JP7227209B2 - 1,3-butadiene production catalyst - Google Patents

1,3-butadiene production catalyst Download PDF

Info

Publication number
JP7227209B2
JP7227209B2 JP2020198007A JP2020198007A JP7227209B2 JP 7227209 B2 JP7227209 B2 JP 7227209B2 JP 2020198007 A JP2020198007 A JP 2020198007A JP 2020198007 A JP2020198007 A JP 2020198007A JP 7227209 B2 JP7227209 B2 JP 7227209B2
Authority
JP
Japan
Prior art keywords
catalyst
butadiene
groups
producing
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020198007A
Other languages
Japanese (ja)
Other versions
JP2021049526A (en
Inventor
千津 稲木
一規 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2020198007A priority Critical patent/JP7227209B2/en
Publication of JP2021049526A publication Critical patent/JP2021049526A/en
Application granted granted Critical
Publication of JP7227209B2 publication Critical patent/JP7227209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

エタノールから1,3-ブタジエンを製造する触媒に関する。 It relates to a catalyst for producing 1,3-butadiene from ethanol.

エタノールからのブタジエン製造(ETB)は、過去に工業実績のある技術であるが、ナフサクラッカーより得られたC4留分からのブタジエン抽出蒸留技術の完成に伴い競争力を失ったため、一部の地域を除いて現在では使用されていない。しかしながら、近年、アジアを中心とした自動車普及台数の伸びとクラッカー原料の軽質化に伴う世界的なブタジエン需給ギャップの拡大が懸念されており、ブタジエンを単産できるETBプロセスへの関心が高まっている。 Production of butadiene from ethanol (ETB) is a technology that has a proven track record in industry in the past. Not currently used except However, in recent years, there is concern about the widening gap between supply and demand for butadiene worldwide due to the growing number of automobiles in use, especially in Asia, and the lighter raw material for crackers.

ETBプロセスには、一段でエタノールをブタジエンに変換する一段法(Lebedev法)と、まずエタノールを脱水素してアセトアルデヒドを合成し、エタノールとアセトアルデヒドからブタジエンを合成する二段法(Ostromislensky法)がある。
・一段法
2CH3CH2OH→CH2=CH-CH=CH2+2H2O+H2
・二段法
CH3CH2OH→CH3CHO+H2
CH3CH2OH+CH3CHO→CH2=CH-CH=CH2+2H2
The ETB process includes a one-step method (Lebedev method) in which ethanol is converted to butadiene in one step, and a two-step method (Ostromislensky method) in which ethanol is first dehydrogenated to synthesize acetaldehyde and then ethanol and acetaldehyde to synthesize butadiene. .
・One-step method 2 CH 3 CH 2 OH→CH 2 =CH-CH=CH 2 +2H 2 O+H 2
・Two-step method CH3CH2OH CH3CHO + H2
CH3CH2OH + CH3CHOCH2 =CH—CH = CH2 + 2H2O

このような反応の際に使用されるETB触媒として、周期律表第4族および第5族の元素をシリカに担持した触媒が知られている。Ta25/SiO2触媒は古くから、1,3-ブタジエン合成触媒として知られていた(特許文献1,非特許文献1~2)。しかしながら、当時のブタジエン選択率は60%台で十分に高いとは言えなかった。 As an ETB catalyst used in such reactions, catalysts in which elements of Groups 4 and 5 of the periodic table are supported on silica are known. A Ta 2 O 5 /SiO 2 catalyst has long been known as a 1,3-butadiene synthesis catalyst (Patent Document 1, Non-Patent Documents 1 and 2). However, the butadiene selectivity at that time was on the order of 60%, which was not sufficiently high.

近年、メソポーラスシリカにTaを担持した触媒(非特許文献3)やゼオライトにTaを担持したTa/SBA-15(非特許文献4)、ゼオライト骨格中にTaを挿入したTaBEA(非特許文献5)が1,3-ブタジエン合成触媒として報告されている。また、ZrO2/SiO2触媒、HfO2/SiO2触媒も古くから、1,3-ブタジエン合成触媒として知られており(非特許文献2)、近年はそれに脱水素能を有する金属を担持した一段触媒として、Ag-ZrO2-CeO2-SiO2(特許文献2)、ZnZrSiO2やCuZnZrSiO2(非特許文献6)、CuHfZnSiO2(非特許文献7)等が報告されている。 In recent years, a catalyst in which Ta is supported on mesoporous silica (Non-Patent Document 3), Ta/SBA-15 in which Ta is supported on zeolite (Non-Patent Document 4), and TaBEA in which Ta is inserted into the zeolite skeleton (Non-Patent Document 5) has been reported as a 1,3-butadiene synthesis catalyst. ZrO 2 /SiO 2 catalysts and HfO 2 /SiO 2 catalysts have also long been known as 1,3-butadiene synthesis catalysts (Non-Patent Document 2), and in recent years metals having dehydrogenating ability have been supported on them. Ag--ZrO 2 --CeO 2 --SiO 2 (Patent Document 2), ZnZrSiO 2 , CuZnZrSiO 2 (Non-Patent Document 6), CuHfZnSiO 2 (Non-Patent Document 7), etc. have been reported as single-stage catalysts.

米国特許第2524848号U.S. Patent No. 2,524,848 日本国 特許第5864572号Japan Patent No. 5864572

Industrial and Engineering Chemistry, vol.39, pp.120(1947)Industrial and Engineering Chemistry, vol.39, pp.120(1947) Industrial and Engineering Chemistry, vol.42, pp.359(1950)Industrial and Engineering Chemistry, vol.42, pp.359(1950) Chemical Engineering Journal, vol.278, pp.217(2015)Chemical Engineering Journal, vol.278, pp.217(2015) Applied Catalysis B, vol. 150-151, pp.596 (2014)Applied Catalysis B, vol.150-151, pp.596 (2014) Catalysis Communication, vol. 77, pp.123 (2016)Catalysis Communication, vol.77, pp.123 (2016) Catalysis Science and Technology, vol. 1, pp.267(2011)Catalysis Science and Technology, vol.1, pp.267(2011) ACS Catalysis, vol.5, pp.3393(2015)ACS Catalysis, vol.5, pp.3393 (2015)

本発明では、実際的な運転条件でより効率的に1,3-ブタジエンを製造することのできる触媒および、その触媒を用いた1,3-ブタジエンの製造方法を提供することを目的としている。 An object of the present invention is to provide a catalyst capable of producing 1,3-butadiene more efficiently under practical operating conditions, and a method for producing 1,3-butadiene using the catalyst.

このような状況のもと、本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により、本発明を完成するに至った。
[1]周期表第4族および5族の元素(A)と、担体成分である二酸化ケイ素とを含み、担体成分である二酸化ケイ素の表面に周期表第4族および5族の元素(A)が担持され、前記元素(A)を前記二酸化ケイ素に固定化してなり、且つ前記元素(A)上の表面水酸基およびオキソ基の少なくとも一部が-O-Si基で置換された末端-(A)-O-Si基を含むことを特徴とする、エタノールを含む原料から1,3-ブタジエンを製造する1,3-ブタジエン製造触媒。
[2]周期表第4族および5族の元素(A)と、担体成分である二酸化ケイ素とを含み、且つ前記元素(A)上の表面水酸基およびオキソ基の少なくとも一部が-O-Si基で置換された末端-(A)-O-Si基を含み、
前記末端-(A)-O-Si基は、前記元素(A)上にケイ素化合物のモノマーが結合した構造であることを特徴とする、エタノールを含む原料から1,3-ブタジエンを製造する1,3-ブタジエン製造触媒。
[3]加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比(加水分解性基を有するケイ素化合物中のケイ素[mol]/元素(A)[mol])が0.1から100であることを特徴とする、[1]または[2]の1,3-ブタジエン製造触媒。
[4]二酸化ケイ素上の元素(A)の密度が1~50個/nm2の範囲であることを特徴とする、[1]~[3]の1,3-ブタジエン製造触媒。
[5]元素(A)がジルコニウム、ハフニウムおよびタンタルから選ばれる少なくとも1種であることを特徴とする、[1]~[4]の1,3-ブタジエン製造触媒。
[6]29Si-NMRのケミカルシフト値:-111ppm付近の極大値のシグナル強度を1とした場合に、ケミカルシフト値:-105ppmでのシグナル強度が0.55以上であることを特徴とする、[1]~[5]の1,3-ブタジエン製造触媒。
[7][1]~[6]の1,3-ブタジエン製造触媒を用いて、エタノール単独またはエタノールとともにアセトアルデヒドを含む原料を、反応温度が300℃以上450℃以下、エタノールおよびアセトアルデヒドの分圧が0.1~1.0MPaA、重量空間速度が0.1~30g/g-cathの範囲で、前記触媒と接触させることを特徴とする1,3-ブタジエンの製造方法。
Under such circumstances, the present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention with the following configuration.
[1] Contains an element (A) of Groups 4 and 5 of the periodic table and silicon dioxide as a carrier component, and an element (A) of Groups 4 and 5 of the periodic table on the surface of the silicon dioxide as a carrier component is supported, the element (A) is immobilized on the silicon dioxide, and at least part of the surface hydroxyl groups and oxo groups on the element (A) is substituted with an —O—Si group, the terminal —(A )—O—Si group, a 1,3-butadiene production catalyst for producing 1,3-butadiene from a raw material containing ethanol.
[2] containing an element (A) of Groups 4 and 5 of the periodic table and silicon dioxide as a carrier component, and at least a portion of the surface hydroxyl groups and oxo groups on the element (A) are —O—Si containing a terminal —(A)—O—Si group substituted with a group
1 for producing 1,3-butadiene from a raw material containing ethanol, characterized in that the terminal -(A)-O-Si group has a structure in which a silicon compound monomer is bonded to the element (A) ,3-butadiene production catalyst.
[3] The molar ratio of silicon in the silicon compound having a hydrolyzable group to the element (A) (silicon [mol] in the silicon compound having a hydrolyzable group/element (A) [mol]) is 0.1 to 100, the 1,3-butadiene production catalyst of [1] or [2].
[4] The catalyst for producing 1,3-butadiene of [1] to [3], wherein the density of element (A) on silicon dioxide is in the range of 1 to 50/nm 2 .
[5] The catalyst for producing 1,3-butadiene of [1] to [4], wherein the element (A) is at least one selected from zirconium, hafnium and tantalum.
[6] 29 Si-NMR chemical shift value: characterized in that the signal intensity at the chemical shift value: -105 ppm is 0.55 or more when the signal intensity at the maximum value near -111 ppm is 1; , a catalyst for producing 1,3-butadiene according to [1] to [5].
[7] Using the 1,3-butadiene production catalyst of [1] to [6], a raw material containing ethanol alone or ethanol together with acetaldehyde is reacted at a reaction temperature of 300 ° C. or higher and 450 ° C. or lower, and the partial pressure of ethanol and acetaldehyde is A method for producing 1,3-butadiene, wherein the catalyst is brought into contact with the catalyst at a weight hourly space velocity of 0.1 to 1.0 MPaA and a weight hourly space velocity of 0.1 to 30 g/g -cat · h .

本発明の1,3-ブタジエン製造触媒ならびにこの触媒を使用した製造方法によれば、エタノールを含む原料ガスから1,3-ブタジエンをより効率的に製造することが可能となる。 According to the catalyst for producing 1,3-butadiene of the present invention and the production method using this catalyst, it becomes possible to more efficiently produce 1,3-butadiene from a raw material gas containing ethanol.

実施例および比較例で調製した1,3-ブタジエン製造触媒の29Si-MAS-NMRスペクトルを示す。 29 Si-MAS-NMR spectra of 1,3-butadiene production catalysts prepared in Examples and Comparative Examples are shown.

以下、本発明を実施するための形態について説明する。
[1,3-ブタジエン製造触媒]
本発明で使用される触媒は、周期表第4族および5族の元素(A)と担体成分である二酸化ケイ素を含む。触媒表面には、ケイ素や元素(A)の水酸化物ないし酸化物などに由来する水酸基(-OH)およびオキソ基(=O)が存在するが、本発明では表面水酸基およびオキソ基の少なくとも一部が加水分解性基を有するケイ素化合物と反応することによって、-O-Si基で置換されている。なおすべての水酸基およびオキソ基が置換されていてもよく、また一部が置換されていてもよい。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated.
[1,3-butadiene production catalyst]
The catalyst used in the present invention contains an element (A) of Groups 4 and 5 of the periodic table and silicon dioxide as a carrier component. Hydroxy groups (--OH) and oxo groups (=O) derived from silicon, hydroxides or oxides of element (A), etc. are present on the surface of the catalyst. moieties are substituted with —O—Si groups by reacting with silicon compounds having hydrolyzable groups. All hydroxyl groups and oxo groups may be substituted, or some may be substituted.

元素(A)としては、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルなどが挙げられ、1,3-ブタジエン選択率向上の点で、元素(A)がジルコニウム、ハフニウム、タンタルから選ばれる少なくとも1種であることが好ましい。 Examples of element (A) include titanium, zirconium, hafnium, vanadium, niobium, and tantalum. From the viewpoint of improving the 1,3-butadiene selectivity, element (A) is at least one selected from zirconium, hafnium, and tantalum. Seeds are preferred.

これらの元素(A)は、担体である二酸化ケイ素に、金属、酸化物、水酸化物、塩などの状態で固定される。二酸化ケイ素としては、アモルファスシリカ、シリカゾル、シリカゲル、コロイダルシリカなどが挙げられる。また、MCM-41、FSM-16、SBA-15などのメソポーラスシリカや、ゼオライトも使用可能である。 These elements (A) are fixed to the carrier silicon dioxide in the form of metals, oxides, hydroxides, salts, or the like. Silicon dioxide includes amorphous silica, silica sol, silica gel, colloidal silica, and the like. In addition, mesoporous silica such as MCM-41, FSM-16, SBA-15, and zeolite can also be used.

元素(A)を二酸化ケイ素に固定化する方法としては、元素(A)を含む塩化物塩、硝酸塩、硫酸塩、燐酸塩、アルコキシドを水や有機溶媒に溶解させ、二酸化ケイ素の粉末や成形体からなる担体に含浸させたのち、加熱、乾燥・焼成することで調製できる。含浸方法としては、公知の手法が採用でき、元素(A)含む(水)溶液を噴霧法、コーティング法、またはポアフィリング法また選択吸着法などが挙げられる。また担体の二酸化ケイ素粉末の分散液に元素(A)を含む塩化物塩、硝酸塩、硫酸塩、燐酸塩、アルコキシドなどを溶解させてもよい。さらに、元素(A)を含む塩化物塩やアルコキシドを気化させて二酸化ケイ素担体の表面に吸着させたのちに、乾燥・焼成することによっても調製できる。 As a method for immobilizing the element (A) on silicon dioxide, chloride salts, nitrates, sulfates, phosphates, and alkoxides containing the element (A) are dissolved in water or an organic solvent, and silicon dioxide powders and compacts are prepared. It can be prepared by impregnating a carrier consisting of, followed by heating, drying and baking. As the impregnation method, a known method can be employed, and examples thereof include a spraying method, a coating method, a pore filling method, a selective adsorption method, and the like with an (aqueous) solution containing the element (A). Chloride salts, nitrates, sulfates, phosphates, alkoxides, etc. containing the element (A) may be dissolved in the dispersion of silicon dioxide powder as the carrier. Furthermore, it can also be prepared by evaporating a chloride salt or alkoxide containing the element (A) and adsorbing it on the surface of a silicon dioxide carrier, followed by drying and firing.

また、元素(A)および二酸化ケイ素の前駆体を混合したのちに加熱や濃縮、水熱合成などの処理を施し、乾燥・焼成することで調製することもできる。元素(A)の前駆体としてはアルコキシドや塩化物塩、硝酸塩、硫酸塩、燐酸塩、金属酸化物ゾルなどが挙げられる。また、二酸化ケイ素担体の前駆体としては、アルコキシド、ポリシロキサン、ポリシラザンなどの有機珪素化合物、珪酸塩などの有機珪酸塩など他に、シリカゾルなども使
用できる。
It can also be prepared by mixing the element (A) and a precursor of silicon dioxide, followed by heating, concentration, hydrothermal synthesis, and other treatments, followed by drying and firing. Precursors of the element (A) include alkoxides, chloride salts, nitrates, sulfates, phosphates, metal oxide sols, and the like. As a precursor for the silicon dioxide carrier, an organic silicon compound such as an alkoxide, polysiloxane, or polysilazane, an organic silicate such as a silicate, or silica sol can be used.

元素(A)を二酸化ケイ素に固定化した触媒は、加水分解性基を有するケイ素化合物によって処理される。加水分解性基を有するケイ素化合物とは、珪素原子に1~4個の加水分解性基が結合したものである。加水分解性基としては,例えば,水素,ハロゲン原子,アルコキシ基,アシルオキシ基,ケトキシメート基,アミノ基,アミド基,酸アミド基,アミノオキシ基,メルカプト基,アルケニルオキシ基などが挙げられる。 加水分解性基を有するケイ素化合物はたとえば下記式(1)で表される。
SiYn(4-n) ・・・(1)
A catalyst in which element (A) is immobilized on silicon dioxide is treated with a silicon compound having a hydrolyzable group. A silicon compound having a hydrolyzable group is one in which 1 to 4 hydrolyzable groups are bonded to a silicon atom. Examples of hydrolyzable groups include hydrogen, halogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, and alkenyloxy groups. A silicon compound having a hydrolyzable group is represented, for example, by the following formula (1).
SiYnR (4-n) (1)

式中、Yは、それぞれ独立に加水分解性基であり、Rは炭素数が1~20の置換又は非置換の炭化水素基である。nは、1~4の整数である。炭素数が1~20の置換又は非置換の炭化水素基は、特に限定されず、例えば、メチル基、エチル基、プロピル基などの炭素数が1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基などが挙げられる。なお2個以上のYまたはRが結合する場合、これらは互いに同一であっても相違してもよい。さらに加水分解性基を有するケイ素化合物は、少なくとも一部が重縮合した部分重縮合物であってもよい。 In the formula, each Y is independently a hydrolyzable group, and R is a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. n is an integer of 1-4. The substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include alkyl groups having 1 to 20 carbon atoms such as methyl, ethyl and propyl Examples include an aryl group and an aralkyl group having 7 to 20 carbon atoms. When two or more Y or R are bonded, they may be the same or different. Furthermore, the silicon compound having a hydrolyzable group may be a partial polycondensate in which at least a part thereof is polycondensed.

処理は、水、有機溶媒などにこれらの加水分解性基を有するケイ素化合物を溶かし、元素(A)を二酸化ケイ素に固定化した物質を加えて処理を行っても良いし、加水分解性基を有するケイ素化合物を気化させて、元素(A)を二酸化ケイ素に固定化した物質の表面に吸着させて処理を行っても良い。これらの処理によって、元素(A)を二酸化ケイ素に固定化した物質の表面水酸基や、元素(A)が周期表第5族金属である場合には元素(A)上のオキソ基は、ケイ素化合物の加水分解性基と縮合反応し、元素(A)上やその周辺に-O-Si結合を生成すると考えられる。 The treatment may be carried out by dissolving the silicon compound having these hydrolyzable groups in water, an organic solvent, etc., and adding a substance in which the element (A) is immobilized on silicon dioxide, or by removing the hydrolyzable group. The treatment may be performed by vaporizing the silicon compound possessed and adsorbing the element (A) on the surface of the substance immobilized on silicon dioxide. By these treatments, the surface hydroxyl groups of the substance in which the element (A) is immobilized on silicon dioxide, and the oxo groups on the element (A) when the element (A) is a group 5 metal of the periodic table are converted into silicon compounds. is condensed with the hydrolyzable group of the element (A) to form an --O--Si bond on or around the element (A).

ゼオライト中の金属の配位状態がLewis酸性や反応性に影響を与えることが、近年明らかになってきている。Snを導入したゼオライト(SnBEA)では、2種類の活性サイト(-Si-O-)3Sn-OHとSn(-Si-O-)4が存在することが明らかとなっており、このうちの(-Si-O-)3Sn-OHのほうが強いLewis酸を有しており、過酸化水素によるアダマンタン酸化反応に寄与していると報告されている(Journal of Catalysis, vol.234, pp.111(2005))。また、Zrを導入したゼオライト(ZrBEA)でも同様に、2種類の活性サイトのうち(-Si-O-)3Zr-OHのほうが強いLewis酸を有しており、エタノールからの1,3-ブタジエン合成反応速度と(-Si-O-)3Zr-OH の数に相関が見られることが報告されている(ACS Catalysis, vol.5, pp.4833(2015), Journal of Physical Chemistry, vol.119, pp.17633(2015))。 In recent years, it has become clear that the coordination state of metals in zeolite affects Lewis acidity and reactivity. It has been clarified that Sn-introduced zeolite (SnBEA) has two types of active sites, (--Si--O--) 3 Sn--OH and Sn(--Si--O--) 4 . (--Si--O--) 3 Sn--OH has a stronger Lewis acid and is reported to contribute to the adamantane oxidation reaction by hydrogen peroxide (Journal of Catalysis, vol.234, pp. 111 (2005)). Similarly, in zeolite into which Zr is introduced (ZrBEA), among the two types of active sites, (—Si—O—) 3 Zr—OH has a stronger Lewis acid, and 1,3- It has been reported that there is a correlation between the butadiene synthesis reaction rate and the number of (—Si—O—) 3 Zr—OH (ACS Catalysis, vol.5, pp.4833 (2015), Journal of Physical Chemistry, vol. .119, pp. 17633 (2015)).

当該特許で記述する触媒は、ゼオライト構造を有していないが、二酸化ケイ素中に活性金属が存在しているという状態は先の報告と同様であり、活性金属周辺の配位状態(-OH基、-OSi基のどちらを有するか)が、触媒のLewis酸性や反応性に大きく寄与していると予想される。そのため、元素(A)上、または近辺に-O-Si結合を生成することによって触媒の活性・選択性が変化していると考えられる。 The catalyst described in the patent does not have a zeolite structure, but the state in which the active metal is present in silicon dioxide is the same as in the previous report, and the coordination state around the active metal (-OH group , —OSi group) is expected to greatly contribute to the Lewis acidity and reactivity of the catalyst. Therefore, it is considered that the activity and selectivity of the catalyst are changed by forming a --O--Si bond on or near the element (A).

本発明では、触媒の29Si-NMRのケミカルシフト値:-111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値:-105ppmでのシグナル強度が0.55以上であることが好ましい。このようなケミカルシフト値のシグナル強度を有する触媒は、触媒活性が高い。 In the present invention, the signal intensity at the chemical shift value of -105 ppm is 0.55 or more when the signal intensity at the maximum value near -111 ppm of the chemical shift value of the catalyst is 1 . preferable. A catalyst having a signal intensity of such a chemical shift value has high catalytic activity.

加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比(加水分解性基を有するケイ素化合物中のケイ素[mol]/元素(A)[mol])は、特に限定されないが、0.1から100の範囲が好ましい。加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比が低すぎるとケイ素化合物処理による効果が十分得られない。加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比が高すぎると、ケイ素が元素(A)を完全に覆ってしまい、触媒活性が低下することがあると考えられる。 The molar ratio of silicon in the silicon compound having a hydrolyzable group and the element (A) (silicon [mol] in the silicon compound having a hydrolyzable group/element (A) [mol]) is not particularly limited, A range of 0.1 to 100 is preferred. If the molar ratio of silicon to element (A) in the silicon compound having a hydrolyzable group is too low, the effect of silicon compound treatment cannot be obtained sufficiently. If the molar ratio of silicon to element (A) in the silicon compound having a hydrolyzable group is too high, silicon may completely cover element (A), resulting in a decrease in catalytic activity.

二酸化ケイ素上の元素(A)の密度は、特に限定されないが、1~50個/nm2の範囲が好ましい。元素(A)の密度が低すぎると触媒単位体積あたりの1,3-ブタジエン生成速度が遅くなる。元素(A)の密度が高すぎると、副反応が進行することにより1,3-ブタジエン選択率が低下する。 The density of element (A) on silicon dioxide is not particularly limited, but is preferably in the range of 1 to 50/nm 2 . If the density of element (A) is too low, the rate of 1,3-butadiene production per unit volume of catalyst will be low. If the density of element (A) is too high, the 1,3-butadiene selectivity will decrease due to the progress of side reactions.

触媒は、元素(A)および二酸化ケイ素のほかに、亜鉛、銀、銅、金などの金属や、アルカリ金属、アルカリ土類金属、ランタノイド等を含んでいても構わない。
触媒の形状としては特に制限されるものではなく、粒状、円柱状、円筒状、ハニカム状など公知の形状であっても使用できる。
In addition to the element (A) and silicon dioxide, the catalyst may contain metals such as zinc, silver, copper and gold, alkali metals, alkaline earth metals, lanthanoids and the like.
The shape of the catalyst is not particularly limited, and known shapes such as granular, columnar, cylindrical and honeycomb shapes can be used.

[1,3-ブタジエンの製造方法]
本発明の1,3-ブタジエンの製造方法は、加熱下で、少なくともエタノールを含む原料を前記触媒に接触させることを特徴とする。エタノールとしては、特に限定されることが無く、例えば、サトウキビやトウモロコシなどのバイオマス由来のエタノールや、石油、石炭若しくは天然ガス由来のエタノールなどを挙げることができる。なお、バイオマス由来のエタノールを使用すれば、温室効果ガス削減に貢献することができる。
[Method for producing 1,3-butadiene]
The method for producing 1,3-butadiene of the present invention is characterized by bringing a raw material containing at least ethanol into contact with the catalyst under heating. Ethanol is not particularly limited, and examples thereof include ethanol derived from biomass such as sugarcane and corn, and ethanol derived from petroleum, coal, or natural gas. The use of biomass-derived ethanol can contribute to the reduction of greenhouse gases.

本発明の原料は、エタノール単独でもよいが、エタノールと共にアセトアルデヒドを含有していてもよい。
アセトアルデヒドを含有する場合、エタノールとアセトアルデヒドのモル比(EtOH:AcH)は、95:5~40:60、好ましくは90:10~50:50、さらに好ましくは85:15~50:50の範囲にある。
The raw material of the present invention may be ethanol alone, or may contain acetaldehyde together with ethanol.
When acetaldehyde is contained, the molar ratio of ethanol to acetaldehyde (EtOH:AcH) is in the range of 95:5 to 40:60, preferably 90:10 to 50:50, more preferably 85:15 to 50:50. be.

アセトアルデヒドはエタノールの脱水素反応により製造したものを使用することができる。エタノールの脱水素反応では、例えば、特開2005-342675号公報、特開2011-000532号公報公報などに開示された公知の銅触媒や銀触媒が使用される。具体的には、Cu系や、Ni、Pd、Pt等の元素周期表8族の金属等を好適に用いることができ、中でもCuを含有するものが更に好ましい。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分の金属を含むものが挙げられ、CuとNiを含有するものが好ましく用いられる。更に3成分以上の金属を含むものも好ましく用いられる。またこれらをさらに二酸化ケイ素、酸化アルミニウム、酸化チタン、ゼオライト等に担持させたもの等も用いられる。 As acetaldehyde, one produced by a dehydrogenation reaction of ethanol can be used. In the dehydrogenation reaction of ethanol, for example, known copper catalysts and silver catalysts disclosed in JP-A-2005-342675 and JP-A-2011-000532 are used. Specifically, Cu-based materials and metals of group 8 of the periodic table such as Ni, Pd, and Pt can be preferably used, and among them, those containing Cu are more preferable. For example, Cu alone or containing a two-component metal in which a transition metal element such as Cr, Co, Ni, Fe, and Mn is added to Cu can be used, and those containing Cu and Ni are preferably used. Furthermore, those containing three or more metal components are also preferably used. In addition, those further supported by silicon dioxide, aluminum oxide, titanium oxide, zeolite and the like are also used.

反応条件としては特に制限されるものではなく、通常200~300℃程度の範囲で、所定のアセトアルデヒド生成量となるような条件で反応を行う。
かかる製造方法は、回分式、半回分式、連続式等の周知の方式を採用できる。連続式を採用すると、大量合成が可能であり、運転作業負荷が軽い上に、未反応原料を反応系に再利用することにより原料のエタノールの使用率を極めて高いレベルに向上させることができる。そのため、簡便且つ効率的に1,3-ブタジエンを分離、回収することができる連続式を採用することが好ましい。
The reaction conditions are not particularly limited, and the reaction is usually carried out at a temperature in the range of about 200 to 300° C. under such conditions that a predetermined amount of acetaldehyde is produced.
Known methods such as a batch method, a semi-batch method, and a continuous method can be adopted for such a production method. When the continuous system is adopted, large-scale synthesis is possible, the operation workload is light, and unreacted raw materials are reused in the reaction system, so that the usage rate of raw material ethanol can be improved to an extremely high level. Therefore, it is preferable to employ a continuous system capable of separating and recovering 1,3-butadiene simply and efficiently.

原料を上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよい
が、気相法を用いることが好ましい。
Examples of methods for bringing the raw material into contact with the catalyst include a suspended bed method, a fluidized bed method, and a fixed bed method. Further, the present invention may be carried out by either a vapor phase method or a liquid phase method, but the vapor phase method is preferably used.

気相で反応を行う場合、原料ガス(例えば、エタノールガス、好ましくはエタノールガスとアセトアルデヒドガスの混合物)は、希釈することなく反応器に供給してもよく、窒素、ヘリウム、アルゴン、水蒸気、などの不活性ガスにより適宜希釈して反応器に供給してもよい。 When the reaction is carried out in the gas phase, the raw material gas (e.g., ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas) may be supplied to the reactor without dilution, and nitrogen, helium, argon, water vapor, etc. may be appropriately diluted with an inert gas and supplied to the reactor.

反応時に、エタノールを含む原料にアセトアルデヒドを添加してもよく、エタノールとアセトアルデヒド(添加後の総量)のモル比(EtOH:AcH)が前記の比率となるようにすればよい。 During the reaction, acetaldehyde may be added to the raw material containing ethanol, and the molar ratio (EtOH:AcH) of ethanol and acetaldehyde (total amount after addition) should be the above ratio.

反応温度としては、例えば300℃以上450以下℃程度、好ましくは320~380℃の範囲にある。温度が高すぎると、1,3-ブタジエン選択率が低下する。一方、温度が低すぎるとブタジエン生成速度が十分でない。 The reaction temperature is, for example, about 300°C to 450°C, preferably 320 to 380°C. If the temperature is too high, the 1,3-butadiene selectivity will decrease. On the other hand, if the temperature is too low, the rate of production of butadiene is not sufficient.

反応圧力は、常圧から高圧までの広い範囲で適宜設定できるが、製造効率や装置構成などの観点から、エタノールおよびアセトアルデヒドの分圧が0.1~1.0MPaAに設定することが好ましい。 Although the reaction pressure can be appropriately set in a wide range from normal pressure to high pressure, it is preferable to set the partial pressure of ethanol and acetaldehyde to 0.1 to 1.0 MPaA from the viewpoint of production efficiency, apparatus configuration, and the like.

原料と触媒との接触時間は、原料の供給速度を調整することによりコントロールすることができ、単位触媒あたりの重量空間速度(WHSV)は0.1~30g-(EtOH+AcH)・g-cat -1・h-1、好ましくは0.5~20g-(EtOH+AcH)・g-cat -1・h-1の範囲が好ましい。WHSVが低すぎると反応器サイズが大きくなり設備費の点から好ましくない。一方、WHSVが高すぎるとブタジエン収率が低下する。 The contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material . −1 ·h −1 , preferably in the range of 0.5 to 20 g −(EtOH+AcH) ·g −cat −1 ·h −1 . If the WHSV is too low, the size of the reactor becomes large, which is not preferable in terms of equipment costs. On the other hand, if the WHSV is too high, the butadiene yield will decrease.

反応終了後、反応生成物は、例えば、蒸留、抽出等の分離手段や、これらを組み合わせた分離手段により、軽質ガス、C4留分、重質分、水、エタノール、アセトアルデヒド等に分離精製することができる。
本発明では、上述した触媒を用いて1,3-ブタジエンをより効率的に製造することができるため、産業上の利用可能性は高い。
After completion of the reaction, the reaction product is separated and purified into light gas, C4 fraction, heavy fraction, water, ethanol, acetaldehyde, etc. by separation means such as distillation, extraction, etc., or a separation means combining these. can be done.
INDUSTRIAL APPLICABILITY In the present invention, 1,3-butadiene can be produced more efficiently using the above-described catalyst, and thus the industrial applicability is high.

[実施例]
以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<触媒調製>
調製例1
タンタルエトキシド(99.98%、Sigma-Aldrich製)0.3gをエタノール(和光純薬工業(株)製)100mlに溶解させ、NIPGEL CX-200(東ソー・シリカ(株)製、比表面積392m2/g)10.0gを加えて2時間撹拌したのち、エバポレーターを用いてエタノールを蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、Ta25/SiO2 (Ta25担持量:1.6重量%)触媒を得た。この触媒をTa25(1.6)/SiO2と表記する。この触媒の比表面積は335m2/gであり、担体SiO2上のTa原子密度は14.9個/nm2であった。
[Example]
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
<Catalyst preparation>
Preparation example 1
0.3 g of tantalum ethoxide (99.98%, manufactured by Sigma-Aldrich) is dissolved in 100 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and NIPGEL CX-200 (manufactured by Tosoh Silica Co., Ltd., specific surface area 392 m 2 /g) was added and stirred for 2 hours, and then ethanol was evaporated using an evaporator. After drying at 120° C., it was calcined at 500° C. under air circulation to obtain a Ta 2 O 5 /SiO 2 (Ta 2 O 5 loading: 1.6% by weight) catalyst. This catalyst is denoted as Ta 2 O 5 (1.6)/SiO 2 . The specific surface area of this catalyst was 335 m 2 /g, and the Ta atom density on the support SiO 2 was 14.9/nm 2 .

調製例2
タンタルエトキシド0.06gをエタノール100mlに溶解させ、NIPGEL CX-200 10.0gを加えて2時間撹拌したのち、エバポレーターを用いてエタノールを蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、Ta25/SiO2 (Ta25担持量:0.16重量%)触媒を得た。この触媒をTa25(0.16)/SiO2と表記する。この触媒の比表面積は357m2/gであり、担体SiO2上のTa原子密度は2.8個/nm2であった。
Preparation example 2
0.06 g of tantalum ethoxide was dissolved in 100 ml of ethanol, 10.0 g of NIPGEL CX-200 was added, and after stirring for 2 hours, ethanol was evaporated using an evaporator. After drying at 120° C., it was calcined at 500° C. under air circulation to obtain a Ta 2 O 5 /SiO 2 (Ta 2 O 5 loading: 0.16% by weight) catalyst. This catalyst is represented as Ta 2 O 5 (0.16)/SiO 2 . The specific surface area of this catalyst was 357 m 2 /g, and the Ta atom density on the support SiO 2 was 2.8/nm 2 .

調製例3
オキシ硝酸ジルコニウム二水和物0.22gを蒸留水50.0mlに溶解させ、NIPGEL CX-200 10.0gを加えて30分撹拌したのち、エバポレーターを用いて水を蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、ZrO2/SiO2 (ZrO2担持量:1.0重量%)触媒を得た。この触媒をZrO2(1.0)/SiO2と表記する。この触媒の比表面積は341m2/gであり、担体SiO2上のZr原子密度は14.7個/nm2であった。
Preparation example 3
0.22 g of zirconium oxynitrate dihydrate was dissolved in 50.0 ml of distilled water, 10.0 g of NIPGEL CX-200 was added, and after stirring for 30 minutes, the water was evaporated using an evaporator. After drying at 120° C., it was calcined at 500° C. under air circulation to obtain a ZrO 2 /SiO 2 (ZrO 2 loading: 1.0% by weight) catalyst. This catalyst is denoted as ZrO 2 (1.0)/SiO 2 . The specific surface area of this catalyst was 341 m 2 /g, and the Zr atom density on the support SiO 2 was 14.7/nm 2 .

調製例4
塩化ハフニウム0.27gを蒸留水50.0mlに溶解させ、NIPGEL CX-200 10.0gを加えて30分撹拌したのち、エバポレーターを用いて水を蒸発させた。120℃乾燥後、空気流通下500℃で焼成し、HfO2/SiO2 (HfO2担持量1.7重量%)触媒を得た。この触媒をHfO2(1.7)/SiO2と表記する。この触媒の比表面積は350m2/gであり、担体SiO2上のZr原子密度は14.3個/nm2であった。
Preparation example 4
0.27 g of hafnium chloride was dissolved in 50.0 ml of distilled water, 10.0 g of NIPGEL CX-200 was added, and after stirring for 30 minutes, the water was evaporated using an evaporator. After drying at 120° C., it was calcined at 500° C. under air flow to obtain a HfO 2 /SiO 2 (HfO 2 loading amount: 1.7% by weight) catalyst. This catalyst is denoted as HfO 2 (1.7)/SiO 2 . The specific surface area of this catalyst was 350 m 2 /g, and the Zr atom density on the support SiO 2 was 14.3/nm 2 .

調製例5
調製例1で得られたTa25(1.6)/SiO2 3.0gにNH3水(pH=10.0) 15mlを加えて、そこに3-アミノプロピルトリエトキシシラン(信越化学工業(株)製) 0.070gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi-Ta25(1.6)/SiO2と表記する。この触媒の比表面積は289m2/gであった。
Preparation example 5
15 ml of NH 3 water (pH=10.0) was added to 3.0 g of Ta 2 O 5 (1.6)/SiO 2 obtained in Preparation Example 1, and 3-aminopropyltriethoxysilane (Shin-Etsu Chemical (manufactured by Kogyo Co., Ltd.) was added dropwise, and the temperature was raised to 60°C with stirring and maintained for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120°C, and calcined at 500°C under air flow. The catalyst thus obtained is denoted as Si--Ta 2 O 5 (1.6)/SiO 2 . The specific surface area of this catalyst was 289 m 2 /g.

調製例6
ケイ酸エチル(和光純薬工業(株)製)12.5g、エタノール12.5ml、蒸留水1.1g、硝酸0.55g(和光純薬工業(株)製)を混合し、撹拌しながら76℃で3時間還流した。一方で、タンタルエトキシド0.3gをエタノール100mlに溶解させ、NIPGEL CX-200 10.0gを加えて室温で2時間撹拌した。これら2つの溶液を混合し、76℃で5時間還流した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi(TEOS)-Ta25(1.6)/SiO2と表記する。この触媒の比表面積は361m2/gであった。
Preparation example 6
12.5 g of ethyl silicate (manufactured by Wako Pure Chemical Industries, Ltd.), 12.5 ml of ethanol, 1.1 g of distilled water, and 0.55 g of nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and stirred for 76 It was refluxed at 0 C for 3 hours. On the other hand, 0.3 g of tantalum ethoxide was dissolved in 100 ml of ethanol, 10.0 g of NIPGEL CX-200 was added, and the mixture was stirred at room temperature for 2 hours. These two solutions were mixed and refluxed at 76° C. for 5 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120°C, and calcined at 500°C under air flow. The catalyst thus obtained is denoted as Si(TEOS)--Ta 2 O 5 (1.6)/SiO 2 . The specific surface area of this catalyst was 361 m 2 /g.

調製例7
調製例2で得られたTa25(0.16)/SiO2 3.0gにNH3水(pH=10.0)15mlを加えて、そこに3-アミノプロピルトリエトキシシラン0.026gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi-Ta25(0.16)/SiO2と表記する。この触媒の比表面積は314m2/gであった。
Preparation Example 7
15 ml of NH 3 water (pH=10.0) was added to 3.0 g of Ta 2 O 5 (0.16)/SiO 2 obtained in Preparation Example 2, and 0.026 g of 3-aminopropyltriethoxysilane was added. was added dropwise, and the temperature was raised to 60° C. with stirring and maintained for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120°C, and calcined at 500°C under air flow. The catalyst thus obtained is denoted as Si--Ta 2 O 5 (0.16)/SiO 2 . The specific surface area of this catalyst was 314 m 2 /g.

調製例8
調製例3で得られたZrO2(1.0)/SiO2 3.0gにNH3水(pH=10.0) 15mlを加えて、そこに3-アミノプロピルトリエトキシシラン0.083gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi-ZrO2(1.0)/SiO2と表記する。この触媒の比表面積は305m2/gであった。
Preparation Example 8
15 ml of NH 3 water (pH=10.0) was added to 3.0 g of ZrO 2 (1.0)/SiO 2 obtained in Preparation Example 3, and 0.083 g of 3-aminopropyltriethoxysilane was added dropwise. The temperature was raised to 60° C. with stirring and maintained for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120°C, and calcined at 500°C under air flow. The catalyst thus obtained is denoted as Si--ZrO 2 (1.0)/SiO 2 . The specific surface area of this catalyst was 305 m 2 /g.

調製例9
調製例4で得られたHfO2(1.7)/SiO2 3.0gにNH3水(pH=10.0)15mlを加えて、そこに3-アミノプロピルトリエトキシシラン0.083gを滴下し、撹拌しながら60℃まで昇温して4時間保持した。その後、遠心分離で触媒を回収し、120℃乾燥後、空気流通下500℃で焼成した。このように得られた触媒をSi-HfO2(1.7)/SiO2と表記する。この触媒の比表面積は307m2/gであった。
Preparation Example 9
15 ml of NH 3 water (pH=10.0) was added to 3.0 g of HfO 2 (1.7)/SiO 2 obtained in Preparation Example 4, and 0.083 g of 3-aminopropyltriethoxysilane was added dropwise. The temperature was raised to 60° C. with stirring and maintained for 4 hours. Thereafter, the catalyst was recovered by centrifugation, dried at 120°C, and calcined at 500°C under air flow. The catalyst thus obtained is denoted as Si--HfO 2 (1.7)/SiO 2 . The specific surface area of this catalyst was 307 m@2 /g.

比較例1~4、実施例1~5
<反応試験>
表1に記載の触媒 0.63g を固定床流通型反応器に充填し、以下の反応条件で実験を行った。
Comparative Examples 1-4, Examples 1-5
<Reaction test>
A fixed bed flow reactor was filled with 0.63 g of the catalyst shown in Table 1, and an experiment was conducted under the following reaction conditions.

反応器に窒素(6.8Nml/min)を流しながら350℃まで昇温し0.26MPaGまで昇圧した後、原料ガスとしてエタノール(11.0Nml/min)とアセトアルデヒド(4.4Nml/min)および窒素(6.8Nml/min)を混合して反応器に供給した(WHSV=3.0g-(EtOH+AcH)・g-cat -1・h-1)。反応器出口ガス組成をガスクロマトグラフにより求めた。
転化率、選択率は以下の式により求めた。
While flowing nitrogen (6.8 Nml / min) in the reactor, the temperature was raised to 350 ° C. and the pressure was increased to 0.26 MPaG, and then ethanol (11.0 Nml / min) and acetaldehyde (4.4 Nml / min) and nitrogen (6.8 Nml/min) were mixed and fed to the reactor (WHSV=3.0 g -(EtOH+AcH) ·g -cat -1 ·h -1 ). The reactor outlet gas composition was determined by gas chromatography.
The conversion rate and selectivity were determined by the following equations.

Figure 0007227209000001
Figure 0007227209000001

Figure 0007227209000002
Figure 0007227209000002

比較例1のTa25(1.6)/SiO2では1,3-ブタジエン選択率66.2C-mol%、1,3-ブタジエン収率32.3C-mol%であるのに対し、実施例1のSi-Ta25(1.6)/SiO2では1,3-ブタジエン選択率79.9C-mol%、1,3-ブタジエン収率39.5C-mol%、実施例2のSi(TEOS)-Ta25(1.6)/SiO2では1,3-ブタジエン選択率73.4C-mol%、1,3-ブタジエン収率36.8C-mol%と、ケイ素を含む物質により処理されることによって1,3-ブタジエン選択率、1,3-ブタジエン収率が向上した。処理によって転化率はほとんど変わらなかった。 In Ta 2 O 5 (1.6)/SiO 2 of Comparative Example 1, the 1,3-butadiene selectivity was 66.2 C-mol% and the 1,3-butadiene yield was 32.3 C-mol%. In the case of Si—Ta 2 O 5 (1.6)/SiO 2 of Example 1, the 1,3-butadiene selectivity was 79.9 C-mol% and the 1,3-butadiene yield was 39.5 C-mol%. Si(TEOS)-Ta 2 O 5 (1.6)/SiO 2 has a 1,3-butadiene selectivity of 73.4 C-mol% and a 1,3-butadiene yield of 36.8 C-mol%. The 1,3-butadiene selectivity and 1,3-butadiene yield were improved by treatment with the containing substance. The conversion hardly changed with the treatment.

Ta担持量の異なるTa25(0.16)/SiO2でも、比較例2と比べてケイ素を含む化合物による処理を行った実施例3では、1,3-ブタジエン収率は16.2C-mol%から16.7C-mol%とやや向上し、1,3-ブタジエン選択率が66.3C-mol%から71.7C-mol%に向上した(それぞれ比較例2、実施例3)。 Even with Ta 2 O 5 (0.16)/SiO 2 having a different Ta loading amount, in Example 3 in which the treatment with a silicon-containing compound was performed compared to Comparative Example 2, the yield of 1,3-butadiene was 16.2C. -mol% to 16.7C-mol%, and the 1,3-butadiene selectivity improved from 66.3C-mol% to 71.7C-mol% (Comparative Example 2 and Example 3, respectively).

同様に、ZrO2(1.0)/SiO2でも、比較例3に比べてケイ素を含む化合物による処理によって実施例4では、1,3-ブタジエン収率は32.3C-mol%から37.4C-mol%に、1,3-ブタジエン選択率は67.5C-mol%から77.3C-mol%に向上した(それぞれ比較例3、実施例4)。 Similarly, even with ZrO 2 (1.0)/SiO 2 , the 1,3-butadiene yield increased from 32.3 C-mol % to 37.3 C-mol % in Example 4 by treatment with a silicon-containing compound compared to Comparative Example 3. 4 C-mol%, the 1,3-butadiene selectivity improved from 67.5 C-mol% to 77.3 C-mol% (Comparative Example 3 and Example 4, respectively).

HfO2(1.7)/SiO2でも比較例4と実施例5とを対比すると、1,3-ブタジエン収率が37.0C-mol%から39.1C-mol%に、1,3-ブタジエン選択率が64.1C-mol%から68.0C-mol%に向上した(比較例3、実施例5)。 Comparing Comparative Example 4 and Example 5 also with HfO 2 (1.7)/SiO 2 , the 1,3-butadiene yield increased from 37.0 C-mol% to 39.1 C-mol%. The butadiene selectivity improved from 64.1 C-mol% to 68.0 C-mol% (Comparative Example 3, Example 5).

29Si-MAS-NMR測定>
29Si-MAS-NMR測定は以下の条件で実施した。
装置:Agilent社製VNMRS-600
パルスプログラム:シングルパルス
サンプル回転数:6 kHz
繰り返し時間:100 sec
パルス幅:90°
積算回数:512回
二次標準としてポリジメチルシロキサン(PDMS)を用いて-34.44ppmに調整
< 29 Si-MAS-NMR measurement>
29 Si-MAS-NMR measurements were carried out under the following conditions.
Apparatus: Agilent VNMRS-600
Pulse program: Single pulse Sample rotation speed: 6 kHz
Repeat time: 100 sec
Pulse width: 90°
Accumulation times: 512 times Adjusted to -34.44 ppm using polydimethylsiloxane (PDMS) as a secondary standard

比較例5
調製例1で得られたTa25(1.6)/SiO229Si-MAS-NMRを測定した。Q2(-91ppm付近)、Q3(-101ppm付近)、Q4(-111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値-111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値-105ppmでのシグナル強度は0.48であった。
Comparative example 5
29 Si-MAS-NMR of Ta 2 O 5 (1.6)/SiO 2 obtained in Preparation Example 1 was measured. Signals assigned to Q2 (around -91 ppm), Q3 (around -101 ppm), and Q4 (around -111 ppm) were detected. The signal intensity at the chemical shift value of −105 ppm was 0.48 when the maximum signal intensity near the chemical shift value of −111 ppm was set to 1.

実施例6
調製例6で得られたSi-Ta25(1.6)/SiO229Si-MAS-NMRを測定した。Q2(-91ppm付近)、Q3(-101ppm付近)、Q4(-111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値-111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値-105ppmでのシグナル強度は0.68であった。
Example 6
29 Si-MAS-NMR of Si--Ta 2 O 5 (1.6)/SiO 2 obtained in Preparation Example 6 was measured. Signals assigned to Q2 (around -91 ppm), Q3 (around -101 ppm), and Q4 (around -111 ppm) were detected. The signal intensity at the chemical shift value of −105 ppm was 0.68 when the maximum signal intensity near the chemical shift value of −111 ppm was set to 1.

実施例7
調製例7で得られたSi(TEOS)-Ta25(1.6)/SiO229Si-MAS-NMRを測定した。Q2(-91ppm付近)、Q3(-101ppm付近)、Q4(-111ppm付近)に帰属されるシグナルが検出された。ケミカルシフト値-111ppm付近の極大値のシグナル強度を1とした場合の、ケミカルシフト値-105ppmでのシグナル強度は0.58であった。
Example 7
29 Si-MAS-NMR of Si(TEOS)--Ta 2 O 5 (1.6)/SiO 2 obtained in Preparation Example 7 was measured. Signals assigned to Q2 (around -91 ppm), Q3 (around -101 ppm), and Q4 (around -111 ppm) were detected. The signal intensity at the chemical shift value of −105 ppm was 0.58 when the maximum signal intensity near the chemical shift value of −111 ppm was set to 1.

Claims (8)

周期表第4族および5族の元素(A)と、担体成分である二酸化ケイ素とを含み、担体成分である二酸化ケイ素の表面に周期表第4族および5族の元素(A)が担持され、前記元素(A)を前記二酸化ケイ素に固定化してなり、且つ前記元素(A)上の表面水酸基およびオキソ基の少なくとも一部が-O-Si基で置換された末端-(A)-O-Si基を含むことを特徴とする、エタノールを含む原料から1,3-ブタジエンを製造する1,3-ブタジエン製造触媒。 It contains an element (A) of Groups 4 and 5 of the periodic table and silicon dioxide as a carrier component, and the element (A) of Groups 4 and 5 of the periodic table is supported on the surface of the silicon dioxide as a carrier component. , wherein the element (A) is immobilized on the silicon dioxide, and at least part of the surface hydroxyl groups and oxo groups on the element (A) are substituted with -O-Si groups at the terminal -(A)-O A 1,3-butadiene production catalyst for producing 1,3-butadiene from a raw material containing ethanol, characterized by containing a -Si group. 末端-(A)-O-Si基は、前記元素(A)上の表面水酸基およびオキソ基と加水分解性基を有するケイ素化合物との反応物であり、加水分解性基を有するケイ素化合物中のケイ素と元素(A)のモル比(加水分解性基を有するケイ素化合物中のケイ素[mol]/元素(A)[mol])が0.1から100であることを特徴とする、請求項1に記載の1,3-ブタジエン製造触媒。 The terminal -(A)-O-Si group is a reaction product of the surface hydroxyl group and oxo group on the element (A) and the silicon compound having a hydrolyzable group, and the silicon compound having a hydrolyzable group Claim 1 , characterized in that the molar ratio of silicon to the element (A) (silicon [mol] in the silicon compound having a hydrolyzable group/element (A) [mol]) is from 0.1 to 100. 1,3-butadiene production catalyst according to . 二酸化ケイ素上の元素(A)の密度が1~50個/nm2の範囲であることを特徴とする、請求項1または2に記載の1,3-ブタジエン製造触媒。 3. The catalyst for producing 1,3-butadiene according to claim 1, wherein the density of element (A) on silicon dioxide is in the range of 1 to 50/nm 2 . 元素(A)がジルコニウム、ハフニウムおよびタンタルから選ばれる少なくとも1種であることを特徴とする、請求項1~のいずれか1項に記載の1,3-ブタジエン製造触媒。 4. The catalyst for producing 1,3-butadiene according to any one of claims 1 to 3 , wherein the element (A) is at least one selected from zirconium, hafnium and tantalum. 29Si-NMRのケミカルシフト値:-111ppm付近の極大値のシグナル強度を1とした場合に、ケミカルシフト値:-105ppmでのシグナル強度が0.55以上であることを特徴とする、請求項1~のいずれか1項に記載の1,3-ブタジエン製造触媒。 29 Si-NMR chemical shift value: when the signal intensity at the maximum value near -111 ppm is set to 1, the chemical shift value: -105 ppm, wherein the signal intensity is 0.55 or more. 5. The catalyst for producing 1,3-butadiene according to any one of 1 to 4 . 請求項1~のいずれか1項に記載の1,3-ブタジエン製造触媒を用いて、エタノール単独またはエタノールとともにアセトアルデヒドを含む原料を、反応温度が300℃以上450℃以下、エタノールおよびアセトアルデヒドの分圧が0.1~1.0MPaA、重量空間速度が0.1~30g/g-cat・hの範囲で、前記触媒と接触させることを特徴とする1,3-ブタジエンの製造方法。 Using the catalyst for producing 1,3-butadiene according to any one of claims 1 to 5 , ethanol alone or a raw material containing acetaldehyde together with ethanol is reacted at a reaction temperature of 300 ° C. or higher and 450 ° C. or lower, and ethanol and acetaldehyde are separated. A method for producing 1,3-butadiene, wherein the catalyst is brought into contact with the catalyst at a pressure of 0.1 to 1.0 MPaA and a weight hourly space velocity of 0.1 to 30 g/g -cat·h . 周期表第4族および5族の元素(A)および二酸化ケイ素の前駆体を混合する工程と、 mixing an element (A) of groups 4 and 5 of the periodic table and a precursor of silicon dioxide;
混合物を、加熱、濃縮、水熱合成から選ばれる少なくとも1種の処理を施したのち、乾燥・焼成する工程と、 a step of subjecting the mixture to at least one treatment selected from heating, concentration, and hydrothermal synthesis, followed by drying and firing;
乾燥・焼成物の表面水酸基およびオキソ基の少なくとも一部を、加水分解性基を有するケイ素化合物と反応させ、前記表面水酸基および前記オキソ基の少なくとも一部を-O-Si基で置換する工程、 A step of reacting at least part of the surface hydroxyl groups and oxo groups of the dried/baked product with a silicon compound having a hydrolyzable group to replace at least part of the surface hydroxyl groups and the oxo groups with —O—Si groups;
を含む、エタノールを含む原料から1,3-ブタジエンを製造する1,3-ブタジエン製造触媒の製造方法。A method for producing a 1,3-butadiene production catalyst for producing 1,3-butadiene from a raw material containing ethanol.
周期表第4族および5族の元素(A)と、二酸化ケイ素とを含む物質を生成する工程と、 producing a substance containing an element (A) of Groups 4 and 5 of the periodic table and silicon dioxide;
前記物質の表面水酸基およびオキソ基の少なくとも一部を、加水分解性基を有するケイ素化合物と反応させ、前記表面水酸基および前記オキソ基の少なくとも一部を-O-Si基で置換する工程と、 a step of reacting at least a portion of the surface hydroxyl groups and oxo groups of the substance with a silicon compound having a hydrolyzable group to replace at least a portion of the surface hydroxyl groups and the oxo groups with —O—Si groups;
を備える、エタノールを含む原料から1,3-ブタジエンを製造する1,3-ブタジエン製造触媒の製造方法。 A method for producing a 1,3-butadiene production catalyst for producing 1,3-butadiene from a raw material containing ethanol.
JP2020198007A 2020-11-30 2020-11-30 1,3-butadiene production catalyst Active JP7227209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198007A JP7227209B2 (en) 2020-11-30 2020-11-30 1,3-butadiene production catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198007A JP7227209B2 (en) 2020-11-30 2020-11-30 1,3-butadiene production catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017072022A Division JP6803289B2 (en) 2017-03-31 2017-03-31 1,3-Butadiene production catalysts and processes from ethanol

Publications (2)

Publication Number Publication Date
JP2021049526A JP2021049526A (en) 2021-04-01
JP7227209B2 true JP7227209B2 (en) 2023-02-21

Family

ID=75155237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198007A Active JP7227209B2 (en) 2020-11-30 2020-11-30 1,3-butadiene production catalyst

Country Status (1)

Country Link
JP (1) JP7227209B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009105A1 (en) 2015-07-13 2017-01-19 IFP Energies Nouvelles Mesoporous mixed-oxide catalyst including silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009105A1 (en) 2015-07-13 2017-01-19 IFP Energies Nouvelles Mesoporous mixed-oxide catalyst including silicon

Also Published As

Publication number Publication date
JP2021049526A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
Wang et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts
JP6084963B2 (en) Method for producing 1,3-butadiene
US6521808B1 (en) Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes
JP6803289B2 (en) 1,3-Butadiene production catalysts and processes from ethanol
WO2014016810A1 (en) Alkane dehydrogenation catalyst and process for its preparation
Lischke et al. Acidity and catalytic properties of MeAPO-5 molecular sieves
CN112996596B (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing corresponding olefin from alkane by using catalyst
CN112191254B (en) Catalyst and method for preparing 2-ethoxyphenol by catalytic depolymerization of lignin
US20080287556A1 (en) Process For the Preparation of Fischer-Tropsch Catalysts With a High Mechanical, Thermal and Chemical Stability
Yang et al. Mesoporous silica beads containing active and stable tin species for the Baeyer-Villiger oxidations of cyclic ketones
CN111253248A (en) Method for preparing lactate by catalyzing methylglyoxal
JP6265354B2 (en) Bismuth molybdate catalyst having zeolite coating layer, method for producing the same, and method for producing 1,3-butadiene using the same
KR100979106B1 (en) mesoporous MFI zeolite supporting metal oxides
Wu et al. Si-modified Cs/Al2O3 for aldol condensation of methyl acetate with formaldehyde to methyl acrylate by chemical liquid deposition
JP7227209B2 (en) 1,3-butadiene production catalyst
CA1107304A (en) Process for producing olefins from carbon monoxide and hydrogen
KR101992075B1 (en) Catalyst containing brookite type titanium
CN112138724A (en) Hydroalkylation catalyst and process therefor
WO2019008490A1 (en) Process for producing aromatization catalyst and process for aromatizaton
CN104549425A (en) Diacetone alcohol hydrogenation catalyst as well as preparation method and application thereof
RU2705574C1 (en) Catalytic composition for converting alkanes to alkenes and a method for production thereof
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
US20190118164A1 (en) Methods of Making Spray-dried Metathesis Catalysts and Uses Thereof
Zhiqing et al. Characterization of tungsten-based catalyst used for selective oxidation of cyclopentene to glutaraldehyde
CN114618464B (en) Mesoporous catalyst and preparation method thereof and application thereof in reaction of ethanol and acetaldehyde to generate 1, 3-butadiene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7227209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350