JP2018177871A - A method for producing molded coal - Google Patents

A method for producing molded coal Download PDF

Info

Publication number
JP2018177871A
JP2018177871A JP2017075284A JP2017075284A JP2018177871A JP 2018177871 A JP2018177871 A JP 2018177871A JP 2017075284 A JP2017075284 A JP 2017075284A JP 2017075284 A JP2017075284 A JP 2017075284A JP 2018177871 A JP2018177871 A JP 2018177871A
Authority
JP
Japan
Prior art keywords
coal
kneading
particles
yield
coal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017075284A
Other languages
Japanese (ja)
Other versions
JP6969138B2 (en
Inventor
遼 ▲高▼松
遼 ▲高▼松
Ryo Takamatsu
藤川 秀樹
Hideki Fujikawa
秀樹 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017075284A priority Critical patent/JP6969138B2/en
Publication of JP2018177871A publication Critical patent/JP2018177871A/en
Application granted granted Critical
Publication of JP6969138B2 publication Critical patent/JP6969138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a molded coal for surely and stably obtaining the molded coal having high strength, and for stably improving a production yield of the molded coal accordingly.SOLUTION: The method for producing the molded coal comprises: a pulverizing step for pulverizing a raw coal, a mixing step for mixing coal powder obtained by the pulverizing step with a binder, and a molding step for molding a mixed product obtained into a block shape, wherein the mixing step utilizes coal particles having an average circularity of less than 0.73 and the molding step utilizes a mixed material obtained by mixing the coal particles having an average circularity of less than 0.73 with the binder. Further, the mixing step consists of mixing the coal particles having a mesh size of 0.3 mm in the mixed material so as to be 25% or less in terms of mass% with respect to a whole coal particles.SELECTED DRAWING: Figure 1

Description

本発明は、コークス炉投入用石炭原料として配合される成型炭の製造方法に関するものである。   The present invention relates to a method for producing molded coal blended as a coke raw material for coke oven charging.

良く知られているように、高炉操業において使用されるコークスの製造過程においては、コークス炉に投入される石炭原料として、予め成型した成型炭を配合する技術がある。このような成型炭の製造方法としては、原料炭を粉砕して、バインダとともに混練機により混練し、成型機によって成型することによって製造するのが通常である。すなわち、原料炭を粉砕して得られた粉炭、例えば3mmアンダーの石炭粒子が全石炭粒子に対して90%程度を占める微粉炭を混練機に装入して、タールなどのバインダとともに混練し、得られた混練物を、双ロール成型機等によって、1個あたり20〜70cc程度の塊状に成型するのが一般的である。なお混練機による混練開始後の初期段階では、微粉状の石炭粒子同士がバインダを介して凝集して、ある程度の大きさの石炭粒子凝集体(疑似粒子)となり、引き続き、混練機内でのせん断作用により疑似粒子が分離されながら、バインダとの均一混合が進む(混練が進む)ことになる。   As well known, in the process of producing coke used in blast furnace operation, there is a technique of blending pre-formed coal as a coal raw material to be introduced into the coke oven. As a manufacturing method of such a shaped coal, it is common to grind | pulverize raw material coal, knead | mix by a kneader with a binder, and to manufacture by shape | molding by a molding machine. That is, pulverized coal obtained by pulverizing raw material coal, for example, pulverized coal in which about 3% of coal particles of 3 mm under occupy about 90% of all coal particles, is charged into a kneader, and kneaded with a binder such as tar It is general to form the obtained kneaded material into a lump of about 20 to 70 cc per piece by a twin roll molding machine or the like. In the initial stage after the start of kneading by the kneader, fine powder coal particles are aggregated via the binder to form coal particle aggregates (simulated particles) of a certain size, and the shearing action in the kneader is continued Thus, while the pseudo particles are separated, uniform mixing with the binder proceeds (kneading progresses).

前述のようにして製造された成型炭の強度が低ければ、成型炭をコークス炉に投入してコークス化するにあたり、成型炭のハンドリング時やコークス炉への投入時に成型炭が破壊されて、コークス炉によりコークス化されたコークスの強度も低下する傾向を示す。また成型炭の強度が低くて、上述のように成型炭のハンドリング時やコークス炉への投入時に破壊してしまえば、得られるコークスの塊歩留(ある一定以上の大きさの塊コークスが得られる歩留)も低下してしまう。さらに、成型炭の破壊により生じた微粉炭がコークス炉に多量に装入されれば、コークス炉の炭化室の内壁面に厚いカーボン層が生成されてしまい、コークス炉操業に悪影響を及ぼすという問題も生じる。そこで成型炭の製造過程では、高い強度を有する成型炭を得ることが強く望まれる。   If the strength of the formed coal produced as described above is low, when the formed coal is charged into the coke oven and coked, the formed coal is destroyed at the time of handling of the formed coal or at the time of charging into the coke oven, The strength of coke coked by the furnace also tends to decrease. Also, if the strength of the formed coal is low and broken as described above when handling the formed coal or inserting it into the coke oven, the mass fraction of coke obtained (mass coke of a certain size or larger is obtained. Yield is also reduced. Furthermore, if a large amount of pulverized coal produced by the destruction of the formed coal is charged into the coke oven, a thick carbon layer is formed on the inner wall surface of the carbonization chamber of the coke oven, which adversely affects the coke oven operation. It also happens. Therefore, in the process of producing a coal briquette, it is strongly desired to obtain a coal briquette having high strength.

従来、高強度を有する成型炭を製造する技術としては、例えば特許文献1、あるいは特許文献2に記載されている方法が提案されている。   Conventionally, as a technique for producing a high strength molded coal, for example, methods described in Patent Document 1 or Patent Document 2 have been proposed.

特許文献1の提案は、1.5mm以下の石炭粒子が90質量%以上となるように粉砕した微粉炭を用い、成型前の混練工程において、バインダを5〜10質量部添加して、0.2mm以上の石炭粉末粒子が6質量%以下となるまで混練することを特徴とするものである。そして特許文献1では、上記のように、混練前の微粉炭の粒度を調整するとともに、混練後の粒度を指標とする混練度を調整することによって、高強度の成型炭が得られるとされている。   According to the proposal of Patent Document 1, 5 to 10 parts by mass of a binder is added in a kneading step before molding using pulverized coal pulverized so that coal particles of 1.5 mm or less become 90% by mass or more. It is characterized by knead | mixing until the coal powder particle of 2 mm or more becomes 6 mass% or less. And in patent document 1, while adjusting the particle size of pulverized coal before kneading | mixing as mentioned above, it is supposed that high intensity | strength molded coal will be obtained by adjusting the kneading degree which makes the particle size after kneading | mixing an index There is.

また特許文献2の提案は、加熱した微粉炭にバインダを添加し混練した後、加圧成型して成型炭を製造する方法において、135℃〜170℃に加熱した微粉炭にバインダを添加し混練した後、加圧成型して成型炭を製造する方法において、微粉炭とバインダの混練後の粒度分布を、600μm以上:35mass%〜50mass%、且つ、75μm以下:5mass%〜15mass%とすることを特徴とするものである。そして特許文献2では、微粉炭とバインダの混練後の粒度分布を上記のように調整することによって、高強度の成型炭が得られるとされている。   In the method of Patent Document 2, a binder is added to heated pulverized coal, and the mixture is kneaded, and then pressure-formed to produce molded coal, the binder is added to the pulverized coal heated to 135 ° C. to 170 ° C. and kneaded. Then, in the method of press-molding to produce a shaped coal, the particle size distribution of the pulverized coal and the binder after kneading is set to 600 μm or more: 35 mass% to 50 mass% and 75 μm or less: 5 mass% to 15 mass%. It is characterized by And in patent document 2, it is supposed that high-strength molded coal is obtained by adjusting the particle size distribution after kneading | mixing of pulverized coal and a binder as mentioned above.

しかしながら、本発明者等の実験によれば、特許文献1に示されるような混練前の微粉炭の粒度の調整、及び混練後の粒度を指標としての混練度の調整だけ、あるいは特許文献2に示されるような混練後の粒度分布の調整だけでは、確実かつ安定して高強度の成型炭が得ることが困難であることが判明している。   However, according to experiments by the present inventors, adjustment of the particle size of pulverized coal before kneading as shown in Patent Document 1, adjustment of the degree of kneading using the particle size after kneading as an index only, or Patent Document 2 It has been found that it is difficult to obtain a high strength molded carbon reliably and stably only by adjusting the particle size distribution after kneading as shown.

特開平6−330049号公報Japanese Patent Laid-Open No. 6-330049 特開2007−23170号公報Japanese Patent Application Publication No. 2007-23170

本発明は以上の事情を背景としてなされたもので、確実かつ安定して高い強度を有する成型炭が得られるようにし、またそれに伴って成型炭の製造歩留まりも安定して向上させ得るようにした成型炭の製造方法を提供することを課題としている。   The present invention has been made on the background of the above-mentioned circumstances, and it has been made to ensure that molded carbon having high strength is surely and stably obtained, and accordingly, the manufacturing yield of molded coal can be stably improved. It is an issue to provide a method for producing coal briquettes.

上述の課題を解決するために本発明者等が種々実験・検討を重ねたところ、次のような新規な知見を得た。 When the present inventors repeated various experiments and examinations in order to solve the above-mentioned problems, the following new findings were obtained.

すなわち、本発明者等の実験によれば、混練・成型後の成型炭の強度には、混練を開始する前の、粉砕後の原料の段階での石炭粒子の球状化の程度が大きく影響を与え、混練に供される石炭粒子の球状化が過度に進行していれば、成型炭の強度が急激に低下することを新規に見出した。   That is, according to the experiments of the present inventors, the degree of spheroidization of the coal particles at the stage of the raw material after the pulverization before the start of the kneading largely affects the strength of the molded coal after the kneading and molding. It has been newly found that if the spheroidization of the coal particles to be provided and kneaded is excessively progressed, the strength of the formed coal decreases sharply.

そしてさらに実験・検討を重ねた結果、混練前の段階での石炭の球状化の程度を、粒子の円形度で評価して、その円形度が平均で0.73未満であれば、混練・成型後の成型炭強度として、充分な強度を確保し得ることを見出し、本発明をなすに至った。   And as a result of repeating experiment and examination further, the degree of spheroidization of coal in the stage before kneading is evaluated by the degree of circularity of particles, and if the degree of circularity is less than 0.73 on average, kneading and molding It has been found that sufficient strength can be secured as the post-cast coal strength, and the present invention has been achieved.

具体的には、本発明の基本的な態様(第1の態様)の成型炭の製造方法は、
石炭原料を粉砕する粉砕工程と、前記粉砕工程によって得られた石炭粉末をバインダとともに混練する混練工程と、得られた混練物を塊状に成型する成型工程とを有し、
前記混練工程においては、平均円形度が0.73未満の石炭粒子を用いて混練を行い、得られた石炭粒子とバインダとからなる混練物を、次の成型工程に供することを特徴とするものである。
Specifically, the method for producing the coal according to the basic aspect (first aspect) of the present invention is
It has a grinding process of grinding a coal raw material, a kneading process of kneading the coal powder obtained by the grinding process with a binder, and a forming process of forming the obtained kneaded material into a block form.
In the kneading step, kneading is performed using coal particles having an average circularity of less than 0.73, and the kneaded material comprising the obtained coal particles and a binder is subjected to the next molding step. It is.

このような基本的な態様の成型炭の製造方法では、混練工程に供される石炭粒子の平均円形度を0.73未満としておくことによって、高い強度を有する成型炭を確実かつ安定して得ることができる。なおここで、混練工程に供される石炭粒子とは、微細粒子が凝集した凝集体(疑似粒子)と、凝集した疑似粒子が分離した凝集後分離粒子を主体とし、一部の、当初から凝集していない微細粒子を含むことがあるものであり、したがって上記の混練工程に供される石炭粒子の平均円形度も、これらのすべての粒子を含む全体の平均としての円形度を意味する。但し、後述するように、混練工程に供される全石炭粒子としては、粒径が0.1mm〜1.0mmの範囲内の石炭粒子が、全石炭粒子の60質量%以上を占めるのが通常であるから、0.1mm〜1.0mmの範囲内の石炭粒子の円形度の平均値で代表させ、その0.1mm〜1.0mmの範囲内の石炭粒子の円形度の平均値をもって、平均円形度とすればよい。   In the method for producing molded coal according to such a basic aspect, by setting the average circularity of coal particles provided in the kneading step to less than 0.73, molded coal having high strength can be reliably and stably obtained. be able to. Here, the coal particles to be subjected to the kneading step mainly include agglomerated particles (fine particles) in which fine particles are aggregated, and separated particles after aggregation in which aggregated pseudo particles are separated, and some of the particles are aggregated from the beginning The average degree of circularity of the coal particles subjected to the above-mentioned kneading step may also mean the overall degree of circularity including all these particles. However, as described below, as for all the coal particles to be subjected to the kneading step, it is usually that the coal particles having a particle diameter within the range of 0.1 mm to 1.0 mm occupy 60% by mass or more of the whole coal particles. Therefore, the average value of the circularity of coal particles in the range of 0.1 mm to 1.0 mm is represented, and the average value of the circularity of coal particles in the range of 0.1 mm to 1.0 mm is the average It may be taken as the roundness.

また本発明の第2の態様の成型炭の製造方法は、前記第1の態様において、
前記混練工程では、得られる混練物中の篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で25%以下となるように混練することを特徴とするものである。
Further, in the method of producing the coal according to the second aspect of the present invention, in the first aspect,
In the kneading step, coal particles having a size of 0.3 mm under of a sieve mesh in the kneaded material to be obtained are kneaded so as to be 25% or less by mass with respect to all the coal particles.

ここでは、混練物中の篩目0.3mmアンダーの石炭粒子の質量割合を、混練工程における混練度の指標としている。そして、篩目0.3mmアンダーの石炭粒子が全石炭粒子に対して質量%で25%以下となるように混練することによって、混練度をも確保して、成型炭の強度を、より確実かつ安定して高めることができる。すなわち、第1の態様に記載した、混練工程に供される石炭粒子の平均円形度の規制と、混練物中における篩目0.3mmアンダーの石炭粒子の質量割合の規制とが相俟って、成型炭の強度を、より確実かつ安定して高めることができるのである。   Here, the mass ratio of coal particles having a sieve size of 0.3 mm under in the kneaded material is used as an index of the degree of kneading in the kneading step. And by kneading the coal particles of 0.3 mm under with a mesh size of 25% or less by mass% to all the coal particles, the kneading degree is also secured, and the strength of the formed coal is more surely It can be stably enhanced. That is, the regulation of the average circularity of coal particles subjected to the kneading step described in the first aspect and the regulation of the mass ratio of coal particles of 0.3 mm under of sieve mesh in the kneaded material are combined. And the strength of the formed coal can be enhanced more reliably and stably.

なおここでは、疑似粒子や混練中にその疑似粒子が分離した粒子を含む石炭の粒子全体を、単純に石炭粒子と称することとしている。したがって例えば「混練中の石炭粒子」とは、微粉炭の凝集が進行した段階では、疑似粒子およびその分離粒子を主体とする石炭粒子(一部には凝集していない微細な粒子も含む)を意味する。   Here, the whole particle of coal including the pseudo particle and the particle from which the pseudo particle separated during the kneading is simply referred to as the coal particle. Therefore, for example, “coal particles during kneading” refers to pseudo particles and coal particles (including fine particles which are not aggregated in part) mainly consisting of pseudo particles and their separated particles when aggregation of pulverized coal proceeds. means.

さらに本発明の第3の態様の成型炭の製造方法は、前記第1もしくは第2の態様において、
前記粉砕工程を経て前記混練工程に供される石炭粉末が、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で80%以上を占めるものであることを特徴とするものである。
Furthermore, in the method of producing the coal according to the third aspect of the present invention, in the first or second aspect,
The coal powder to be subjected to the kneading step after the pulverizing step is characterized in that coal particles of 0.3 mm under of sieve mesh occupy 80% or more by mass% with respect to all the coal particles. It is.

本発明の成型炭の製造方法によれば、高強度を有する成型炭を確実かつ安定して得ることができ、また成型炭の歩留まりを向上させて、コスト低減を図ることができる。   According to the method for producing a shaped coal of the present invention, a shaped coal having high strength can be reliably and stably obtained, and the yield of the shaped coal can be improved to reduce the cost.

本発明の成型炭の製造方法を実施するための設備の全体的な構成の一例を示す略解図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the whole structure of the installation for enforcing the manufacturing method of the formed coal of this invention. 本発明の基礎となる実験1の結果を示す図で、混練工程での混練時間と混練物成型後の成型炭の成型歩留及び落下歩留との関係を示すグラフである。It is a figure which shows the result of Experiment 1 which becomes the basis of this invention, and is a graph which shows the relationship between the kneading | mixing time in a kneading | mixing process, and the shaping | molding yield and fall yield of the molding coal after shaping | molding of kneaded material. 本発明の基礎となる実験2の結果を示す図で、混練工程での混練羽根の回転数と混練物成型後の成型炭の総合歩留(成型歩留×落下歩留)との関係を示すグラフである。The figure which shows the result of Experiment 2 which becomes the foundation of the present invention, and shows the relationship between the number of rotations of the kneading blade in the kneading process and the integrated yield (the molding yield x the drop yield) of the molding coal after molding the kneaded material. It is a graph. 本発明の基礎となる実験3の結果を示す図で、混練物中における0.3mmアンダーの石炭粒子が全石炭粒子に対して占める質量割合と、混練物成型後の成型炭の成型歩留及び落下歩留との関係を示すグラフである。The figure which shows the result of Experiment 3 which becomes the foundation of the present invention, and the mass ratio which the coal particle of 0.3 mm under in a kneaded material occupies with respect to all the coal particles, the formation yield of the molding coal after kneading thing formation, It is a graph which shows a relation with falling yield. 本発明の実施例の結果を示す図で、混練に供される粉砕後の石炭粒子の平均円形度と、混練物成型後の成型炭の落下歩留との関係を示すグラフである。It is a figure which shows the result of the Example of this invention, and is a graph which shows the relationship between the average roundness of the coal particle after grinding | pulverization which is provided to kneading | mixing, and the falling yield of the molding coal after kneading | mixing thing shaping | molding.

以下に、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の成型炭の製造方法は、基本的には、石炭原料を粉砕する粉砕工程と、前記粉砕工程によって得られた石炭粉末をバインダとともに混練する混練工程と、得られた混練物を塊状に成型する成型工程とを有することを前提としている。
このような各工程を有する成型炭製造方法を実施するための設備構成の一例を図1に示す。
Basically, the method for producing molded coal according to the present invention comprises: a pulverizing step of pulverizing a coal raw material; a kneading step of kneading the coal powder obtained by the pulverizing step with a binder; It is premised to have a molding process for molding.
An example of the equipment configuration for carrying out the method for producing a coal briquette having such steps is shown in FIG.

図1において、原料の石炭は、インペラーブレーカ等の粉砕機10によって粉砕され、粉砕後の原料炭は、適宜の搬送機12によって搬送されて、例えば3基の原料炭ホッパー14A、14B、14Cに順次投入される。原料炭ホッパー14A、14B、14Cから切出し機15A、15B,15Cによって切出された原料炭(微粉炭)は、秤量コンベヤ16A、16B、16Cを経て、混練機18A、18B、18Cに投入される。また成型のためのバインダとしてタール(例えばロードタール)が、タール槽20から各混練機18A、18B、18Cに供給される。   In FIG. 1, the raw material coal is crushed by a crusher 10 such as an impeller breaker, and the crushed raw material coal is transported by an appropriate carrier 12 and, for example, to three raw material coal hoppers 14A, 14B, 14C. It is thrown in one by one. Raw material coal (pulverized coal) cut out from raw material hoppers 14A, 14B, 14C by cut-out machines 15A, 15B, 15C is fed to kneading machines 18A, 18B, 18C through weighing conveyors 16A, 16B, 16C. . In addition, tar (for example, road tar) is supplied from the tar tank 20 to each of the kneaders 18A, 18B and 18C as a binder for molding.

各混練機18A、18B、18Cでは、初期段階では、投入された微粉状の石炭粒子とバインダとが混合されて、微粉状の石炭粒子が凝集し、ある程度の大きさの凝集体(疑似粒子)の状態となる。さらに混練の進行に伴って、疑似粒子の状態の石炭粒子が分離しながら、タールと均一に混合されて、全体として石炭粒子とタールとが均一に混ざり合った混練物となる。このような石炭粒子とバインダとの混練物は、ダブルロール成型機等の成型機22A、22B、22Cに投入されて、1個あたり20〜70cc程度の寸法の塊状に成型され、成型炭として排出コンベヤ24により図示しない成型炭ヤードに搬出され、その後、適宜コークス炉に装入される。   In each of the kneaders 18A, 18B, and 18C, in the initial stage, the fine powder coal particles and the binder are mixed, and the fine powder coal particles are aggregated to form aggregates of a certain size (pseudoparticles) It will be in the state of Further, with the progress of the kneading, coal particles in a pseudo-particle state separate and are uniformly mixed with tar, and as a whole, it becomes a kneaded material in which coal particles and tar are uniformly mixed. Such a mixture of coal particles and a binder is introduced into forming machines 22A, 22B, 22C such as double roll forming machines, formed into a block of about 20 to 70 cc per piece, and discharged as formed coal. It is carried out by a conveyor 24 to a not-shown coal briquette yard, and then charged into a coke oven as appropriate.

混練機としては、連続方式でもバッチ方式でもよく、また縦型もしくは横型のいずれでもよく、さらに混練羽根の本数として1軸方式、2軸方式のいずれも使用できるが、いずれの混練機を用いても、混練後の石炭粒子の球状化の程度は、混練機に装入される段階の石炭粒子、すなわち粉砕後・混練開始前の石炭粒子の球状化の程度とほとんど変わらないことが判明している。   The kneader may be either a continuous system or a batch system, or may be either vertical or horizontal, and any number of kneading blades may be used, such as a single screw system or a twin screw system, but any kneader may be used. Also, it has been found that the degree of spheroidization of coal particles after kneading is almost the same as the degree of spheroidization of coal particles at the stage of charging into the kneader, ie after grinding and before the start of kneading. There is.

一方、本発明者等の実験・検討によれば、成型炭の強度には、混練前(粉砕後)の石炭粒子の球状化の程度が影響を与えることを見い出した。具体的には、混練に供される、粉砕後の石炭粒子の球状化の程度を、その石炭粒子の断面形状(平行光線により粒子を平行光線に対して直角な投影面に投影したときの投影像の形状)についての円形度が、平均で0.73以上に大きくなれば、急激に成型炭強度が低下することを見い出した。   On the other hand, according to experiments and studies by the present inventors, it was found that the degree of spheroidization of coal particles before kneading (after grinding) has an influence on the strength of molded coal. Specifically, the degree of spheroidization of coal particles after pulverization, which is subjected to kneading, is the cross-sectional shape of the coal particles (projection when the particles are projected onto a projection plane perpendicular to the parallel rays by parallel rays) It has been found that if the degree of circularity of the shape of the image) is increased to 0.73 or more on average, the strength of the formed carbon is rapidly reduced.

粉砕後、混練前の石炭粒子の平均円形度と、成型炭強度の指標としての落下歩留との関係を、後述する実施例の結果として図5に示している。ここで、落下歩留は、後に詳細に説明するように、全成型炭のうち、100mmオーバーの成型炭について落下試験に供して、100mmアンダーまで破壊されなかった成型炭の、全成型炭に対する質量割合を意味しており、したがって落下試験による破壊されにくさ、すなわち成型炭の強度に対応する値である。なお落下歩留は、目標値として80%程度以上であれば、成型炭強度が高いと判断することができる。   The relationship between the average circularity of the coal particles before kneading and the falling yield as an index of the strength of the formed carbon after crushing is shown in FIG. 5 as a result of an example described later. Here, the drop yield is, as will be described in detail later, the mass of all of the coal briquettes subjected to the drop test for 100 mm over of the coal briquettes, and the mass relative to all briquettes of the coal briquettes that were not broken to under 100 mm. It means a percentage and is therefore a value that is not easily broken by the drop test, ie the strength of the formed coal. If the falling yield is about 80% or more as a target value, it can be judged that the molded coal strength is high.

図5から、平均円形度が0.71付近から大きくなるにしたがって成型炭強度の指標としての落下歩留が低下する傾向を示し、特に平均円形度が0.73以上となれば、急激に落下歩留が低下し、目標の80%を下回ってしまうことが明らかである。このような関係から、本発明では、混練に供される石炭粒子の平均円形度を0.73未満とすること、言い換えれば、混練前の粉砕工程で、石炭粒子の平均円形度が0.73未満の段階で粉砕を終了させることとしている。   From FIG. 5, it is shown that the falling yield as an index of the strength of the formed carbon tends to decrease as the average circularity increases from around 0.71, and in particular, when the average circularity becomes 0.73 or more, the falling rapidly It is clear that the yield drops and falls below the target of 80%. From such a relationship, in the present invention, the average degree of circularity of the coal particles to be subjected to the kneading is set to less than 0.73, in other words, the average degree of circularity of the coal particles is 0.73 in the crushing step before the kneading. It is decided to finish the grinding in less stages.

なお、上記のところでは平均円形度が0.73未満の段階で粉砕を終了させるとしたが、図5から、平均円形度が0.71未満であれば、落下歩留90%以上と、より高い成型炭強度を確保することができ、したがって平均円形度が0.71未満の段階で粉砕を終了させて、平均円形度が0.71未満である石炭粒子を次の混練工程に供すれば、より確実かつ安定して強度が高い成型炭を得ることが可能となる。   In the above, the pulverization is finished when the average circularity is less than 0.73, but from FIG. 5, if the average circularity is less than 0.71, the falling yield is 90% or more, If high cast coal strength can be secured, and therefore grinding is terminated at a stage where the average circularity is less than 0.71, coal particles having an average circularity less than 0.71 are subjected to the next kneading step. It is possible to obtain a shaped coal having a high strength more reliably and stably.

ここで、上記の円形度は、例えば粉砕機10の直後でサンプリングした石炭粒子の撮影画像(二次元画像)を画像処理して算出することができ、二次元画像における粒子の面積Sと、同じく二次元画像における粒子の輪郭線長さ(周囲長)Lとの関係から、次の(1)式によって算出される値である。
円形度R=4πS/L・・・(1)
Here, the above circularity can be calculated by image processing of a photographed image (two-dimensional image) of coal particles sampled immediately after the crusher 10, for example, and the area S of the particles in the two-dimensional image It is a value calculated by the following equation (1) from the relationship with the contour line length (perimeter length) L of the particle in the two-dimensional image.
Circularity R = 4πS / L 2 (1)

なお、本発明の実験例、実施例において、実際の平均円形度の測定は、次のようにして行った。
すなわち粒径が0.1mm〜1.0mmの範囲内の石炭粉を測定対象とし、その二次元画像を撮影し、得られた撮影画像を、粒子形状測定装置(スペクトリス株式会社マルバーン事業部製、モロフォギ(登録商標)G3−ID)によって画像解析を行って円形度Rを算出した。ここで、測定サンプル数(測定粒子数)は、各水準で30000個以上となるように測定を実施し、その算術平均値をもって平均円形度とした。なおこの測定に当たって、粒径が0.1mm〜1.0mmの範囲内の石炭粉を測定対象としたのは、当該粒径の粒子が、対象サンプルの60%以上の質量割合を占めるためである。
In the experimental examples and examples of the present invention, the actual measurement of the average circularity was performed as follows.
That is, coal powder in a particle size range of 0.1 mm to 1.0 mm is to be measured, a two-dimensional image thereof is photographed, and the photographed image obtained is a particle shape measuring device (manufactured by Spectris, Ltd. Malvern Division, Image analysis was performed with Molofogi (registered trademark) G3-ID) to calculate the roundness R. Here, measurement was performed so that the number of measurement samples (the number of measurement particles) was 30,000 or more at each level, and the arithmetic average value was taken as the average circularity. In this measurement, the reason for using coal powder whose particle size is in the range of 0.1 mm to 1.0 mm is because particles of the particle size occupy 60% or more of the mass ratio of the target sample. .

上記の円形度Rが、R=1である場合は、粒子の二次元画像の形状が真円である場合、したがって三次元的には、粒子がほぼ真球体である場合に相当する。そして円形度Rの値が1より小さくなればなるほど、粒子の二次元画像の形状が真円から離れて、輪郭線の凹凸が大きくなること、すなわち三次元的には、粒子表面の凹凸が大きくなることを意味する。したがって、平均円形度が0.73未満であるとは、平均的に見て、表面の凹凸がある程度以上大きい石炭粒子が多数を占めていることを意味する。   When the above circularity R is R = 1, this corresponds to the case where the shape of the two-dimensional image of the particle is a true circle, and therefore, in three dimensions, the particle is a nearly perfect sphere. Then, as the value of the circularity R becomes smaller than 1, the shape of the two-dimensional image of the particle deviates from a true circle, and the unevenness of the contour line becomes larger, that is, the unevenness of the particle surface becomes large in three dimensions. It means to become. Therefore, an average degree of circularity of less than 0.73 means that, on average, coal particles having a surface unevenness larger than a certain extent occupy a large number.

前述のように混練に供される石炭粒子が球体に近くなれば、混練及び成形後の成型炭の強度が低下する理由、言い換えれば混練に供される石炭粒子の円形度が1に近い大きな値となれば成型炭の強度が低下する理由は、必ずしも明確ではないが、次のように推測される。すなわち、混練に供される石炭粒子の円形度が大きいほど(1に近いほど)、混練機による混練中における石炭粒子表面とバインダとの接触面積が少なくなり、結果的に混練物成型後の強度が低くなるためと考えられる。また同時に、石炭粒子の円形度が大きいほど(1に近いほど)、混練中において、混練羽根や混練機内周面に対する石炭粒子の摩擦、また石炭粒子相互の間の摩擦が少なくなり、そのため同じ時間だけ混練しても、混練度が低くなってしまうことも、混練物成型後の強度低下を招くものと推測される。   As described above, if the coal particles used for kneading become close to spheres, the strength of the formed coal decreases after kneading and molding, in other words, the roundness of the coal particles used for kneading is a large value close to 1 The reason for the decrease in strength of the coal briquettes if this is not always clear, but is presumed as follows. That is, the contact area between the surface of the coal particles and the binder during kneading by the kneader decreases as the degree of circularity of the coal particles to be kneaded increases (closer to 1), and as a result, the strength after molding the kneaded material Is considered to be lower. At the same time, as the roundness of the coal particles is larger (closer to 1), during kneading, the friction of the coal particles on the kneading blade and the inner circumferential surface of the kneading machine and the friction between the coal particles decrease, so the same time Even if only kneading is performed, it is presumed that lowering of the degree of kneading also causes reduction in strength after molding of the kneaded material.

前述のような知見に基づき、本発明の成型炭製造方法では、粉砕工程において、石炭粉末粒子の平均円形度が0.73未満の段階で粉砕を終了させ、その平均円形度が0.73未満の石炭粒子を、バインダとともに混練工程に供し、混練後の混練物(平均円形度が0.73未満の石炭粒子とバインダとの混練物)を、その後の成型工程に供し、成型炭とすることとしている。このようにすることによって、最終的に高強度を有する成型炭を確実かつ安定して製造することが可能となる。   Based on the above-mentioned findings, in the method for producing coal according to the present invention, in the crushing step, the grinding is finished at a stage where the average circularity of the coal powder particles is less than 0.73, and the average circularity is less than 0.73. The coal particles of the present invention are subjected to the kneading step together with the binder, and the kneaded material after kneading (kneaded product of coal particles having an average circularity of less than 0.73 and the binder) is And By doing so, it becomes possible to reliably and stably manufacture a shaped coal having high strength in the end.

ここで、粉砕工程では、粉砕が進行するに伴って、石炭粒子(疑似粒子やその分散粒子)が次第に球状化して平均円形度が大きくなる(平均円形度の値が1に近づく)が、粉砕機の形式・構造などによって、球状化の進行度合(平均円形度が大きくなる度合)は異なる。そこで、実際に上記のように石炭粉末粒子の平均円形度が0.73未満(好ましくは0.71未満)の段階で粉砕を終了させるためには、予めある粉砕条件下での粉砕実験を繰り返すか、あるいは過去の実績から、平均円形度が0.73もしくは0,71となるタイミングを予測し、そのタイミングに至る以前の段階で粉砕を終了させるように、粉砕条件を調整すれば良い。   Here, in the pulverizing step, as the pulverization proceeds, the coal particles (the pseudo particles and the dispersed particles thereof) gradually become spheroidized and the average circularity increases (the value of the average circularity approaches 1), but the pulverization The degree of progress of the spheroidization (the degree to which the average circularity increases) differs depending on the type and structure of the machine. Therefore, in order to finish the grinding at a stage where the average circularity of the coal powder particles is less than 0.73 (preferably less than 0.71), as described above, the grinding experiment under a certain grinding condition is repeated in advance. Or, from the past results, the timing at which the average circularity is 0.73 or 0, 71 is predicted, and the grinding conditions may be adjusted so that the grinding is ended before the timing.

なお粉砕工程で使用する粉砕機の種類は特に限定されるものではなく、従来一般の粉砕機を用いることができ、要は前述のように粉砕後の石炭粒子の平均円形度が0.73未満(好ましくは0.71未満)となるように粉砕できればよい。
また混練工程で使用する混練機の種類や混練条件は特に限定されるものではなく、従来一般の混練機を用いて、適切な条件で混練すればよい。
The type of crusher used in the crush process is not particularly limited, and a conventional crusher can be used. In short, as described above, the average circularity of coal particles after crush is less than 0.73. It may be crushed so as to be (preferably less than 0.71).
Further, the type of kneading machine used in the kneading step and the kneading conditions are not particularly limited, and kneading may be performed under appropriate conditions using a conventional general kneader.

また本発明の方法では、基本的には、粉砕を開始した後、石炭の円形度が0.73(望ましくは0.71)となる以前の段階で粉砕を終了させればよいが、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で25%以下となった時点以降であって、しかも平均円形度が0.73(好ましくは0.71)となる以前の段階で粉砕を終了させることが望ましい。   In the method of the present invention, basically, after commencing comminution, comminution may be finished before the roundness of coal reaches 0.73 (desirably 0.71), but sieving The stage after 0.3 mm under coal particles become 25% or less by mass% of all coal particles and before the average circularity becomes 0.73 (preferably 0.71) It is desirable to complete the grinding at

また混練工程に供される粉砕後の石炭粉末の大きさあるいは粒度分布は、基本的には限定しないが、一般には、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で80%以上を占めることが多く、本発明の場合も、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で80%以上を占めるような石炭粉末を混練工程に供することが好ましい。なお、破砕工程で破砕した後の粉末は、適宜の篩によって篩い分けし、篩い分け後の石炭粒子粉末を混練工程に供してもよいことはもちろんである。   Although the size or particle size distribution of the pulverized coal powder to be subjected to the kneading step is basically not limited, in general, coal particles of 0.3 mm under with a mesh size of 0.3% by mass relative to all coal particles Often use 80% or more, and in the case of the present invention as well, coal powder having a mesh size of 0.3 mm under represents 80% or more by mass relative to all coal particles is subjected to the kneading step Is preferred. In addition, it is needless to say that the powder after crushing in the crushing step may be sieved by an appropriate sieve, and the coal particle powder after sieving may be subjected to the kneading step.

以下に、本発明をなすに至る基礎となった各実験1〜3について説明する。   In the following, experiments 1 to 3 on which the present invention was made will be described.

先ず、石炭粉末粒子の平均円形度が0.73未満の段階で混練を終了させることによって、高強度の成型炭が得られるとの知見を得るに至る基礎となった実験1について、説明する。   First, an experiment 1 as a basis for obtaining the knowledge that high-strength molded coal can be obtained by ending kneading at a stage where the average circularity of coal powder particles is less than 0.73 will be described.

〔実験1〕
バッチ式の縦型混練機によって、混練時間が、成型歩留及び落下歩留に及ぼす影響、ひいては混練後の石炭粒子の平均円形度が成型炭強度に及ぼす影響を、次のようにして調査した。
粉砕機によりアンダー3mmの粉末が80質量%以上を占めるように粉砕した石炭粉末を、バッチ式の縦型混練機に投入し、混練羽根の回転数を120rpmとして、バインダとしてロードタールを、原料粉炭に対して質量比で6〜9%添加して、混練した。その際、混練時間を3〜30分の範囲内で種々変化させた。各混練時間での混練後の混練物を、成型機によって成型し、得られた成型炭について、成型歩留、及び落下歩留を調べた。
[Experiment 1]
The effects of kneading time on molding yield and falling yield, and in turn the effect of average circularity of coal particles after kneading on molded coal strength, were investigated as follows using a batch-type vertical kneader .
Coal powder pulverized so that powder of under 3 mm occupies 80% by mass or more by a pulverizer is introduced into a batch type vertical kneader, and the rotational speed of the kneading blade is 120 rpm, and load tar is used as a binder. To 6% by mass ratio and kneading. At that time, the kneading time was variously changed within the range of 3 to 30 minutes. The kneaded product after kneading at each kneading time was molded by a molding machine, and the molding carbon obtained was examined for molding yield and dropping yield.

ここで、成型歩留とは、コークス炉に成型炭として配合装入するに望ましい大きさの塊状成型炭が得られる歩留を意味し、ここでは、成型機通過後の成型炭のうち、10mm以上の成型炭が占める質量割合を成型歩留としている。具体的には、成型機通過後の成型炭を篩目10mmの篩によって分級して、篩上の成型炭質量をW1とし、成型機を通過した成型炭の全質量をW0として、
成型歩留P1=W1/W0
によって求めた。
Here, the term "molding yield" means a yield at which massive molded coal having a desired size can be obtained for blending and charging as coal in a coke oven, and here, 10 mm of the coal after passing through a molding machine The mass ratio occupied by the above-mentioned coal briquettes is used as the molding yield. Specifically, the formed carbon after passing through the forming machine is classified by a sieve with a sieve of 10 mm, the amount of formed coal on the sieve is W1, and the total mass of the formed coal which has passed through the forming machine is W0.
Molding yield P1 = W1 / W0
Determined by

また落下歩留は、コークス炉に成型炭として配合装入するに望ましい大きさの塊状成型炭のうち、落下試験により上記の大きさより小さく破壊されなかった成型炭が得られる歩留を意味する。したがってこの落下歩留まりは、コークス炉に成型炭として配合装入するに望ましい大きさの塊状成型炭についての、平均的な強度(成型体強度)の指標に相当し、落下歩留が大きいほど、成型炭強度が平均して大きいことを意味する。具体的な落下歩留測定手法としては、前述の成型歩留測定において、成型機通過後の成型炭を篩目10mmの篩によって分級して得られた篩上の成型炭(質量W1)を、2.5mの高さから10回自由落下させる落下試験を行い、その落下試験後の成型炭を、再び篩目10mmの篩によって分級し、その篩上成型炭質量をW2として、成型機を通過した成型炭の全質量W0に対する比を、次式の落下歩留P2とした。
落下歩留P2=W2/W0
Further, the falling yield means a yield which is capable of obtaining, among lumpy coals of a size which is desirable for blending and charging as coal in a coke oven, a coal which is smaller than the above-mentioned size and which is not broken by the falling test. Therefore, the drop yield corresponds to an index of average strength (molded body strength) for bulk molded coal of a size desired to be mixed and charged as coke in a coke oven, and the larger the drop yield, the more It means that charcoal intensity is large on average. As a specific drop yield measurement method, in the above-mentioned molding yield measurement, the formed coal (mass W1) on the sieve obtained by classifying the formed coal after passing through the forming machine with a sieve of 10 mm sieve, A drop test is conducted to free fall 10 times from a height of 2.5 m, and the coal which has been subjected to the drop test is again classified using a sieve with a sieve of 10 mm, the mass of the formed coal on the sieve is W2, and it passes through the molding machine The ratio to the total mass W0 of the formed coal was defined as the falling yield P2 of the following equation.
Falling yield P2 = W2 / W0

上記の実験1による調査結果を、混練時間を横軸に取り、成型歩留及び落下歩留を縦軸に取って、図2に示す。
図2に示しているように、混練時間が長時間化するに伴って、成型歩留及び落下歩留が低下する傾向を示し、特に落下歩留は、混練時間が10分を超えた付近から、急激に低下する傾向が認められた。
The results of the above-mentioned experiment 1 are shown in FIG. 2 with the kneading time on the horizontal axis and the molding yield and drop yield on the vertical axis.
As shown in FIG. 2, the molding yield and the falling yield tend to decrease as the kneading time increases, and in particular, the falling yield is from around the kneading time exceeding 10 minutes. There was a tendency for it to decline sharply.

また混練羽根の回転速度が、成型歩留及び落下歩留に及ぼす影響について、次の実験2によって調査した。   Also, the influence of the rotation speed of the kneading blade on the molding yield and the drop yield was investigated by the following Experiment 2.

〔実験2〕
粉砕機によりアンダー3mmの粉末が80質量%以上を占めるように粉砕した石炭粉末を、連続式の横型2軸混練機に連続的に投入し、バインダとしてロードタールを、石炭粉末に対して質量比で7%添加しながら混練した。この際、混練羽根の回転数を30〜48rpmの範囲内で変化させた。なお混練機の排出側の堰高さを2段階に変更して混練機内滞留時間を2段階に調整することによって、混練時間を2水準(2.1分、3.2分)に調整した。
[Experiment 2]
Pulverized coal powder which is crushed so that under 3 mm powder occupies 80% by mass or more is continuously fed to a continuous type horizontal twin-screw kneader, and Rhodtar as a binder and mass ratio to coal powder The mixture was kneaded while adding 7%. At this time, the rotation speed of the kneading blade was changed in the range of 30 to 48 rpm. The kneading time was adjusted to two levels (2.1 minutes, 3.2 minutes) by changing the weir height on the discharge side of the kneader to two steps and adjusting the residence time in the kneader to two steps.

各混練羽根回転数、各混練時間での混練後の混練物を成型機によって成型し、得られた成型炭について、成型歩留及び落下歩留を調べ、総合歩留を、次式によって評価した。
総合歩留=[成型歩留]×[落下歩留]
The kneaded material after kneading at each kneading blade rotational speed and each kneading time was molded by a molding machine, and the molded coal obtained was examined for molding yield and falling yield, and the overall yield was evaluated by the following equation .
Overall yield = [casting yield] × [falling yield]

上記の実験2による調査結果を、混練羽根の回転数を横軸に取り、総合歩留を縦軸に取って、図3に示す。
図3に示しているように、混練時間が2.1分、3.2分の場合のいずれにおいても、混練羽根の回転数が30rpmから高くなるに従って総合歩留が上昇して、混練羽根の回転数が40rpm付近で総合歩留はピークとなり、40rpm付近を超えた回転数では、逆に総合歩留が低下することが判明した。
なお、上記の実験結果においては、同じ混練時間で比較すれば、総合歩留は、混練時間が2.1分の場合よりも3.2分の場合の方が全般的に高くなっている。これは、混練羽根の回転数を一定としておけば、混練時間の調整により混練度を調整し得ることを意味している。
The results of the above-mentioned experiment 2 are shown in FIG. 3 with the rotation speed of the kneading blade on the horizontal axis and the total yield on the vertical axis.
As shown in FIG. 3, in any of the cases where the kneading time is 2.1 minutes and 3.2 minutes, the overall yield increases as the number of revolutions of the kneading blade increases from 30 rpm, and It was found that the total yield peaked at around 40 rpm, and the total yield decreased at a speed exceeding 40 rpm.
In the above experimental results, the overall yield is generally higher when the kneading time is 3.2 minutes than when the kneading time is 2.1 minutes, when compared at the same kneading time. This means that the kneading degree can be adjusted by adjusting the kneading time if the rotation speed of the kneading blade is kept constant.

一方、既に述べたように、混練工程において、混練の進行度合い(混練度)を、混練物中の篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して占める質量割合で評価し、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で25%以下となった時点以降に混練を終了させることが望ましいとの知見を得る基礎となった実験3について説明する。   On the other hand, as already described, in the kneading step, the degree of progress of the kneading (kneading degree) is evaluated by the mass ratio occupied by coal particles of 0.3 mm under with a sieve of 0.3 mm in the kneaded material, The experiment 3 which became the basis which obtains the knowledge that it is desirable to finish kneading after the point where the coal particle of the sieve 0.3 mm under becomes 25% or less by mass% to all the coal particles is explained. .

〔実験3〕
混練後の混練物中における石炭粒子の大きさが、成型歩留及び落下歩留に及ぼす影響を、次のようにして調査した。
粉砕機によりアンダー3mmの粉末が80質量%を占めるように粉砕した石炭粉末を、バッチ式の縦型混練機に投入し、バインダとしてロードタールを石炭粉末に対して質量比で7%添加して混練した。混練後の混練物中における石炭粒子の粒度を測定し、0.3mm未満の石炭粒粒子が全石炭粒子に占める質量割合を算出した。なおこの実験では、混練時間及び混練羽根の回転数を種々変化させることによって、0.3mm未満の石炭粒子が全石炭粒子に占める質量割合を変化させた。
さらに混練後の混練物を、成型機によって成型し、得られた成型炭について、成型歩留、及び落下歩留を調べた。
[Experiment 3]
The influence of the size of the coal particles in the kneaded material after kneading on the molding yield and the falling yield was investigated as follows.
Coal powder pulverized so that 80% by mass of under 3 mm powder is occupied by a pulverizer is charged into a batch type vertical kneader, and Rhodtar as a binder is added 7% by mass ratio to coal powder Kneaded. The particle size of the coal particles in the kneaded material after kneading was measured, and the mass ratio of less than 0.3 mm coal particles to the total coal particles was calculated. In this experiment, by changing the kneading time and the rotation speed of the kneading blade variously, the mass ratio of less than 0.3 mm of coal particles to all coal particles was changed.
Furthermore, the kneaded material after kneading was molded by a molding machine, and the molding yield and drop yield were examined for the obtained coal.

上記の実験3による調査結果を、混練物中の0.3mm未満の石炭粒子が全石炭粒子に占める質量割合を横軸に取り、成型歩留、落下歩留を縦軸に取って、図4に示す。
図4に示しているように、混練物中の0.3mm未満の石炭粒子の質量割合が25%程度を超えれば、成型歩留及び落下歩留が低下する傾向を示し、特に落下歩留は、前記割合が25%程度を超えた付近から、急激に低下する傾向が認められた。これは、混練物中の0.3mm未満の石炭粒子の質量割合が25%を超えるのは、混練度が不足しているケースであり、混練機に投入した石炭粒子の凝集が充分に進行していないためと推測される。
The results of the above-mentioned experiment 3 are shown in FIG. 4, where the mass ratio of coal particles less than 0.3 mm in the kneaded material is on the entire coal particles on the horizontal axis, and the molding yield and falling yield on the vertical axis. Shown in.
As shown in FIG. 4, when the mass ratio of coal particles smaller than 0.3 mm in the kneaded material exceeds about 25%, the molding yield and the falling yield tend to decrease, especially the falling yield There was a tendency for the ratio to drop sharply from around 25%. This is the case where the mass ratio of less than 0.3 mm of coal particles in the kneaded material exceeds 25% in the case where the degree of kneading is insufficient, and the aggregation of the coal particles introduced into the kneader proceeds sufficiently It is guessed that it is not.

したがってこのような実験3による結果から、混練物中の0.3mm未満の石炭粒子の質量割合が25%以下であれば、成型炭強度を確保し得ることが判明した。すなわち、混練を開始してから、少なくとも、0.3mm未満の石炭粒子の質量割合が25%以下となる時点以降まで混練を継続させれば、前述のように平均円形度が0.73未満(好ましくは0.71未満)の石炭粒子を混練に供することと相俟って、充分な成型炭強度を確保し得るのである。   Accordingly, from the results of Experiment 3 as described above, it has been found that if the mass ratio of coal particles smaller than 0.3 mm in the kneaded material is 25% or less, it is possible to secure the molded coal strength. That is, if kneading is continued at least after the mass proportion of coal particles smaller than 0.3 mm becomes 25% or less after the start of kneading, the average circularity is less than 0.73 as described above ( Combined with the use of the coal particles of preferably less than 0.71) for kneading, it is possible to secure sufficient cast carbon strength.

本発明の作用・効果を検証するために行った実施例を以下に示す。   Examples carried out to verify the action and effect of the present invention are shown below.

粉砕機としてインペラーブレーカを用いて、原料石炭を、アンダー3mmの粉末が80質量%以上を占めるように粉砕した。なお、粉砕に当たっては、粉砕時間を調整することによって、球状化の程度(平均円形度)を種々変化させた。粉砕後の石炭粉末を、連続式2軸横型混練機を用い、石炭粉末に対して質量割合で7%のロードタールを添加しながら、混練羽根の回転数を40rpmとして、種々の時間だけ混練した。各時間の混練で得られた混練物について、一部は円形度の測定のためのサンプルとし、残りはダブルロール型成型機によって、目標サイズ40〜50ccとして成型炭に成型した。   Using an impeller breaker as a pulverizer, raw material coal was pulverized so that the powder of under 3 mm occupied 80% by mass or more. In grinding, the degree of spheroidization (average roundness) was variously changed by adjusting the grinding time. The pulverized coal powder was kneaded using a continuous biaxial horizontal type kneader, while adding 7% by weight of load tar to the coal powder, while setting the rotation speed of the kneading blade to 40 rpm, for various times. . About the kneaded material obtained by kneading | mixing of each time, one part was made into the sample for the measurement of circularity, and the remainder was shape | molded by the double roll type | mold molding machine as a target size of 40-50 cc to a briquette.

混練に供された粉砕後の石炭粒子の平均円形度を、粒径が0.1mm〜1.0mmの範囲内の石炭粒子について、既に述べた方法、装置によって測定して、30000個以上(実際には30000〜35000個)の円形度の平均値をもって、平均円形度とした。
また、最終的に得られた成型炭について、その強度の指標として、既に述べたような落下試験を行い、落下歩留を調べた。
その結果を、図5に示す。
The average circularity of pulverized coal particles subjected to kneading is measured by the method and apparatus described above for coal particles having a particle diameter in the range of 0.1 mm to 1.0 mm. The average degree of circularity was defined as an average value of 30,000 to 35,000 circularities).
Moreover, about the briquettes finally obtained, as a parameter | index of the strength, the drop test which already mentioned was done, and the drop yield was investigated.
The results are shown in FIG.

図5から、混練に供される粉砕後の石炭粒子の平均円形度が0.71付近から大きくなるにしたがって成型炭強度の指標としての落下歩留が低下する傾向を示し、特に平均円形度が0.73以上となれば、急激に落下歩留が低下し、目標の80%を下回ってしまうことが明らかである。さらに、図5から、平均円形度が0,71未満であれば、落下歩留90%以上と、より高い成型炭強度を確保し得ることが明らかである。   From FIG. 5, it is shown that the falling yield as an indicator of the strength of the formed carbon tends to decrease as the average circularity of the crushed coal particles subjected to kneading increases from around 0.71, and in particular, the average circularity If it is 0.73 or more, it is clear that the drop yield falls rapidly and falls below the target of 80%. Furthermore, it is clear from FIG. 5 that if the average circularity is less than 0, 71, it is possible to secure a higher formed carbon strength, which is a drop yield of 90% or more.

なお図5にプロットしたいずれの条件の場合も、混練物中における0.3mm未満の石炭粒子が全石炭粒子に占める質量割合は、25%以下となっていることが確認された。すなわち、上記の図5に示す結果は、いずれの条件下でも、混練度は確保されている、と言うことができる。   In any of the conditions plotted in FIG. 5, it was confirmed that the mass ratio of less than 0.3 mm of coal particles in the kneaded material is 25% or less in the total coal particles. That is, the results shown in FIG. 5 can be said that the degree of kneading is maintained under any conditions.

以上、本発明の好ましい実施形態、実験および実施例について説明したが、これらの実施形態、実験、実施例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。   The preferred embodiments, experiments, and examples of the present invention have been described above, but these embodiments, experiments, and examples are merely examples within the scope of the present invention, and from the scope of the present invention Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the scope of the invention. That is, the present invention is not limited by the above description, and is limited only by the appended claims, and it is needless to say that the present invention can be appropriately modified within the scope.

10 粉砕機
18A、18B,18C 混練機
22A、22B,22C 成型機
10 Grinding machines 18A, 18B, 18C Kneading machines 22A, 22B, 22C Molding machines

Claims (3)

石炭原料を粉砕する粉砕工程と、前記粉砕工程によって得られた石炭粉末をバインダとともに混練する混練工程と、得られた混練物を塊状に成型する成型工程とを有し、
前記混練工程においては、平均円形度が0.73未満の石炭粒子を用いて混練を行い、得られた混練物を、次の成型工程に供することを特徴とする成型炭の製造方法。
It has a grinding process of grinding a coal raw material, a kneading process of kneading the coal powder obtained by the grinding process with a binder, and a forming process of forming the obtained kneaded material into a block form.
In the kneading step, kneading is performed using coal particles having an average circularity of less than 0.73, and the obtained kneaded product is subjected to the next molding step.
請求項1に記載の成型炭の製造方法において、
前記混練工程では、得られる混練物中の篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で25%以下となるように混練することを特徴とする成型炭の製造方法。
In the method for producing the coal according to claim 1,
In the above-mentioned kneading step, coal particles of 0.3 mm under of sieve mesh in the kneaded material to be obtained are kneaded so as to be 25% or less by mass% with respect to all coal particles. .
請求項1、請求項2のいずれかの請求項に記載の成型炭の製造方法において、
前記粉砕工程を経て前記混練工程に供される石炭粉末は、篩目0.3mmアンダーの石炭粒子が、全石炭粒子に対して質量%で80%以上を占めるものであることを特徴とする成型炭の製造方法。

In the method of producing the coal according to any one of claims 1 and 2,
The coal powder to be subjected to the kneading step after the pulverizing step is characterized in that coal particles of 0.3 mm under of sieve mesh occupy 80% or more by mass% with respect to all the coal particles. How to make charcoal.

JP2017075284A 2017-04-05 2017-04-05 Briquette manufacturing method Active JP6969138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075284A JP6969138B2 (en) 2017-04-05 2017-04-05 Briquette manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075284A JP6969138B2 (en) 2017-04-05 2017-04-05 Briquette manufacturing method

Publications (2)

Publication Number Publication Date
JP2018177871A true JP2018177871A (en) 2018-11-15
JP6969138B2 JP6969138B2 (en) 2021-11-24

Family

ID=64281303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075284A Active JP6969138B2 (en) 2017-04-05 2017-04-05 Briquette manufacturing method

Country Status (1)

Country Link
JP (1) JP6969138B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201900A (en) * 2007-02-20 2008-09-04 Nippon Steel Corp Method for producing coal briquette
JP2011136256A (en) * 2009-12-25 2011-07-14 Nippon Steel Corp Method and apparatus for kneading powder, and method of agglomerating the powder
JP2015117279A (en) * 2013-12-17 2015-06-25 新日鐵住金株式会社 Method for producing coke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201900A (en) * 2007-02-20 2008-09-04 Nippon Steel Corp Method for producing coal briquette
JP2011136256A (en) * 2009-12-25 2011-07-14 Nippon Steel Corp Method and apparatus for kneading powder, and method of agglomerating the powder
JP2015117279A (en) * 2013-12-17 2015-06-25 新日鐵住金株式会社 Method for producing coke

Also Published As

Publication number Publication date
JP6969138B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
KR101643272B1 (en) Method and apparatus for manufacturing raw granulating material for sintering and method of producing sintered ore for blast furnace
JP4927702B2 (en) Process for producing mixed raw materials for sintering
WO2016190023A1 (en) Reduced iron manufacturing method
JP6333982B2 (en) Method and apparatus for forming granules
JP2016191122A (en) Method for producing sintered ore
WO2017082504A1 (en) Apparatus for manufacturing coal briquette
JP2020111817A (en) Granulation method of agglomerate
JP2018177871A (en) A method for producing molded coal
JP5165943B2 (en) Granulated product sizing equipment for metal-containing by-products
JP5402785B2 (en) Granulation method of molded product
JP5151490B2 (en) Coke production method
JP2007001797A (en) Method of manufacturing aggregate for asphalt
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP5942971B2 (en) Coke production method
JP2005154737A (en) Production process of coke
JP6591238B2 (en) Briquette manufacturing method and manufacturing apparatus
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP2003226879A (en) Method for adjusting particle size of coal filled into coke oven
JP5087911B2 (en) Coke production method
WO2018037808A1 (en) Solid fuel production method
JP2002167624A (en) Method for producing agglomerated material for treating in rotary hearth furnace
RU2827013C1 (en) Method of producing iron-containing briquettes
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP2002336725A (en) Milling method and milling plant
KR102205814B1 (en) Manufacturing method of ferrocox

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151