通じて薄膜トランジスタ14のドレイン電極に電気的に接続される。
なお、第1電極部40は、少なくとも1つの基本電極部41を有していればよく、基本電極部41を第1方向X及び第2方向Yにいくつ設けるのかは、サブ画素に求められる面積に応じて決めればよい。
また、図3では、接続導電部45が矩形状の枠を形成している場合について示しているが、接続導電部45は、第1導電部42A、第2導電部42B、第3導電部43A及び第4導電部44で形成される導電パターンを電気的に接続できればよいため、図4(a)及び図4(b)に示す変形例のように、枠の形状になっていなくてもよい。
さらに、接続導電部45の接続部45Bは、薄膜トランジスタ14のドレイン電極の位置との関係で設けられるものであるから、必ずしも、一端側となる第1辺45Aから第1方向Xとは反対側に延在するように設けられるものではなく、薄膜トランジスタ14のドレイン電極の位置に対応して設けられていればよい(図4(b)参照)。
次に、上記のような第1電極部40に関してシミュレーションの結果を示す図7から図12等を説明しながら第1電極部40の各部の寸法等についてより詳細に説明する。
まず、最初に、図7から図12に記載のL1、L2、L3、θ、応答時間及び透過率について、簡単な説明を行ってから、第1電極部40の各部の寸法等についての説明を行う。
図5は図3に対応する第1電極部40の平面図であり、シミュレーションの結果を示す図7から図12のグラフに用いられているパラメータ等を説明するための図である。
図7から図12のグラフに記載のL1は、図5に示す第3導電部43A及び第4導電部44の第1方向Xに沿った長さを意味し、図7から図12のグラフに記載のL2は、第1導電部42Aの第1方向Xに沿った長さを意味する。
また、図7から図12のグラフに記載のL3は、図5に示す第2導電部42Bの一端側となる屈曲部42BAから第1方向X側に位置する他端42BBまでの長さ、つまり、くの字形状の第2導電部42Bの対をなす一方の辺及び他方の辺の長さを意味する。
なお、第1導電部42A、第2導電部42Bの対をなす一方の辺及び他方の辺、第3導電部43A及び第4導電部44の幅は、いずれも2.50μmとしている。
ただし、第1導電部42A、第2導電部42Bの対をなす一方の辺及び他方の辺、第3導電部43A及び第4導電部44の幅が太くなると、第1電極部40の導電パターンが設けられていない部分の割合が少なくなり、透過率が低下するおそれがあることから、幅は1.00μmから4.00μm程度が好ましい。
さらに、図7から図12のグラフに記載のθは、第2導電部42Bのくの字形状の開き角度の半分の角度を意味している。
つまり、θ=30度である場合、くの字形状の開き角度が60度になっていることを意味している。
図6は、図7から図9の応答時間の定義を説明するための図であり、縦軸は液晶表示素子1を透過する光量(正規化光量)を表し、横軸は経過時間を表している。
なお、正規化光量とは、液晶表示素子1を透過する光の光量が安定した状態(定常時光量QLのライン参照)を100%とするように正規化した光量のことである。
図6に示す液晶表示素子1を透過する光量の変化は、フリンジ電界の印加を開始して、液晶表示素子1を透過する光量が安定した状態(定常時光量QLのライン参照)に到達した後、フリンジ電界の印加を停止し、透過する光量がなくなるまでの状態を示したものになっている。
そして、一般的に応答時間は、液晶表示素子1を透過する光量が安定した状態(定常時光量QL)を基準に定常時光量QLの10%から90%の間の変化に要する時間として評価されることが多いため、図7から図9の応答時間もそれに従ったものとしている。
具体的には、図6に示すように、電界印加時の応答時間T1は、フリンジ電界の印加を開始して、液晶表示素子1を透過する光量が定常時光量QLの10%(定常時光量QLの10%ライン参照)に到達したときを動作開始点とし、定常時光量QLの90%(定常時光量QLの90%ライン参照)に到達したときを動作終了点として、動作開始点から動作終了点までの経過時間としている。
また、電界停止時の応答時間T2は、フリンジ電界の印加を停止して、液晶表示素子1を透過する光量が定常時光量QLの90%(定常時光量QLの90%ライン参照)に到達したときを動作開始点とし、定常時光量QLの10%(定常時光量QLの10%ライン参照)に到達したときを動作終了点として、動作開始点から動作終了点までの経過時間としている。
そして、図6に示すように、電界印加時の応答時間T1と電界停止時の応答時間T2は異なることから、図7から図9に記載の応答時間は、この応答時間T1と応答時間T2を合わせた応答時間(=応答時間T1+応答時間T2)としている。
一方、図10から図12の透過率は、液晶表示素子1から出射する光の出射光強度が液晶表示素子1に入射する光の入射光強度に対して何%であるのかを表している。
次に、シミュレーションの結果を示す図7から図9を参照しながら、応答時間と第1電極部40の各部の寸法等との関係について説明する。
図7は応答時間に関するシミュレーションの結果を示す第1グラフであり、L1及びL3を8.00μmに固定し、縦軸をL2/L1比とし、横軸をθとして応答時間を示したものになっている。
なお、L1=8.00μであることから縦軸はL2が変化することによるL2/L1比を示したものになっており、縦軸の一番下は0.75であり、一番上は1.25である。
図7に示すように、L2/L1比の変化にかかわらず、どのL2/L1比の位置でも、θが小さくなると応答時間が短くなる傾向があることがわかる。
例えば、図13に比較用の従来のFFS方式の画素電極を示しているが、この画素電極において、くの字形状の各導電部100の幅W1を2.50μmとするとともに、導電部100間の離間距離D1を4.00μmとした場合、応答時間は26.00ms以上である。
そして、図7に示すように、L2/L1比が0.75から1.25の範囲で、θが60度以下のときには、応答時間がほぼ20.50ms以内に収まっていることから、比較用の従来のFFS方式の画素電極の場合に比べ、20%以上応答時間が改善していることがわかる。
図8は応答時間に関するシミュレーションの結果を示す第2グラフであり、L2/L1比を1.00に固定し、縦軸をL1及びL3の長さとし、横軸をθとして応答時間を示したものになっている。
なお、L2/L1比が1.00であるので、縦軸はL1、L2及びL3の長さを示しているものになっている。
図8に示すように、L1、L2及びL3の長さの変化にかかわらず、どのL1、L2及びL3の長さの位置でも、θが小さくなると応答時間が短くなる傾向があることがわかる。
また、θにかかわらず、どのθの位置でも、L1、L2及びL3の長さが小さくなると、応答時間が短くなる傾向があることが伺える。
そして、L1、L2及びL3の長さが10.00μm以下の範囲で、θが60度以下のときには、応答時間がほぼ20.00ms以内に収まっていることから、比較用の従来のFFS方式の画素電極の場合に比べ、20%以上応答時間が改善していることがわかる。
図9は応答時間に関するシミュレーションの結果を示す第3グラフであり、θを45度に固定し、縦軸をL2/L1比とし、横軸をL1及びL3の長さとして応答時間を示したものになっている。
なお、縦軸の一番下は0.75であり、一番上は1.25である。
図9に示すように、θが45度である場合、L2/L1比が0.75から1.25の範囲で、L1及びL3の長さが6.00μmから10.00μmの範囲のときには、応答時間がほぼ19.75ms以内に収まっていることから、比較用の従来のFFS方式の画素電極の場合に比べ、24%以上応答時間が改善していることがわかる。
そして、θが小さくなると応答時間が短くなる傾向があり、また、L1、L2及びL3の長さが小さくなると、応答時間が短くなる傾向があることが伺えることは、先に見たとおりである。
したがって、L2/L1比が1.25以下、L1及びL3の長さが10.00μm以下及びθが45度以下であれば、比較用の従来のFFS方式の画素電極の場合に比べ、24%以上の応答時間の改善が得られることがわかる。
これらのことから、応答時間の面で見ると、L1、L2及びL3はそれぞれ10.00μm以下が好ましく、9.50μm以下がより好ましく、さらに9.00μm以下が好ましい。
また、応答時間の面で見ると、L2/L1比は、1.25以下が好ましく、1.20以下がより好ましく、さらに1.10以下が好ましい。
さらに、応答時間の面で見ると、θは、60度以下が好ましく、45度以下がより好ましく、さらに35度以下が好ましい。
次に、シミュレーションの結果を示す図10から図12を参照しながら、透過率と第1電極部40の各部の寸法等との関係について説明する。
図10は透過率に関するシミュレーションの結果を示す第1グラフであり、L1及びL3を8.00μmに固定し、縦軸をL2/L1比とし、横軸をθとして透過率を示したものになっている。
なお、L1=8.00μmであることから縦軸はL2が変化することによるL2/L1比を示したものになっており、縦軸の一番下は0.75であり、一番上は1.25である。
図10に示すように、L2/L1比の変化にかかわらず、どのL2/L1比の位置でも、θが小さくなると透過率が高くなる傾向があることがわかる。
例えば、図14に比較用の隣り合う櫛歯状の電極部が千鳥配置に配置された画素電極(以下、単に千鳥配置の画素電極ともいう。)を示しているが、この画素電極において、各導電部110の幅W2を2.50μmとするとともに、導電部110間の離間距離D2を4.00μmとした場合、透過率は20%以下である。
なお、図14に示す千鳥配置の画素電極は、特許文献1に開示されるものと類似である。
そして、図10に示すように、L2/L1比が0.75から1.25の範囲で、θが60度以下のときには、透過率がほぼ40%以上になっていることから、比較用の千鳥配置の画素電極の場合に比べ、倍以上透過率が改善していることがわかる。
図11は透過率に関するシミュレーションの結果を示す第2グラフであり、L2/L1比を1.00に固定し、縦軸をL1及びL3の長さとし、横軸をθとして透過率を示したものになっている。
なお、L2/L1比が1.00であるので、縦軸はL1、L2及びL3の長さを示しているものになっている。
図11に示すように、L1、L2及びL3の長さが長く、θが小さいほうが、透過率は高くなる傾向であることがわかる。
また、図11に示されるL1、L2及びL3の長さが6.00μmから10.00μmで、θが30度から60度の範囲では、透過率がほぼ40%以上になっていることから、比較用の千鳥配置の画素電極の場合に比べ、倍以上透過率が改善していることがわかる。
図12は透過率に関するシミュレーションの結果を示す第3グラフであり、θを45度に固定し、縦軸をL2/L1比とし、横軸をL1及びL3の長さとして透過率を示したものになっている。
なお、縦軸の一番下は0.75であり、一番上は1.25である。
図12を見ると、θが45度の場合、L1及びL3の長さが8.00μmから9.50μmの範囲で、L2/L1比が1.00から1.20の範囲に透過率の高くなる範囲があることがわかる。
ただし、図11に示される透過率の傾向と合わせて考えると、θが小さくなると、この透過率の高くなる範囲がL1、L2及びL3の長さが長くなる方向にシフトするものと考えられる。
また、図12を見れば、L1及びL3が6.00μmと短く、かつ、L2/L1比が0.75と小さく、L2が4.50μm(=6.00μm×0.75)まで短くなっても、依然として、透過率が40%を超えていることが理解でき、比較用の千鳥配置の画素電極の場合に比べ、倍以上透過率が改善していることがわかる。
これらのことから、透過率の面で見ると、L1、L2及びL3はそれぞれ6.00μm以上が好ましく、7.00μm以上がより好ましく、さらに8.00μm以上が好ましい。
ただし、図12の傾向からすると、L1及びL3が15.00μm程度になると、L1及びL3が6.00μmである場合と同様の状態になることが予想されることから、L1及びL3は15.00μm以下にするのがよいと考えられる。
また、図12の傾向からすると、L2/L1比が1.40を超えると、L2/L1比が0.75以下である場合と同様の状態になることが予想されることから、L2/L1比は1.40以下にするのがよいと考えられる。
なお、図12のL2/L1比は、L1の長さを基準にL2の長さを変化させた場合の比であり、先に図12の傾向から説明したように、L2/L1比の範囲が0.75から1.40であれば良好な結果が得られると考えられる。
そして、L2/L1比が0.75である場合、L2はL1及びL3の長さより短く、L2/L1比が1.40の場合、L2はL1及びL3の長さより長くなるが、この場合でも良好な結果が得られることを考えれば、L2は、少なくともL1及びL3で良好である長さと同じの範囲にしておけば、問題ないといえる。
したがって、L2も15.00μm以下にしておけば、十分と考えられる。
一方、θに関しては、応答時間のときと同様の傾向となっていることから、透過率の面で見ても、θは、60度以下が好ましく、45度以下がより好ましく、さらに35度以下が好ましい。
以上のような第1電極部40の各部の寸法等と応答時間及び透過率との関係を考慮すると、L1、L2及びL3のそれぞれ長さの上限は、応答時間の観点で、10.00μm以下が好ましく、9.50μm以下がより好ましく、さらに9.00μm以下が好ましいと考えられる。
一方、L1、L2及びL3のそれぞれ長さの下限は、透過率の観点で、6.00μm以上が好ましく、7.00μm以上がより好ましく、さらに8.00μm以上が好ましいと考えられる。
また、θに関しては、応答時間及び透過率の観点の双方で同じ傾向となっており、60度以下が好ましく、45度以下がより好ましく、さらに35度以下が好ましいと考えられる。
ただし、θが小さくなりすぎると、一対の第1導電部42A間の離間距離がなくなることを考えれば、下限としては、20度以上としておくのが好ましいと考えられる。
次に、フリンジ電界を印加したときに、液晶層30の液晶分子がどのように回転するのか等を踏まえて応答時間と透過率に関する説明を行う。
図15は、第1電極部40と第2電極部12の間に電位差を発生させ、フリンジ電界を発生させたときの液晶分子の状態を説明するための図である。
図15では、フリンジ電界を発生させたときの電界の状態を細い矢印f1及びf2で示しており、フリンジ電界を発生させたときに液晶層30の液晶分子がX軸及びY軸で規定される平面に沿って回転する方向を太い矢印Rで示している。
なお、矢印f1、f2及び矢印Rは一部だけに図示しているが他の部分も同様となる。
図15に示すように、第2方向Yの一対の第1導電部42Aとそれら一対の第1導電部42Aに繋がるくの字形状の第2導電部42Bで囲まれる領域では、第2導電部42Bの屈曲部42BAを通る第1方向Xに沿った直線(点線L1参照)を基準に、第2方向Y側の領域と第2方向Yと反対側の領域の液晶分子は、太い矢印Rで示すように、どちらも第2導電部42Bの屈曲部42BAを通る第1方向Xに沿った直線(点線L1参照)側に回転するように動く。
このため、相対流動方向が同じ方向となるため、液晶分子間での摩擦抵抗が小さくなっている。
また、第2方向Yの一対の第3導電部43A側について見ると、第2方向Yの一対の第3導電部43Aと、第3導電部43Aの第1方向X側に位置し、第2方向Yに隣接する第2導電部42Bの一方の辺42B1と第2導電部42Bの他方の辺42B2によって、囲まれる領域では、第2方向Y側(下側)の領域と、第2方向Yと反対側(上側)の領域で液晶分子は、やはり、太い矢印Rで示すように、相対流動方向が同じ方向となるため、液晶分子間での摩擦抵抗が小さくなっている。
このように、本実施形態では、主に液晶分子が回転する部分ごとに見ると、液晶分子間での摩擦抵抗が小さくなっているため、スムーズに液晶分子が回転でき、応答時間が短くなる。
一方、矢印f2で示す電界は、第2方向Yの一対の第1導電部42Aで発生する電界とそれら一対の第1導電部42Aに繋がるくの字形状の第2導電部42Bで発生する電界との合成によって方向が決まっており、図15に示すように、より大きく液晶分子を回転させる方向に向いている。
このため、液晶分子を大きく回転させることができるため、透過率を高くすることが可能となる。
なお、このようなくの字形状の第2導電部42Bの作用によって、液晶分子の指向性の一致度もよくすることができ、より一層透過率を高くすることが可能である。
また、第2方向Yの一対の第3導電部43A側の矢印f2で示す電界も、第2方向Yの一対の第3導電部43Aで発生する電界と、それらに繋がっている第3導電部43Aの第1方向X側に位置し、第2方向Yに隣接する第2導電部42Bの一方の辺42B1と第2導電部42Bの他方の辺42B2で発生する電界との合成によって方向が決まっており、図15に示すように、より大きく液晶分子を回転させる方向に向いている。
このため、液晶分子を大きく回転させることができるため、透過率を高くすることが可能となる。
また、第2方向Yに隣接する第2導電部42Bの一方の辺42B1と第2導電部42Bの他方の辺42B2は、第2方向Yの一対の第3導電部43Aを繋ぐ第2導電部42Bと向きが逆方向の逆くの字形状の導電部を構成するものになっており、このような逆くの字形状の導電部の作用によって、液晶分子の指向性の一致度もよくすることができ、より一層透過率を高くすることが可能である。
例えば、第2方向Yの一対の第1導電部42Aのそれぞれの一端42AAをくの字形状の第2導電部42Bではなく、第2方向Yの沿った直線で繋げた場合、矢印f2で示す電界の方向は、第1導電部42Aに対する角度δが45度程度となる。
しかし、本実施形態のように、第2方向Yの一対の第1導電部42Aのそれぞれの一端42AAをくの字形状の第2導電部42Bで繋ぐようにすると、矢印f2で示す電界の方向が45度よりも大きな角度δを有するようにできるため、大きく液晶分子を回転させることができ、高い透過率を得ることができるようになる。
なお、このことは、第2方向Yの一対の第3導電部43Aでの矢印f2で示す電界においても同じである。
そして、この角度δは、くの字形状の第2導電部42Bの開き角度が小さいほど大きくできるため、先に見たシミュレーションのようにθが小さいほど透過率を高くできるようになる。
このように、本実施形態の第1電極部40であれば、千鳥配置の画素電極の場合と同様にFFS方式の画素電極よりも短い応答時間が得られるとともに、千鳥配置の画素電極よりも高い透過率(倍以上の透過率)を得ることができる。
(第2実施形態)
第1実施形態では、第1電極部40が画素電極であり、第2電極部12が共通電極である場合について説明したが、第2実施形態では、第1電極部40が共通電極であり、第2電極部12が画素電極である場合について説明する。
第2実施形態においても基本的な構成は第1実施形態と同様であるため、第1実施形態と同様である部分については説明を省略し、主に異なる部分について説明を行う。
図16は本発明に係る第2実施形態の液晶表示素子1の一部断面図であり、図1に対応する図である。
図17は本発明に係る第2実施形態の液晶表示素子1の電極構造を説明するための平面図であり、図2に対応する図である。
なお、図1及び図2と同様に、図16及び図17は液晶表示素子1の画素のRGBの1つの部分に対応するサブ画素に対応する図になっており、図16は図17のA−A線に対応する位置の液晶表示素子1の断面図になっている。
第2実施形態では、図16に示すように、第1基板10に近い側に位置する第2電極部12が画素電極とされているため、図17に示すように、第2電極部12が薄膜トランジスタ14のドレイン電極に電気的に接続されている。
そして、この場合、ビアホールVH(図2参照)を設けなくても、第2電極部12が薄膜トランジスタ14のドレイン電極に電気的に接続することが可能であるため、ビアホールVHが省略されている。
一方、第2実施形態では、図17に示すように、第1電極部40が共通電極とされ、共通電極線16に電気的に接続されるが、この場合もビアホールVHを設けることなく、電気的な接続が行える位置に共通電極線16を設ければよいため、ビアホールVHが不要である。
そして、第2実施形態のように、第1電極部40を共通電極とし、第2電極部12を画素電極とした場合でも、発生するフリンジ電界の状態は第1実施形態と同様であるため、第1実施形態と同様の効果を奏することができる。
ところで、第1実施形態でも述べたように、共通電極はサブ画素ごとに設ける必要はない。
したがって、第1電極部40を1画素領域ごとの単位や、図18に示すように、複数の画素領域ごとの単位又は全画素領域の単位(この場合、第1電極部40は1つとなる。)で設けるようにしてもよい。
以上のように、第1電極部40と第2電極部12が第1基板10から液晶層30側に向かうZ軸方向、つまり、液晶表示素子1の厚み方向(以下、厚み方向Zともいう。)で離間して積層されている構成においては、第1電極部40および第2電極部の一方が画素電極であり、もう一方が共通電極であればよい。
(第3実施形態)
上記第1実施形態及び第2実施形態では、厚み方向Zに第1電極部40と第2電極部12が離間している場合について説明した。
しかし、第1電極部40と第2電極部12は厚み方向Zに離間させることに限定される必要はなく、第1方向Xに離間させるようにしてもよい。
したがって、第3実施形態では、第1電極部40と第2電極部12を第1方向Xに離間させるようにした場合について説明を行う。
なお、第3実施形態でも、全体的な構成は、第1実施形態及び第2実施形態と同様であるため、第1実施形態及び第2実施形態と同様の点に関しては説明を省略し、主に異なる点についてのみ説明を行う。
第1実施形態及び第2実施形態では、図1及び図16に示したように、絶縁層17上に第2電極部12が設けられ、その第2電極部12を覆うように絶縁層18が設けられ、その絶縁層18上に第1電極部40が設けられ、さらに、第1電極部40を覆うように第1配向膜19が設けられていた。
しかし、第3実施形態では、上述のように、第1電極部40及び第2電極部12を第1方向Xに離間させて配置するため、厚み方向Zに離間させて第1電極部40と第2電極部12を配置する必要はない。
したがって、第3実施形態では、図1及び図16に示した絶縁層17上に第1電極部40及び第2電極部12が設けられるとともに、それら第1電極部40及び第2電極部12を覆うように第1配向膜19が設けられ、絶縁層18が省略された構成になる点が、厚み方向Zで見たときの違いとなる。
そして、第1電極部40及び第2電極部12を第1方向Xに並べるように配置すると、FFS方式の横電界(フリンジ電界)ではなく、IPS方式の横電界となる。
しかし、第2電極部12をベタ電極とするのではなく、第1電極部40と第2電極部12とで、少なくとも第1実施形態及び第2実施形態の基本電極部41と類似の導電パターンを形成するようにすれば、液晶層30の液晶分子にかかる電界の状態を第1実施形態及び第2実施形態と類似するものとできるため、第1実施形態及び第2実施形態と同様の効果を奏することができる。
以下、具体的に第1電極部40及び第2電極部12について説明する。
図19は、本発明に係る第3実施形態の液晶表示素子1の電極構造を説明するための平面図である。
図19に示すように、第1電極部40は、少なくとも1つの第1基本電極部42を有しており、第2電極部12は、少なくとも1つの第2基本電極部43を有している。
そして、第1基本電極部42は、第1実施形態及び第2実施形態と同様に、第1基板10(図1及び図16参照)の基板面に沿った第1方向Xに延在し、第1方向Xに直交する第2方向Yに離間した一対の第1導電部42Aを備えている。
また、第1基本電極部42は、第1実施形態及び第2実施形態と同様に、一対の第1導電部42Aのそれぞれの一端42AAに対して接続された一対の他端42BBを有し、第1導電部42Aの延在方向とは反対方向にくの字形状の一端となる屈曲部42BAを有するくの字形状の第2導電部42Bを備えている。
一方、第2基本電極部43は、第1実施形態及び第2実施形態と同様に、第1基本電極部42の開き側となる開口部OPの近傍から第1方向Xに延在する第3導電部43Aを備えている。
なお、図19では、第3導電部43Aは、第3導電部43Aの一端43AAが開口部OPよりも、若干、開口部OP内(第1基本電極部42寄り)に位置するように設けられているが、この点に関しては、第1実施形態で述べたように、第3導電部43Aは、第3導電部43Aの一端43AAが開口部OPよりも第1方向Xに、若干、離間するように設けられていてもよい。
また、本実施形態では、第1電極部40は、第2方向Yに複数の第1基本電極部42(具体的には3つの第1基本電極部42)を備えており、第2方向Yの任意の隣り合う第1基本電極部42は、一対の第1導電部42Aのうち第1基本電極部42の間に位置することになる第1導電部42Aを共有しており(斜めハッチング部分参照)、この点も第1実施形態及び第2実施形態と同様である。
一方、第2電極部12について見ても、本実施形態では、第2電極部12は、第2方向Yに第1基本電極部42に対応する複数の第2基本電極部43(具体的には3つの第2基本電極部43の第3導電部43A)を備えており、第1実施形態及び第2実施形態の第2基本電極部43の第3導電部43Aと同様の構成になっている。
さらに、第2基本電極部43は、第1基本電極部42と同様の構成の付加電極部43ADを備えている。
具体的には、付加電極部43ADは、第3導電部43Aの第1方向X側に設けられた第1基本電極部42の第1導電部42Aと同様の第2方向Yに離間した一対の第4導電部43Bと、一対の第4導電部43Bのそれぞれの一端43BAに対して接続された一対の他端43CBを有し、第1方向Xとは反対方向に第3導電部43Aの他端43ABが接続されるくの字形状の一端となる屈曲部43CAを有する第1基本電極部42の第2導電部42Bと同様のくの字形状の第5導電部43Cと、を備えている。
そして、付加電極部43ADが、第2方向Yに複数ある場合(図19は3つある場合である。)、第1基本電極部42と同様に、第2方向Yの任意の隣り合う付加電極部43ADは、一対の第4導電部43Bのうち付加電極部43ADの間に位置することになる第4導電部43Bを共有している(クロスハッチング部参照)。
一方、第1電極部40について見ると、本実施形態では、第1基本電極部42が第2導電部42Bの屈曲部42BAから第1方向Xとは反対方向に延在する第1実施形態及び第2実施形態の第4導電部44と同様の第6導電部42Cを備えている。
そして、本実施形態では、第2基本電極部43が間に位置するように第1基本電極部42が第1方向Xに繰り返されるように設けられている。
なお、図19では、第1基本電極部42が1回繰り返されている場合を示しているが、この繰り返し数は、サブ画素に求められる面積に応じて決めればよい。
また、第1電極部40は、一対の第1導電部42Aと1つの第2導電部42Bを有する少なくとも1つの第1基本電極部42を有していればよく、第2電極部12は第1基本電極部42に対応した第2基本電極部43の第3導電部43Aを有していればよく、第2方向Yにいくつ設けるのかは、サブ画素に求められる面積に応じて決めればよい。
ただし、第2基本電極部43の第3導電部43Aが第2方向Yに複数ある場合には、それらの第3導電部43Aを電気的に接続するために、第5導電部43Cを設けるようにすればよい。
そして、第1電極部40は、L字形状の接続導電部45を備え、その接続導電部45が第1導電部42A、第2導電部42B及び第6導電部42Cで形成される導電パターンを電気的に接続している。
また、接続導電部45は一端側となる第1辺45Aから第1方向Xとは反対側に延在する接続部45Bを備え、この接続部45Bが薄膜トランジスタ14のドレイン電極に電気的に接続されることで、第1電極部40が画素電極であるものとされている。
一方、第2電極部12が共通電極線16に電気的に接続されることで、第2電極部12が共通電極であるものとされている。
上記のような構成の場合、第1電極部40と第2電極部12との間の電位差によって発生する横電界は、図15を参照して説明した第1実施形態の電界と類似した状態になり、第1実施形態及び第2実施形態と同様の効果を奏することができる。
なお、本実施形態では、第1電極部40が画素電極で第2電極部12が共通電極である場合について示してきたが、第1電極部40を共通電極とし、第2電極部12を画素電極としても、発生する横電界の状態は本実施形態と同様であるため、第1電極部40が画素電極で第2電極部12が共通電極である場合と同様の効果を奏することができる。
したがって、第1電極部40又は第2電極部12の一方が画素電極であり、第1電極部40又は第2電極部12の残る他方が共通電極であるものとされていればよい。
以上、具体的な実施形態に基づいて、本発明の液晶表示素子1について説明してきたが、本発明は、具体的な実施形態に限定されるものではなく、適宜、変形や改良を施したものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。
1…液晶表示素子、10…第1基板、11…第1偏光板、12…第2電極部、13…データ線、14…薄膜トランジスタ、15…ゲート線、16…共通電極線、17…絶縁層、18…絶縁層、19…第1配向膜、20…第2基板、21…第2偏光板、22…色層、23…ブラックマトリックス、24…平坦化膜、25…第2配向膜、30…液晶層、40…第1電極部、41…基本電極部、42…第1基本電極部、42A…第1導電部、42AA…一端、42B…第2導電部、42B1,42B2…辺、42BA…屈曲部、42BB…他端、42C…第6導電部、43…第2基本電極部、43A…第3導電部、43AA…一端、43AB…他端、43AD…付加電極部、43B…第4導電部、43C…第5導電部、43BA…一端、43CA…屈曲部、43CB…他端、44…第4導電部、45…接続導電部、45A…第1辺、45B…接続部、100…導電部、110…導電部、OP…開口部、D1,D2…距離、L1,L2,L3…長さ、T1,T2…応答時間、VH…ビアホール、θ,δ…角度

Claims (12)

  1. 対向する第1基板と第2基板の間に液晶層を備え、
    前記第1基板上に第1電極部を備え、
    前記第1電極部は、少なくとも1つの基本電極部を備え、
    前記基本電極部は、第1基本電極部と第2基本電極部を備え、
    前記第1基本電極部は、
    基板面に沿った第1方向に延在し、第1方向に直交する第2方向に離間した一対の第1導電部と、
    前記一対の第1導電部のそれぞれの一端に対して接続された一対の他端を有し、前記第1導電部の延在方向とは反対方向に屈曲部を有するくの字形状の第2導電部と、を備え、
    前記第2基本電極部は、前記第1基本電極部の開口部の近傍から第1方向に延在する第3導電部を備えていることを特徴とする、液晶表示素子。
  2. 前記第1電極部は、第1方向に複数の前記基本電極部を備え、
    第1方向の任意の隣り合う前記基本電極部は、前記第2導電部の前記屈曲部と前記第3導電部の他端で接続されていることを特徴とする、請求項1に記載の液晶表示素子。
  3. 前記第1電極部は、第2方向に複数の前記基本電極部を備え、
    第2方向の任意の隣り合う前記基本電極部は、前記一対の第1導電部のうち前記基本電極部の間に位置することになる前記第1導電部を共有していることを特徴とする、請求項1又は請求項2に記載の液晶表示素子。
  4. 末端に配置された前記第1基本電極部が、前記第2導電部の前記屈曲部から第1方向とは反対方向に延在する第4導電部をさらに備えていることを特徴とする、請求項1から請求項3のいずれか1項に記載の液晶表示素子。
  5. 末端に配置された前記第2基本電極部の第1方向に設けられ、前記第2導電部の前記屈曲部が、末端に配置された前記第2基本電極部の前記第3導電部の他端に接続された前記第1基本電極部をさらに備えていることを特徴とする、請求項1から請求項4のいずれか1項に記載の液晶表示素子。
  6. 絶縁層を介して前記第1電極部よりも第1基板側に設けられたベタ電極の第2電極部を備え、
    前記第1電極部および前記第2電極部の一方が画素電極であり、もう一方が共通電極であることを特徴とする、請求項1から請求項5のいずれか1項に記載の液晶表示素子。
  7. 対向する第1基板と第2基板の間に液晶層と、
    前記第1基板上に設けられ、少なくとも1つの第1基本電極部を有する第1電極部と、
    前記第1基板上に設けられ、少なくとも1つの第2基本電極部を有する第2電極部と、を備え、
    前記第1基本電極部は、
    基板面に沿った第1方向に延在し、第1方向に直交する第2方向に離間した一対の第1導電部と、
    前記一対の第1導電部のそれぞれの一端に対して接続された一対の他端を有し、第1方向とは反対方向に屈曲部を有するくの字形状の第2導電部と、を備え、
    前記第2基本電極部は、前記第1基本電極部の開口部の近傍から第1方向に延在する第3導電部を備えていることを特徴とする、液晶表示素子。
  8. 前記第1電極部は、第2方向に複数の前記第1基本電極部を備え、
    前記第2電極部は、第2方向に前記第1基本電極部に対応する複数の前記第2基本電極部を備え、
    第2方向の任意の隣り合う前記第1基本電極部は、前記一対の第1導電部のうち前記第1基本電極部の間に位置することになる前記第1導電部を共有していることを特徴とする、請求項7に記載の液晶表示素子。
  9. 前記第2基本電極部は、付加電極部を備え、
    前記付加電極部は、
    前記第3導電部の第1方向側に設けられ、第2方向に離間した一対の第4導電部と、
    前記一対の第4導電部のそれぞれの一端に対して接続された一対の他端を有し、第1方向とは反対方向に前記第3導電部の他端が接続される屈曲部を有するくの字形状の第5導電部と、を備え、
    前記付加電極部が、第2方向に複数ある場合、第2方向の任意の隣り合う前記付加電極部は、前記一対の第4導電部のうち前記付加電極部の間に位置することになる前記第4導電部を共有していることを特徴とする、請求項7又は請求項8に記載の液晶表示素子。
  10. 前記第1基本電極部は、前記第2導電部の前記屈曲部から第1方向とは反対方向に延在する第6導電部を備えていることを特徴とする、請求項9に記載の液晶表示素子。
  11. 前記第2基本電極部が間に位置するように前記第1基本電極部が第1方向に繰り返し設けられていることを特徴とする、請求項10に記載の液晶表示素子。
  12. 前記第1電極部又は前記第2電極部の一方が画素電極であり、
    前記第1電極部又は前記第2電極部の残る他方が共通電極であることを特徴とする、請求項8から請求項11のいずれか1項に記載の液晶表示素子。
JP2017078788A 2017-04-12 2017-04-12 液晶表示素子 Active JP6380597B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017078788A JP6380597B1 (ja) 2017-04-12 2017-04-12 液晶表示素子
TW107104103A TWI746790B (zh) 2017-04-12 2018-02-06 液晶顯示元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078788A JP6380597B1 (ja) 2017-04-12 2017-04-12 液晶表示素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018095280A Division JP2018180546A (ja) 2018-05-17 2018-05-17 液晶表示素子

Publications (2)

Publication Number Publication Date
JP6380597B1 JP6380597B1 (ja) 2018-08-29
JP2018180241A true JP2018180241A (ja) 2018-11-15

Family

ID=63354838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078788A Active JP6380597B1 (ja) 2017-04-12 2017-04-12 液晶表示素子

Country Status (2)

Country Link
JP (1) JP6380597B1 (ja)
TW (1) TWI746790B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521618A (zh) * 2018-12-03 2019-03-26 昆山龙腾光电有限公司 液晶显示面板及液晶显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056320A (ja) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd アクティブマトリックス型液晶表示装置
JP2002040456A (ja) * 2000-07-28 2002-02-06 Nec Corp 液晶表示装置
JP2003057673A (ja) * 2001-08-13 2003-02-26 Obayashi Seiko Kk アクティブマトリックス表示装置とその製造方法
US6950167B2 (en) * 2002-09-20 2005-09-27 Hitachi Displays, Ltd. Liquid crystal display device
JP2007310334A (ja) * 2006-05-19 2007-11-29 Mikuni Denshi Kk ハーフトーン露光法を用いた液晶表示装置の製造法
CN102262326A (zh) * 2011-08-02 2011-11-30 深超光电(深圳)有限公司 面内切换型液晶显示面板
JP2012194480A (ja) * 2011-03-17 2012-10-11 Japan Display Central Co Ltd 液晶表示装置
WO2013168566A1 (ja) * 2012-05-10 2013-11-14 シャープ株式会社 液晶表示装置
JP2014078024A (ja) * 2013-11-29 2014-05-01 Japan Display Inc 液晶パネル及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307142B1 (ko) * 2013-09-13 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056320A (ja) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd アクティブマトリックス型液晶表示装置
JP2002040456A (ja) * 2000-07-28 2002-02-06 Nec Corp 液晶表示装置
JP2003057673A (ja) * 2001-08-13 2003-02-26 Obayashi Seiko Kk アクティブマトリックス表示装置とその製造方法
US6950167B2 (en) * 2002-09-20 2005-09-27 Hitachi Displays, Ltd. Liquid crystal display device
JP2007310334A (ja) * 2006-05-19 2007-11-29 Mikuni Denshi Kk ハーフトーン露光法を用いた液晶表示装置の製造法
JP2012194480A (ja) * 2011-03-17 2012-10-11 Japan Display Central Co Ltd 液晶表示装置
CN102262326A (zh) * 2011-08-02 2011-11-30 深超光电(深圳)有限公司 面内切换型液晶显示面板
WO2013168566A1 (ja) * 2012-05-10 2013-11-14 シャープ株式会社 液晶表示装置
JP2014078024A (ja) * 2013-11-29 2014-05-01 Japan Display Inc 液晶パネル及び電子機器

Also Published As

Publication number Publication date
JP6380597B1 (ja) 2018-08-29
TWI746790B (zh) 2021-11-21
TW201837572A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5875001B2 (ja) 横電界方式の液晶表示装置
US8654296B2 (en) Liquid crystal display device
US8174655B2 (en) Liquid crystal display device and method of fabricating the same
US8780308B2 (en) Pixel structure and display panel
JP4174428B2 (ja) 液晶表示装置
KR20100025367A (ko) 표시기판, 이를 갖는 액정표시패널 및 이 액정표시패널의 제조 방법
JP5035915B2 (ja) Ffsモード液晶表示装置及びその製造方法
JP2009186869A (ja) 液晶表示装置
CN107407843B (zh) 液晶显示装置
US9250477B2 (en) Array substrate and liquid crystal display
JP2013190703A (ja) 液晶表示装置
CN112859459B (zh) 像素电极、阵列基板以及液晶显示器
JP2012113090A (ja) 液晶表示装置およびその製造方法
JP2016048275A (ja) 表示装置
JP2009181092A (ja) 液晶表示パネル
JP5078176B2 (ja) 液晶表示装置
US20150185564A1 (en) Liquid-crystal display device
KR100719922B1 (ko) 프린지 필드 스위칭 모드 액정표시장치
JP6380597B1 (ja) 液晶表示素子
KR100507276B1 (ko) 프린지 필드 구동모드 액정표시장치
WO2016194270A1 (ja) 液晶表示装置
WO2014190611A1 (zh) 像素单元、阵列基板、显示装置和像素驱动方法
KR101296621B1 (ko) 액정표시소자 및 그 제조방법
JP2018180546A (ja) 液晶表示素子
KR100675935B1 (ko) 프린지 필드 구동 액정표시장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250