JP2018176393A - Both surface polishing method and both surface polishing device for wafer - Google Patents

Both surface polishing method and both surface polishing device for wafer Download PDF

Info

Publication number
JP2018176393A
JP2018176393A JP2017083936A JP2017083936A JP2018176393A JP 2018176393 A JP2018176393 A JP 2018176393A JP 2017083936 A JP2017083936 A JP 2017083936A JP 2017083936 A JP2017083936 A JP 2017083936A JP 2018176393 A JP2018176393 A JP 2018176393A
Authority
JP
Japan
Prior art keywords
double
wafer
polishing
sided
carriers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083936A
Other languages
Japanese (ja)
Other versions
JP6665827B2 (en
Inventor
佑宜 田中
Yuki Tanaka
佑宜 田中
大地 北爪
Daichi Kitatsume
大地 北爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017083936A priority Critical patent/JP6665827B2/en
Priority to KR1020197028101A priority patent/KR102477930B1/en
Priority to CN201880018073.XA priority patent/CN110418696B/en
Priority to PCT/JP2018/009962 priority patent/WO2018193758A1/en
Priority to TW107109258A priority patent/TWI710018B/en
Publication of JP2018176393A publication Critical patent/JP2018176393A/en
Application granted granted Critical
Publication of JP6665827B2 publication Critical patent/JP6665827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Abstract

PROBLEM TO BE SOLVED: To provide a both surface polishing method and a both surface polishing method for a wafer that can suppress a difference (variations) in flatness between wafers which are obtained through both surface polishing using a plurality of both surface polishing carriers.SOLUTION: In a both surface polishing method for a wafer in which a plurality of both surface polishing carriers are arranged in a both surface polishing device, when preparing a carrier set constituted of the plurality of both surface polishing carriers to be arranged between upper and lower surface plates, wavinesses calculated from data determined by measuring shapes of both surface polishing carriers using a shape measuring machine are obtained in all of the plurality of both surface polishing carriers of the carrier set, the carrier set, in which a difference between the maximum value and the minimum value of the wavinesses between the plurality of both surface polishing carriers in the carrier set is below a certain value, is selectively prepared, and the set is arranged in both surface polishing device to polish both surfaces of the wafer.SELECTED DRAWING: Figure 3

Description

本発明は、複数の両面研磨用キャリアを用いてウェーハを両面研磨する方法及び両面研磨装置に関する。   The present invention relates to a method and a double-side polishing apparatus for double-side polishing a wafer using a plurality of double-side polishing carriers.

シリコンウェーハ等のウェーハを平坦化するための両面研磨装置において、ウェーハを保持するためのワークホールが設けられた円盤状の両面研磨用キャリアが一般的に用いられている。   In a double-side polishing apparatus for planarizing a wafer such as a silicon wafer, a disk-shaped double-sided polishing carrier provided with a work hole for holding a wafer is generally used.

両面研磨装置としては、通常、不織布などからなる研磨布(研磨パッド)が貼付された上定盤と下定盤を具備し、中心部にはサンギアが、外周部にはインターナルギアがそれぞれ配置された遊星歯車構造を有するいわゆる4way方式のものが用いられている。このような両面研磨装置において、両面研磨用キャリア(以下、単にキャリアとも言う)に単数又は複数形成されたワークホールの内部にウェーハを挿入し、保持する。   The double-side polishing apparatus usually comprises an upper surface plate and a lower surface plate to which an abrasive cloth (abrasive pad) made of non-woven fabric or the like is attached, a sun gear at the center and an internal gear at the outer periphery. A so-called four-way system having a planetary gear structure is used. In such a double-sided polishing apparatus, a wafer is inserted and held in a work hole formed in a single or a plurality of double-sided polishing carriers (hereinafter, also simply referred to as carriers).

そして、上定盤側からスラリーをウェーハに供給し、上下定盤を回転させながら研磨布をウェーハの表裏両面に押し付けるとともに、キャリアをサンギアとインターナルギアとの間で自転公転させることで各ウェーハの両面が同時に研磨される。   Then, the slurry is supplied to the wafer from the upper surface plate side, and while the upper and lower surface plates are rotated, the polishing cloth is pressed against both the front and back sides of the wafer, and the carrier is rotated and revolved between the sun gear and the internal gear. Both sides are polished simultaneously.

ところで、両面研磨されたウェーハのフラットネスには、それを保持するキャリアの厚みが重要であることが知られていた。このことから、キャリアの厚みバラツキを低減させることで、両面研磨されたウェーハのフラットネスバラツキを低減させる試みがなされてきた(特許文献1参照)。   By the way, it has been known that the thickness of the carrier holding the wafer is important for the flatness of a double-sided polished wafer. From this, an attempt has been made to reduce the flatness variation of a double-sided polished wafer by reducing the carrier thickness variation (see Patent Document 1).

特開2015−174168号公報JP, 2015-174168, A

しかし、キャリアの厚みが均一であっても、キャリア間で、各々が両面研磨時に保持して得られた両面研磨ウェーハ同士のエッジフラットネスに差が生じることがあった。   However, even if the thickness of the carrier is uniform, there may be a difference in edge flatness between the double-sided wafers obtained by holding the two during double-sided polishing among the carriers.

本発明は上記問題に鑑みてなされたものであり、複数の両面研磨用キャリアを用いて両面研磨して得られるウェーハ同士のフラットネスの差(ばらつき)を抑制することができるウェーハの両面研磨方法及び両面研磨装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a method for double-sided polishing of wafers capable of suppressing a difference (variation) in flatness between wafers obtained by double-sided polishing using a plurality of carriers for double-sided polishing. And it aims at providing a double-sided polisher.

上記目的を達成するために、本発明は、両面研磨装置において、研磨布が貼付された上下定盤の間に複数の両面研磨用キャリアを配設し、該複数の両面研磨用キャリアの各々に形成されたワークホールにウェーハを保持して、前記上下定盤の間に挟み込んで両面研磨するウェーハの両面研磨方法であって、前記上下定盤の間に配設する複数の両面研磨用キャリアからなるキャリアセットを用意するとき、形状測定機を用いて前記両面研磨用キャリアの形状を測定したデータから算出したうねり量を、キャリアセットの前記複数の両面研磨用キャリアの全てにおいて取得し、キャリアセット内における前記複数の両面研磨用キャリア同士のうねり量の最大値と最小値との差が一定値以下であるキャリアセットを選定して用意し、該用意したキャリアセットの前記複数の両面研磨用キャリアを前記両面研磨装置に配設して前記ウェーハを両面研磨することを特徴とするウェーハの両面研磨方法を提供する。   In order to achieve the above object, according to the present invention, in a double-sided polishing apparatus, a plurality of double-sided polishing carriers are disposed between upper and lower platens to which a polishing pad is attached, and each of the plurality of double-sided polishing carriers is A method for holding a wafer in a formed work hole, and holding the wafer between the upper and lower surface plates for double-sided polishing of the wafer, comprising a plurality of double-sided polishing carriers disposed between the upper and lower surfaces. When preparing a carrier set as described above, the amount of waviness calculated from data obtained by measuring the shape of the carrier for double-sided polishing using a shape measuring machine is acquired for all of the plurality of carriers for double-sided polishing of the carrier set, The carrier set is selected and prepared such that the difference between the maximum value and the minimum value of the waviness amount of the plurality of double-side polishing carriers in the inside is smaller than a predetermined value, Provides a double-side polishing method for a wafer, characterized in that by arranging a plurality of double-side polishing carrier assets to the double-side polishing apparatus for double-sided polishing the wafer.

本発明者らは、研究により両面研磨用キャリアのうねり(反り)が両面研磨ウェーハのフラットネスに影響を与えることを見出した。そして、上記のような両面研磨方法であれば、キャリアセット内における複数の両面研磨用キャリア同士のうねり量の最大値と最小値との差が一定値以下であるキャリアセットを選定して用いるので、その両面研磨で得られる両面研磨ウェーハ同士の間でのフラットネスの差を抑制することができる。このため、従来のように両面研磨ウェーハ同士でフラットネスに差が生じてしまい、そのためにフラットネスが規定値から外れる両面研磨ウェーハの割合が増えてしまうのを防ぐことができ、収率を改善することができる。   The inventors of the present invention have found that the waviness (warpage) of the double-sided polishing carrier influences the flatness of the double-sided polished wafer. Then, in the case of the double-side polishing method as described above, a carrier set in which the difference between the maximum value and the minimum value of the waviness amounts of a plurality of double-side polishing carriers in the carrier set is equal to or less than a predetermined value is selected The difference in flatness between double-sided polished wafers obtained by double-sided polishing can be suppressed. For this reason, as in the conventional case, a difference in flatness occurs between double-sided polished wafers, which can prevent an increase in the ratio of double-sided polished wafers whose flatness deviates from the specified value, thereby improving the yield. can do.

このとき、前記うねり量の算出において、前記形状測定機として、レーザーセンサを持つ三次元座標測定機を用い、前記両面研磨用キャリアの全体を測定した点群データからうねり量を算出することができる。   At this time, in the calculation of the amount of waviness, it is possible to calculate the amount of waviness from the point cloud data obtained by measuring the entire double-side polishing carrier using a three-dimensional coordinate measuring machine having a laser sensor as the shape measuring machine. .

このようにすれば、両面研磨用キャリアの形状をより高精度に測定することができ、より正確なうねり量を算出することが可能である。その結果、より適切にキャリアセットを選定することができ、得られる両面研磨ウェーハ同士において、フラットネスの差が生じるのを防ぐことができる。   In this way, the shape of the double-side polishing carrier can be measured with higher accuracy, and it is possible to calculate a more accurate amount of waviness. As a result, the carrier set can be selected more appropriately, and it is possible to prevent the occurrence of a difference in flatness between the double-sided polished wafers obtained.

また、前記うねり量の算出において、前記測定した点群データ全てで水平化を行い、波長20mm以下のノイズ成分を除去して得られる変換点群データから前記両面研磨用キャリアのうねり量を算出することができる。   Further, in the calculation of the amount of waviness, leveling is performed on all the measured point cloud data, and the amount of waviness of the carrier for double-side polishing is calculated from conversion point cloud data obtained by removing noise components of wavelength 20 mm or less. be able to.

このようにすることで、より適切に、両面研磨用キャリアのうねり量を算出することができる。   By doing this, the amount of undulation of the double-side polishing carrier can be calculated more appropriately.

また、前記両面研磨するウェーハを直径300mmのものとし、前記うねり量の算出において、前記変換点群データから、前記ワークホールの中心から175mm以内のデータを抽出し、該抽出データから算出した算術平均粗さSkを前記うねり量とし、前記キャリアセットの選定において、前記複数の両面研磨用キャリア同士のSkの最大値と最小値との差が10μm以下であるキャリアセットを選定することができる。   The wafer to be double-sided polished is 300 mm in diameter, and in the calculation of the amount of undulation, data within 175 mm from the center of the work hole is extracted from the conversion point group data, and the arithmetic mean calculated from the extraction data The carrier set may be selected such that the difference between the maximum value and the minimum value of Sk of the plurality of double-sided polishing carriers is 10 μm or less, where the roughness Sk is the waviness amount, and the carrier set is selected.

このようにすれば、両面研磨ウェーハのフラットネスに影響を与えやすいワークホール周辺のデータを利用してうねり量を算出することができるし、直径300mmというよく使用されているサイズの両面研磨ウェーハを、互いにフラットネスの差が抑制された状態で得ることができるので好適である。   In this way, the amount of waviness can be calculated using data around the work hole that easily affects the flatness of the double-sided polishing wafer, and a double-sided polishing wafer with a commonly used size of 300 mm is used. This is preferable because the difference in flatness can be obtained in a mutually suppressed state.

また、本発明は、研磨布が貼付された上下定盤と、該上下定盤間にスラリーを供給するスラリー供給機構と、前記上下定盤の間に配設され、研磨の際に前記上下定盤の間に挟まれたウェーハを保持するためのワークホールが各々形成された複数の両面研磨用キャリアからなるキャリアセットを備えた両面研磨装置であって、前記キャリアセット内における前記複数の両面研磨用キャリア同士の、うねり量である算術平均粗さSkの最大値と最小値との差が10μm以下であることを特徴とする両面研磨装置を提供する。   Further, according to the present invention, there is provided an upper and lower surface plate to which a polishing pad is attached, a slurry supply mechanism for supplying a slurry between the upper and lower surface plates, and the upper and lower surface plate. A double-sided polishing apparatus comprising a carrier set comprising a plurality of double-sided polishing carriers each having a work hole for holding a wafer sandwiched between discs, the plurality of double-sided polishing in the carrier set Provided is a double-side polishing apparatus characterized in that the difference between the maximum value and the minimum value of the arithmetic average roughness Sk, which is the amount of corrugation, between carriers for use is 10 μm or less.

このような両面研磨装置であれば、該装置を用いた両面研磨で得られる両面研磨ウェーハ同士の間でのフラットネスの差を抑制することができ、フラットネスばらつきを抑えて、収率を改善することができる。   With such a double-sided polishing apparatus, it is possible to suppress the difference in flatness between double-sided polished wafers obtained by double-sided polishing using the apparatus, and to suppress variations in flatness and improve yield. can do.

以上のように、本発明のウェーハの両面研磨方法及び両面研磨装置であれば、複数の両面研磨用キャリアを用いて両面研磨して得られるウェーハ同士のフラットネスの差を抑制することができる。これにより、フラットネスに基づく収率を改善することができる。   As described above, with the double-sided polishing method and double-sided polishing apparatus of wafers according to the present invention, it is possible to suppress the difference in flatness between wafers obtained by double-sided polishing using a plurality of double-sided polishing carriers. This can improve the yield based on flatness.

本発明のウェーハの両面研磨方法に使用することができる本発明の両面研磨装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the double-sided grinding | polishing apparatus of this invention which can be used for the double-sided grinding | polishing method of the wafer of this invention. 平面視による本発明の両面研磨装置の一例を示す内部構造図である。It is an internal structure figure which shows an example of the double-sided grinding | polishing apparatus of this invention by planar view. 本発明のウェーハの両面研磨方法の工程の一例を示す工程図である。It is process drawing which shows an example of the process of the double-sided grinding method of the wafer of this invention. キャリアの形状測定における測定データの一例を示す測定図である。It is a measurement figure which shows an example of the measurement data in shape measurement of a carrier.

前述した課題を解決するため、本発明者らが鋭意研究を行ったところ、両面研磨用キャリアセット内のうねり量の差が大きいとフラットネスに影響することが分かった。
そして本発明者らは、複数の両面研磨用キャリアからなるキャリアセットにおいて、該キャリアを例えばレーザー式の三次元座標測定機などの形状測定機で測定し、その測定データからキャリアのうねり量を算出し、キャリアセット内におけるキャリア同士のうねり量の最大値と最小値との差が一定値以下のキャリアセットを選定してウェーハの両面研磨に用いることで、得られる複数の両面研磨ウェーハ同士の間でのフラットネスの差を抑制できることを見出し、本発明を完成させた。
The inventors of the present invention conducted intensive studies to solve the problems described above, and it was found that if the difference in the amount of corrugation in the double-side polishing carrier set is large, the flatness is affected.
Then, the present inventors measure the carrier by a shape measuring machine such as a laser type three-dimensional coordinate measuring machine in a carrier set consisting of a plurality of carriers for double-side polishing, and calculate the amount of wave of the carrier from the measurement data Between a plurality of double-sided polished wafers obtained by selecting a carrier set in which the difference between the maximum value and the minimum value of the amount of undulations of carriers in the carrier set is a fixed value or less and using it for double-sided polishing of the wafers. The present invention has been completed by finding that the difference in flatness can be suppressed.

以下、図面を参照して本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
図1は本発明のウェーハの両面研磨方法に使用することができる本発明の両面研磨装置の一例の縦断面図であり、図2は平面視による本発明の両面研磨装置の内部構造図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a longitudinal sectional view of an example of the double-side polishing apparatus of the present invention which can be used for the double-sided polishing method of a wafer of the present invention, and FIG. 2 is an internal structural view of the double-side polishing apparatus of the present invention .

図1、2に示すように、複数の両面研磨用キャリア1を具備した両面研磨装置2は、上下に相対向して設けられた下定盤3と上定盤4を備えており、各定盤3、4の対向面側には、それぞれ研磨布5が貼付されている。研磨布5としては、例えば、発砲ポリウレタンパッドを用いることができる。
また、上定盤4の上部には、上定盤4と下定盤3の間にスラリーを供給するスラリー供給機構6(ノズル7、および上定盤4の貫通孔8)が設けられている。スラリーとしては、コロイダルシリカを含有した無機アルカリ水溶液を用いることができる。
As shown in FIGS. 1 and 2, the double-side polishing apparatus 2 equipped with a plurality of double-sided polishing carriers 1 includes a lower surface plate 3 and an upper surface plate 4 provided opposite to each other in the vertical direction. Abrasive cloths 5 are attached to the facing surfaces 3 and 4 respectively. As the polishing pad 5, for example, a foam polyurethane pad can be used.
Further, a slurry supply mechanism 6 (a nozzle 7 and a through hole 8 of the upper surface plate 4) for supplying a slurry between the upper surface plate 4 and the lower surface plate 3 is provided in the upper portion of the upper surface plate 4. As a slurry, an inorganic alkaline aqueous solution containing colloidal silica can be used.

なお、図1、2に示すように、上定盤4と下定盤3の間の中心部にはサンギア9が、周縁部にはインターナルギア10が設けられており、4way式の両面研磨装置である。   As shown in FIGS. 1 and 2, a sun gear 9 is provided at the center between the upper surface plate 4 and the lower surface plate 3, and an internal gear 10 is provided at the peripheral edge. is there.

各々のキャリア1は金属製のものとすることができる。キャリア1には、スラリーを通す研磨液孔12の他、半導体シリコンウェーハなどのウェーハWを保持するためのワークホール11が形成されている。ウェーハWの周縁部を金属製のキャリア1によるダメージから保護するために、例えば、樹脂製のインサート材がキャリア1のワークホール11の内周部に沿って取り付けられている。
各キャリア1におけるワークホール11の数は特に限定されず、ワークホール11自体のサイズ(保持するウェーハWのサイズ)等により適宜決定することができる。ここではキャリア1つにつき1つのワークホールが形成されている場合を例に挙げている。
また、上下定盤の間に配設するキャリア1の数は複数であればよく特に限定されない。図2では5枚の例を示している。この複数のキャリア1の組合わせを1つのキャリアセットとしている。
Each carrier 1 can be made of metal. In the carrier 1, in addition to the polishing solution holes 12 through which the slurry passes, work holes 11 for holding wafers W such as semiconductor silicon wafers are formed. In order to protect the peripheral portion of the wafer W from damage by the metal carrier 1, for example, an insert made of resin is attached along the inner peripheral portion of the work hole 11 of the carrier 1.
The number of work holes 11 in each carrier 1 is not particularly limited, and can be appropriately determined depending on the size of the work holes 11 themselves (the size of the wafer W to be held) or the like. Here, the case where one work hole is formed per carrier is taken as an example.
Further, the number of carriers 1 disposed between the upper and lower surface plates is not particularly limited as long as it is plural. FIG. 2 shows five examples. The combination of the plurality of carriers 1 is taken as one carrier set.

また、後述するように、実際に上下定盤の間に配設する複数のキャリア1は、各々、予め形状測定され、その測定データからうねり量が算出されている。そして、キャリア1同士のそのうねり量の最大値と最小値の差(Range)が一定値(以下、管理値とも言う)以下となっている。
このような管理値を設けて、キャリアセット内におけるキャリア1同士のうねり量を管理することで、得られる複数の両面研磨ウェーハ同士のフラットネスの差を抑制することができる。この管理値の具体値は特に限定されず、要求される両面研磨ウェーハのフラットネスの規格値等に応じて適宜決定することができるが、本発明の両面研磨装置では、このうねり量(後述する算術平均粗さSk)の管理値を10μmとすることができる。すなわち、Rangeが10μm以下のものである。
Further, as will be described later, the plurality of carriers 1 actually disposed between the upper and lower surface plates are each measured in advance in shape, and the amount of corrugation is calculated from the measurement data. Then, the difference (Range) between the maximum value and the minimum value of the amount of waves of the carriers 1 is equal to or less than a fixed value (hereinafter, also referred to as a management value).
By providing such a management value and managing the amount of undulations of the carriers 1 in the carrier set, it is possible to suppress the difference in flatness of the plurality of double-sided polished wafers obtained. The specific value of this control value is not particularly limited, and can be appropriately determined according to the required standard value of flatness of double-sided polished wafer etc., but in the double-sided polishing apparatus of the present invention, the amount of waviness (described later The control value of the arithmetic mean roughness Sk) can be 10 μm. That is, the range is 10 μm or less.

そして、図1、2に示すように、サンギア9及びインターナルギア10の各歯部にはキャリア1の外周歯が噛合しており、上定盤4及び下定盤3が不図示の駆動源によって回転されるのに伴い、複数のキャリア1は自転しつつサンギア9の周りを公転する。このときウェーハWはキャリア1のワークホール11で保持されており、上下の研磨布5により両面を同時に研磨される。なお、研磨時には、ノズル7から貫通孔8を通してスラリーが供給される。   As shown in FIGS. 1 and 2, the outer teeth of the carrier 1 are in mesh with the teeth of the sun gear 9 and the internal gear 10, and the upper surface plate 4 and the lower surface plate 3 are rotated by a drive source (not shown). Along with the rotation, the plurality of carriers 1 revolve around the sun gear 9 while rotating. At this time, the wafer W is held in the work hole 11 of the carrier 1 and both surfaces are simultaneously polished by the upper and lower polishing pads 5. At the time of polishing, the slurry is supplied from the nozzle 7 through the through hole 8.

次に、上記のような両面研磨装置1を用いた本発明のウェーハの両面研磨方法について説明する。図3は、この両面研磨方法の工程の一例を示す工程図である。
図3に示すように、工程1、工程2からなるキャリアセットの用意を行い、工程3において、用意したキャリアセットの複数のキャリアを用いてウェーハの両面研磨を行う。以下、各工程について詳述する。
Next, the double-sided polishing method of the wafer of the present invention using the double-sided polishing apparatus 1 as described above will be described. FIG. 3 is a process chart showing an example of the process of this double-sided polishing method.
As shown in FIG. 3, the carrier set consisting of step 1 and step 2 is prepared, and in step 3, double-side polishing of the wafer is performed using a plurality of carriers of the prepared carrier set. Each step will be described in detail below.

(工程1:両面研磨用キャリアの形状測定およびうねり量の算出)
両面研磨に用いるキャリアセットを用意するにあたって、まず、キャリアセットを構成する複数のキャリアの全てについて形状を測定する。そして、該測定データから、各々のキャリアにおけるうねり量を算出する。
なお、うねり量を算出するキャリアセットの数は特に限定されない。両面研磨ウェーハの製造においてよく使用する複数のキャリアセットに対して、予め、算出しておくことが可能である。
(Step 1: Measurement of shape of carrier for double-side polishing and calculation of waviness)
In preparing the carrier set used for double-sided polishing, first, the shapes of all of the plurality of carriers constituting the carrier set are measured. Then, from the measurement data, the amount of waves in each carrier is calculated.
The number of carrier sets for calculating the amount of undulations is not particularly limited. It is possible to calculate in advance for a plurality of carrier sets often used in the production of double-sided polished wafers.

ここで、形状測定に用いる形状測定機は特に限定されず、適切にキャリアのうねり量を算出可能な測定データを得ることができるものであれば良い。
例えば、株式会社東京精密製の、ラインレーザーセンサが搭載された三次元座標測定機XYZAX−SVAを用いることができる。このような測定機を用いる場合、測定は、キャリア全体に関する点群データが200万点以上になるようにセンサを走査させることができる。ただし、データ点群数はこれに限定されず、求める形状精度等によって適宜決定できる。
Here, the shape measuring machine used for shape measurement is not particularly limited, as long as it can obtain measurement data capable of appropriately calculating the amount of wave of the carrier.
For example, a three-dimensional coordinate measuring machine XYZAX-SVA manufactured by Tokyo Seimitsu Co., Ltd., equipped with a line laser sensor can be used. When such a measuring machine is used, the measurement can be made to scan the sensor such that the point cloud data for the entire carrier is 2 million points or more. However, the number of data point groups is not limited to this, and can be appropriately determined according to the shape accuracy to be obtained.

このような測定機を用いて測定すれば、キャリア形状をより高精度に測定することができ、より正確なうねり量を算出することができ、さらには該正確なうねり量に基づくRangeから、適切にキャリセットを選択して両面研磨を行うことができる。したがって、より確実に、フラットネスの差が抑制された複数の両面研磨ウェーハを得ることが可能である。
なお、上記例では、ワーク(キャリア)は停止した状態でセンサが走査する測定機を用いたが、他には、例えば黒田精工株式会社製のナノメトロFRなどが挙げられる。
If measurement is performed using such a measuring machine, the carrier shape can be measured with higher accuracy, more accurate amount of undulation can be calculated, and further, from Range based on the accurate amount of undulation, appropriate It is possible to carry out double-sided polishing by selecting the yardstick. Therefore, it is possible to more reliably obtain a plurality of double-sided polished wafers in which the difference in flatness is suppressed.
In the above-mentioned example, although the measuring machine which a sensor scans in the state where work (carrier) stopped is used, for example, Nano Metro FR by Kuroda Seiko Co., Ltd. etc. are mentioned, for example.

次に、上記で得られたキャリアに関する点群データ全体で水平化を行った上で、波長にして20mm以下のノイズ成分を除去して得られる変換点群データからキャリアのうねりを求める。
このような水平化、ノイズ成分の除去をすることで、より適切にキャリアのうねり量を算出することができる。
Next, leveling is performed on the entire point cloud data relating to the carrier obtained above, and then the carrier's undulation is determined from conversion point cloud data obtained by removing noise components of 20 mm or less in wavelength.
By performing such leveling and removing the noise component, it is possible to more appropriately calculate the carrier waviness amount.

また、うねり量に関して、例えば、両面研磨するウェーハの直径が300mmの場合であれば、上記の変換点群データの、ワークホール中心から175mm以内のデータから求めた算術平均粗さSkをキャリアのうねり量とすることができる。
両面研磨ウェーハのフラットネスに影響を与えやすいワークホール周辺のデータを利用して、うねり量を算出することができる。
With regard to the amount of corrugation, for example, if the diameter of the wafer to be double-sided polished is 300 mm, the arithmetic mean roughness Sk determined from the data within 175 mm from the center of the work hole of the above conversion point group data It can be a quantity.
The amount of waviness can be calculated using data around the work hole that is likely to affect the flatness of the double-sided polished wafer.

また、ここでは300mmという、よく使用されているサイズのウェーハを両面研磨する場合の例について説明したが、ウェーハサイズによって、適宜、データの抽出範囲を設定することができる。
さらには、具体的なうねり量として算術平均粗さSkに限定されるものでもなく、例えば、得られる両面研磨ウェーハのフラットネスとの間で良い相関関係が得られるような他のパラメータとすることも可能である。
In addition, although an example in the case of double-sided polishing of a wafer having a commonly used size of 300 mm is described here, an extraction range of data can be appropriately set depending on the wafer size.
Furthermore, the specific waviness amount is not limited to the arithmetic mean roughness Sk, and for example, another parameter may be used to obtain a good correlation with the flatness of the double-sided polished wafer to be obtained. Is also possible.

(工程2:キャリアセットの選定)
次に、うねり量を算出した複数のキャリアセットの中から実際に両面研磨に用いるキャリアセットを選定する。
より具体的には、キャリアセット内における複数のキャリア同士のうねり量の最大値と最小値との差(Range)が一定値(管理値)以下であるものを選定する。この管理値の具体値は特に限定されるものではない。例えば、管理値と実際に両面研磨されたウェーハ同士におけるフラットネスの差との相関関係、あるいは、フラットネスに関する規格値を満たす両面研磨ウェーハの割合などを予め調べておき、その結果から決定することができる。
(Step 2: Selection of Carrier Set)
Next, a carrier set to be actually used for double-sided polishing is selected from among the plurality of carrier sets for which the amount of undulation has been calculated.
More specifically, a carrier having a difference (Range) between the maximum value and the minimum value of the amount of undulations of a plurality of carriers in a carrier set is selected to be equal to or less than a predetermined value (management value). The specific value of this control value is not particularly limited. For example, the correlation between the control value and the difference in flatness between wafers actually subjected to double-sided polishing, or the ratio of double-sided polished wafers that meet the standard value for flatness, etc., are checked in advance and determined from the results. Can.

一例としては、直径300mmのウェーハで、前述したような測定データの抽出方法、算出方法でうねり量(Sk)を求める場合、管理値を10μmとすることができる。すなわち、キャリアセット内のキャリア同士のSkの最大値と最小値との差が10μm以下であるキャリアセットを選定することができる。このようにすれば、得られる複数の両面研磨ウェーハ同士のフラットネスの差が小さく、フラットネスばらつきが抑えられ、高収率で所望の両面研磨ウェーハを得ることが可能である。   As one example, in the case of obtaining the waviness amount (Sk) by the measurement data extraction method and the calculation method as described above with a wafer having a diameter of 300 mm, the control value can be 10 μm. That is, it is possible to select a carrier set in which the difference between the maximum value and the minimum value of Sk between carriers in the carrier set is 10 μm or less. In this way, the difference in flatness between the plurality of double-sided polished wafers obtained is small, and the variation in flatness is suppressed, and it is possible to obtain a desired double-sided polished wafer with a high yield.

(工程3:両面研磨用キャリアの配設およびウェーハの両面研磨)
次に、選定したキャリアセットの複数のキャリアを両面研磨装置に配設し、各キャリアのワークホールに保持されたウェーハを両面研磨する。
ノズルからスラリーを供給しつつ、上下定盤を回転させるに伴い、複数のキャリアを自転および公転させ、上下の研磨布で複数のウェーハの両面を同時に研磨する。
(Step 3: Arrangement of carrier for double-sided polishing and double-sided polishing of wafer)
Next, a plurality of carriers of the selected carrier set are disposed in the double-side polishing apparatus, and the wafer held in the work holes of each carrier is double-sided polished.
As the upper and lower platens are rotated while supplying the slurry from the nozzles, the plurality of carriers are rotated and revolved, and both surfaces of the plurality of wafers are simultaneously polished with the upper and lower polishing cloths.

以上のような本発明のウェーハの両面研磨方法であれば、両面研磨ウェーハ同士の間でのフラットネスの差を抑制することができる。このため、フラットネスが規定値から外れる両面研磨ウェーハの割合が増えてしまうのを防ぐことができ、収率を改善することができる。このように、従来のようなキャリアの厚みの管理を行う方法だけでは解決できなかった問題を解決することが可能である。   According to the double-side polishing method of a wafer of the present invention as described above, the difference in flatness between double-sided polished wafers can be suppressed. For this reason, it is possible to prevent an increase in the ratio of the double-side polished wafer in which the flatness deviates from the specified value, and it is possible to improve the yield. Thus, it is possible to solve the problem which could not be solved only by the conventional method of managing the thickness of the carrier.

以下、実施例及び比較例を示して、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
従来のように厚みが均一になるようにして製造した5枚の両面研磨用キャリアからなるキャリアセットを複数用意した。なお、直径300mmのウェーハを両面研磨するためのキャリアである。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
Example 1
A plurality of carrier sets comprising five double-sided polishing carriers manufactured so as to have a uniform thickness as in the prior art were prepared. In addition, it is a carrier for carrying out double-sided grinding of a wafer 300 mm in diameter.

そして、図3の工程1のように、各キャリアセット内のキャリアについて、形状測定およびうねり量の算出を行った。測定・算出条件は以下の通りである。
形状測定には、株式会社東京精密製の、ラインレーザーセンサが搭載された三次元座標測定機XYZAX−SVAを用いた。
ラインレーザーのレーザー幅を24mm(Fhモード)とし、キャリアを含む540mm四角の領域を走査速度20mm/secで全面測定した。
上記の測定データからキャリアに関するデータを331万点抽出した。
上記の点群全体で水平化を行った上で波長にして20mm以下のノイズ成分を除去し、更にワークホール中心から175mm以内のデータを抽出したものから算術平均粗さSkを求めた。
なお、これら一連の手順によるデータの一例を図4に示す。
Then, as in step 1 of FIG. 3, the shape measurement and the calculation of the amount of corrugation were performed for the carriers in each carrier set. The measurement and calculation conditions are as follows.
For shape measurement, a three-dimensional coordinate measuring machine XYZAX-SVA, manufactured by Tokyo Seimitsu Co., Ltd., equipped with a line laser sensor was used.
The laser width of the line laser was 24 mm (Fh mode), and the entire area of a 540 mm square including the carrier was measured at a scanning speed of 20 mm / sec.
From the above measurement data, 3.31 million data on carriers were extracted.
After leveling with the whole point cloud described above, the noise component of 20 mm or less in wavelength was removed, and the arithmetic average roughness Sk was determined from the data within 175 mm from the center of the work hole.
An example of data according to the series of procedures is shown in FIG.

上記のようにして各キャリアセット内における5枚のキャリアのうねり量(Sk)を求めた後、図3の工程2のように、各キャリアセット内での5枚のキャリア同士のうねり量の最大値と最小値との差(Range)を算出し、予め設定していた管理値(10μm)と比較し、該管理値以下のキャリアセットを選定した。
具体的には、Rangeが8.5μmのキャリアセット(Set C)を選定した。
After determining the waviness (Sk) of the five carriers in each carrier set as described above, as in step 2 of FIG. 3, the maximum amount of waviness between the five carriers in each carrier set is obtained. The difference (Range) between the value and the minimum value was calculated, compared with a control value (10 μm) set in advance, and a carrier set equal to or less than the control value was selected.
Specifically, a carrier set (Set C) having a range of 8.5 μm was selected.

そして、図3の工程3のように、選定したこのキャリアセットの5枚のキャリアを両面研磨装置に配設してウェーハの両面研磨を行った。両面研磨の各種条件は以下の通りである。
ウェーハは直径300mmのP型シリコン単結晶ウェーハを用いた。
研磨装置は、不二越機械工業製のDSP−20Bを用いた。
研磨パッドは、ショアA硬度90の発泡ポリウレタンパッドを用いた。
キャリアはチタン基板で、インサートとしてガラス繊維にエポキシ樹脂を含浸したFRPを用いた。
スラリーはシリカ砥粒含有、平均粒径35nm、砥粒濃度1.0wt%、pH10.5、KOHベースのものを用いた。
Then, as shown in step 3 of FIG. 3, five carriers of the selected carrier set were disposed in the double-side polishing apparatus to perform double-side polishing of the wafer. The various conditions of double-sided polishing are as follows.
As a wafer, a P-type silicon single crystal wafer with a diameter of 300 mm was used.
As a polishing apparatus, DSP-20B manufactured by Fuji Machine Industry Co., Ltd. was used.
The polishing pad used was a foamed polyurethane pad of Shore A hardness 90.
The carrier was a titanium substrate, and an FRP in which glass fiber was impregnated with epoxy resin was used as an insert.
The slurry used contained silica abrasive, an average particle diameter of 35 nm, an abrasive concentration of 1.0 wt%, a pH of 10.5, and a KOH base.

加工荷重は150gf/cmに設定した。
加工時間はキャリアセット毎に最適ギャップとなるように設定した。
なお、両面研磨ウェーハのエッジ形状は、ウェーハの仕上がり厚みからキャリア厚みを引いた値(ギャップ)で決まる。本発明により、うねりが大きいキャリアは、ギャップが大きい方が良好なエッジフラットネスを示すことが分かっていた。よって、実施例1および後述する実施例2や比較例1、2での加工時間は、キャリアセット毎の最適ギャップになるように設定した。
The processing load was set to 150 gf / cm 2 .
The processing time was set to be an optimal gap for each carrier set.
The edge shape of the double-sided polished wafer is determined by the value (gap) obtained by subtracting the carrier thickness from the finished thickness of the wafer. According to the present invention, carriers with large undulations were found to exhibit better edge flatness with larger gaps. Therefore, the processing time in Example 1 and Example 2 and Comparative Examples 1 and 2 described later was set to be an optimal gap for each carrier set.

各駆動部の回転速度は、上定盤は−13.4rpm、下定盤は35rpm、サンギアは25rpm、インターナルギアは7rpmに設定した。
研磨パッドのドレッシングは、ダイヤ砥粒が電着されたドレスプレートを所定圧で純水を流しながら上下研磨パッドに摺接させることで行った。
SC−1洗浄を条件NHOH:H:HO=1:1:15で行った。
1バッチ5枚で5バッチ、すなわち合計25枚のウェーハを両面研磨加工し、洗浄を行った。
The rotational speed of each drive unit was set to −13.4 rpm for the upper platen, 35 rpm for the lower platen, 25 rpm for the sun gear, and 7 rpm for the internal gear.
Dressing of the polishing pad was carried out by bringing a dressing plate electrodeposited with diamond abrasive grains into sliding contact with the upper and lower polishing pads while flowing pure water at a predetermined pressure.
The SC-1 wash was performed under the conditions NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 15.
A total of 25 wafers were subjected to double-side polishing processing and cleaning, with 5 batches per 5 batches, that is, 25 wafers in total.

このようにして得られた両面研磨ウェーハをWaferSight(KLA Tencor社製)で測定した。測定したデータからESFQRmaxを算出し、規定値に対する収率を求めた。なお、ESFQRmax算出の際には、M49 modeにゾーン(別称:Polar Sites)を72Sectorの30mm Length(2mm E.E.)に設定した。   The double-sided polished wafer thus obtained was measured by WaferSight (manufactured by KLA Tencor). From the measured data, ESFQRmax was calculated, and the yield relative to the specified value was determined. In addition, at the time of ESFQRmax calculation, the zone (another name: Polar Sites) was set to M49 mode at 30 mm Length (2 mm E.E.) of 72 Sector.

(実施例2)
実施例1で最初に用意した複数のキャリアセットから選定をする際に、Rangeが3.0μmのキャリアセット(Set D)を選定したことや、前述した両面研磨での加工時間以外は、実施例1と同様にしてウェーハの両面研磨を行い、その後、ESFQRmaxを算出し、規定値に対する収率を求めた。
(Example 2)
When selecting from the plurality of carrier sets prepared first in Example 1, the carrier set having a range of 3.0 μm (Set D) was selected, and other than the processing time in double-side polishing described above, an example. The double-side polishing of the wafer was performed in the same manner as in 1. Then, ESFQRmax was calculated and the yield relative to the specified value was determined.

(比較例1、2)
実施例1で最初に用意した複数のキャリアセットから、無作為に(すなわち、実施例1、2とは異なり、Rangeと管理値(10μm)との関係は考慮せずに)、それぞれ、キャリアセット(Set A)とキャリアセット(Set B)を選定し、ウェーハの両面研磨を行った。両面研磨での加工時間は、各々、最適ギャップとなるように設定した。それ以外の両面研磨の条件は実施例1と同様である。
その後、ESFQRmaxを算出し、規定値に対する収率を求めた。
なお、比較のためにキャリアセット(Set A)とキャリアセット(Set B)のRangeを算出したところ、それぞれ、19.1μm、12.3μmであり、実施例1、2における管理値(10μm)よりも大きかった。
(Comparative Examples 1 and 2)
From the plurality of carrier sets prepared first in the first embodiment, at random (that is, unlike in the first and second embodiments, the relationship between the Range and the management value (10 μm) is not considered), respectively, the carrier set (Set A) and carrier set (Set B) were selected, and double-sided polishing of the wafer was performed. The processing time in double-side polishing was set to be an optimal gap. The other conditions for double-side polishing are the same as in Example 1.
After that, ESFQRmax was calculated, and the yield relative to the specified value was determined.
When the ranges of the carrier set (Set A) and the carrier set (Set B) were calculated for comparison, they were 19.1 μm and 12.3 μm, respectively, from the control values (10 μm) in Examples 1 and 2. It was big too.

実施例1、2、比較例1、2におけるうねり量、Range、平均ギャップ、収率等をまとめたものを表1に示す。   Table 1 shows the undulation amount, range, average gap, yield and the like in Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 2018176393
Figure 2018176393

表1に示すように、本発明を実施した実施例1、2では、収率がそれぞれ92%、96%であり、比較例1、2の72%、84%を大きく上回っていた。このように、うねりも管理を行ったキャリアセット(実施例1、2)と、従来の厚みのみの管理を行ったキャリアセット(比較例1、2)でウェーハを加工したところ、ESFQRmaxの収率が改善した。
実施例1、2では、キャリアセット内の複数のキャリア同士のうねり量のRangeを管理してその値を抑えることで、得られる複数の両面研磨ウェーハ同士のフラットネスのばらつきを抑えることができた。その結果、フラットネスが規定値から外れてしまう割合を低減して、収率を向上させることができた。
As shown in Table 1, in Examples 1 and 2 in which the present invention was carried out, the yields were 92% and 96%, respectively, which greatly exceeded 72% and 84% of Comparative Examples 1 and 2. Thus, when the wafer was processed by the carrier set (Examples 1 and 2) which also managed the waviness and the carrier set (Comparative Examples 1 and 2) which managed the conventional thickness only, the yield of ESFQRmax was obtained. Improved.
In Examples 1 and 2, by managing the range of the amount of undulations of the plurality of carriers in the carrier set and suppressing the value thereof, it was possible to suppress the variation in flatness of the plurality of double-sided polished wafers obtained. . As a result, the yield could be improved by reducing the rate at which the flatness deviates from the specified value.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.

1…両面研磨用キャリア、 2…両面研磨装置、 3…下定盤、 4…上定盤、
5…研磨布、 6…スラリー供給機構、 7…ノズル、 8…貫通孔、
9…サンギア、 10…インターナルギア、 11…ワークホール、
12…研磨液孔、 W…ウェーハ。
1 Carrier for double-sided polishing 2 Double-sided polishing device 3 Lower surface plate 4 Upper surface plate
5 ... polishing cloth, 6 ... slurry supply mechanism, 7 ... nozzle, 8 ... through hole,
9: Sun gear, 10: Internal gear, 11: Work hole,
12: Polishing liquid hole, W: Wafer.

Claims (5)

両面研磨装置において、研磨布が貼付された上下定盤の間に複数の両面研磨用キャリアを配設し、該複数の両面研磨用キャリアの各々に形成されたワークホールにウェーハを保持して、前記上下定盤の間に挟み込んで両面研磨するウェーハの両面研磨方法であって、
前記上下定盤の間に配設する複数の両面研磨用キャリアからなるキャリアセットを用意するとき、
形状測定機を用いて前記両面研磨用キャリアの形状を測定したデータから算出したうねり量を、キャリアセットの前記複数の両面研磨用キャリアの全てにおいて取得し、キャリアセット内における前記複数の両面研磨用キャリア同士のうねり量の最大値と最小値との差が一定値以下であるキャリアセットを選定して用意し、
該用意したキャリアセットの前記複数の両面研磨用キャリアを前記両面研磨装置に配設して前記ウェーハを両面研磨することを特徴とするウェーハの両面研磨方法。
In the double-sided polishing apparatus, a plurality of double-sided polishing carriers are disposed between upper and lower platens to which a polishing pad is attached, and a wafer is held in a work hole formed in each of the plurality of double-sided polishing carriers. It is a double-sided polishing method of a wafer which is sandwiched between the upper and lower plates and is double-sided polished,
When preparing a carrier set comprising a plurality of double-sided polishing carriers disposed between the upper and lower surface plates,
The amount of waviness calculated from the data obtained by measuring the shape of the double-sided polishing carrier using a shape measuring machine is obtained for all of the plurality of double-sided polishing carriers of the carrier set, and the plurality of double-sided polishing in the carrier set Select and prepare a carrier set in which the difference between the maximum value and the minimum value of the waviness between carriers is equal to or less than a fixed value,
A method for double-sided polishing of a wafer comprising disposing the plurality of double-sided polishing carriers of the prepared carrier set in the double-sided polishing apparatus and double-sided polishing the wafer.
前記うねり量の算出において、
前記形状測定機として、レーザーセンサを持つ三次元座標測定機を用い、前記両面研磨用キャリアの全体を測定した点群データからうねり量を算出することを特徴とする請求項1に記載のウェーハの両面研磨方法。
In the calculation of the amount of undulation,
The wafer according to claim 1, wherein the three-dimensional coordinate measuring machine having a laser sensor is used as the shape measuring machine, and the amount of waviness is calculated from point cloud data obtained by measuring the entire double-side polishing carrier. Double-sided polishing method.
前記うねり量の算出において、
前記測定した点群データ全てで水平化を行い、波長20mm以下のノイズ成分を除去して得られる変換点群データから前記両面研磨用キャリアのうねり量を算出することを特徴とする請求項2に記載のウェーハの両面研磨方法。
In the calculation of the amount of undulation,
The leveling of the double-side polishing carrier is calculated from conversion point cloud data obtained by leveling all the measured point cloud data and removing noise components of a wavelength of 20 mm or less. The double-sided polishing method of the described wafer.
前記両面研磨するウェーハを直径300mmのものとし、
前記うねり量の算出において、
前記変換点群データから、前記ワークホールの中心から175mm以内のデータを抽出し、該抽出データから算出した算術平均粗さSkを前記うねり量とし、
前記キャリアセットの選定において、
前記複数の両面研磨用キャリア同士のSkの最大値と最小値との差が10μm以下であるキャリアセットを選定することを特徴とする請求項3に記載のウェーハの両面研磨方法。
The wafer to be double-sided polished is 300 mm in diameter,
In the calculation of the amount of undulation,
Data within 175 mm from the center of the work hole is extracted from the conversion point group data, and the arithmetic average roughness Sk calculated from the extracted data is taken as the amount of waviness.
In selecting the carrier set,
4. The method according to claim 3, wherein a carrier set having a difference between a maximum value and a minimum value of Sk between the plurality of double-side polishing carriers is 10 [mu] m or less.
研磨布が貼付された上下定盤と、該上下定盤間にスラリーを供給するスラリー供給機構と、前記上下定盤の間に配設され、研磨の際に前記上下定盤の間に挟まれたウェーハを保持するためのワークホールが各々形成された複数の両面研磨用キャリアからなるキャリアセットを備えた両面研磨装置であって、
前記キャリアセット内における前記複数の両面研磨用キャリア同士の、うねり量である算術平均粗さSkの最大値と最小値との差が10μm以下であることを特徴とする両面研磨装置。
An upper and lower surface plate to which an abrasive cloth is attached, a slurry supply mechanism for supplying a slurry between the upper and lower surface plates, and the upper and lower surface plate are disposed and sandwiched between the upper and lower surface plates during polishing. A double-sided polishing apparatus comprising a carrier set comprising a plurality of double-sided polishing carriers each having a work hole for holding a fixed wafer,
The double-side polishing apparatus, wherein the difference between the maximum value and the minimum value of the arithmetic average roughness Sk, which is the amount of corrugation, between the plurality of double-side polishing carriers in the carrier set is 10 μm or less.
JP2017083936A 2017-04-20 2017-04-20 Wafer double-side polishing method Active JP6665827B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017083936A JP6665827B2 (en) 2017-04-20 2017-04-20 Wafer double-side polishing method
KR1020197028101A KR102477930B1 (en) 2017-04-20 2018-03-14 Double-side polishing method and double-sided polishing device for wafer
CN201880018073.XA CN110418696B (en) 2017-04-20 2018-03-14 Double-side polishing method and double-side polishing device for wafer
PCT/JP2018/009962 WO2018193758A1 (en) 2017-04-20 2018-03-14 Double-sided wafer polishing method and double-sided polishing apparatus
TW107109258A TWI710018B (en) 2017-04-20 2018-03-19 Double-sided grinding method and double-sided grinding device of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083936A JP6665827B2 (en) 2017-04-20 2017-04-20 Wafer double-side polishing method

Publications (2)

Publication Number Publication Date
JP2018176393A true JP2018176393A (en) 2018-11-15
JP6665827B2 JP6665827B2 (en) 2020-03-13

Family

ID=63856303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083936A Active JP6665827B2 (en) 2017-04-20 2017-04-20 Wafer double-side polishing method

Country Status (5)

Country Link
JP (1) JP6665827B2 (en)
KR (1) KR102477930B1 (en)
CN (1) CN110418696B (en)
TW (1) TWI710018B (en)
WO (1) WO2018193758A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885492B1 (en) * 2020-05-13 2021-06-16 信越半導体株式会社 Double-sided polishing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148497A (en) * 2002-10-31 2004-05-27 Wacker Siltronic Ag Carrier and method of simultaneously machining work on both sides
JP2004303280A (en) * 2003-03-28 2004-10-28 Hoya Corp Method for manufacturing glass substrate for information recording medium
JP2009190125A (en) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd Double-side grinding machine and double-side grinding method for workpiece
JP2010023217A (en) * 2008-07-24 2010-02-04 Kyocera Chemical Corp Carrier disc for retaining article to be polished
JP2011143477A (en) * 2010-01-12 2011-07-28 Shin Etsu Handotai Co Ltd Carrier for double-sided polishing device, double-sided polishing device using the same, and double-sided polishing method
JP2013132744A (en) * 2011-12-27 2013-07-08 Asahi Glass Co Ltd Polishing carrier, method for polishing glass substrate for magnetic recording medium, and method for manufacturing glass substrate for magnetic recording medium
JP2014176954A (en) * 2013-02-13 2014-09-25 Shin Etsu Handotai Co Ltd Method for manufacturing carrier for double-sided polishing device and double-sided polishing method for wafer
JP2015174168A (en) * 2014-03-14 2015-10-05 信越半導体株式会社 Manufacturing method of carrier for double-sided polishing device, carrier for double-sided polishing device, and double-sided polishing method
JP2015208840A (en) * 2014-04-30 2015-11-24 株式会社荏原製作所 Polishing device, jig for measuring abrasive pad profile, and method for measuring abrasive pad profile
JP2016124053A (en) * 2014-12-26 2016-07-11 株式会社荏原製作所 Method and device for measuring surface property of polishing pad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226618A (en) * 1993-01-27 1994-08-16 Hitachi Cable Ltd Semiconductor wafer polishing method
US6686023B2 (en) * 2001-02-26 2004-02-03 Shin-Kobe Electric Machinery Co., Ltd. Polished-piece holder and manufacturing method thereof
KR101660900B1 (en) * 2015-01-16 2016-10-10 주식회사 엘지실트론 An apparatus of polishing a wafer and a method of polishing a wafer using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148497A (en) * 2002-10-31 2004-05-27 Wacker Siltronic Ag Carrier and method of simultaneously machining work on both sides
JP2004303280A (en) * 2003-03-28 2004-10-28 Hoya Corp Method for manufacturing glass substrate for information recording medium
JP2009190125A (en) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd Double-side grinding machine and double-side grinding method for workpiece
JP2010023217A (en) * 2008-07-24 2010-02-04 Kyocera Chemical Corp Carrier disc for retaining article to be polished
JP2011143477A (en) * 2010-01-12 2011-07-28 Shin Etsu Handotai Co Ltd Carrier for double-sided polishing device, double-sided polishing device using the same, and double-sided polishing method
JP2013132744A (en) * 2011-12-27 2013-07-08 Asahi Glass Co Ltd Polishing carrier, method for polishing glass substrate for magnetic recording medium, and method for manufacturing glass substrate for magnetic recording medium
JP2014176954A (en) * 2013-02-13 2014-09-25 Shin Etsu Handotai Co Ltd Method for manufacturing carrier for double-sided polishing device and double-sided polishing method for wafer
JP2015174168A (en) * 2014-03-14 2015-10-05 信越半導体株式会社 Manufacturing method of carrier for double-sided polishing device, carrier for double-sided polishing device, and double-sided polishing method
JP2015208840A (en) * 2014-04-30 2015-11-24 株式会社荏原製作所 Polishing device, jig for measuring abrasive pad profile, and method for measuring abrasive pad profile
JP2016124053A (en) * 2014-12-26 2016-07-11 株式会社荏原製作所 Method and device for measuring surface property of polishing pad

Also Published As

Publication number Publication date
CN110418696B (en) 2021-06-18
JP6665827B2 (en) 2020-03-13
KR20190142322A (en) 2019-12-26
KR102477930B1 (en) 2022-12-15
TWI710018B (en) 2020-11-11
WO2018193758A1 (en) 2018-10-25
CN110418696A (en) 2019-11-05
TW201839836A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US9293318B2 (en) Semiconductor wafer manufacturing method
CN106170847B (en) The manufacturing method of semiconductor wafer
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
JP5839783B2 (en) Method for polishing the edge of a semiconductor wafer
KR101139054B1 (en) Method of the double sided polishing of a semiconductor wafer
TW200403738A (en) Manufacturing method of semiconductor wafer and wafer
JP2009154291A (en) Polishing pad
KR20070108872A (en) Method for manufacturing semiconductor wafer and method for mirror chamfering semiconductor wafer
CN105612605B (en) The manufacturing method of mirror ultrafinish wafer
JP6079554B2 (en) Manufacturing method of semiconductor wafer
CN109983562B (en) Carrier for double-side polishing apparatus, and double-side polishing method
JP2018176393A (en) Both surface polishing method and both surface polishing device for wafer
JP6330628B2 (en) Manufacturing method of glass substrate
JP2012135857A (en) Grinding device, and double-sided polishing device
JP2021082696A (en) Wafer polishing method and silicon wafer
JP4241164B2 (en) Semiconductor wafer polishing machine
WO2011070699A1 (en) Semiconductor wafer polishing method
JP6131749B2 (en) Method for polishing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium
WO2023095503A1 (en) Template assembly, polishing head, and polishing method of wafer
JP2017045990A (en) Wafer surface treatment device
JP2022160934A (en) Wafer processing method and wafer
JP2023092412A (en) Double side polishing apparatus, double side polishing method for semiconductor silicon wafer, method for producing double side polished silicon wafer, and double side polished silicon wafer
JP2004047801A (en) Polishing process of semiconductor wafer
JP2865250B1 (en) Method for manufacturing silicon semiconductor wafer
JP2012179714A (en) Polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250