JP2018178788A - 遠心圧縮機インペラ - Google Patents

遠心圧縮機インペラ Download PDF

Info

Publication number
JP2018178788A
JP2018178788A JP2017076058A JP2017076058A JP2018178788A JP 2018178788 A JP2018178788 A JP 2018178788A JP 2017076058 A JP2017076058 A JP 2017076058A JP 2017076058 A JP2017076058 A JP 2017076058A JP 2018178788 A JP2018178788 A JP 2018178788A
Authority
JP
Japan
Prior art keywords
blade
blade angle
angle
blades
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017076058A
Other languages
English (en)
Other versions
JP7067872B2 (ja
Inventor
千尋 見上
Chihiro MIKAMI
千尋 見上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017076058A priority Critical patent/JP7067872B2/ja
Publication of JP2018178788A publication Critical patent/JP2018178788A/ja
Application granted granted Critical
Publication of JP7067872B2 publication Critical patent/JP7067872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】短羽根のリーディングエッジ近傍の衝撃波の発生を抑え、圧力損失を低減する遠心圧縮機インペラを提供することを目的とする。【解決手段】フルブレード5は、チップ11の羽根角βの分布を、リーディングエッジ13からチップ11の延在方向に沿って見たときに羽根角βを一定とする羽根角一定領域Aを有し、チップ11上において、羽根角一定領域Aのリーディングエッジ13側の始点T1からフルブレード5のトレーリングエッジ14にかけて羽根角βの分布を辿り、始点T1の羽根角βとトレーリングエッジ14の羽根角βとの差分において、始点T1の羽根角βを100%とした場合に50%の羽根角βになる位置は基準位置BPであり、全てのスプリッタブレード6のリーディングエッジ13は基準位置BPよりもフルブレード5のトレーリングエッジ14側に配置されている、インペラ1である。【選択図】図2

Description

本発明は、遠心圧縮機インペラに関するものである。
従来の遠心圧縮機において、複数の長羽根(「フルブレード」ともいう)と、長羽根同士の間に配置された短羽根(「スプリッタブレード」ともいう)とを備えたインペラが知られている。この種のインペラによれば、長羽根同士の間隔を広げて入口側からの大容量流体の受け入れを可能にするため、高圧力比大容量化に有利である。
特開昭62−7998号公報 特開2011−80411号公報 特開2011−117346号公報 特開2012−127217号公報 特開2012−137067号公報 特開2012−140899号公報 特許第4949882号公報
この種のインペラを採用した遠心圧縮機において、発明者の検証により、短羽根のリーディングエッジ近傍において衝撃波が発生し、その結果、圧力損失が生じてしまう可能性があることが判明した。
本発明は、短羽根のリーディングエッジ近傍の衝撃波の発生を抑え、圧力損失を低減する遠心圧縮機インペラを提供することを目的とする。
発明者は、従来の遠心圧縮機インペラにおいて、短羽根のリーディングエッジ近傍で衝撃波が発生しており、その衝撃波によって圧力損失が生じている可能性があることを見出した。そして、この衝撃波の原因及び解消策について鋭意検討したところ、長羽根のチップの羽根角の分布に対し、従来よりも短羽根のリーディングエッジの位置をトレーリングエッジ側に後退させることで衝撃波の発生を低減できるとの知見を得て本発明に想到した。
つまり、本発明の一態様は、回転軸線周りに配置された長羽根と、隣り合う長羽根同士の間に配置された一または複数の短羽根と、を備え、長羽根は、チップの羽根角の分布を、リーディングエッジからチップの延在方向に沿って見たときに羽根角を一定とする羽根角一定領域を有し、チップ上において、羽根角一定領域のリーディングエッジ側の始点から長羽根のトレーリングエッジにかけて羽根角の分布を辿り、上記の始点の羽根角とトレーリングエッジの羽根角との差分において、始点の羽根角を100%とした場合に50%の羽根角になる位置は基準位置であり、全ての短羽根のリーディングエッジは基準位置よりも長羽根のトレーリングエッジ側に配置されている、遠心圧縮機インペラである。
長羽根のリーディングエッジ側から進入した大容量の流体は、羽根角一定領域に沿って高速で流れるが、羽根角一定領域を超えて羽根角に変化が生じると流速が低下し始める。ここで、流体が高速のまま流れている状態で短羽根のリーディングエッジに干渉すると、衝撃波が生じ易くなってしまう。一方、本態様では、流速の低下を確実に見込める位置、つまり、長羽根の基準位置よりもトレーリングエッジ側となる位置に、全ての短羽根のリーディングエッジが配置されているので、衝撃波の発生を効果的に抑え、圧力損失を低減できる。
いくつかの態様において、上記の始点の羽根角とトレーリングエッジの羽根角との差分に対して30%の羽根角になる位置を後限界位置とした場合に、短羽根のリーディングエッジは基準位置と後限界位置との間に配置されている遠心圧縮機インペラとすることができる。短羽根のリーディングエッジを基準位置と後限界位置との間に配置することにより、短羽根による流体の均等分配に効果的であり、圧力損失の低減に有利である。
いくつかの態様において、短羽根は、隣り合う長羽根同士の間に複数配置されており、複数の短羽根のリーディングエッジは、回転軸線方向で揃っている遠心圧縮機インペラとすることができる。この態様によれば、隣り合う長羽根同士の間に単一の短羽根が配置されている場合に比べ、長羽根同士の間隔を広げ易くなり、高圧力比大容量化に有利である。
本発明の一態様は、回転軸線周りに配置された長羽根と、隣り合う長羽根同士の間に配置された一または複数の短羽根と、を備え、長羽根は、チップの羽根角の分布を、リーディングエッジからチップの延在方向に沿って見たときに最大となる羽根角と最小となる羽根角との差分において、最大となる羽根角を100%とした場合に50%の羽根角になる位置を基準位置とした場合に、全ての短羽根のリーディングエッジは基準位置よりも長羽根のトレーリングエッジ側に配置されている、遠心圧縮機インペラである。
本態様では、流速の低下を確実に見込める位置に、全ての短羽根のリーディングエッジが配置されていることになるので、衝撃波の発生を効果的に抑え、圧力損失を低減できる。
本発明のいくつかの態様によれば、短羽根のリーディングエッジ近傍の衝撃波の発生を抑え、圧力損失を低減できる。
第1実施形態に係るインペラが組み込まれたコンプレッサの断面図である。 インペラの側面図である。 インペラの正面図である。 フルブレードを中心にインペラを模式的に示す側面図である。 インペラのフルブレードを回転軸線周りに回転させて得られる回転体を示す斜視図である。 インペラの子午面長とrθ値との関係を示すグラフである。 インペラの子午面長と羽根角の分布との関係を示すグラフである。 第1実施形態に係るインペラのマッハ数分布を示すコンター図である。 第2実施形態に係るインペラの側面図である。 第2実施形態に係るインペラの正面図である。 比較例に係るインペラであり、(a)は側面図、(b)は正面図である。 比較例に係るインペラのマッハ数分布を示すコンター図である。
以下、図面を参照しつつ本発明に係る遠心圧縮機インペラの実施形態について詳細に説明する。なお、本発明は、遠心圧縮機用として広く用いる事ができ、以下の実施形態では、一例としてコンプレッサ50のインペラについて説明する。
コンプレッサ50は、コンプレッサハウジング51と、コンプレッサハウジング51に収納されたインペラ1と、を備えている。インペラ1は回転軸4の端部に設けられており、回転軸4は、軸受を介して軸受ハウジングに回転可能に支持されており、回転軸4、インペラ1等が一体の回転体として回転軸線Hを中心に回転する。コンプレッサハウジング51には、吸入部52及び排出部(図示省略)が設けられている。回転するインペラ1は、吸入部52を通じて空気等の外部の流体(流体)を吸入し、圧縮して排出部から排出する。排出部から排出された圧縮流体は、インテークマニホールド等を介して内燃機関に供給される。
図2及び図3に示されるように、インペラ1は、回転軸線H周りに回転するハブ3と、ハブ3の周囲に設けられ、流体の入口から出口まで延在する複数のフルブレード(長羽根)5と、隣り合うフルブレード5同士の間に設けられた複数のスプリッタブレード(短羽根)6とを備えている。
[フルブレード]
フルブレード5は、回転軸線H周りに等間隔で配置されている。図4は、回転軸線Hを含む一つの仮想平面に対して、フルブレード5を回転周方向に投射した状態を図示したものである。フルブレード5は、チップ11(シュラウド側エッジ)、ハブ側エッジ12、リーディングエッジ13、及びトレーリングエッジ14の4つのエッジを有する。インペラ1は、流体の入口であるリーディングエッジ13側から回転軸線H方向に流体を吸引し、出口であるトレーリングエッジ14側から圧縮された流体を径方向に吐出する。以下、チップ11とリーディングエッジ13との交点であるチップ11の入口を単に「チップ入口」と呼び、符号11aを付す。また、チップ11とトレーリングエッジ14との交点であるチップ11の出口を単に「チップ出口」と呼び、符号11bを付す。
ここで、フルブレード5のチップ11の羽根角βの定義について説明する。まず、チップ11上の任意の点の子午方向における位置を、チップ入口11aを基準とした無次元子午面長(Normalized meridional distance; m/m2)で表すものとする。ここで、「無次元子午面長」の定義について説明する。図4に示されるように、回転軸線Hを含む仮想平面に投射された状態のフルブレード5において、フルブレード5における任意の点Mを考える。点Mを通りリーディングエッジ13からトレーリングエッジ14まで子午方向に延びる曲線LMの全長をm2とする。また、リーディングエッジ13から点Mまで曲線LMに沿って測った長さをmとする。このとき、リーディングエッジ13を基準とする点Mの無次元子午面長は、長さm2に対する長さmの割合(すなわち、m/m2)で定義される。従って、リーディングエッジ13を基準とする無次元子午面長は0〜1の値を取る無次元量である。
これをチップ11上の任意の点Jに適用する。図4に示されるように、チップ入口11aからチップ出口11bまで子午方向に延びるチップ11の全長をkとする。チップ入口11aから点Jまでチップ11に沿って測った長さをjとする。このとき、チップ入口11aを基準とする点Jの無次元子午面長はj/k[m/m2]と表される(j/k=0〜1)。このように、チップ11上の任意の点の子午方向における位置は、チップ入口11aを基準とする無次元子午面長によって、無次元の0〜1の値で表現することができる。
続いて、チップ11上の任意の点Jの回転周方向における位置を表すために、チップ入口11aを基準とした「rθ値」を導入する。図5は、インペラ1のフルブレード5を回転軸線H周りに回転させて得られる仮想の回転体を示す斜視図である。チップ11は、当該回転体の周側面上に現れる。図5に示されるように、チップ入口11aと点Jとの回転周方向の位相差をθとし、インペラ1が回転する際の点Jの回転半径をrとすると、チップ入口11aを基準とした点Jのrθ値は、上記のrとθとを乗じた値である。このrθ値は、図5に示される円弧Cの長さに相当する。
続いて、図6に示されるように、チップ11上の点について、チップ入口11aを基準とした無次元子午面長を横軸に取り、チップ入口11aを基準としたrθ値を縦軸に取った座標系において、チップ入口11a(m/m2=0)からチップ出口11b(m/m2=1)までチップ11上の各点についてグラフ化したものが、グラフG1である。そして、グラフG1の各点における接線の傾きが、その各点ごとの羽根角βに対応している。具体的には、チップ11上の任意の点Jにおける羽根角βは、tanβ=d(rθ)/djで定義される。ここでjは、前述のとおり、チップ入口11aから任意の点Jまでチップ11に沿って測った長さ(有次元の量)である。
図7に示されるグラフG3は、上述した羽根角βの定義に従って、チップ入口11a(m/m2=0)からチップ出口11b(m/m2=1)までの、チップ11の延在方向に沿った羽根角βの分布を示すグラフである。
図7に示されるように、インペラ1は、チップ11の羽根角βの分布を、チップ11の延在方向に沿ってチップ入口11a(リーディングエッジ13)からチップ出口11b(トレーリングエッジ14)まで見たときに、羽根角βが一定である羽根角一定領域Aが存在している。羽根角一定領域Aはチップ入口11a側の端である始点T1と、チップ出口11b側の端である終点T2とを備えている。本実施形態に係る羽根角一定領域Aの始点T1は、リーディングエッジ13に一致している。すなわち、本実施形態に係る羽根角一定領域Aの始点T1は、チップ入口11aを基準として無次元子午面長がゼロである。また、羽根角一定領域Aの終点T2は0.30m/m2になっている。なお、羽根角一定領域Aの始点T1が、チップ入口11aから離れた位置に存在していてもよく、その場合、例えば、チップ入口11aを基準とした始点T1の無次元子午面長を0.05m/m2以上とし、終点T2の無次元子午面長を0.4以下にすることもできる。
また、上記の「羽根角βが一定」とは、羽根角一定領域Aの始点T1の羽根角を羽根角β1とすると、羽根角一定領域A内において、チップ11上の各点の羽根角βが(β1±1)°の範囲内の角度であることを言う。羽根角一定領域A内では、チップ11上の各点の羽根角βが(β1±1)°である条件を満足した上で、羽根角βが上下に変動してもよい。例えば、羽根角一定領域A内で、羽根角βが極小値をもつように変動してもよい。また、羽根角一定領域Aの領域幅は無次元子午面長で0.05m/m2以上である。具体的には、図4のグラフG3で示される例では、羽根角一定領域Aは約0.2〜約0.3m/m2の領域であり、その領域幅は約0.1m/m2である。
次に、フルブレード5のチップ11上における基準位置BPについて説明する。フルブレード5のリーディングエッジ13側から進入した大容量の流体は、羽根角一定領域Aに沿って高速で流れるが、羽根角一定領域Aを超えて羽根角βに変化が生じると流速が低下し始める。この羽根角βの変化が大きくなり、実質的に、流速の低下を確実に見込める位置は基準位置BPとして定義される。
具体的には、羽根角一定領域Aの始点T1からチップ出口11b(トレーリングエッジ14)にかけて羽根角βの分布を辿り、始点T1の羽根角βとチップ出口11bの羽根角βとの差分において、始点T1の羽根角βを100%とした場合に50%の羽根角βになる位置は、チップ11上の基準位置BPである。つまり、始点T1の羽根角βとチップ出口11bの羽根角βとの差分に対して50%となる角度Kを求め、始点T1の羽根角βから角度Kを減算した羽根角βとなるチップ11上の位置は基準位置BPである。例えば、本実施形態における始点T1の羽根角βが60°であり、チップ出口11bの羽根角βが20°であると仮定する。この場合、始点T1の羽根角βとチップ出口11bの羽根角βとの差分は40°になり、角度Kは20°である。そして、始点T1の羽根角βである60°から角度Kを減算した羽根角βは40°となり、40°の羽根角βを有するチップ11上の位置は基準位置BPである。
また、フルブレード5のチップ11上の羽根角βは、羽根角一定領域Aの終点T2からトレーリングエッジ14にかけて漸次減少している。そして、フルブレード5のチップ11上には、基準位置BPからチップ出口11bまでの間に後限界位置LPが規定されている。後限界位置LPとは、始点T1の羽根角βとチップ出口11bの羽根角βとの差分に対して30%の羽根角βになる位置である。つまり、始点T1の羽根角βとチップ出口11bの羽根角βとの差分に対して30%となる角度Qを求め、チップ出口11bの羽根角βに角度Qを加算した羽根角βとなるチップ11上の位置は後限界位置LPである。例えば、本実施形態における始点T1の羽根角βが60°であり、チップ出口11bの羽根角βが20°であると仮定する。この場合、始点T1の羽根角βとチップ出口11bの羽根角βとの差分は40°になり、角度Qは12°である。そして、チップ出口11bの羽根角βである20°に角度Qを加算した羽根角βは32°となり、32°の羽根角βを有するチップ11上の位置は後限界位置LPである。なお、後限界位置LPは、始点T1の羽根角βとチップ出口11bの羽根角βとの差分に対して(100−30)%となる角度Uを求め、始点T1の羽根角βから角度Uを減算した羽根角βとなるチップ11上の位置として表現することもできる。
また、本実施形態では、羽根角一定領域Aの始点T1の羽根角βが最大であり、チップ出口11bの羽根角βが最小である。そして、チップ入口11aからチップ出口11bにかけて羽根角βの分布を辿り、最大の羽根角βと最小の羽根角βとの差分において、最大の羽根角βを100%とした場合に50%の羽根角βになる位置は、チップ11上の基準位置BPであり、従ってスプリッタブレード6のリーディングエッジ23は、この基準位置BPよりもフルブレード5のトレーリングエッジ14側に配置されている。
具体的には、フルブレード5のチップ11上の最大の羽根角βを「βmax」とし、最小の羽根角βを「βmin」とする。そして、スプリッタブレード6のリーディングエッジ23に対応するフルブレード5の羽根角βを「βa」とした場合に、全てのスプリッタブレード6について以下の式(1)を満たす。
(βmax−βa)/(βmax−βmin)×100>50(%)・・・(1)
ここで、スプリッタブレード6のリーディングエッジ23に対応するフルブレード5の羽根角βについて補足する。まず、スプリッタブレード6のリーディングエッジ23のうち、回転軸線H方向において最もチップ入口11a(リーディングエッジ13)に近くなる点を含み、且つ回転軸線Hに直交する平面を仮定する。そして、この平面とフルブレード5のチップ11との交点は、スプリッタブレード6のリーディングエッジ23に対応する位置であり、この位置における羽根角βは、「スプリッタブレード6のリーディングエッジ23に対応するフルブレード5のチップ11上の羽根角β」である。
[スプリッタブレード]
スプリッタブレード6は、回転方向で隣り合うフルブレード5同士の間に配置されている。本実施形態では、フルブレード5同士の間に二枚のスプリッタブレード6が設けられており、ダブルスプリッタと称されることもある。スプリッタブレード6は、流体の入口側から出口側に向けて延在し、チップ21(シュラウド側エッジ)、ハブ側エッジ22、リーディングエッジ23、及びトレーリングエッジ24の4つのエッジを有する。なお、本実施形態に係る複数のスプリッタブレード6は全て同一の形状であり、全てのスプリッタブレード6のリーディングエッジ23、及びトレーリングエッジ24は回転軸線H方向で揃っている。
スプリッタブレード6のリーディングエッジ23は、フルブレード5の基準位置BPよりもトレーリングエッジ14側にずれて(後退して)おり、また、後限界位置LPよりもリーディングエッジ13側にずれて配置されている。つまり、回転軸線Hに直交し、フルブレード5の基準位置BPを含む仮想の平面P1及び後限界位置LPを含む仮想の平面P2を仮定した場合に、スプリッタブレード6のリーディングエッジ13は、平面P1と平面P2との間、つまり基準位置BPと後限界位置LPとの間となる領域に配置されている。
本実施形態において、上記の関係を満たすことによって享受できる作用、効果について説明する。まず、インペラ1が回転すると、コンプレッサハウジング51の吸入部52を通じて流体が吸入され、圧縮された流体は排出部から排出される。特に本実施形態に係るインペラ1は、高圧力比大容量を実現するコンプレッサ50に適用されており、インペラ1の入口側から大容量の流体が吸引部内に進入する。
大容量の流体は、フルブレード5の羽根角一定領域Aに沿って高速で流れるが、羽根角一定領域Aを超えて羽根角βに変化が生じると流速が低下し始める。ここで、流体が高速状態のままスプリッタブレード6のリーディングエッジに干渉すると、衝撃波が生じ易くなってしまう。そこで本実施形態では、流速の低下を確実に見込める位置、つまり、フルブレード5の基準位置BPよりもトレーリングエッジ14側となる位置に、全ての短羽根のリーディングエッジが配置されている。その結果、本実施形態に係るインペラ1によれば、衝撃波の発生を効果的に抑え、圧力損失を低減できる。この作用、効果について比較例を参照しながら具体的に説明する。
図11の(a)図は比較例に係るインペラの側面図であり、(b)は正面図である。インペラ101は、回転軸線H周りに回転するハブ103と、ハブ103の周囲に設けられ、流体の入口から出口まで延在する複数のフルブレード105と、隣り合うフルブレード105間に設けられた複数のスプリッタブレード106とを備えている。フルブレード105は、回転軸線Ha周りに等間隔で配置されており、スプリッタブレード106は、回転方向で隣り合うフルブレード105同士の間に配置されている。
スプリッタブレード106のリーディングエッジ113は、フルブレード105の基準位置BPよりも、フルブレード105のリーディングエッジ113側に配置されている。つまり、回転軸線Haに直交し、基準位置BPを含む仮想の平面P3を仮定した場合に、スプリッタブレード106のリーディングエッジ123は平面P3よりもフルブレード105のリーディングエッジ113側にずれて配置されている。
図12に示されるように、比較例に係るインペラ101の場合、スプリッタブレード106のリーディングエッジ113付近に衝撃波SWの発生を観測でき、圧力損失が生じる可能性を推察することができる。
これに対し、図8に示されるように、本実施形態に係るインペラ1の場合、スプリッタブレード6のリーディングエッジ23付近に衝撃波SWの発生を観測できず、衝撃波SWによる圧力損失の低減を確認できる。
つまり、上記の実施形態に係るインペラ1では、羽根角一定領域Aに沿って高速で流れる流体の流速の低下を確実に見込める位置(基準位置)BPよりもトレーリングエッジ14側となる位置に、全てのスプリッタブレード6のリーディングエッジが配置されているので、衝撃波の発生を効果的に抑え、圧力損失を低減できる。
また、スプリッタブレード6のリーディングエッジ23は基準位置BPと後限界位置LPとの間に配置されているので、スプリッタブレード6による流体の均等分配に効果的であり、圧力損失の低減に有利である。
また、スプリッタブレード6は、隣り合うフルブレード5同士の間に複数配置されており、複数のスプリッタブレード6のリーディングエッジ23は、回転軸線H方向で揃っている。その結果、隣り合うフルブレード5同士の間に単一のスプリッタブレード6が配置されている場合に比べ、フルブレード5同士の間隔を広げ易くなり、高圧力比大容量化に有利である。
次に、図9及び図10を参照し、第2の実施形態に係るインペラについて説明する。なお、第2の実施形態に係るインペラ1Aは、第1の実施形態に係るインペラ1と同様の要素や構造を備えている。以下の説明では、相違点を中心に説明し、共通する要素や構造については同一の符号を付して詳細な説明は省略する。
インペラ1Aは、回転軸線H周りに回転するハブ3と、ハブ3の周囲に設けられ、流体の入口から出口まで延在する複数のフルブレード(長羽根)5と、隣り合うフルブレード5同士の間に設けられたスプリッタブレード(短羽根)6とを備えている。本実施形態では、隣り合うフルブレード5間に、それぞれ単一のスプリッタブレード6が設けられており、「シングルスプレッタ」と称されることもある。
フルブレード5は、回転軸線H周りに等間隔で配置されている。フルブレード5は、チップ11(シュラウド側エッジ)、ハブ側エッジ12、リーディングエッジ13、及びトレーリングエッジ14の4つのエッジを有する。インペラ1は、流体の入口であるリーディングエッジ13から回転軸線H方向に流体を吸引し、出口であるトレーリングエッジ14から圧縮された流体を径方向に吐出する。チップ11とリーディングエッジ13との交点はチップ入口11aであり、チップ11とトレーリングエッジ14との交点はチップ出口11bである。
スプリッタブレード6は、流体の入口から出口まで延在し、チップ21(シュラウド側エッジ)、ハブ側エッジ22、リーディングエッジ23、及びトレーリングエッジ24の4つのエッジを有する。なお、本実施形態に係る複数のスプリッタブレード6は全て同一の形状であり、全てのスプリッタブレード6のリーディングエッジ23、及びトレーリングエッジ24は回転軸線H方向で揃っている。また、スプリッタブレード6のリーディングエッジ23は、フルブレード5の基準位置BPと後限界位置LPとの間となる領域に配置されている。
本実施形態では、流速の低下を確実に見込める位置(基準位置)BPよりもトレーリングエッジ14側となる位置に、全てのスプリッタブレード6のリーディングエッジ13が配置されている。その結果、本実施形態に係るインペラ1Aによれば、衝撃波の発生を効果的に抑え、圧力損失を低減できる。
本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、各実施例の変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。
また、本発明は、遠心圧縮機用のインペラとして広く用いることができ、例えば、自動車用遠心圧縮機に適用されるものに限定されず、船舶その他に適用されてもよい。
1 インペラ(遠心圧縮機インペラ)
5 フルブレード(長羽根)
6 スプリッタブレード(短羽根)
11 チップ
13 リーディングエッジ(長羽根のリーディングエッジ)
14 トレーリングエッジ(長羽根のトレーリングエッジ)
A 羽根角一定領域
H 回転軸線
β 羽根角
T1 始点
BP 基準位置
LP 後限界位置

Claims (4)

  1. 回転軸線周りに配置された長羽根と、隣り合う長羽根同士の間に配置された一または複数の短羽根と、を備え、
    前記長羽根は、チップの羽根角の分布を、リーディングエッジから前記チップの延在方向に沿って見たときに前記羽根角を一定とする羽根角一定領域を有し、
    前記チップ上において、前記羽根角一定領域の前記リーディングエッジ側の始点から前記長羽根のトレーリングエッジにかけて羽根角の分布を辿り、前記始点の羽根角と前記トレーリングエッジの羽根角との差分において、前記始点の羽根角を100%とした場合に50%の羽根角になる位置は基準位置であり、
    全ての前記短羽根のリーディングエッジは前記基準位置よりも前記長羽根のトレーリングエッジ側に配置されている、遠心圧縮機インペラ。
  2. 前記始点の羽根角と前記トレーリングエッジの羽根角との差分に対して30%の羽根角になる位置を後限界位置とした場合に、
    前記短羽根のリーディングエッジは前記基準位置と前記後限界位置との間に配置されている、請求項1記載の遠心圧縮機インペラ。
  3. 前記短羽根は、隣り合う前記長羽根同士の間に複数配置されており、複数の前記短羽根の前記リーディングエッジは、前記回転軸線方向で揃っている請求項1または2記載の遠心圧縮機インペラ。
  4. 回転軸線周りに配置された長羽根と、隣り合う長羽根同士の間に配置された一または複数の短羽根と、を備え、
    前記長羽根は、チップの羽根角の分布を、リーディングエッジから前記チップの延在方向に沿って見たときに最大となる羽根角と最小となる羽根角との差分において、最大となる前記羽根角を100%とした場合に50%の羽根角になる位置を基準位置とした場合に、
    全ての前記短羽根のリーディングエッジは前記基準位置よりも前記長羽根のトレーリングエッジ側に配置されている、遠心圧縮機インペラ。
JP2017076058A 2017-04-06 2017-04-06 遠心圧縮機インペラ Active JP7067872B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076058A JP7067872B2 (ja) 2017-04-06 2017-04-06 遠心圧縮機インペラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076058A JP7067872B2 (ja) 2017-04-06 2017-04-06 遠心圧縮機インペラ

Publications (2)

Publication Number Publication Date
JP2018178788A true JP2018178788A (ja) 2018-11-15
JP7067872B2 JP7067872B2 (ja) 2022-05-16

Family

ID=64281380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076058A Active JP7067872B2 (ja) 2017-04-06 2017-04-06 遠心圧縮機インペラ

Country Status (1)

Country Link
JP (1) JP7067872B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186097A (ja) * 1986-02-07 1987-08-14 Matsushita Electric Ind Co Ltd 電動送風機
JP2000310197A (ja) * 1999-04-27 2000-11-07 Kioritz Corp 送風用遠心羽根車
JP2002513117A (ja) * 1998-04-24 2002-05-08 株式会社荏原製作所 斜流ポンプ
US20110173975A1 (en) * 2010-01-19 2011-07-21 Ford Global Technologies, Llc Turbocharger
JP2011226398A (ja) * 2010-04-21 2011-11-10 Hitachi Appliances Inc 電動送風機及びそれを搭載した電気掃除機
JP2013127205A (ja) * 2011-12-16 2013-06-27 Daikin Industries Ltd 圧縮機構
JP2013189878A (ja) * 2012-03-12 2013-09-26 Nippon Densan Corp 遠心ファン
WO2015053051A1 (ja) * 2013-10-09 2015-04-16 三菱重工業株式会社 インペラ及びこれを備える回転機械

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186097A (ja) * 1986-02-07 1987-08-14 Matsushita Electric Ind Co Ltd 電動送風機
JP2002513117A (ja) * 1998-04-24 2002-05-08 株式会社荏原製作所 斜流ポンプ
JP2000310197A (ja) * 1999-04-27 2000-11-07 Kioritz Corp 送風用遠心羽根車
US20110173975A1 (en) * 2010-01-19 2011-07-21 Ford Global Technologies, Llc Turbocharger
JP2011226398A (ja) * 2010-04-21 2011-11-10 Hitachi Appliances Inc 電動送風機及びそれを搭載した電気掃除機
JP2013127205A (ja) * 2011-12-16 2013-06-27 Daikin Industries Ltd 圧縮機構
JP2013189878A (ja) * 2012-03-12 2013-09-26 Nippon Densan Corp 遠心ファン
WO2015053051A1 (ja) * 2013-10-09 2015-04-16 三菱重工業株式会社 インペラ及びこれを備える回転機械

Also Published As

Publication number Publication date
JP7067872B2 (ja) 2022-05-16

Similar Documents

Publication Publication Date Title
US9638208B2 (en) Centrifugal compressor
EP2918849B1 (en) Compressor
US7794202B2 (en) Turbine blade
US20170306971A1 (en) Impeller, centrifugal fluid machine, and fluid device
US11035380B2 (en) Diffuser vane and centrifugal compressor
WO2017145686A1 (ja) 遠心圧縮機インペラ
JP4949882B2 (ja) 遠心圧縮機のインペラ及び遠心圧縮機
US11572890B2 (en) Blade and axial flow impeller using same
JP5136604B2 (ja) スクロール付遠心送風機
JP6620440B2 (ja) 遠心圧縮機
CN110939603A (zh) 叶片及使用其的轴流叶轮
JP7067872B2 (ja) 遠心圧縮機インペラ
EP3406914B1 (en) Centrifugal rotating machine
JPH05149297A (ja) 遠心フアン
JP7036173B2 (ja) 過給機
WO2021010338A1 (ja) インペラ及びそれを用いた遠心圧縮機
EP3456937B1 (en) Turbocharger
JP2019015229A (ja) 遠心圧縮機インペラ及び遠心圧縮機
JP2019132131A (ja) 遠心圧縮機用インペラ
WO2022259490A1 (ja) 遠心圧縮機の羽根車及び遠心圧縮機
US11982292B2 (en) Scroll casing and centrifugal compressor
JP7386333B2 (ja) インペラ、及び遠心圧縮機
JP2017203410A (ja) 過給機
WO2016075955A1 (ja) 羽根車及び遠心圧縮機
JPH11182482A (ja) 高比速度の斜流ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210625

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220329

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220426

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7067872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150