JP2018171587A - Catalyst and process for production of 1,3-butadiene from ethanol - Google Patents
Catalyst and process for production of 1,3-butadiene from ethanol Download PDFInfo
- Publication number
- JP2018171587A JP2018171587A JP2017072022A JP2017072022A JP2018171587A JP 2018171587 A JP2018171587 A JP 2018171587A JP 2017072022 A JP2017072022 A JP 2017072022A JP 2017072022 A JP2017072022 A JP 2017072022A JP 2018171587 A JP2018171587 A JP 2018171587A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- butadiene
- group
- ethanol
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 239000003054 catalyst Substances 0.000 title claims abstract description 88
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 23
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 7
- 125000004043 oxo group Chemical group O=* 0.000 claims abstract description 7
- 229910003849 O-Si Inorganic materials 0.000 claims abstract description 6
- 229910003872 O—Si Inorganic materials 0.000 claims abstract description 6
- 230000000737 periodic effect Effects 0.000 claims abstract description 6
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 13
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- 229910021480 group 4 element Inorganic materials 0.000 claims description 3
- 229910021478 group 5 element Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 5
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 34
- 238000002360 preparation method Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000010457 zeolite Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 5
- 150000004703 alkoxides Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- -1 SBA-15 Chemical compound 0.000 description 4
- 229910006728 Si—Ta Inorganic materials 0.000 description 4
- 150000003841 chloride salts Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910009027 Sn—OH Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000004400 29Si cross polarisation magic angle spinning Methods 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical group NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001709 polysilazane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
エタノールからの1,3−ブタジエンを製造する触媒に関する。 The present invention relates to a catalyst for producing 1,3-butadiene from ethanol.
エタノールからのブタジエン製造(ETB)は、過去に工業実績のある技術であるが、ナフサクラッカーより得られたC4留分からのブタジエン抽出蒸留技術の完成に伴い競争力を失ったため、一部の地域を除いて現在では使用されていない。しかしながら、近年、アジアを中心とした自動車普及台数の伸びとクラッカー原料の軽質化に伴う世界的なブタジエン需給ギャップの拡大が懸念されており、ブタジエンを単産できるETBプロセスへの関心が高まっている。 Butadiene production from ethanol (ETB) is a technology with an industrial track record in the past, but lost its competitiveness with the completion of butadiene extractive distillation technology from C4 fraction obtained from naphtha crackers. Currently not used except. However, in recent years, there are concerns about the expansion of the global butadiene supply-demand gap accompanying the growth in the number of automobiles, especially in Asia, and the lightening of cracker raw materials.
ETBプロセスには、一段でエタノールをブタジエンに変換する一段法(Lebedev法)と、まずエタノールを脱水素してアセトアルデヒドを合成し、エタノールとアセトアルデヒドからブタジエンを合成する二段法(Ostromislensky法)がある。
・一段法
2CH3CH2OH→CH2=CH−CH=CH2+2H2O+H2
・二段法
CH3CH2OH→CH3CHO+H2
CH3CH2OH+CH3CHO→CH2=CH−CH=CH2+2H2O
In the ETB process, there is a one-stage method (Lebedev method) in which ethanol is converted to butadiene in one stage, and a two-stage method (Ostromislensky method) in which ethanol is first dehydrogenated to synthesize acetaldehyde and butadiene is synthesized from ethanol and acetaldehyde. .
-One-step method 2 CH 3 CH 2 OH → CH 2 = CH-CH = CH 2 + 2H 2 O + H 2
・ Two-stage method CH 3 CH 2 OH → CH 3 CHO + H 2
CH 3 CH 2 OH + CH 3 CHO → CH 2 ═CH—CH═CH 2 + 2H 2 O
このような反応の際に使用されるETB触媒として、周期律表第4族および第5族の元素をシリカに担持した触媒が知られている。Ta2O5/SiO2触媒は古くから、1,3−ブタジエン合成触媒として知られていた(特許文献1,非特許文献1〜2)。しかしながら、当時のブタジエン選択率は60%台で十分に高いとは言えなかった。 As an ETB catalyst used in such a reaction, a catalyst in which elements of Groups 4 and 5 of the periodic table are supported on silica is known. Ta 2 O 5 / SiO 2 catalyst has long been known as a 1,3-butadiene synthesis catalyst (Patent Document 1, Non-Patent Documents 1 and 2). However, the butadiene selectivity at that time could not be said to be sufficiently high in the 60% range.
近年、メソポーラスシリカにTaを担持した触媒(非特許文献3)やゼオライトにTaを担持したTa/SBA−15(非特許文献4)、ゼオライト骨格中にTaを挿入したTaBEA(非特許文献5)が1,3−ブタジエン合成触媒として報告されている。また、ZrO2/SiO2触媒、HfO2/SiO2触媒も古くから、1,3−ブタジエン合成触媒として知られており(非特許文献2)、近年はそれに脱水素能を有する金属を担持した一段触媒として、Ag−ZrO2−CeO2−SiO2(特許文献2)、ZnZrSiO2やCuZnZrSiO2(非特許文献6)、CuHfZnSiO2(非特許文献7)等が報告されている。 In recent years, a catalyst in which Ta is supported on mesoporous silica (Non-patent Document 3), Ta / SBA-15 in which Ta is supported on zeolite (Non-patent Document 4), and TaBEA in which Ta is inserted into a zeolite framework (Non-patent Document 5) Has been reported as a 1,3-butadiene synthesis catalyst. In addition, ZrO 2 / SiO 2 catalyst and HfO 2 / SiO 2 catalyst have also been known as 1,3-butadiene synthesis catalysts for a long time (Non-patent Document 2), and in recent years, they carry a metal having dehydrogenating ability. As a one-stage catalyst, Ag—ZrO 2 —CeO 2 —SiO 2 (Patent Document 2), ZnZrSiO 2 , CuZnZrSiO 2 (Non-Patent Document 6), CuHfZnSiO 2 (Non-Patent Document 7), and the like have been reported.
本発明では、実際的な運転条件でより効率的に1,3−ブタジエンを製造することのできる触媒および、その触媒を用いた1,3−ブタジエンの製造方法を提供することを目的としている。 An object of the present invention is to provide a catalyst capable of more efficiently producing 1,3-butadiene under practical operating conditions and a method for producing 1,3-butadiene using the catalyst.
このような状況のもと、本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により、本発明を完成するに至った。
[1] 周期表第4族および5族の元素(A)と、担体成分である二酸化ケイ素とを含み、その表面水酸基およびオキソ基の少なくとも一部が加水分解性基を有するケイ素化合物との反応により、−O−Si基で置換されてなること特徴とする、エタノールを含む原料から1,3−ブタジエンを製造する1,3−ブタジエン製造触媒。
[2] 加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比(加水分解性基を有するケイ素化合物中のケイ素[mol]/元素(A)[mol])が0.1から100であることを特徴とする、[1]に記載の1,3−ブタジエン製造触媒。
[3] 二酸化ケイ素上の元素(A) の密度が1〜50個/nm2の範囲であることを特徴とする、[1]または[2]に記載の1,3−ブタジエン製造触媒。
[4] 元素(A)がジルコニウム、ハフニウムおよびタンタルから選ばれる少なくとも1種であることを特徴とする、[1]〜[3]のいずれかに記載の1,3−ブタジエン製造触媒。
[5] 29Si−NMRのケミカルシフト値:−111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値:−105ppmでのシグナル強度が0.55以上であることを特徴とする、[1]〜[4]のいずれかに記載の1,3−ブタジエン製造触媒。
[6] [1]〜[5]のいずれかに記載の1,3−ブタジエン製造触媒を用いて、反応温度が300℃以上450℃以下、エタノールおよびアセトアルデヒドの分圧が0.1−1.0MPaA、重量空間速度が0.1〜30g/g−cat・hの範囲にあることを特徴とする用いた1,3−ブタジエンの製造方法。
Under such circumstances, the present inventors diligently studied to solve the above-mentioned problems, and as a result, the present invention has been completed with the following configuration.
[1] Reaction of Group 4 and Group 5 element (A) in the periodic table with a silicon compound containing silicon dioxide as a carrier component and having at least part of its surface hydroxyl group and oxo group having a hydrolyzable group A 1,3-butadiene production catalyst for producing 1,3-butadiene from a raw material containing ethanol, wherein the catalyst is substituted with a —O—Si group.
[2] The molar ratio of silicon to element (A) in the silicon compound having a hydrolyzable group (silicon [mol] in the silicon compound having a hydrolyzable group / element (A) [mol]) is 0.1. The catalyst for producing 1,3-butadiene according to [1], wherein
[3] The 1,3-butadiene production catalyst according to [1] or [2], wherein the density of the element (A) on the silicon dioxide is in the range of 1 to 50 / nm 2 .
[4] The 1,3-butadiene production catalyst according to any one of [1] to [3], wherein the element (A) is at least one selected from zirconium, hafnium and tantalum.
[5] Chemical shift value of 29 Si-NMR: signal intensity at a chemical shift value: −105 ppm when the signal intensity at the maximum value near −111 ppm is 1, is 0.55 or more. 1,3-butadiene production catalyst according to any one of [1] to [4].
[6] Using the 1,3-butadiene production catalyst according to any one of [1] to [5], the reaction temperature is 300 ° C. or higher and 450 ° C. or lower, and the partial pressure of ethanol and acetaldehyde is 0.1-1. A method for producing 1,3-butadiene, which is characterized by being 0 MPaA and a weight space velocity in the range of 0.1 to 30 g / g-cat · h.
本発明の1,3−ブタジエン製造触媒ならびにこの触媒を使用した製造方法によれば、エタノールを含む原料ガスから1,3−ブタジエンをより効率的に製造することが可能となる。 According to the 1,3-butadiene production catalyst of the present invention and the production method using this catalyst, 1,3-butadiene can be produced more efficiently from a raw material gas containing ethanol.
以下、本発明を実施するための形態について説明する。
[1,3−ブタジエン製造触媒]
本発明で使用される触媒は、周期表第4族および5族の元素(A)と担体成分である二酸化ケイ素を含む。触媒表面には、ケイ素や元素(A)の水酸化物ないし酸化物などに由来する水酸基(−OH)およびオキソ基(=O)が存在するが、本発明では表面水酸基およびオキソ基の少なくとも一部が加水分解性基を有するケイ素化合物と反応することによって、−O−Si基で置換されている。なおすべての水酸基およびオキソ基が置換されていてもよく、また一部が置換されていてもよい。
Hereinafter, modes for carrying out the present invention will be described.
[1,3-butadiene production catalyst]
The catalyst used in the present invention contains Group 4 and Group 5 elements (A) and silicon dioxide as a support component. A hydroxyl group (—OH) and an oxo group (═O) derived from a hydroxide or oxide of silicon or element (A) are present on the catalyst surface. In the present invention, at least one of the surface hydroxyl group and the oxo group is present. The moiety is substituted with a —O—Si group by reacting with a silicon compound having a hydrolyzable group. All hydroxyl groups and oxo groups may be substituted, or a part thereof may be substituted.
元素(A)としては、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルなどが挙げられ、1,3−ブタジエン選択率向上の点で、元素(A)がジルコニウム、ハフニウム、タンタルから選ばれる少なくとも1種であることが好ましい。 Examples of the element (A) include titanium, zirconium, hafnium, vanadium, niobium, tantalum and the like, and the element (A) is at least 1 selected from zirconium, hafnium, and tantalum in terms of improving 1,3-butadiene selectivity. Preferably it is a seed.
これらの元素(A)は、担体である二酸化ケイ素に、金属、酸化物、水酸化物、塩などの状態で固定される。二酸化ケイ素としては、アモルファスシリカ、シリカゾル、シリカゲル、コロイダルシリカなどが挙げられる。また、MCM-41、FSM-16、SBA-15などのメソポーラスシリカや、ゼオライトも使用可能である。 These elements (A) are fixed to silicon dioxide as a support in the state of metal, oxide, hydroxide, salt or the like. Examples of silicon dioxide include amorphous silica, silica sol, silica gel, colloidal silica, and the like. Further, mesoporous silica such as MCM-41, FSM-16, SBA-15, and zeolite can also be used.
元素(A)を二酸化ケイ素に固定化する方法としては、元素(A)を含む塩化物塩、硝酸塩、硫酸塩、燐酸塩、アルコキシドを水や有機溶媒に溶解させ、二酸化ケイ素の粉末や成形体からなる担体に含浸させたのち、加熱、乾燥・焼成することで調製できる。含浸方法としては、公知の手法が採用でき、元素(A)含む(水)溶液を噴霧法、コーティング法、またはポアフィリング法また選択吸着法などが挙げられる。また担体の二酸化ケイ素粉末の分散液に元素(A)を含む塩化物塩、硝酸塩、硫酸塩、燐酸塩、アルコキシドなどを溶解させてもよい。さらに、元素(A)を含む塩化物塩やアルコキシドを気化させて二酸化ケイ素担体の表面に吸着させたのちに、乾燥・焼成することによっても調製できる。 As a method for fixing the element (A) to silicon dioxide, a chloride salt, nitrate, sulfate, phosphate, or alkoxide containing the element (A) is dissolved in water or an organic solvent, and a silicon dioxide powder or molded product is obtained. It can be prepared by impregnating a carrier comprising the above, followed by heating, drying and firing. As the impregnation method, a known method can be employed, and examples thereof include a spray method, a coating method, a pore filling method, and a selective adsorption method using an (water) solution containing the element (A). Further, a chloride salt, nitrate, sulfate, phosphate, alkoxide, etc. containing the element (A) may be dissolved in the dispersion of the silicon dioxide powder of the carrier. Furthermore, it can be prepared by vaporizing a chloride salt or alkoxide containing the element (A) and adsorbing it on the surface of the silicon dioxide support, followed by drying and baking.
また、元素(A)および二酸化ケイ素の前駆体を混合したのちに加熱や濃縮、水熱合成などの処理を施し、乾燥・焼成することで調製することもできる。元素(A)の前駆体としてはアルコキシドや塩化物塩、硝酸塩、硫酸塩、燐酸塩、金属酸化物ゾルなどが挙げられる。また、二酸化ケイ素担体の前駆体としては、アルコキシド、ポリシロキサン、ポリシラザンなどの有機珪素化合物、珪酸塩などの有機珪酸塩など他に、シリカゾルなども使用できる。 Moreover, after mixing an element (A) and the precursor of silicon dioxide, it can also prepare by performing processing, such as heating, concentration, and hydrothermal synthesis, and drying and baking. Examples of the precursor of the element (A) include alkoxides, chloride salts, nitrates, sulfates, phosphates, and metal oxide sols. Further, as a precursor of the silicon dioxide support, an organic silicon compound such as alkoxide, polysiloxane and polysilazane, an organic silicate such as silicate, silica sol and the like can be used.
元素(A)を二酸化ケイ素に固定化した触媒は、加水分解性基を有するケイ素化合物によって処理される。加水分解性基を有するケイ素化合物とは、珪素原子に1〜4個の加水分解性基が結合したものである。加水分解性基としては,例えば,水素,ハロゲン原子,アルコキシ基,アシルオキシ基,ケトキシメート基,アミノ基,アミド基,酸アミド基,アミノオキシ基,メルカプト基,アルケニルオキシ基などが挙げられる。 加水分解性基を有するケイ素化合物はたとえば下記式(1)で表される。
SiYnR(4-n) ・・・(1)
The catalyst in which the element (A) is immobilized on silicon dioxide is treated with a silicon compound having a hydrolyzable group. The silicon compound having a hydrolyzable group is a compound in which 1 to 4 hydrolyzable groups are bonded to a silicon atom. Examples of hydrolyzable groups include hydrogen, halogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, and alkenyloxy groups. The silicon compound having a hydrolyzable group is represented, for example, by the following formula (1).
SiY n R (4-n) (1)
式中、Yは、それぞれ独立に加水分解性基であり、Rは炭素数が1〜20の置換又は非置換の炭化水素基である。nは、1〜4の整数である。炭素数が1〜20の置換又は非置換の炭化水素基は、特に限定されず、例えば、メチル基、エチル基、プロピル基などの炭素数が1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基などが挙げられる。なお2個以上のYまたはRが結合する場合、これらは互いに同一であっても相違してもよい。さらに加水分解性基を有するケイ素化合物は、少なくとも一部が重縮合した部分重縮合物であってもよい。 In formula, Y is a hydrolyzable group each independently, R is a C1-C20 substituted or unsubstituted hydrocarbon group. n is an integer of 1 to 4. The substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms is not particularly limited. For example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, or a propyl group, or 6 to 20 carbon atoms. An aryl group, a C7-20 aralkyl group, etc. are mentioned. In addition, when two or more Y or R couple | bond together, these may mutually be same or different. Furthermore, the silicon compound having a hydrolyzable group may be a partial polycondensate in which at least a part is polycondensed.
処理は、水、有機溶媒などにこれらの加水分解性基を有するケイ素化合物を溶かし、元素(A)を二酸化ケイ素に固定化した物質を加えて処理を行っても良いし、加水分解性基を有するケイ素化合物を気化させて、元素(A)を二酸化ケイ素に固定化した物質の表面に吸着させて処理を行っても良い。これらの処理によって、元素(A)を二酸化ケイ素に固定化した物質の表面水酸基や、元素(A)が周期表第5族金属である場合には元素(A)上のオキソ基は、ケイ素化合物の加水分解性基と縮合反応し、元素(A)上やその周辺に−O−Si結合を生成すると考えられる。 The treatment may be performed by dissolving a silicon compound having these hydrolyzable groups in water, an organic solvent, or the like, and adding a substance in which the element (A) is immobilized on silicon dioxide. The treatment may be performed by vaporizing the silicon compound and adsorbing the element (A) onto the surface of the substance immobilized on silicon dioxide. By these treatments, the surface hydroxyl group of the substance in which the element (A) is immobilized on silicon dioxide, or the oxo group on the element (A) when the element (A) is a Group 5 metal of the periodic table, It is considered that a condensation reaction occurs with a hydrolyzable group of the above, and an —O—Si bond is formed on or around the element (A).
ゼオライト中の金属の配位状態がLewis酸性や反応性に影響を与えることが、近年明らかになってきている。Snを導入したゼオライト(SnBEA)では、2種類の活性サイト(−Si−O−)3Sn−OHとSn(−Si−O−)4が存在することが明らかとなっており、このうちの(−Si−O−)3Sn−OHのほうが強いLewis酸を有しており、過酸化水素によるアダマンタン酸化反応に寄与していると報告されている(Journal of Catalysis, vol.234, pp.111(2005))。また、Zrを導入したゼオライト(ZrBEA)でも同様に、2種類の活性サイトのうち(−Si−O−)3Zr−OHのほうが強いLewis酸を有しており、エタノールからの1,3−ブタジエン合成反応速度と(−Si−O−)3Zr−OH の数に相関が見られることが報告されている(ACS Catalysis, vol.5, pp.4833(2015), Journal of Physical Chemistry, vol.119, pp.17633(2015))。 In recent years, it has become clear that the coordination state of metals in zeolite affects Lewis acidity and reactivity. In the zeolite into which Sn is introduced (SnBEA), it is clear that there are two types of active sites (-Si-O-) 3 Sn-OH and Sn (-Si-O-) 4 . (-Si-O-) 3 Sn-OH has a stronger Lewis acid and has been reported to contribute to the adamantane oxidation reaction with hydrogen peroxide (Journal of Catalysis, vol. 234, pp. 111 (2005)). Similarly, in the zeolite into which Zr is introduced (ZrBEA), of the two types of active sites, (-Si-O-) 3 Zr-OH has a stronger Lewis acid. It has been reported that there is a correlation between the reaction rate of butadiene synthesis and the number of (—Si—O—) 3 Zr—OH (ACS Catalysis, vol. 5, pp. 4833 (2015), Journal of Physical Chemistry, vol. 119, pp. 17633 (2015)).
当該特許で記述する触媒は、ゼオライト構造を有していないが、二酸化ケイ素中に活性金属が存在しているという状態は先の報告と同様であり、活性金属周辺の配位状態(−OH基、−OSi基のどちらを有するか)が、触媒のLewis酸性や反応性に大きく寄与していると予想される。そのため、元素(A)上、または近辺に−O−Si結合を生成することによって触媒の活性・選択性が変化していると考えられる。 The catalyst described in the patent does not have a zeolite structure, but the state that an active metal is present in silicon dioxide is the same as the previous report, and the coordination state around the active metal (the —OH group). Or -OSi group) is expected to greatly contribute to the Lewis acidity and reactivity of the catalyst. Therefore, it is considered that the activity / selectivity of the catalyst is changed by generating -O-Si bond on or near the element (A).
本発明では、触媒の29Si−NMRのケミカルシフト値:−111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値:−105ppmでのシグナル強度が0.55以上であることが好ましい。このようなケミカルシフト値のシグナル強度を有する触媒は、触媒活性が高い。 In the present invention, the signal intensity at the chemical shift value: -105 ppm when the maximum signal intensity of the chemical shift value of 29 Si-NMR of the catalyst: -111 ppm is set to 1 is 0.55 or more. preferable. A catalyst having such a signal intensity with a chemical shift value has high catalytic activity.
加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比(加水分解性基を有するケイ素化合物中のケイ素[mol]/元素(A)[mol])は、特に限定されないが、0.1から100の範囲が好ましい。加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比が低すぎるとケイ素化合物処理による効果が十分得られない。加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比が高すぎると、ケイ素が元素(A)を完全に覆ってしまい、触媒活性が低下することがあると考えられる。 The molar ratio of silicon and element (A) in the silicon compound having a hydrolyzable group (silicon [mol] / element (A) [mol] in the silicon compound having a hydrolyzable group) is not particularly limited, A range of 0.1 to 100 is preferred. If the molar ratio of silicon to element (A) in the silicon compound having a hydrolyzable group is too low, the effect of the silicon compound treatment cannot be sufficiently obtained. If the molar ratio of silicon to the element (A) in the silicon compound having a hydrolyzable group is too high, it is considered that the silicon completely covers the element (A) and the catalytic activity may decrease.
二酸化ケイ素上の元素(A)の密度は、特に限定されないが、1〜50個/nm2の範囲が好ましい。元素(A)の密度が低すぎると触媒単位体積あたりの1,3−ブタジエン生成速度が遅くなる。元素(A)の密度が高すぎると、副反応が進行することにより1,3−ブタジエン選択率が低下する。 The density of the element (A) on the silicon dioxide is not particularly limited, but a range of 1 to 50 / nm 2 is preferable. If the density of the element (A) is too low, the production rate of 1,3-butadiene per unit volume of the catalyst becomes slow. When the density of the element (A) is too high, 1,3-butadiene selectivity decreases due to the progress of side reactions.
触媒は、元素(A)および二酸化ケイ素のほかに、亜鉛、銀、銅、金などの金属や、アルカリ金属、アルカリ土類金属、ランタノイド等を含んでいても構わない。
触媒の形状としては特に制限されるものではなく、粒状、円柱状、円筒状、ハニカム状など公知の形状であっても使用できる。
In addition to the element (A) and silicon dioxide, the catalyst may contain metals such as zinc, silver, copper, and gold, alkali metals, alkaline earth metals, lanthanoids, and the like.
The shape of the catalyst is not particularly limited, and a known shape such as a granular shape, a columnar shape, a cylindrical shape, or a honeycomb shape can be used.
[1,3−ブタジエンの製造方法]
本発明の1,3−ブタジエンの製造方法は、加熱下で、少なくともエタノールを含む原料を前記触媒に接触させることを特徴とする。エタノールとしては、特に限定されることが無く、例えば、サトウキビやトウモロコシなどのバイオマス由来のエタノールや、石油、石炭若しくは天然ガス由来のエタノールなどを挙げることができる。なお、バイオマス由来のエタノールを使用すれば、温室効果ガス削減に貢献することができる。
[Method for producing 1,3-butadiene]
The method for producing 1,3-butadiene according to the present invention is characterized in that a raw material containing at least ethanol is brought into contact with the catalyst under heating. The ethanol is not particularly limited, and examples include ethanol derived from biomass such as sugar cane and corn, ethanol derived from petroleum, coal, or natural gas. In addition, if ethanol derived from biomass is used, it can contribute to greenhouse gas reduction.
本発明の原料は、エタノール単独でもよいが、エタノールと共にアセトアルデヒドを含有していてもよい。
アセトアルデヒドを含有する場合、エタノールとアセトアルデヒドのモル比(EtOH:AcH)は、95:5〜40:60、好ましくは90:10〜50:50、さらに好ましくは85:15〜50:50の範囲にある。
The raw material of the present invention may be ethanol alone or may contain acetaldehyde together with ethanol.
When containing acetaldehyde, the molar ratio of ethanol to acetaldehyde (EtOH: AcH) is in the range of 95: 5 to 40:60, preferably 90:10 to 50:50, more preferably 85:15 to 50:50. is there.
アセトアルデヒドはエタノールの脱水素反応により製造したものを使用することができる。エタノールの脱水素反応では、例えば、特開2005−342675号公報、特開2011−000532号公報公報などに開示された公知の銅触媒や銀触媒が使用される。具体的には、Cu系や、Ni、Pd、Pt等の元素周期表8族の金属等を好適に用いることができ、中でもCuを含有するものが更に好ましい。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分の金属を含むものが挙げられ、CuとNiを含有するものが好ましく用いられる。更に3成分以上の金属を含むものも好ましく用いられる。またこれらをさらに二酸化ケイ素、酸化アルミニウム、酸化チタン、ゼオライト等に担持させたもの等も用いられる。 As acetaldehyde, one produced by dehydrogenation of ethanol can be used. In the dehydrogenation reaction of ethanol, for example, a known copper catalyst or silver catalyst disclosed in JP-A Nos. 2005-342675 and 2011-000532 is used. Specifically, Cu-based materials, metals of group 8 of the periodic table of elements such as Ni, Pd, and Pt can be suitably used, and those containing Cu are more preferable. For example, Cu alone or a material containing a two-component metal obtained by adding a transition metal element such as Cr, Co, Ni, Fe, or Mn to this can be used, and a material containing Cu and Ni is preferably used. Further, those containing three or more metal components are also preferably used. Further, those in which these are further supported on silicon dioxide, aluminum oxide, titanium oxide, zeolite or the like can be used.
反応条件としては特に制限されるものではなく、通常200〜300℃程度の範囲で、所定のアセトアルデヒド生成量となるような条件で反応を行う。
かかる製造方法は、回分式、半回分式、連続式等の周知の方式を採用できる。連続式を採用すると、大量合成が可能であり、運転作業負荷が軽い上に、未反応原料を反応系に再利用することにより原料のエタノールの使用率を極めて高いレベルに向上させることができる。そのため、簡便且つ効率的に1,3−ブタジエンを分離、回収することができる連続式を採用することが好ましい。
The reaction conditions are not particularly limited, and the reaction is usually carried out in a range of about 200 to 300 ° C. under conditions that produce a predetermined amount of acetaldehyde.
As such a manufacturing method, a known method such as a batch method, a semi-batch method, or a continuous method can be adopted. When the continuous method is adopted, large-scale synthesis is possible, the operation workload is light, and the unreacted raw material can be reused in the reaction system to improve the raw material ethanol usage rate to an extremely high level. Therefore, it is preferable to employ a continuous system that can separate and recover 1,3-butadiene simply and efficiently.
原料を上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよいが、気相法を用いることが好ましい。 Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed system, a fluidized bed system, and a fixed bed system. The present invention may be either a gas phase method or a liquid phase method, but it is preferable to use a gas phase method.
気相で反応を行う場合、原料ガス(例えば、エタノールガス、好ましくはエタノールガスとアセトアルデヒドガスの混合物)は、希釈することなく反応器に供給してもよく、窒素、ヘリウム、アルゴン、水蒸気、などの不活性ガスにより適宜希釈して反応器に供給してもよい。 When performing the reaction in the gas phase, the raw material gas (for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas) may be supplied to the reactor without dilution, such as nitrogen, helium, argon, water vapor, etc. It may be appropriately diluted with an inert gas and supplied to the reactor.
反応時に、エタノールを含む原料にアセトアルデヒドを添加してもよく、エタノールとアセトアルデヒド(添加後の総量)のモル比(EtOH:AcH)が前記の比率となるようにすればよい。 During the reaction, acetaldehyde may be added to a raw material containing ethanol, and the molar ratio (EtOH: AcH) of ethanol and acetaldehyde (total amount after addition) may be set to the above ratio.
反応温度としては、例えば300℃以上450以下℃程度、好ましくは320〜380℃の範囲にある。温度が高すぎると、1,3−ブタジエン選択率が低下する。一方、温度が低すぎるとブタジエン生成速度が十分でない。 The reaction temperature is, for example, about 300 ° C. or more and 450 ° C. or less, preferably 320 to 380 ° C. If the temperature is too high, the 1,3-butadiene selectivity decreases. On the other hand, if the temperature is too low, the butadiene production rate is not sufficient.
反応圧力は、常圧から高圧までの広い範囲で適宜設定できるが、製造効率や装置構成などの観点から、エタノールおよびアセトアルデヒドの分圧が0.1〜1.0MPaAに設定することが好ましい。 The reaction pressure can be appropriately set in a wide range from normal pressure to high pressure, but from the viewpoints of production efficiency and apparatus configuration, the partial pressure of ethanol and acetaldehyde is preferably set to 0.1 to 1.0 MPaA.
原料と触媒との接触時間は、原料の供給速度を調整することによりコントロールすることができ、単位触媒あたりの重量空間速度(WHSV)は0.1〜30g-(EtOH+AcH)・g-cat -1・h-1、好ましくは0.5〜20g-(EtOH+AcH)・g-cat -1・h-1の範囲が好ましい。WHSVが低すぎると反応器サイズが大きくなり設備費の点から好ましくない。一方、WHSVが高すぎるとブタジエン収率が低下する。 The contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material, and the weight space velocity (WHSV) per unit catalyst is 0.1 to 30 g- (EtOH + AcH) · g -cat -1 · h -1 , preferably 0.5 to 20 g- (EtOH + AcH) · g -cat -1 · h -1 is preferred. If WHSV is too low, the reactor size increases, which is not preferable from the viewpoint of equipment costs. On the other hand, if WHSV is too high, the butadiene yield decreases.
反応終了後、反応生成物は、例えば、蒸留、抽出等の分離手段や、これらを組み合わせた分離手段により、軽質ガス、C4留分、重質分、水、エタノール、アセトアルデヒド等に分離精製することができる。
本発明では、上述した触媒を用いて1,3−ブタジエンをより効率的に製造することができるため、産業上の利用可能性は高い。
After completion of the reaction, the reaction product is separated and purified into light gas, C4 fraction, heavy fraction, water, ethanol, acetaldehyde, etc., by separation means such as distillation, extraction, etc., or a separation means combining these. Can do.
In the present invention, 1,3-butadiene can be more efficiently produced using the above-described catalyst, and therefore, industrial applicability is high.
[実施例]
以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<触媒調製>
調製例1
タンタルエトキシド(99.98%、Sigma−Aldrich製)0.3gをエタノール(和光純薬工業(株)製)100mlに溶解させ、NIPGEL CX−200(東ソー・シリカ(株)製、比表面積392m2/g)10.0gを加えて2時間撹拌したのち、エバポレーターを用いてエタノールを蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、Ta2O5/SiO2 (Ta2O5担持量:1.6重量%)触媒を得た。この触媒をTa2O5(1.6)/SiO2と表記する。この触媒の比表面積は335m2/gであり、担体SiO2上のTa原子密度は14.9個/nm2であった。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples at all.
<Catalyst preparation>
Preparation Example 1
0.3 g of tantalum ethoxide (99.98%, manufactured by Sigma-Aldrich) is dissolved in 100 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), NIPGEL CX-200 (manufactured by Tosoh Silica Co., Ltd., specific surface area of 392 m) 2 / g) After 10.0 g was added and stirred for 2 hours, ethanol was evaporated using an evaporator. After drying at 120 ° C., the catalyst was calcined at 500 ° C. under air flow to obtain a Ta 2 O 5 / SiO 2 (Ta 2 O 5 supported amount: 1.6 wt%) catalyst. This catalyst is expressed as Ta 2 O 5 (1.6) / SiO 2 . The specific surface area of this catalyst was 335 m 2 / g, and the Ta atom density on the support SiO 2 was 14.9 atoms / nm 2 .
調製例2
タンタルエトキシド0.06gをエタノール100mlに溶解させ、NIPGEL CX−200 10.0gを加えて2時間撹拌したのち、エバポレーターを用いてエタノールを蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、Ta2O5/SiO2 (Ta2O5担持量:0.16重量%)触媒を得た。この触媒をTa2O5(0.16)/SiO2と表記する。この触媒の比表面積は357m2/gであり、担体SiO2上のTa原子密度は2.8個/nm2であった。
Preparation Example 2
0.06 g of tantalum ethoxide was dissolved in 100 ml of ethanol, 10.0 g of NIPGEL CX-200 was added and stirred for 2 hours, and then the ethanol was evaporated using an evaporator. After drying at 120 ° C., the catalyst was calcined at 500 ° C. under air flow to obtain a Ta 2 O 5 / SiO 2 (Ta 2 O 5 supported amount: 0.16 wt%) catalyst. This catalyst is expressed as Ta 2 O 5 (0.16) / SiO 2 . The specific surface area of this catalyst was 357 m 2 / g, and the Ta atom density on the support SiO 2 was 2.8 atoms / nm 2 .
調製例3
オキシ硝酸ジルコニウム二水和物0.22gを蒸留水50.0mlに溶解させ、NIPGEL CX−200 10.0gを加えて30分撹拌したのち、エバポレーターを用いて水を蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、ZrO2/SiO2 (ZrO2担持量:1.0重量%)触媒を得た。この触媒をZrO2(1.0)/SiO2と表記する。この触媒の比表面積は341m2/gであり、担体SiO2上のZr原子密度は14.7個/nm2であった。
Preparation Example 3
After 0.22 g of zirconium oxynitrate dihydrate was dissolved in 50.0 ml of distilled water, 10.0 g of NIPGEL CX-200 was added and stirred for 30 minutes, and then the water was evaporated using an evaporator. After drying at 120 ° C., the catalyst was calcined at 500 ° C. under air flow to obtain a ZrO 2 / SiO 2 (ZrO 2 loading: 1.0 wt%) catalyst. This catalyst is expressed as ZrO 2 (1.0) / SiO 2 . The specific surface area of this catalyst was 341 m 2 / g, and the Zr atom density on the support SiO 2 was 14.7 atoms / nm 2 .
調製例4
塩化ハフニウム0.27gを蒸留水50.0mlに溶解させ、NIPGEL CX−200 10.0gを加えて30分撹拌したのち、エバポレーターを用いて水を蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、HfO2/SiO2 (HfO2担持量1.7重量%)触媒を得た。この触媒をHfO2(1.7)/SiO2と表記する。この触媒の比表面積は350m2/gであり、担体SiO2上のZr原子密度は14.3個/nm2であった。
Preparation Example 4
After dissolving 0.27 g of hafnium chloride in 50.0 ml of distilled water, adding 10.0 g of NIPGEL CX-200 and stirring for 30 minutes, the water was evaporated using an evaporator. After drying at 120 ° C., the catalyst was calcined at 500 ° C. under air flow to obtain a HfO 2 / SiO 2 (HfO 2 loading amount 1.7% by weight) catalyst. This catalyst is expressed as HfO 2 (1.7) / SiO 2 . The specific surface area of this catalyst was 350 m 2 / g, and the Zr atom density on the support SiO 2 was 14.3 atoms / nm 2 .
調製例5
調製例1で得られたTa2O5(1.6)/SiO2 3.0gにNH3水(pH=10.0) 15mlを加えて、そこに3−アミノプロピルトリエトキシシラン(信越化学工業(株)製) 0.070gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi−Ta2O5(1.6)/SiO2と表記する。この触媒の比表面積は289m2/gであった。
Preparation Example 5
To 3.0 g of Ta 2 O 5 (1.6) / SiO 2 obtained in Preparation Example 1, 15 ml of NH 3 water (pH = 10.0) was added, and 3-aminopropyltriethoxysilane (Shin-Etsu Chemical) was added thereto. 0.070 g (manufactured by Kogyo Co., Ltd.) was added dropwise. Thereafter, the catalyst was recovered by centrifugation, dried at 120 ° C., and then calcined at 500 ° C. under air flow. The catalyst thus obtained is represented as Si—Ta 2 O 5 (1.6) / SiO 2 . The specific surface area of this catalyst was 289 m 2 / g.
調製例6
ケイ酸エチル(和光純薬工業(株)製)12.5g、エタノール12.5ml、蒸留水1.1g、硝酸0.55g(和光純薬工業(株)製)を混合し、撹拌しながら76℃で3時間還流した。一方で、タンタルエトキシド0.3gをエタノール100mlに溶解させ、NIPGEL CX−200 10.0gを加えて室温で2時間撹拌した。これら2つの溶液を混合し、76℃で5時間還流した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi(TEOS)−Ta2O5(1.6)/SiO2と表記する。この触媒の比表面積は361m2/gであった。
Preparation Example 6
12.5 g of ethyl silicate (manufactured by Wako Pure Chemical Industries, Ltd.), 12.5 ml of ethanol, 1.1 g of distilled water, 0.55 g of nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and stirred while stirring. Reflux for 3 hours at ° C. On the other hand, 0.3 g of tantalum ethoxide was dissolved in 100 ml of ethanol, 10.0 g of NIPGEL CX-200 was added, and the mixture was stirred at room temperature for 2 hours. These two solutions were mixed and refluxed at 76 ° C. for 5 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120 ° C., and then calcined at 500 ° C. under air flow. The catalyst thus obtained is expressed as Si (TEOS) -Ta 2 O 5 (1.6) / SiO 2 . The specific surface area of this catalyst was 361 m 2 / g.
調製例7
調製例2で得られたTa2O5(0.16)/SiO2 3.0gにNH3水(pH=10.0)15mlを加えて、そこに3−アミノプロピルトリエトキシシラン0.026gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi−Ta2O5(0.16)/SiO2と表記する。この触媒の比表面積は314m2/gであった。
Preparation Example 7
To 3.0 g of Ta 2 O 5 (0.16) / SiO 2 obtained in Preparation Example 2, 15 ml of NH 3 water (pH = 10.0) was added, and 0.026 g of 3-aminopropyltriethoxysilane was added thereto. Was added dropwise and the temperature was raised to 60 ° C. with stirring and held for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120 ° C., and calcined at 500 ° C. in a stream of air. The catalyst thus obtained is represented as Si—Ta 2 O 5 (0.16) / SiO 2 . The specific surface area of this catalyst was 314 m 2 / g.
調製例8
調製例3で得られたZrO2(1.0)/SiO2 3.0gにNH3水(pH=10.0) 15mlを加えて、そこに3−アミノプロピルトリエトキシシラン0.083gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi−ZrO2(1.0)/SiO2と表記する。この触媒の比表面積は305m2/gであった。
Preparation Example 8
15 ml of NH 3 water (pH = 10.0) is added to 3.0 g of ZrO 2 (1.0) / SiO 2 obtained in Preparation Example 3, and 0.083 g of 3-aminopropyltriethoxysilane is added dropwise thereto. The temperature was raised to 60 ° C. with stirring and held for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120 ° C., and calcined at 500 ° C. in a stream of air. The catalyst thus obtained is expressed as Si—ZrO 2 (1.0) / SiO 2 . The specific surface area of this catalyst was 305 m 2 / g.
調製例9
調製例4で得られたHfO2(1.7)/SiO2 3.0gにNH3水(pH=10.0)15mlを加えて、そこに3−アミノプロピルトリエトキシシラン0.083gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi−HfO2(1.7)/SiO2と表記する。この触媒の比表面積は307m2/gであった。
Preparation Example 9
To 3.0 g of HfO 2 (1.7) / SiO 2 obtained in Preparation Example 4, 15 ml of NH 3 water (pH = 10.0) is added, and 0.083 g of 3-aminopropyltriethoxysilane is added dropwise thereto. The temperature was raised to 60 ° C. with stirring and held for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120 ° C., and then calcined at 500 ° C. under air flow. The catalyst thus obtained is expressed as Si—HfO 2 (1.7) / SiO 2 . The specific surface area of this catalyst was 307 m 2 / g.
比較例1〜4、実施例1〜5
<反応試験>
表1に記載の触媒 0.63 gを固定床流通型反応器に充填し、以下の反応条件で実験を行った。
Comparative Examples 1-4, Examples 1-5
<Reaction test>
0.63 g of the catalyst described in Table 1 was charged into a fixed bed flow type reactor, and an experiment was conducted under the following reaction conditions.
反応器に窒素(6.8Nml/min)を流しながら350℃まで昇温し0.26MPaGまで昇圧した後、原料ガスとしてエタノール(11.0Nml/min)とアセトアルデヒド(4.4Nml/min)および窒素(6.8Nml/min)を混合して反応器に供給した(WHSV=3.0g-(EtOH+AcH)・g-cat -1・h-1)。反応器出口ガス組成をガスクロマトグラフにより求めた。
転化率、選択率は以下の式により求めた。
While flowing nitrogen (6.8 Nml / min) through the reactor, the temperature was raised to 350 ° C. and the pressure was increased to 0.26 MPaG, and then ethanol (11.0 Nml / min), acetaldehyde (4.4 Nml / min) and nitrogen were used as raw material gases. (6.8 Nml / min) was mixed and supplied to the reactor (WHSV = 3.0 g − (EtOH + AcH) · g −cat −1 · h −1 ). The gas composition at the outlet of the reactor was determined by gas chromatography.
Conversion and selectivity were determined by the following formulas.
比較例1のTa2O5(1.6)/SiO2では1,3−ブタジエン選択率66.2C−mol%、1,3−ブタジエン収率32.3C−mol%であるのに対し、実施例1のSi−Ta2O5(1.6)/SiO2では1,3−ブタジエン選択率79.9C−mol%、1,3−ブタジエン収率39.5C−mol%、実施例2のSi(TEOS)-Ta2O5(1.6)/SiO2では1,3−ブタジエン選択率73.4C−mol%、1,3−ブタジエン収率36.8C−mol%と、ケイ素を含む物質により処理されることによって1,3−ブタジエン選択率、1,3−ブタジエン収率が向上した。処理によって転化率はほとんど変わらなかった。 The Ta 2 O 5 (1.6) / SiO 2 of Comparative Example 1 has a 1,3-butadiene selectivity of 66.2 C-mol% and a 1,3-butadiene yield of 32.3 C-mol%. In Si—Ta 2 O 5 (1.6) / SiO 2 of Example 1, 1,3-butadiene selectivity was 79.9 C-mol%, 1,3-butadiene yield was 39.5 C-mol%, Example 2 Si (TEOS) -Ta 2 O 5 (1.6) / SiO 2 has a 1,3-butadiene selectivity of 73.4 C-mol%, a 1,3-butadiene yield of 36.8 C-mol%, and silicon. The 1,3-butadiene selectivity and the 1,3-butadiene yield were improved by the treatment with the contained material. The conversion was hardly changed by the treatment.
Ta担持量の異なるTa2O5(0.16)/SiO2でも、比較例2と比べてケイ素を含む化合物による処理を行った実施例3では、1,3−ブタジエン収率は16.2C−mol%から16.7C−mol%とやや向上し、1,3−ブタジエン選択率が66.3C−mol%から71.7C−mol%に向上した(それぞれ比較例2、実施例3)。 Even in Ta 2 O 5 (0.16) / SiO 2 having a different Ta loading, in Example 3 in which the treatment with the compound containing silicon was performed in comparison with Comparative Example 2, the 1,3-butadiene yield was 16.2C. -Mol% slightly improved to 16.7C-mol%, and 1,3-butadiene selectivity was improved from 66.3C-mol% to 71.7C-mol% (Comparative Example 2 and Example 3 respectively).
同様に、ZrO2(1.0)/SiO2でも、比較例3に比べてケイ素を含む化合物による処理によって実施例4では、1,3−ブタジエン収率は32.3C−mol%から37.4C−mol%に、1,3−ブタジエン選択率は67.5C−mol%から77.3C−mol%に向上した(それぞれ比較例3、実施例4)。 Similarly, even in ZrO 2 (1.0) / SiO 2 , the 1,3-butadiene yield was 32.3 C-mol% to 37.3% in Example 4 by treatment with a compound containing silicon compared to Comparative Example 3. In 4C-mol%, the 1,3-butadiene selectivity was improved from 67.5C-mol% to 77.3C-mol% (Comparative Example 3 and Example 4 respectively).
HfO2(1.7)/SiO2でも比較例4と実施例5とを対比すると、1,3−ブタジエン収率が37.0C−mol%から39.1C−mol%に、1,3−ブタジエン選択率が64.1C−mol%から68.0C−mol%に向上した(比較例3、実施例5)。 Comparing Comparative Example 4 and Example 5 with HfO 2 (1.7) / SiO 2 , the 1,3-butadiene yield increased from 37.0 C-mol% to 39.1 C-mol%. Butadiene selectivity was improved from 64.1 C-mol% to 68.0 C-mol% (Comparative Example 3, Example 5).
<29Si−MAS−NMR測定>
29Si−MAS−NMR測定は以下の条件で実施した。
装置:Agilent社製VNMRS−600
パルスプログラム:シングルパルス
サンプル回転数:6 kHz
繰り返し時間:100 sec
パルス幅:90°
積算回数:512回
二次標準としてポリジメチルシロキサン(PDMS)を用いて−34.44ppmに調整
<29 Si-MAS-NMR measurement>
29 Si-MAS-NMR measurement was carried out under the following conditions.
Apparatus: VNMRS-600 manufactured by Agilent
Pulse program: Single pulse Sample rotation speed: 6 kHz
Repeat time: 100 sec
Pulse width: 90 °
Integration count: 512 times Adjusted to -34.44 ppm using polydimethylsiloxane (PDMS) as secondary standard
比較例5
調製例1で得られたTa2O5(1.6)/SiO2の29Si−MAS−NMRを測定した。Q2(−91ppm付近)、Q3(−101ppm付近)、Q4(−111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値−111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値−105ppmでのシグナル強度は0.48であった。
Comparative Example 5
29 Si-MAS-NMR of Ta 2 O 5 (1.6) / SiO 2 obtained in Preparation Example 1 was measured. Signals attributed to Q2 (near -91 ppm), Q3 (near -101 ppm), and Q4 (near -111 ppm) were detected. The signal intensity at a chemical shift value of −105 ppm when the signal intensity at the maximum value near the chemical shift value of −111 ppm is 1 was 0.48.
実施例6
調製例6で得られたSi−Ta2O5(1.6)/SiO2の29Si−MAS−NMRを測定した。Q2(−91ppm付近)、Q3(−101ppm付近)、Q4(−111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値−111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値−105ppmでのシグナル強度は0.68であった。
Example 6
29 Si-MAS-NMR of Si—Ta 2 O 5 (1.6) / SiO 2 obtained in Preparation Example 6 was measured. Signals attributed to Q2 (near -91 ppm), Q3 (near -101 ppm), and Q4 (near -111 ppm) were detected. The signal intensity at a chemical shift value of −105 ppm when the signal intensity at the maximum value near the chemical shift value of −111 ppm was 1 was 0.68.
実施例7
調製例7で得られたSi(TEOS)−Ta2O5(1.6)/SiO2の29Si−MAS−NMRを測定した。Q2(−91ppm付近)、Q3(−101ppm付近)、Q4(−111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値−111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値−105ppmでのシグナル強度は0.58であった。
Example 7
29 Si-MAS-NMR of Si (TEOS) -Ta 2 O 5 (1.6) / SiO 2 obtained in Preparation Example 7 was measured. Signals attributed to Q2 (near -91 ppm), Q3 (near -101 ppm), and Q4 (near -111 ppm) were detected. The signal intensity at a chemical shift value of −105 ppm when the signal intensity at the maximum value near the chemical shift value of −111 ppm was 1 was 0.58.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072022A JP6803289B2 (en) | 2017-03-31 | 2017-03-31 | 1,3-Butadiene production catalysts and processes from ethanol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072022A JP6803289B2 (en) | 2017-03-31 | 2017-03-31 | 1,3-Butadiene production catalysts and processes from ethanol |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020198007A Division JP7227209B2 (en) | 2020-11-30 | 2020-11-30 | 1,3-butadiene production catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018171587A true JP2018171587A (en) | 2018-11-08 |
JP6803289B2 JP6803289B2 (en) | 2020-12-23 |
Family
ID=64106920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017072022A Active JP6803289B2 (en) | 2017-03-31 | 2017-03-31 | 1,3-Butadiene production catalysts and processes from ethanol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6803289B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112295556A (en) * | 2019-07-29 | 2021-02-02 | 中国科学院大连化学物理研究所 | Supported catalyst and preparation method thereof |
JP2022535124A (en) * | 2019-06-04 | 2022-08-04 | トヨタ・モーター・ヨーロッパ | Highly dispersed metal-supported oxides as NH3-SCR catalysts and synthesis processes |
WO2022196717A1 (en) * | 2021-03-16 | 2022-09-22 | 積水化学工業株式会社 | Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life |
EP4129467A4 (en) * | 2020-03-23 | 2024-04-17 | Sekisui Chemical Co., Ltd. | Catalyst and method for producing diene compound |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125578A1 (en) * | 2015-02-04 | 2016-08-11 | 日揮株式会社 | Method for producing 1,3-butadiene |
WO2017009107A1 (en) * | 2015-07-13 | 2017-01-19 | IFP Energies Nouvelles | Tantalum-based catalyst deposited on silica for the transformation of ethanol into butadiene |
WO2017009105A1 (en) * | 2015-07-13 | 2017-01-19 | IFP Energies Nouvelles | Mesoporous mixed-oxide catalyst including silicon |
-
2017
- 2017-03-31 JP JP2017072022A patent/JP6803289B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125578A1 (en) * | 2015-02-04 | 2016-08-11 | 日揮株式会社 | Method for producing 1,3-butadiene |
WO2017009107A1 (en) * | 2015-07-13 | 2017-01-19 | IFP Energies Nouvelles | Tantalum-based catalyst deposited on silica for the transformation of ethanol into butadiene |
WO2017009105A1 (en) * | 2015-07-13 | 2017-01-19 | IFP Energies Nouvelles | Mesoporous mixed-oxide catalyst including silicon |
US20180200694A1 (en) * | 2015-07-13 | 2018-07-19 | IFP Energies Nouvelles | Mesoporous mixed oxide catalyst comprising silicon |
JP2018521842A (en) * | 2015-07-13 | 2018-08-09 | イエフペ エネルジ ヌヴェルIfp Energies Nouvelles | Silica-supported tantalum-based catalysts for the conversion of ethanol to butadiene |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022535124A (en) * | 2019-06-04 | 2022-08-04 | トヨタ・モーター・ヨーロッパ | Highly dispersed metal-supported oxides as NH3-SCR catalysts and synthesis processes |
JP7331147B2 (en) | 2019-06-04 | 2023-08-22 | トヨタ・モーター・ヨーロッパ | Highly dispersed metal-supported oxides as NH3-SCR catalysts and synthesis processes |
CN112295556A (en) * | 2019-07-29 | 2021-02-02 | 中国科学院大连化学物理研究所 | Supported catalyst and preparation method thereof |
EP4129467A4 (en) * | 2020-03-23 | 2024-04-17 | Sekisui Chemical Co., Ltd. | Catalyst and method for producing diene compound |
WO2022196717A1 (en) * | 2021-03-16 | 2022-09-22 | 積水化学工業株式会社 | Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life |
Also Published As
Publication number | Publication date |
---|---|
JP6803289B2 (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6084963B2 (en) | Method for producing 1,3-butadiene | |
WO2014016810A1 (en) | Alkane dehydrogenation catalyst and process for its preparation | |
JP2018171587A (en) | Catalyst and process for production of 1,3-butadiene from ethanol | |
JP2013536066A (en) | Catalyst coated with hybrid manganese ferrite, method for producing the same, and method for producing 1,3-butadiene using the same | |
US11548835B2 (en) | Hybrid catalyst for selective and stable olefin production | |
US20150209759A1 (en) | Alkane dehydrogenation catalyst and process for its preparation | |
CN112996596B (en) | Cobalt-based monoatomic dehydrogenation catalyst and method for preparing corresponding olefin from alkane by using catalyst | |
WO2014049569A1 (en) | Catalyst composition for the dehydrogenation of alkanes | |
KR20180083890A (en) | Synthesis of catalytic materials for metathesis and isomerization reactions and application of other catalysts through well-controlled aerosol processing | |
JP2009502450A (en) | Process for the preparation of a Fischer-Tropsch catalyst having high mechanical, thermal and chemical stability | |
Wu et al. | Effective synthesis of vanadium-doped mesoporous silica nanospheres by sol-gel method for propane dehydrogenation reaction | |
JP6265354B2 (en) | Bismuth molybdate catalyst having zeolite coating layer, method for producing the same, and method for producing 1,3-butadiene using the same | |
CN113366088B (en) | Production of C using mixed catalyst comprising gallium metal oxide 2 To C 5 Process for paraffinic hydrocarbons | |
JP7227209B2 (en) | 1,3-butadiene production catalyst | |
CN112138724A (en) | Hydroalkylation catalyst and process therefor | |
US10017484B2 (en) | Catalysts containing specific titanium polymorphic forms | |
JP5720256B2 (en) | Amide group reduction catalyst and process for producing aminomethyl compound using the catalyst | |
JP6300281B2 (en) | Method for producing conjugated diene and reaction apparatus | |
US10906026B2 (en) | Methods of making spray-dried metathesis catalysts and uses thereof | |
CN111054381B (en) | Catalyst for dehydrogenation of light alkane | |
CN114733521B (en) | Alkane non-oxidative dehydrogenation catalyst with double-crystal-form carrier | |
WO2016125578A1 (en) | Method for producing 1,3-butadiene | |
CN106518602A (en) | Method for preparing cyclohexyl benzene through hydrogenation alkylation | |
JP6883286B2 (en) | Method for producing unsaturated hydrocarbons | |
CN106518601B (en) | The method of hydroalkylation synthesizing cyclohexyl benzene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190417 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20191106 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20191121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20191106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200526 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6803289 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |