JP2018173221A - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
JP2018173221A
JP2018173221A JP2017071265A JP2017071265A JP2018173221A JP 2018173221 A JP2018173221 A JP 2018173221A JP 2017071265 A JP2017071265 A JP 2017071265A JP 2017071265 A JP2017071265 A JP 2017071265A JP 2018173221 A JP2018173221 A JP 2018173221A
Authority
JP
Japan
Prior art keywords
air
temperature
target
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071265A
Other languages
English (en)
Other versions
JP6907653B2 (ja
Inventor
岡本 康令
Yasunari Okamoto
康令 岡本
浩二 巽
Koji Tatsumi
浩二 巽
中山 浩
Hiroshi Nakayama
浩 中山
尚利 藤田
Naotoshi Fujita
尚利 藤田
正明 川岸
Masaaki Kawagishi
正明 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2017071265A priority Critical patent/JP6907653B2/ja
Publication of JP2018173221A publication Critical patent/JP2018173221A/ja
Application granted granted Critical
Publication of JP6907653B2 publication Critical patent/JP6907653B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】省エネ性に優れる空調システムを提供する。【解決手段】空調システム100は、チラーユニット20(熱源装置)と、エアハンユニット30(空気調和装置)と、システム制御部90(制御部)と、を備える。チラーユニット20は、水を加熱又は冷却して吐出する。エアハンユニット30は、空気熱交換器33を有する。空気熱交換器33は、通過する外気OAと、チラーユニット20から吐出される吐出水と、を熱交換させる。エアハンユニット30は、空気熱交換器33を通過した空気を給気SAとして対象空間SPに送る。システム制御部90は、目標水温Tw,upを設定する。目標水温Tw,upは、吐出水の温度の目標値である。システム制御部90は、目標給気温度Tsa(空気熱交換器33を通過した空気の温度の目標値)と、外気温度Toaと、に基づいて、目標水温Tw,upを設定する。【選択図】図2

Description

本発明は、空調システムに関する。
従来、特許文献1(実開昭58−114432号公報)のように、水(熱媒体)を加熱又は冷却し吐出する熱源装置と、熱源装置から吐出される水によって加熱又は冷却した空気を対象空間に供給する複数の空気調和装置と、を有するセントラル空調方式の空調システムが知られている。特許文献1では、熱源装置から吐出される水の温度に関して、冷房運転時には外気温が高いほど冷水の温度を低く設定し、暖房運転時には外気温が低いほど温水の温度を高く設定する水温制御が行われている。
しかし、特許文献1のような従来のセントラル空調方式の空調システムでは、熱源装置の水温設定に関して、空気調和装置の熱交換器の特性については特に考慮されていない。このため、状況によっては、熱源装置のCOP(Coefficient of Performance)が向上しにくいケースが想定される。
そこで、本発明の課題は、省エネ性に優れる空調システムを提供することである。
本発明の第1観点に係る空調システムは、熱源装置と、空気調和装置と、制御部と、を備える。熱源装置は、水を加熱又は冷却して吐出する。空気調和装置は、熱交換器を有する。熱交換器は、通過する空気と、熱源装置から吐出される吐出水と、を熱交換させる。空気調和装置は、熱交換器を通過した空気を対象空間に送る。制御部は、目標水温を設定する。目標水温は、吐出水の温度の目標値である。制御部は、熱交換器を通過した空気の温度の目標値と、外気温と、に基づいて、目標水温を設定する。
本発明の第1観点に係る空調システムでは、制御部は、熱交換器を通過した空気の温度の目標値と、外気温と、に基づいて、目標水温を設定する。これにより、熱源装置における目標水温が、外気温と、空気調和装置の熱交換器を通過した空気の温度に係る目標値と、に基づき設定される。すなわち、熱源装置における目標水温が、状況に応じて変化する外気温度と、空気調和装置の熱交換器の特性と、に基づき設定される。これに関連して、熱源装置から吐出される水の温度が最適値に設定されやすくなる。このため、熱源装置のCOP向上が促進される。ひいては、空調システムの省エネ性が向上されうる。
なお、「空気調和装置」は、広く対象空間の空気調和を行う装置である。「空気調和装置」には、例えば、外気(OA)を取り込んで外気調和ユニットから給気として供給することで対象空間の空調(換気を含む)を行う外気調和装置や、室内ユニットによって対象空間内の空気である内気を冷却又は加熱して対象空間に供給することで対象空間の空調を行うエアコン室内機等が含まれる。
本発明の第2観点に係る空調システムは、第1観点に係る空調システムであって、制御部は、さらに、熱交換器を通過した空気の湿度の目標値と、外気湿度と、に基づいて、目標水温を設定する。これにより、熱源装置における目標水温が、空気調和装置から対象空間に送られる空気の湿度の目標値と、外気湿度と、に基づき設定される。すなわち、目標水温が、状況に応じて変化する外気温度及び外気湿度と、空気調和装置の熱交換器の特性と、に基づき設定される。これに関連して、熱源装置から吐出される水の温度が最適値に設定されることが精度よく促進される。このため、熱源装置のCOP向上がさらに促進され、特に対象空間に加湿した空気を送る加湿運転や除湿した空気を送る除湿運転を行う空調システムにおいて省エネ性が向上されうる。
本発明の第3観点に係る空調システムは、第1観点又は第2観点に係る空調システムであって、制御部は、さらに熱交換器の特性に基づいて、目標水温を設定する。これにより、熱源装置における目標水温が、直接的に熱交換器の特性に基づいて設定される。例えば、熱源装置における水温設定に関して、予め導出されている熱交換器の特性を考慮して、状況別に熱源装置の水温をモデル化或いは補正することが可能となる。これに関連して、熱源装置から吐出される水の温度が最適値に設定されることが精度よく促進される。このため、熱源装置のCOP向上がさらに促進される。
本発明の第4観点に係る空調システムは、第1観点から第3観点のいずれかに係る空調システムであって、空気調和装置は、空調ファンをさらに有する。空調ファンは、熱交換器を通過して対象空間へ流出する空気流を生成する。制御部は、さらに空調ファンの風量に基づいて、目標水温を設定する。
これにより、熱源装置における目標水温が、空気調和装置の風量に基づき設定される。すなわち、熱源装置における水温設定に関し、状況に応じて変化する外気温度と、空気調和装置の熱交換器の特性と、に基づき算出される目標水温を、熱交換器を通過する風量に応じてモデル化若しくは補正することが可能となる。これに関連して、熱源装置から吐出される水の温度が最適値に設定されることが精度よく促進される。このため、熱源装置のCOP向上がさらに促進される。
本発明の第1観点に係る空調システムでは、熱源装置における目標水温が、外気温と、空気調和装置の熱交換器を通過した空気の温度に係る目標値と、に基づき設定される。すなわち、熱源装置における目標水温が、状況に応じて変化する外気温度と、空気調和装置の熱交換器の特性と、に基づき設定される。これに関連して、熱源装置から吐出される水の温度が最適値に設定されやすくなる。このため、熱源装置のCOP向上が促進される。ひいては、空調システムの省エネ性が向上されうる。
本発明の第2観点に係る空調システムでは、熱源装置のCOP向上がさらに促進され、特に対象空間に加湿した空気を送る加湿運転や除湿した空気を送る除湿運転を行う空調システムにおいて省エネ性が向上されうる。
本発明の第3観点及び第4観点に係る空調システムでは、熱源装置のCOP向上がさらに促進される。
空調システムの設置態様を概略的に示した模式図。 空調システムの構成態様を概略的に示した模式図。 システム制御部、及びシステム制御部に接続される各部を模式的に示したブロック図。 システム制御部に含まれる機能部を模式的に記載したブロック図。 システム制御部の処理の流れの一例を示したフローチャート。 冷房運転時における負荷と水温の関係を模式的に示したグラフ。 変形例1に係る空調システムの設置態様を概略的に示した模式図。 変形例1に係る空調システムの構成態様を概略的に示した模式図。 変形例1に係るファンコイルユニットの対象空間における設置態様を概略的に示した模式図。 変形例2に係る空調システムの設置態様を概略的に示した模式図。 変形例2に係る空調システムの構成態様を概略的に示した模式図。 変形例2に係るファンコイルユニットの対象空間における設置態様を概略的に示した模式図。
以下、本発明の一実施形態に係る空調システム100について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
(1)空調システム100の概要
図1は、空調システム100の設置態様を概略的に示した模式図である。空調システム100は、セントラル空調方式の空調システムであり、家屋、ビル、工場、公共施設等の建築物内に含まれる対象空間SPにおいて空気調和を実現する。本実施形態において、空調システム100は、複数(ここでは3つ)の対象空間SP(SP1、SP2、SP3)を含む建物BLに適用されている。
空調システム100は、外気OAを取り込み調和して対象空間SPに供給することで、対象空間SPにおける冷房、暖房、換気、除湿及び/又は加湿等の空気調和を行う。外気OAは、対象空間SP外の空気であり、本実施形態では屋外の空気である(図2参照)。
空調システム100では、リモコン80にコマンドを適宜入力することで、運転状態を切り換えられる。空調システム100では、システム制御部90が、リモコン80に入力されたコマンド(発停、運転種別、設定温度、設定風量等に係るコマンド)、及び負荷状況(外気OAの温度・湿度や、内気IAの温度・湿度等)に応じて、各機器の運転状態を制御する。
(2)空調システム100の詳細
図2は、空調システム100の構成態様を概略的に示した模式図である。空調システム100は、主として、チラーユニット20と、エア・ハンドリングユニット(以下、「エアハンユニット」と記載)30と、ダクトD1と、複数のリモコン80と、システム制御部90と、を有している。空調システム100は、運転中、エアハンユニット30において外気OAを取り込み、冷却若しくは加熱、又は除湿若しくは加湿して、ダクトD1を介して給気SAとして対象空間SPに供給する。
空調システム100では、水回路C1及び冷媒回路C2が、互いに独立して構成されている。
水回路C1は、外気OAと熱交換を行う熱媒体(水:図2に示す「W」)が循環する回路である。水回路C1は、チラーユニット20とエアハンユニット30とに跨って構成されている。水回路C1は、主として、エアハンユニット30に配置される空気熱交換器33と、チラーユニット20に配置される水熱交換器22及び水ポンプPaと、が第1配管P1で接続されることで構成されている。水回路C1では、運転中、水ポンプPaが運転状態に制御されることで、水が所定方向(図2の二点鎖線矢印d1が示す方向)に流れる。水回路C1における水の流量は、主として水ポンプPaの回転数により調整される。なお、図2においては図示を省略しているが、水回路C1(第1配管P1上)には、水を合流・分流させるためのヘッダ集合管や水の流れを遮断するための開閉弁、水ポンプPaとは別のポンプ等の機器が配置されている。
冷媒回路C2は、水回路C1内の水の冷却源となる冷媒が循環する回路である。冷媒回路C2は、チラーユニット20内において構成されている。冷媒回路C2は、主として、チラーユニット20に配置される圧縮機21と、水熱交換器22と、膨張弁23と、室外熱交換器24と、四路切換弁25と、が第2配管P2で接続されることで構成されている。冷媒回路C2では、運転中、圧縮機21が運転状態に制御されるとともに膨張弁23の開度が制御されることで、冷媒が所定方向(正サイクル運転時には図2の二点鎖線矢印d2が示す方向、逆サイクル運転時にはd2とは逆の方向)に流れ、蒸気圧縮冷凍サイクルが行われる。
(2−1)チラーユニット20(熱源装置)
「熱源装置」の一例であるチラーユニット20は、冷媒回路C2において冷凍サイクルを行うことで、水回路C1内の水の冷却又は加熱を行い、冷却又は加熱後の水(W)を吐出して運転中のエアハンユニット30に送る。チラーユニット20は、主として、圧縮機21、水熱交換器22、膨張弁23、室外熱交換器24、四路切換弁25、室外ファン26及び水ポンプPaを有する。
圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、圧縮機モータを内蔵された密閉式構造の圧縮機が採用されている。圧縮機21内には、例えばスクロール式等の容積式の圧縮要素(図示省略)が収容されており、圧縮機モータによって圧縮要素が回転駆動される。圧縮機モータは、インバータにより運転周波数を制御され、これにより圧縮機21の容量制御が行われる。すなわち、圧縮機21は、容量可変である。
水熱交換器22は、水回路C1内の水と、冷媒回路C2内の低圧冷媒と、を熱交換させ、水を冷却又は加熱する熱交換器である。水熱交換器22においては、水回路C1に連通する水流路と、冷媒回路C2に連通する冷媒流路とが形成されており、水熱交換器22は、水流路内の水と冷媒流路内の冷媒とが熱交換可能に構成されている。水熱交換器22は、正サイクル運転(冷房運転や除湿運転)中、低圧冷媒の蒸発器若しくは加熱器として機能して冷水を生成する。また、水熱交換器22は、逆サイクル運転(暖房運転)中、高圧冷媒の凝縮器若しくは放熱器として機能して温水を生成する。
膨張弁23は、冷媒の減圧手段又は流量調整手段として機能する弁である。本実施形態において、膨張弁23は、開度制御が可能な電動膨張弁である。
室外熱交換器24は、冷媒回路C2内の高圧冷媒と空気とを熱交換させ、冷媒を冷却又は加熱する熱交換器である。室外熱交換器24は、冷媒回路C2に連通する伝熱管、及び伝熱フィンを有している。室外熱交換器24では、伝熱管及び伝熱フィンの周囲を通過する空気(後述する室外空気流)と、伝熱管を通過する冷媒と、で熱交換が行われる。室外熱交換器24は、正サイクル運転中、高圧冷媒の凝縮器若しくは放熱器として機能する。室外熱交換器24は、暖房運転中、低圧冷媒の蒸発器若しくは加熱器として機能する。
四路切換弁25は、冷媒回路C2の流れを切り換える。四路切換弁25は、4つの接続ポートを有し、圧縮機21の吸入配管、吐出配管、水熱交換器22の冷媒流路のガス側、室外熱交換器24のガス側、にそれぞれ接続されている。具体的に、四路切換弁25は、第1状態と第2状態とを切換可能である。第1状態は、水熱交換器22の冷媒流路のガス側と圧縮機21の吸入配管とを連通させるとともに、圧縮機21の吐出配管と室外熱交換器24のガス側とを連通させる状態である(図2の四路切換弁25の実線を参照)。第2状態は、圧縮機21の吐出配管と水熱交換器22の冷媒流路のガス側とを連通させるとともに、室外熱交換器24のガス側と圧縮機21の吸入配管とを連通させる状態である(図2の四路切換弁25の破線を参照)。四路切換弁25は、正サイクル運転時には第1状態に制御され、逆サイクル運転時には第2状態に制御される。
室外ファン26は、室外空気流を生成する送風機である。室外空気流は、チラーユニット20内に流入し室外熱交換器24を通過してチラーユニット20外に流出する空気の流れである。室外空気流は、正サイクル運転時における室外熱交換器24内の冷媒の冷却源であり、逆サイクル運転時における室外熱交換器24内の冷媒の加熱源である。室外ファン26は、ファンモータを含み、ファンモータをインバータ制御されることで回転数を調整される。すなわち、室外ファン26は、風量可変である。
水ポンプPaは、水回路C1に配置されている。水ポンプPaは、運転中、水を吸引して吐出する。水ポンプPaは、駆動源であるモータを含み、モータをインバータ制御されることで回転数を調整される。すなわち、水ポンプPaは、吐出流量可変である。
(2−2)エアハンユニット30(空気調和装置)
「空気調和装置」の一例であるエアハンユニット30は、外気OAの冷却、除湿、加熱、及び/又は加湿を行う。エアハンユニット30は、室外(対象空間SP外)に配置されている。
エアハンユニット30は、主として、空気熱交換器33、加湿器35及び給気ファン38を有している。
空気熱交換器33(熱交換器)は、外気OAの冷却器又は加熱器として機能する熱交換器である。空気熱交換器33は、水回路C1に配置されている。空気熱交換器33は、水回路C1に連通する伝熱管、及び伝熱フィンを有している。空気熱交換器33では、伝熱管及び伝熱フィンの周囲を通過する外気OAと、伝熱管を通過する水と、で熱交換が行われる。
加湿器35は、空気熱交換器33を通過した外気OAを加湿するための機器である。加湿器35の方式や型式は特に限定されないが、ここでは一般的な自然蒸発式の加湿器採用されている。
給気ファン38(空調ファン)は、外気OAをエアハンユニット30内に取り込みダクトD1を介して対象空間SPへ送る送風機である。給気ファン38の型式については特に限定されないが、本実施形態において、給気ファン38はシロッコファンが採用されている。ここで、エアハンユニット30においては、外気OAが流れる空気流路FPが形成されており(図2に破線矢印「FP」を参照)、給気ファン38が運転状態となると空気流路FPに沿って外気OAが流れる。給気ファン38は、ファンモータを含み、ファンモータをインバータ制御されることで回転数を調整される。すなわち、給気ファン38は、風量可変である。
エアハンユニット30では、空気流路FPの風上側から風下側に向かって、空気熱交換器33、加湿器35、及び給気ファン38が順に配置されている。空気流路FPの風下側の端部は、ダクトD1に接続されている。
また、エアハンユニット30においては、各種センサが配置されている。エアハンユニット30に配置される各種センサとしては、例えば、エアハンユニット30内に吸入される外気OAの温度を検出する外気温度センサS1、及び湿度を検出する外気湿度センサS2である。また、例えば、ダクトD1(すなわち対象空間SP)に送られる給気SAの温度(給気温度)を検出する給気温度センサS3である。
(2−3)ダクトD1
ダクトD1は、給気SAの流路を形成する部材である。ダクトD1は、給気ファン38が駆動することでエアハンユニット30から吐出される給気SAが各対象空間SPに送られるように、その一端がエアハンユニット30に接続され、他端が対象空間SPに形成された給気口H1に接続されている。より詳細には、ダクトD1の他端は、複数(対象空間SPの数と同数)に分岐しており、各分岐先において対応する対象空間SPの給気口H1に接続されている。給気口H1は、各対象空間SPにおいて、壁、天井又は床等の部材に形成されている。
(2−4)リモコン80
リモコン80は、ユーザが空調システム100の運転状態(エアハンユニット30の発停、運転種別、設定温度、設定湿度、設定風量等)を個別に切り換える各種コマンドを入力するための入力装置である。また、リモコン80は、所定の情報(例えば空調システム100の運転状態、内気IAの温度や湿度、又は外気OAの温度や湿度等)を表示するための表示装置としても機能する。
また、リモコン80においては、各種センサが配置されている。リモコン80に配置される各種センサとしては、例えば、対象空間SPの室内の空気(内気IA)の温度を検出する室内温度センサS4(図3)、湿度を検出する室内湿度センサS5(図3)、及び二酸化炭素濃度を検出する二酸化炭素濃度センサS6(図3)である。
(2−5)システム制御部90(制御部)
システム制御部90は、空調システム100の動作を統括的に制御する機能部であり、具体的にはメモリやCPU等で構成されるコンピュータである。本実施形態において、システム制御部90は、チラーユニット20及びエアハンユニット30等にそれぞれ配置される各マイクロコンピュータや各電装品が互いに電気的に接続されることで構成されている。システム制御部90の詳細については、後述する。
(3)空調システム100の運転中における水、冷媒及び空気の流れ
空調システム100の運転時には、通常、水ポンプPaが駆動し、水回路C1において水が循環する。また、圧縮機21が駆動し、冷媒回路C2において冷媒が循環する。
運転中、水回路C1においては、水が、水熱交換器22で、冷媒回路C2を流れる冷媒と熱交換を行うことで目標水温Tw,upとなるように冷却又は加熱される。水熱交換器22において冷却又は加熱された水は、エアハンユニット30に流入し空気熱交換器33において外気OAと熱交換を行うことで加熱又は冷却される。空気熱交換器33を通過した水は、水熱交換器22に再び流入する。
冷媒回路C2においては、冷房運転時に、冷媒が圧縮機21において圧縮され、高圧冷媒として吐出される。圧縮機21から吐出された高圧冷媒は、室外熱交換器24で、空気(室外ファン26が生成する室外空気流)と熱交換を行うことで凝縮又は放熱する。室外熱交換器24を通過した冷媒は、膨張弁23において減圧され低圧冷媒となった後、水熱交換器22に流入する。水熱交換器22に流入した低圧冷媒は、水回路C1を流れる水と熱交換を行うことで蒸発する又は加熱される。水熱交換器22を通過した低圧冷媒は、再び圧縮機21に吸入される。
冷媒回路C2においては、暖房運転時に、冷媒が圧縮機21において圧縮され、高圧冷媒として吐出される。圧縮機21から吐出された高圧冷媒は、水熱交換器22で、水回路C1を流れる水と熱交換を行うことで凝縮又は放熱する。水熱交換器22を通過した冷媒は、膨張弁23において減圧され低圧冷媒となった後、室外熱交換器24に流入する。室外熱交換器24に流入した低圧冷媒は、空気(室外ファン26が生成する室外空気流)と熱交換を行うことで蒸発する又は加熱される。室外熱交換器24を通過した低圧冷媒は、再び圧縮機21に吸入される。
運転中のエアハンユニット30の空気熱交換器33においては、外気OAが水と熱交換を行うことで冷却、除湿、又は加熱される。空気熱交換器33を通過した空気は、給気SAとして対象空間SPに送られる。この際、加湿器35が運転状態にある場合には、空気熱交換器33を通過した空気は、加湿器35によって加湿された後に給気SAとして対象空間SPに送られる。
(4)システム制御部90の詳細
図3は、システム制御部90、及びシステム制御部90に接続される各部を模式的に示したブロック図である。システム制御部90は、空調システム100に含まれる各機器と配線を介して接続されている。システム制御部90は、各機器(21、23、25、26、35、38、Pa等)に対して所定の制御信号を送信することで各機器の動作を制御する。また、システム制御部90は、各センサ(S1−S6)の検出値を取得する。また、システム制御部90は、配線を介してリモコン80と電気的に接続されており信号の送受信を行う。
システム制御部90は、設定温度(例えば給気温度の目標値;目標給気温度Tsa等)や負荷の状況(外気OAの温度(外気温度Toa)や湿度Xoa)に応じて、水回路C1を循環する水の温度の目標値(目標水温Tw,up)を設定し、目標水温Tw,upや入力コマンドに基づき各部の動作(例えば圧縮機21の容量、膨張弁23の開度、四路切換弁25の状態、室外ファン26の回転数、水ポンプPaの回転数、加湿器35の発停、又は給気ファン38の回転数等)を適宜調整する。これにより、空調システム100の運転容量が適宜変更される。
なお、システム制御部90は、外気OAの顕熱処理を行わずに供給することによって冷房を行う場合(すなわち外気冷房運転を行う場合)には、チラーユニット20及びエアハンユニット30における各部の運転を休止・停止させる。
図4は、システム制御部90に含まれる機能部を模式的に記載したブロック図である。図4に示すように、システム制御部90は、記憶部91、取得部92、運転状態制御部93、機器制御部94等の機能部を含んでいる。なお、各機能部は、メモリ、CPU及び/又は各種電気部品が、単独に又は連携して機能することで実現される。
(4−1)記憶部91
記憶部91は、RAM、ROM、フラッシュメモリ等の各種メモリによって構成され、複数の記憶領域が含まれている。例えば、記憶部91には、プログラム記憶領域911、コマンド記憶領域912、状態記憶領域913、及び現地情報記憶領域914等が含まれている。
プログラム記憶領域911は、システム制御部90の各部において実行される制御プログラムを記憶している。制御プログラムは、管理者によって適宜更新される。
コマンド記憶領域912は、ユーザによって入力されたコマンド(例えば、運転種別、設定温度、設定風量等に係るコマンド)を記憶している。
状態記憶領域913は、各センサ(S1−S6等)の検出値や、エアハンユニット30の運転状態(例えば目標給気温度Tsa等)、チラーユニット20の運転状態(例えば圧縮機21の周波数、四路切換弁25の状態、室外ファン26の回転数や水ポンプPaの回転数等)を特定する情報を記憶している。
現地情報記憶領域914は、空調システム100が適用されている現地(ここでは建物BL)に係る情報(地域や設置階数等を特定する情報)を記憶している。
(4−2)取得部92
取得部92は、制御プログラムに沿って、所定のタイミングで、他の機器から所定の情報(例えば各種センサの検出値等)を取得する。
(4−3)運転状態制御部93
運転状態制御部93は、制御プログラムに沿って、状況に応じて空調システム100の運転状態を制御する。具体的に、運転状態制御部93は、記憶部91に記憶されている各種情報に基づき、各機器の制御に係るパラメータを設定する。例えば、運転状態制御部93は、変化する熱負荷に応じて目標水温Tw,upを設定する。
(4−4)機器制御部94
機器制御部94は、制御プログラムに沿って、運転状態制御部93の決定内容に応じて、各機器に対して所定の駆動信号(駆動電圧)を出力する。なお、機器制御部94は、複数のインバータ(図示省略)を含み、所定の機器に対しては、対応するインバータを介して駆動信号を出力する。
(5)システム制御部90による処理の流れ
図5は、システム制御部90の処理の流れの一例を示したフローチャートである。システム制御部90は、例えば以下のような流れで、空調システム100の運転を制御する。なお、図5に示す処理の流れは、一例であり適宜変更可能である。例えば、矛盾のない範囲でステップの順序が変更されてもよいし、一部のステップが他のステップと並列的に実行されてもよいし、他のステップが新たに追加されてもよい。
ステップS101において、システム制御部90は、運転を行わせる運転コマンドが入力されていない場合又は運転を停止させるコマンドが入力されている場合(NOの場合)にはステップS102に進み、運転コマンドが入力されている場合(YESの場合)にはステップS103に進む。
ステップS102において、システム制御部90は、空調システム100を運転停止状態とする。その後、ステップS101に戻る。
ステップS103において、システム制御部90は、入力されている各種コマンド(運転種別、設定温度、設定湿度、設定風量等)を取得する。その後、ステップS104へ進む。
ステップS104において、システム制御部90は、各種センサ(S1−S6)の検出値をそれぞれ取得する。その後、ステップS105へ進む。
ステップS105において、システム制御部90は、取得した各種コマンド及び各種センサの検出値に基づき、処理する熱負荷を算出する。その後、ステップS106へ進む。
ステップS106において、システム制御部90は、算出した熱負荷に基づき、目標水温Tw,upを設定する。その後、ステップS107へ進む。
ステップS107において、システム制御部90は、取得した各コマンド及び目標水温Tw,up等に基づき、各機器の動作状態を制御する。その後、ステップS101に戻る。
(6)目標水温の設定について
(6―1)外気温度及び目標給気温度を用いた目標水温の設定
(6―1−1)
従来における目標水温の設定については、基本的に、冷房運転時には外気温度が高いほど目標水温が低く設定され、暖房運転時には外気温度が低いほど目標水温が高く設定される、という方法が採用されていた。しかし、セントラル空調方式の空調システムでは、接続するエアハンドリングユニット及びファンコイルユニット毎に負荷率が異なるため要求水温にばらつきがあり、また要求水温を推定することも容易ではなく、外気条件による目標水温の設定を適切に行うことが難しかった。これに関連して、チラーユニット(熱源装置)のCOP向上が難しく、ひいては空調システム100の省エネ性向上を図ることが難しかった。
空調システム100では、空気熱交換器33の熱交換器特性に合わせて、空気熱交換器33の入口空気温度である外気温度Toaと、空気熱交換器33の出口空気温度である給気温度の目標値(すなわち目標給気温度Tsa)と、に基づいて目標水温Tw,upが設定される。すなわち、水回路C1における水の温度に関し、目標水温Tw,upが、状況に応じて変化する外気温度Toaと、エアハンユニット30の空気熱交換器33の特性と、に基づき設定される。これに関連して、チラーユニット20から吐出される水の温度が最適値に設定されることが促進されている。このため、チラーユニット20のCOP向上が促進され、空調システム100の省エネ性向上が促進されている。
暖房運転時の加湿ありの場合(すなわち加湿器35を運転させる場合)には、目標給気温度Tsaは、外気絶対湿度条件における給気SAのエンタルピの目標値に係る温度として設定される。
(6―1―2)
具体的に、空調システム100においては、例えば以下の式1が用いられ、目標給気温度Tsa、外気温度Toa及び空気熱交換器33の熱交換器特性値(a,b,c)に基づいて目標水温Tw,upが算出される。
式1
Figure 2018173221
(6―1―3)
図6は、冷房運転時における負荷と水温の関係を模式的に示したグラフである。図6において横軸は負荷の大きさを表わしており、縦軸はチラーユニット20から吐出される水の温度を表わしている。また、図6において一点鎖線X1は、空気熱交換器33において負荷を処理できる水温の上限値を示している。また、図6において二点鎖線X2は、空気熱交換器33において負荷を処理できる水温の下限値を示している。また、一点鎖線X1及び二点鎖線X2によって形成される略台形状の領域Z1(ハッチング部分)は、負荷を適切に処理可能な水温の範囲を示している。
冷房運転時には、一般的に、水温が高いほど熱源のCOPが高くなるので、各負荷での上限水温で運転することが省エネ上、好ましい。図6に示すように、冷房運転時において負荷が小さい時には、水温を上げても(すなわち能力を下げても)負荷を適切に処理することが可能である。空調システム100では、領域Z1の範囲内で目標水温Tw,upが設定される。なお、図6におけるTw1及びTw2は設計仕様や設置環境に応じて変化するが、一例を挙げるとすればTw1は16℃でありTw2は5℃である。
(6―1―4)
空気熱交換器33における水と外気OAとの熱交換量Qpv(すなわち負荷の処理能力)については、高温側の空気温度Tair(外気温度Toa)と、低温側の冷水温度Twaterと、の温度差をタスクフォースとして、空気と冷水の水当量の小さい側の水当量Hmin(一般的に空気側の水当量)及び空気熱交換器33の温度効率εを用いて、以下の式2のように表わされる。
式2
Figure 2018173221
(6―1―5)
水量を制御することで温度効率εが制御され、結果として能力(熱交換量)Qpvが負荷と一致するように、目標水温Tw,upが設定される。一方で、負荷Qloadが変化した時に、各負荷での上限目標水温Tw,upは、水量が最大の時の温度効率ε’を用いて(この温度効率ε’が変化しないと仮定して)以下の式3のように表される。冷房運転時には、上限目標水温Tw,upは、負荷に比例して低下する。
式3
Figure 2018173221
(6―1―6)
なお、負荷Qloadについては、以下の式4のように、外気温度Toaが所定値以上(外気負荷が発生する外気温度Toa,load)となったときに生じ、外気温度Toaに比例する以下のモデルが存在する。
式4
Figure 2018173221
また、負荷Qloadについては、目標給気温度Tsa及び空気側の水当量Hairを用いて以下の式5のようにも表わされる。
式5
Figure 2018173221
(6―1―7)
外気温度、目標給気温度、上限水温の関係については、空気と冷水の水当量の小さい側の水当量Hminが空気側の水当量Hairとして、式6のようになる。冷房運転時には、目標水温Tw,upは、目標給気温度Tsaに比例して増加し、空気温度Tair(外気温度Toa)に比例して低下する。
式6
Figure 2018173221
(6―1―8)
例えば、空気熱交換器33が、外気温度Toaが35℃の場合に給気SAの温度が16℃となり水温が7℃から12℃に変化するような特性を有するものであれば、熱交換器特性ε’については式7のように算出される。
式7
Figure 2018173221
係る場合に、目標水温Tw,upは、式8を用いて以下のように設定されうる。
式8
Figure 2018173221
すなわち、外気温度Toaと目標水温Tw,upは、例えば以下の表1のような関係となる。表1では、冷房運転時に外気温度Toaの増加に応じて目標水温Tw,upが所定の割合で低下する様子が示されている(なお、暖房運転時には、逆に外気温度Toaの低下に応じて目標水温Tw,upが所定の割合で増加する)。
Figure 2018173221
(6―1―9)
上述したような熱交換器特性(ε’=0.5〜0.8)によれば、式1において、aは1以上、bは0.25〜1である。cは物件ごとの負荷特性による修正項である。なお、目標給気温度Tsaについては、可変制御とした場合でも大きな変更はないので、平均値を用いてもよい。
(6―1―10)
冷房運転時には、目標水温Tw,upは、外気温度Toaが高いほど目標水温Tw,upが低くなる線形一次式で表わされるが、以下の表2に示すように外気温度Toaによってステップ上に変化させて各ステップ値に変更してから一定時間が経過するまでは変更しないようにしてもよい。表2において横軸は外気温度Toaを表しており、縦軸は目標水温Tw,upを表している。なお、外気湿度Xoaが高い時は、変水温としない領域を設けてもよい。また、室内の温湿度環境や水ポンプPaの運転状態(変流量ポンプのインバータ周波数が上限近くである場合等)等に応じて、目標水温Tw,upを変化させてもよい。
Figure 2018173221
(6―2)外気湿度及び目標給気湿度を用いた目標水温の設定
(6―2―1)
また、空調システム100においては、例えば以下の式9が用いられ、給気温度Tsa、外気温度Toa、目標給気湿度Xsa、外気湿度Xoa及び空気熱交換器33の熱交換器特性値(a1,a2,b,d)に基づいて目標水温Tw,upが算出される。
式9
Figure 2018173221
(6―2―2)
暖房運転時において加湿有りの場合(すなわち加湿器35を運転させる場合)には、給気SAの温度は、外気湿度Xoaが低いほど、目標給気湿度Xsaが高いほど、目標給気温度Tsaが高いほど、高くなる。よって、目標水温Tw,upも目標給気温度Tsaに比例する。
そして、空気熱交換器33を通過した空気のエンタルピhoutと給気SAの給気エンタルピhsaが同じであるので、空気熱交換器33を通過後の空気の温度Toutは以下の式10のようになる。
式10
Figure 2018173221
(6―2―3)
そして、目標水温Tw,upは、空気熱交換器33を通過した空気の温度Toutを用いて以下の式11のように設定される。なお、熱交換器特性(ε’=0.5〜0.8)に関連して、a1は1以上、a2は2500以上、bは0.25〜1であり、dは物件ごとの負荷特性による修正項である。
式11
Figure 2018173221
(6―2―4)
なお、冷房運転時の目標水温Tw,upと同様に、暖房運転時の目標水温Tw,upを外気湿度Xoaによってステップ上に変化させて各ステップ値に変更してから一定時間までは変更しないようにしてもよい。
(6―3)給気ファンの風量を用いた目標水温の設定
また、空調システム100においては、例えば以下の式12が用いられ、風量に基づいて目標水温Tw,upが算出(補正)される。なお、Ga,i,Cはエアハンユニット30の中で最も風量比が小さいi番目の定格風量であり、Ga,iはエアハンユニット30の中で最も風量比が小さいi番目の変風量である。
式12
Figure 2018173221
(6―4)外気温度、室内温度と上限水温の関係
室内温度の目標値Tra、定格室内温度Tra,c、定格水温Tw,c、空気温度Tair、定格外気温(設計点)Tair,c、外気負荷が発生する空気温度Tair,loadを用いると、冷房運転時における目標水温Tw,upは式13のように表わされる。
式13
Figure 2018173221
(7)特徴
(7−1)
上記実施形態に係る空調システム100では、システム制御部90によって、空気熱交換器33を通過した空気の温度の目標値(目標給気温度Tsa)と、外気温度Toaと、に基づいて、目標水温Tw,upが設定される。すなわち、チラーユニット20における目標水温Tw,upが、状況に応じて変化する外気温度Toaと、エアハンユニット30の空気熱交換器33の特性と、に基づき設定される。これに関連して、チラーユニット20から吐出される水の温度が最適値に設定されやすくなる。このため、チラーユニット20のCOP向上が促進されている。ひいては、空調システム100の省エネ性向上が促進されている。
(7−2)
また、上記実施形態に係る空調システム100では、システム制御部90によって、目標給気湿度Xoa(空気熱交換器33を通過した空気の湿度の目標値)と、外気湿度Xoaと、に基づいても、目標水温Tw,upが設定される。すなわち、目標水温Tw,upが、状況に応じて変化する外気温度Toa及び外気湿度Xoaと、エアハンユニット30の空気熱交換器33の特性と、に基づき設定される。これに関連して、チラーユニット20から吐出される水の温度が最適値に設定されることが精度よく促進されている。このため、チラーユニット20のCOP向上が促進され、特に対象空間SPに加湿した空気を送る加湿運転や除湿した空気を送る除湿運転を行う空調システム100において省エネ性向上が促進されている。
(7−3)
上記実施形態に係る空調システム100では、システム制御部90によって、空気熱交換器33の特性に基づいて、目標水温Tw,upが設定される。すなわち、目標水温Tw,upが、直接的に空気熱交換器33の特性に基づいて設定される。例えば、目標水温Tw,upに関して、予め導出されている空気熱交換器33の特性を考慮して、状況別にモデル化或いは補正することが可能となっている。これに関連して、チラーユニット20から吐出される水の温度が最適値に設定されることが精度よく促進されている。このため、チラーユニット20のCOP向上が促進されている。
(7−4)
上記実施形態に係る空調システム100では、システム制御部90によって、給気ファン38の風量に基づいても、目標水温Tw,upが設定される。すなわち、目標水温Tw,upに関し、状況に応じて変化する外気温度Toaと、エアハンユニット30の空気熱交換器33の特性と、に基づき算出される目標水温Tw,upが、空気熱交換器33を通過する風量に応じてモデル化若しくは補正されうるようになっている。これに関連して、チラーユニット20から吐出される水の温度が最適値に設定されることが精度よく促進されている。このため、チラーユニット20のCOP向上がさらに促進されている。
(8)変形例
上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
(8−1)変形例1
空調システム100は、図7及び図8に示すような空調システム100aのように構成されてもよい。以下、空調システム100aの、空調システム100とは異なる部分について説明する。
図7は、空調システム100aの設置態様を概略的に示した模式図である。図8は、空調システム100aの構成態様を概略的に示した模式図である。空調システム100aは、エアハンユニット30に代えて、ファンコイルユニット30aを複数(ここでは対象空間SPと同数)有している。空調システム100aでは、運転中、ファンコイルユニット30aにおいて対象空間SPの空気(内気IA)を取り込み、冷却若しくは加熱、又は除湿若しくは加湿して、給気SAとして対象空間SPに供給する。
空調システム100では、水回路C1に代えて水回路C1´が構成されている。水回路C1´は、チラーユニット20と各ファンコイルユニット30aとに跨って構成されている。水回路C1´は、主として、各ファンコイルユニット30aに配置される空気熱交換器33と、チラーユニット20に配置される水熱交換器22及び水ポンプPaと、が第1配管P1で接続されることで構成されている。
「空気調和装置」の一例であるファンコイルユニット30aは、外気OAの冷却、除湿、加熱、及び/又は加湿を行う。ファンコイルユニット30aは、対象空間SPに配置されている。本実施形態において、ファンコイルユニット30aは、いずれかの対象空間SPに対応付けられており、対応する対象空間SPに設置されている。図9は、対象空間SPにおけるファンコイルユニット30aの設置態様を概略的に示した模式図である。本実施形態において、各ファンコイルユニット30aは、対象空間SPの天井CLに設置される天井埋込型である。図9に示すように、各ファンコイルユニット30aは、対象空間SPにおいて吹出口が天井CLから露出するように設置されている。
各ファンコイルユニット30aは、エアハンユニット30と同様に、空気熱交換器33、加湿器35及び給気ファン38を有しており、内気IAが流れる空気流路FP´の風上側から風下側に向かって、空気熱交換器33、加湿器35、及び給気ファン38が順に配置されている。各ファンコイルユニット30aにおいて、空気流路FP´の風下側の端部は、対象空間SPに連通している。ファンコイルユニット30aは、エアハンユニット30とは異なり、ダクトD1に接続されていない。ファンコイルユニット30aは、外気OAを取り込んで対象空間SPに供給するのではなく、内気IAを取り込んで冷却、除湿、加熱又は加湿したうえで対象空間SPに給気SAとして送る。
このようなファンコイルユニット30aを有する空調システム100aにおいても、上記実施形態と同様の手法で目標水温Tw,upを設定することで、チラーユニット20のCOP向上が促進され、省エネ性向上が促進される。
また、空調システム100aにおいて、ファンコイルユニット30aとエアハンユニット30が混合して配置される場合であっても、上記実施形態の手法を応用して目標水温Tw,upを設定することで、チラーユニット20のCOP向上が促進され、省エネ性向上が促進される。例えば、エアハンユニット30に関して算出される目標水温Tw,upと、ファンコイルユニット30aに関して算出される目標水温Tw,upのうち、冷房運転時には低いほうを目標水温Tw,upとし、暖房運転時には高いほうを目標水温Tw,upとすることで対象空間SPにおける快適性を実現しつつ省エネ性向上を図ること等が考えられる。
なお、ファンコイルユニット30aの台数については、必ずしも対象空間SPと同数には限定されず、対象空間SPの数より多くても少なくてもよい。係る場合、一つの対象空間SPに複数のファンコイルユニット30aが配置されてもよい。
(8−2)変形例2
また、上記変形例1に係る空調システム100aは、図10及び図11に示すような空調システム100bのように構成されてもよい。以下、空調システム100bの、空調システム100aとは異なる部分について説明する。
図10は、空調システム100bの設置態様を概略的に示した模式図である。図11は、空調システム100bの構成態様を概略的に示した模式図である。空調システム100bは、ファンコイルユニット30aに代えて、ファンコイルユニット30bを有している。空調システム100bでは、運転中、ファンコイルユニット30bにおいてダクトD2を介して外気OAを取り込み、冷却若しくは加熱、又は除湿若しくは加湿して、給気SAとして対象空間SPに供給する。
「空気調和装置」の一例であるファンコイルユニット30bは、ファンコイルユニット30aと同様に、空気熱交換器33、加湿器35及び給気ファン38を有しており、外気OAが流れる空気流路FPの風上側から風下側に向かって、空気熱交換器33、加湿器35、及び給気ファン38が順に配置されている。ファンコイルユニット30bは、ファンコイルユニット30aとは異なり、空気流路FPの風上側端部においてダクトD2に接続されている。ファンコイルユニット30bは、ダクトD2を介して外気OAを取り込んで冷却、除湿、加熱又は加湿したうえで対象空間SPに給気SAとして送る。
本実施形態において、ファンコイルユニット30bは、いずれかの対象空間SPに対応付けられており、対応する対象空間SPに設置されている。図12は、対象空間SPにおけるファンコイルユニット30bの設置態様を概略的に示した模式図である。本実施形態において、各ファンコイルユニット30bは、対象空間SPの天井CLに設置される天井埋込型である。図12に示すように、各ファンコイルユニット30bは、対象空間SPにおいて吹出口が天井CLから露出するように設置されている。
ダクトD2は、外気OAの流路を形成する部材である。ダクトD2は、給気ファン38が駆動することで外気OAがファンコイルユニット30bに取り込まれるように、その一端が対応するファンコイルユニット30bに接続され、他端が対象空間SPに形成された吸気口H2に接続されている。
このようなファンコイルユニット30bを有する空調システム100bにおいても、上記実施形態と同様の手法で目標水温Tw,upを設定することで、チラーユニット20のCOP向上が促進され、省エネ性向上が促進される。
また、空調システム100bにおいて、ファンコイルユニット30bと、エアハンユニット30及び/又はファンコイルユニット30aとが混合して配置される場合であっても、上記実施形態と同様の手法又は応用手法を用いて目標水温Tw,upを設定することで、チラーユニット20のCOP向上が促進され、省エネ性向上が促進される。
(8−3)変形例3
上記実施形態における空調システム100は、暖房運転を行わないように構成されてもよい。すなわち、チラーユニット20がヒートポンプ式でなくてもよい。
また、上記実施形態における空調システム100において、加湿器35は、適宜省略されてもよい。すなわち、空調システム100は、加湿運転を行わないように構成されてもよい。
(8−4)変形例4
上記実施形態では、空調システム100が3つの対象空間SPを形成される建物BLに適用される場合について説明した。しかし、空調システム100の設置環境については特に限定されない。例えば空調システム100は、4つ以上の対象空間SPを形成される建物に適用されてもよい。また、例えば空調システム100は、2つ以下(1つを含む)の対象空間SPを形成される建物に適用されてもよい。係る場合、エアハンユニット30の台数については対象空間SPの数に応じて適宜変更されてもよい。また、1つの対象空間SPに複数台のファンコイルユニットが配置されてもよい。
(8−5)変形例5
上記実施形態では、空調システム100は、1台のチラーユニット20と、1台のエアハンユニット30とを有していた。しかし、空調システム100が有するチラーユニット20及びエアハンユニット30の台数については必ずしも1台には限定されず、設置環境や設計仕様に応じて適宜変更が可能である。すなわち、空調システム100は、チラーユニット20、及び/又はエアハンユニット30をそれぞれ複数有していてもよい。なお、チラーユニット20及びエアハンユニット30の台数は、必ずしも同数である必要はない。
(8−6)変形例6
上記実施形態では、エアハンユニット30が導入空気が全外気である場合について説明した。しかし、エアハンユニット30における導入空気については特に限定されない。例えばエアハンユニット30においては、導入空気が外気と還気の混合又は全内気等であってもよい。
(8−7)変形例7
上記実施形態において構成される冷媒回路(C2)の構成態様については、設置環境や設計仕様に応じて適宜変更が可能である。例えば暖房運転について省略される場合には四路切換弁25については省略されてもよい。また、室外熱交換器24の代わりに水熱交換器を配置し、水熱交換器において冷媒と水とを熱交換させることで、冷媒の冷却又は加熱が行われるように構成されてもよい。また、エアハンユニット30において構成される水回路C1の構成態様についても設置環境や設計仕様に応じて適宜変更が可能である。
(8−8)変形例8
上記実施形態における冷媒回路(C2)を循環する冷媒としては、R32やR410AのようなHFC冷媒が想定されるが、必ずしもHFC冷媒である必要は無く、他の冷媒(例えばHFO1234yf、HFO1234ze(E)やCOやアンモニア等)が用いられてもよい。また、水回路C1において循環する熱媒体についても必ずしも水である必要はなく、他の流体が採用されてもよい。
(8−9)変形例9
空調システム100に含まれる各種センサの配置位置は、上記実施形態における態様に必ずしも限定されず、適宜変更が可能である。例えば、外気温度センサS1、外気湿度センサS2、及び給気温度センサS3は、必ずしもエアハンユニット30に配置される必要はなく、他のユニットに配置されてもよいし、独立して配置されてもよい。また、室内温度センサS4、室内湿度センサS5、及び/又は二酸化炭素濃度センサS6は、必ずしもリモコン80に配置される必要はなく、他のユニットに配置されてもよいし、独立して配置されてもよい。
(8−10)変形例10
上記実施形態では、システム制御部90の設置態様について特に説明していなかったが、システム制御部90の設置態様については適宜選択が可能である。例えば、システム制御部90は、建物BLの管理室に配置されてもよいし、WANやLANで通信可能に接続された遠隔地に設置されてもよい。
また、システム制御部90の構成態様についても適宜変更されてもよい。例えば図4に示される各機能部(91−94)は必ずしも一体に配置される必要はなく、分散して配置される各機能部が通信ネットワークで接続されることでシステム制御部90が構成されてもよい。また、システム制御部90は、1台のコンピュータ内において構成されてもよいし、複数のデバイス(例えばPCやスマートフォン等)が接続されることで構成されてもよい。
(8−11)変形例11
目標水温Tw,upの設定態様については、必ずしも上記実施形態において説明したものには限定されず、目標水温Tw,upが外気温度Toaとエアハンユニット30の空気熱交換器33の特性とに基づき設定されることでチラーユニット20のCOP向上を促進させるものである限り、設計仕様や設置環境に応じて適宜変更が可能である。例えば、上記「(6)目標水温の設定について」において説明したいずれかの内容については、より最適化を図るべく変更されてもよいし、適宜省略されてもよい。また、各式や用いられる変数についても適宜変更可能である。
本発明は、空調システムに利用可能である。
20 :チラーユニット(熱源装置)
21 :圧縮機
22 :水熱交換器
23 :膨張弁
24 :室外熱交換器
25 :四路切換弁
26 :室外ファン
30 :エアハンドリングユニット(空気調和装置)
30a、30b:ファンコイルユニット(空気調和装置)
33 :空気熱交換器(熱交換器)
35 :加湿器
38 :給気ファン(空調ファン)
80 :リモコン
90 :システム制御部(制御部)
91 :記憶部
92 :取得部
93 :運転状態制御部
94 :機器制御部
100、100a、100b:空調システム
BL :建物
C1 :水回路
C2 :冷媒回路
CL :天井
D1、D2 :ダクト
FP、FP´:空気流路
H1 :給気口
H2 :吸気口
IA :内気
OA :外気
P1 :第1配管
P2 :第2配管
P3 :第3配管
Pa :水ポンプ
S1 :外気温度センサ
S2 :外気湿度センサ
S3 :給気温度センサ
S4 :室内温度センサ
S5 :室内湿度センサ
S6 :二酸化炭素濃度センサ
SA :給気
SP :対象空間
W :水(吐出水)
実開昭58−114432号公報

Claims (4)

  1. 水を加熱又は冷却して吐出する熱源装置(20)と、
    通過する空気(OA、IA)と前記熱源装置から吐出される吐出水(W)とを熱交換させる熱交換器(33)を有し、前記熱交換器を通過した空気(SA)を対象空間(SP)に送る空気調和装置(30、30a、30b)と、
    前記吐出水の温度の目標値である目標水温を設定する制御部(90)と、
    を備え、
    前記制御部は、前記熱交換器を通過した空気の温度の目標値と、外気温と、に基づいて前記目標水温を設定する、
    空調システム(100、100a、100b)。
  2. 前記制御部は、さらに前記熱交換器を通過した空気の湿度の目標値と、外気湿度と、に基づいて、前記目標水温を設定する、
    請求項1に記載の空調システム(100、100a、100b)。
  3. 前記制御部は、さらに前記熱交換器の特性に基づいて前記目標水温を設定する、
    請求項1又は2に記載の空調システム(100、100a、100b)。
  4. 前記空気調和装置は、前記熱交換器を通過して前記対象空間へ流出する空気流を生成する空調ファン(38)をさらに有し、
    前記制御部は、さらに前記空調ファンの風量に基づいて、前記目標水温を設定する、
    請求項1から3のいずれか1項に記載の空調システム(100、100a、100b)。
JP2017071265A 2017-03-31 2017-03-31 空調システム Active JP6907653B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071265A JP6907653B2 (ja) 2017-03-31 2017-03-31 空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071265A JP6907653B2 (ja) 2017-03-31 2017-03-31 空調システム

Publications (2)

Publication Number Publication Date
JP2018173221A true JP2018173221A (ja) 2018-11-08
JP6907653B2 JP6907653B2 (ja) 2021-07-21

Family

ID=64107250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071265A Active JP6907653B2 (ja) 2017-03-31 2017-03-31 空調システム

Country Status (1)

Country Link
JP (1) JP6907653B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218563A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 機械学習装置、空調システム及び機械学習方法
JPWO2021140608A1 (ja) * 2020-01-09 2021-07-15
JP7456301B2 (ja) 2020-06-11 2024-03-27 三菱電機株式会社 空調システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163631A (ja) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd 送水温度制御装置
JP2007139241A (ja) * 2005-11-16 2007-06-07 Hitachi Ltd 空気調和装置
JP2007205605A (ja) * 2006-01-31 2007-08-16 Tokyo Electric Power Co Inc:The 空調システム
JP2008075977A (ja) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd 業務用空調制御システム
WO2016121107A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 空調管理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163631A (ja) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd 送水温度制御装置
JP2007139241A (ja) * 2005-11-16 2007-06-07 Hitachi Ltd 空気調和装置
JP2007205605A (ja) * 2006-01-31 2007-08-16 Tokyo Electric Power Co Inc:The 空調システム
JP2008075977A (ja) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd 業務用空調制御システム
WO2016121107A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 空調管理システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218563A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 機械学習装置、空調システム及び機械学習方法
US11959652B2 (en) 2019-04-26 2024-04-16 Daikin Industries, Ltd. Machine learning apparatus, air conditioning system, and machine learning method
JPWO2021140608A1 (ja) * 2020-01-09 2021-07-15
WO2021140608A1 (ja) * 2020-01-09 2021-07-15 三菱電機株式会社 空気調和システム
JP7330298B2 (ja) 2020-01-09 2023-08-21 三菱電機株式会社 空気調和システム
JP7456301B2 (ja) 2020-06-11 2024-03-27 三菱電機株式会社 空調システム

Also Published As

Publication number Publication date
JP6907653B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
JP6414354B1 (ja) 空調システム
JP6567183B2 (ja) 空気調和システム
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
WO2015115404A1 (ja) 空気調和システム
JP6119141B2 (ja) 空調システム
JP2012141113A (ja) 空気調和温水機器システム
WO2020241358A1 (ja) 空調システム
JP6907653B2 (ja) 空調システム
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP6819807B2 (ja) 空調システム、機械学習装置及び機械学習方法
JP7181477B2 (ja) 空気調和システム
US20220099325A1 (en) Air-conditioning system, machine learning apparatus, and machine learning method
JP6745895B2 (ja) 空調システム
EP3943825A1 (en) Air-conditioning system
WO2022234860A1 (ja) 空気調和装置
JP2018136074A (ja) 空気調和システム
JP2016102635A (ja) 空調システム
JP2014119204A (ja) 温調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R151 Written notification of patent or utility model registration

Ref document number: 6907653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151