KR100979106B1 - mesoporous MFI zeolite supporting metal oxides - Google Patents
mesoporous MFI zeolite supporting metal oxides Download PDFInfo
- Publication number
- KR100979106B1 KR100979106B1 KR1020080050581A KR20080050581A KR100979106B1 KR 100979106 B1 KR100979106 B1 KR 100979106B1 KR 1020080050581 A KR1020080050581 A KR 1020080050581A KR 20080050581 A KR20080050581 A KR 20080050581A KR 100979106 B1 KR100979106 B1 KR 100979106B1
- Authority
- KR
- South Korea
- Prior art keywords
- zeolite
- metal oxide
- supported
- metal
- crystal structure
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 59
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 53
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 41
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 41
- 239000013078 crystal Substances 0.000 claims abstract description 34
- 239000003054 catalyst Substances 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 8
- 238000001354 calcination Methods 0.000 claims abstract description 7
- 238000005804 alkylation reaction Methods 0.000 claims abstract description 5
- 230000029936 alkylation Effects 0.000 claims abstract description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 28
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 12
- 150000004692 metal hydroxides Chemical class 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000011852 carbon nanoparticle Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000012690 zeolite precursor Substances 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 229910021392 nanocarbon Inorganic materials 0.000 abstract description 33
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000003786 synthesis reaction Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 238000001308 synthesis method Methods 0.000 abstract description 3
- -1 Directly Supported Inorganic materials 0.000 abstract description 2
- 150000003839 salts Chemical class 0.000 abstract description 2
- 238000007086 side reaction Methods 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000376 reactant Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 229910003074 TiCl4 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910006213 ZrOCl2 Inorganic materials 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/344—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
- B01J37/346—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 금속산화물이 담지된 MFI결정구조의 메조세공 제올라이트에 관한 것으로 나노카본을 주형으로 하는 메조세공을 갖고 금속산화물이 상기 나노카본 주형을 매개로 담지되는 MFI결정구조의 제올라이트를 제공한다.The present invention relates to a mesoporous zeolite having an MFI crystal structure in which a metal oxide is supported, and provides a zeolite having an MFI crystal structure in which a metal oxide is supported through the nanocarbon template and has metal mesopores.
본 발명에서는 직접합성법으로 금속산화물이 담지된 메조세공 MFI결정구조 제올라이트를 합성한다. 특히 마이크로파 조사 환경에서 합성하므로 공정이 단순하고 금속산화물은 나노카본을 주형으로 하여 생성된 메조세공에 균일하게 분포되어 있고 더 많은 활성점을 나타낸다. In the present invention, a mesoporous MFI crystal structure zeolite carrying a metal oxide is synthesized by a direct synthesis method. In particular, since it is synthesized in the microwave irradiation environment, the process is simple and the metal oxide is uniformly distributed in the mesopores produced by using the nanocarbon as a template and shows more active points.
제올라이트 결정에 생성된 메조세공은 물질의 빠른 확산과 전달이 가능하므로 촉매반응에서 반응속도를 빠르게 하고 부반응을 줄이며 선택성을 높이고 촉매의 수명을 늘인다. 마이크로파 하에서 나노카본을 이용한 합성은 기타 금속산화물의 담지에 응용이 가능하며 공업적 촉매로 사용할 수가 있다. Mesopores generated in the zeolite crystals allow for rapid diffusion and delivery of materials, thus increasing the reaction rate in catalyst reactions, reducing side reactions, increasing selectivity, and extending catalyst life. Synthesis using nanocarbon under microwave can be applied to supporting other metal oxides and can be used as an industrial catalyst.
본 발명에서 나노카본을 사용하여 한차례의 하소로 금속산화물을 담지한 제올라이트를 수득하였으며 값싼 금속염을 사용하고 마이크로파합성으로 합성시간을 줄여 경제적으로 제조할 수 있는 기틀을 마련했다.In the present invention, a nano-carbon was used to obtain a zeolite carrying a metal oxide with a single calcination, and a low cost metal salt was used to prepare a framework that can be economically prepared by reducing the synthesis time by microwave synthesis.
금속산화물, 메조세공 제올라이트, 적접 담지, 나노카본, 탈수소반응, 마이 크로파, 분지상 알킬화반응 Metal Oxide, Mesoporous Zeolite, Directly Supported, Nanocarbon, Dehydrogenation, Microwave, Branched Alkylation
Description
본 발명은 금속산화물 담지 메조세공 제올라이트 촉매의 직접 합성, 자세하게는 제올라이트 결정속의 메조세공에 금속산화물 나노입자를 담지한 메조세공 제올라이트에 관한 것이다. 본 발명은 더 자세하게는 나노카본 입자를 주형으로 사용하여 생성된 메조세공에 촉매활성이 있는 금속산화물을 제올라이트 합성과정에서 직접 담지한 MFI 결정구조의 메조세공 제올라이트에 관한 것이다.The present invention relates to the direct synthesis of metal oxide-supported mesoporous zeolite catalysts, and more particularly, to mesoporous zeolites in which metal oxide nanoparticles are supported in mesopores in zeolite crystals. More particularly, the present invention relates to mesoporous zeolites having a MFI crystal structure in which metal oxides having catalytic activity in mesopores produced using nanocarbon particles as a template are directly supported in the process of zeolite synthesis.
금속산화물은 중요한 촉매로서 석유화학, 정밀화학, 생화학 분야 등에서 널리 적용되고 있다. 특히 금속산화물의 나노입자화는 촉매의 활성을 높이는 중요한 방법 중 하나이다. 촉매적 응용에서 금속산화물 나노입자는 집계문제를 막기 위하여 높은 비표면적을 가진 지지체에 담지하여 사용한다. Metal oxides are widely used in petrochemical, fine chemistry and biochemistry as important catalysts. In particular, nanoparticles of metal oxides are one of the important ways to increase the activity of the catalyst. In catalytic applications, metal oxide nanoparticles are used on substrates with high specific surface area to avoid aggregation problems.
최근에 많이 연구되고 있는 실리카 메조세공체(MCM-41, SBS-15)는 균일한 세공크기에 정렬된 세공구조를 가지고 있어 금속산화물 나노입자의 지지체로 많이 사용되고 있으나 열적 안정성이 낮기에 높은 온도의 기상반응에 적용되는 촉매를 위한 지지체로는 단점이 있다 (F.-S. Xiao, Y. Han, Y. Yu, X. Meng, M. Yang, and S. Wu, J. am. chem. soc. 124 (2002) 888). Silica mesoporous materials (MCM-41, SBS-15), which have recently been studied a lot, have pore structures arranged in uniform pore sizes, which are widely used as supports for metal oxide nanoparticles, but have high thermal stability due to their low thermal stability. Supports for catalysts applied to gas phase reactions have disadvantages (F.-S. Xiao, Y. Han, Y. Yu, X. Meng, M. Yang, and S. Wu, J. am. Chem. Soc 124 (2002) 888).
열적으로 안정한 제올라이트는 마이크로세공의 크기가 3-12Å로서 반응물질에 대한 확산속도가 느리고 작은 분자밖에 통과시키지 못하는 단점이 있다. Thermally stable zeolites have a micropore size of 3 to 12 microns, which results in a slow diffusion rate for the reactants and only allows small molecules to pass through.
상기 실리카 메조세공체와 제올라이트가 갖는 단점을 해결하기 위하여 메조세공을 가진 제올라이트 결정체를 합성하기 위한 연구가 많이 이루어지고 있다. 대표적인 예로 고형물질을 주형으로 사용하는 것이다.In order to solve the disadvantages of the silica mesoporous body and the zeolite, many studies have been made to synthesize zeolite crystals having mesoporous. A typical example is the use of solid materials as templates.
Claus J.H. Jacobsen 등 연구자들은 (Claus J.H. Jacobsen et al. U.S. Pat. No. 6565826 (2003)) 실용적이고 공업적으로 가능한 카본 나노입자를 주형으로 사용하여 메조세공을 가진 제올라이트 결정체를 합성하였다. Tao(Tao et al. PCT 03/104148 (2003)) 등은 카본에어러졸을 사용하여 균일한 메조세공을 지닌 제올라이트를 합성하였다. Claus J.H. Jacobsen가 나노카본을 하소하여 생성된 메조세공에 금속리간드 화합물을 담지 하였다. 이들은 나노카본을 주형으로 하여 생성된 제올라이트의 메조세공에는 금속화합물을 균일하고 안정하게 담지할 수 있다는 결론을 얻고 있다. 담지과정는 합성 후 하소하여 생성된 메조세공에 금속화합물을 침적시킨 후 재차 하소하여 얻으므로 여러가지 절차를 거치게 된다. Claus J.H. Jacobsen et al. (Claus J.H. Jacobsen et al. U.S. Pat.No. 6565826 (2003)) synthesized mesoporous zeolite crystals using practical and industrially feasible carbon nanoparticles as templates. Tao (Tao et al. PCT 03/104148 (2003)) et al. Synthesized zeolites with uniform mesopores using carbon aerosols. Claus J.H. Jacobsen calcined the nanocarbon to support the metal ligand compound in the mesoporous produced. They conclude that the mesopore of zeolite produced by using nanocarbon as a template can support a metal compound uniformly and stably. The supporting process is obtained by depositing a metal compound in mesoporous produced by calcination after synthesis and then calcining again.
최근에 본 발명자들은 5% MgO (Sang-Eon Park et al Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, 2008, PETR-113) 와 14% TiO2-ZrO2(Sang-Eon Park, Catalysis today accepted)가 담지된 메조세공 제올라이트를 마이크로파를 이용하여 직접적 방법으로 합성하고 촉매반응에 응용하였다. 또한, 마이크로파에 의한 합성은 반응기간을 줄이고 균일한 가열, 균일한 핵 형성 그리고 빠른 축합과 구조의 선택성을 가능하게 하고 입자의 크기와 형태의 조절을 쉽게 해준다(U.S. Pat. No. 20010054549 (2001).Recently we have described 5% MgO (Sang-Eon Park et al Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, 2008, PETR-113) and 14% TiO2-ZrO2 ( Mesoporous zeolite loaded with Sang-Eon Park, Catalysis today accepted) was synthesized by microwave using direct method and applied to catalysis. In addition, the synthesis by microwave reduces the reaction time, enables uniform heating, uniform nucleation, rapid condensation and selectivity of the structure, and makes it easy to control the size and shape of the particles (US Pat. No. 20010054549 (2001) .
본 발명은 금속산화물이 잘 분산되고 안정하게 담지된 메조세공 제올라이트를 제공하기 위한 것이다.The present invention is to provide a mesoporous zeolite in which a metal oxide is well dispersed and stably supported.
또한, 본 발명은 마이크로파를 이용하여 직접 합성 방법으로 금속산화물이 담지된 메조세공 제올라이트를 제공하기 위한 것이다.The present invention also provides a mesoporous zeolite on which a metal oxide is supported by a direct synthesis method using microwaves.
본 발명에 의하여, 나노카본을 주형으로 하는 메조세공을 갖고 금속산화물이 상기 나노카본 주형을 매개로 담지되는 MFI결정구조의 제올라이트가 제공된다. 본 발명에서 메조세공은 일반적으로 많이 사용하는 계면활성제 대신 고형물질인 나노카본을 주형으로 형성한다. 본 발명에서 금속산화물은 나노카본 주형을 매개로 MFI결정구조의 제올라이트에 담지되는 데 바람직하게는 나노카본을 금속 이온 수용액에 침지하고 pH를 올리면 금속수산화물이 나노카본을 시드로 하여 나노카본에 침적되기 시작한다. 금속의 수산화물로 침적된 나노카본을 주형으로 하여 제올라이트 전구체와 혼합하여 제올라이트를 합성하고 나노카본을 하소에 의하여 제거하면 금속산화물이 고르게 분산되어 담지되는 MFI결정구조의 제올라이트가 얻어진다. 상기 예시에서 보듯이 "금속산화물이 나노카본 주형을 매개로 담지된다"고 하는 것은 금속물질을 주형으로 사용되는 나노카본에 실어 제올라이트를 합성함으로 제올라이트 구조 내에 도입하고 주형인 나노카본을 태워 제거함으로써 금속물질이 산화물로서 제올라이트의 메조세공 구조 내에 잔존함을 의미한다. 제올라이트 전구체와 금속수산화물이 침적된 나노카본은, 바람직하게는, 마이크로파 조사 환경에서 합성공정을 수행한다. 담지되는 금속수산화물은 바람직하게는 Ti 수산화물, Zr 수산화물, Mg의 수산화물 또는 이들의 혼합물이다. 하소된 최종 제올라이트에서 담지된 금속의 양은 바람직하게는 실리카 무게의 0.1 내지 25중량%이다. 이 범위가 미달되면 촉매 활성이 떨어지고 이 범위를 초과하여 금속산화물을 담지하기는 어렵다.According to the present invention, there is provided a zeolite having an MFI crystal structure in which mesopores having a nanocarbon template and a metal oxide supported on the nanocarbon template are provided. In the present invention, the mesopore forms a nanocarbon, which is a solid material, as a template instead of a commonly used surfactant. In the present invention, the metal oxide is supported on the zeolite of the MFI crystal structure through the nanocarbon template. Preferably, when the nanocarbon is immersed in an aqueous metal ion solution and the pH is increased, the metal hydroxide is deposited on the nanocarbon using the nanocarbon as a seed. To start. Synthesizing zeolite by mixing zeolite precursor with nanocarbon deposited as metal hydroxide as a template and removing nanocarbon by calcination yields zeolite of MFI crystal structure in which metal oxide is evenly dispersed and supported. As shown in the above example, the term "metal oxide is supported through a nanocarbon template" means that a metal material is loaded on a nanocarbon used as a template to synthesize a zeolite, thereby introducing the metal into the zeolite structure and burning the template to remove the metal. It means that the material remains as an oxide in the mesoporous structure of the zeolite. The nanocarbon on which the zeolite precursor and the metal hydroxide are deposited is preferably subjected to the synthesis process in a microwave irradiation environment. The supported metal hydroxide is preferably Ti hydroxide, Zr hydroxide, Mg hydroxide or mixtures thereof. The amount of metal supported on the calcined final zeolite is preferably 0.1 to 25% by weight of the silica weight. If this range is not exceeded, catalytic activity falls and it is difficult to carry a metal oxide beyond this range.
본 발명의 기술은 마이크로파로 합성이 가능한 모든 제올라이트에 적용이 가능하다. The technique of the present invention is applicable to all zeolites that can be synthesized by microwave.
본 발명에 의하여 TiO2-ZrO2 이중산화물이 담지된 MFI결정구조의 제올라이트는 에틸벤젠의 탈수소반응에 탁월한 성능을 지닌 촉매로 사용된다. According to the present invention, a zeolite having an MFI crystal structure in which TiO 2 -
또한, 본 발명에 의하여 MgO가 담지된 MFI결정구조의 제올라이트는 분지상 알킬화반응에 탁월한 성능을 지닌 촉매로 사용된다. In addition, according to the present invention, MgO-supported MFI crystal zeolite is used as a catalyst having excellent performance in branched alkylation.
본 발명에서 사용하는 카본은 나노입자의 형태의 카본으로서 바람직하게는 입자의 크기가 5-20 nm 범위이며 비표면적의 범위는 1000-2000 m2/g 이고 가장 바람직하게는 입자 크기가 10-20nm이고 BET 표면적은 1500 m2/g 전후이다. 담지되는 금속산화물과 카본의 무게비는 바람직하게는 0.6-0.9의 범위이다. 최종의 메조세공 제올라이트에서 금속산화물의 금속과 제올라이트의 무게비는 바람직하게는 0.01-0.25이다.The carbon used in the present invention is carbon in the form of nanoparticles, preferably the particle size is in the range of 5-20 nm, the specific surface area is in the range of 1000-2000 m 2 / g and most preferably the particle size is 10-20 nm. And the BET surface area is around 1500 m 2 / g. The weight ratio of the supported metal oxide to carbon is preferably in the range of 0.6-0.9. The weight ratio of metal to zeolite in the metal oxide in the final mesoporous zeolite is preferably 0.01-0.25.
본 발명의 금속산화물이 담지되는 MFI결정구조의 제올라이트를 얻는 방법은 우선 금속이온 용액에 나노카본을 혼합하고 알카리를 첨가하여 pH를 올리면 금속수산화물이 나노카본을 핵으로 하여 침적되기 시작한다. 금속수산화물이 침적된 나노카본을 수거하여 제올라이트 전구체와 가열하여 나노카본이 분산된 제올라이트를 얻고 이를 고온에서 하소하여 금속산화물이 고르게 담지되는 MFI결정구조의 제올라이트가 얻어진다. In the method of obtaining a zeolite having an MFI crystal structure in which the metal oxide of the present invention is supported, first, nanocarbon is mixed with a metal ion solution and alkali is added to increase the pH, and then the metal hydroxide begins to be deposited using the nanocarbon as a nucleus. The nano-carbon on which the metal hydroxide is deposited is collected and heated with a zeolite precursor to obtain a zeolite in which the nano-carbon is dispersed and calcined at a high temperature to obtain a zeolite having an MFI crystal structure in which the metal oxide is evenly supported.
이를 좀 더 구체적으로 설명하면 금속 수산화물이 침적된 나노카본은 질산염, 염화염 등의 금속이온용액에 나노카본을 혼합하고 pH를 5 %의 암모니아수로 조절하여 생성된 수산화물을 카본표면에 침적시켜서 얻는다. 바람직하게는 수용액의 금속이온농도는 0.01-0.5 몰농도이며 침적종료의 pH범위는 9-14 이다. 금속 수산화물이 침적된 나노카본의 카본-금속 혼합물은 제올라이트 합성용액과 혼합하여 마이크로웨이브로 130-170도 범위에서 30-120분 가열하여 결정화시킨다. 검은색의 결정체 혼합물을 바람직하게는 400 내지 600℃ 범위에서 한번 하소하여 금속산화물 나노입자가 담지된 메조세공 제올라이트 결정체를 얻는다. 담지된 금속산화물 나노입자의 크기는 5-50 nm 이다.More specifically, the nano-carbon deposited with metal hydroxide is obtained by mixing the nanocarbon in a metal ion solution such as nitrate and chloride, and adjusting the pH with 5% ammonia water to deposit the hydroxide on the carbon surface. Preferably the metal ion concentration of the aqueous solution is 0.01-0.5 molar concentration and the pH range of the deposition finish is 9-14. The carbon-metal mixture of nanocarbons on which metal hydroxides are deposited is mixed with a zeolite synthetic solution and crystallized by heating for 30 to 120 minutes in a range of 130 to 170 degrees with microwave. The black crystalline mixture is preferably calcined once in the range of 400 to 600 ° C. to obtain mesoporous zeolite crystals carrying metal oxide nanoparticles. The size of the supported metal oxide nanoparticles is 5-50 nm.
본 발명의 제올라이트는 결정속에 있는 메조세공 때문에 물질의 빠른 확산과 전달이 가능하고 균일하게 분포되어 담지된 나노입자의 금속산화물에 의하여 촉매 분야에서 넓은 응용이 가능하다. 특히 고온 기상반응에서 촉매의 활성과 사용수명을 늘일 수 가 있다. The zeolite of the present invention is capable of rapid diffusion and transfer of materials due to mesopores in crystals, and is widely applied in the field of catalysts by metal oxides of nanoparticles which are uniformly distributed and supported. In particular, it is possible to extend the activity and service life of the catalyst in high temperature gas phase reaction.
실시예에 의하여 본 발명을 예시하여 자세히 설명할 것이다.The present invention will be described in detail by way of examples.
본 발명에서는 직접 합성법으로 금속산화물이 담지된 메조세공 MFI결정구조 제올라이트를 합성한다. 특히 마이크로파 조사 환경에서 직접 합성하므로 공정이 단순하고 금속산화물은 나노카본을 주형으로 하여 생성된 메조세공에 균일하게 분포되여 있고 더 많은 활성점을 나타낸다. In the present invention, a mesoporous MFI crystal structure zeolite carrying a metal oxide is synthesized by direct synthesis. In particular, since it is directly synthesized in a microwave irradiation environment, the process is simple and the metal oxide is uniformly distributed in the mesopores produced by using the nanocarbon as a template and shows more active points.
TiO2-ZrO2 이중 산화물이 담지된 본 발명의 제올라이트는 에틸벤젠의 탈수소 반응에서 30 시간의 반응과정에 안정된 반응성을 보여주고 있으며 촉매에 침적되는 코크도 현저하게 줄어들었다. MgO가 담지된 본 발명의 제올라이트도 최적의 염기성으로 분지상 알킬화반응의 촉매로 사용할 수 있다.The zeolite of the present invention supported with TiO 2 -
제올라이트 결정에 생성된 메조세공은 물질의 빠른 확산과 전달이 가능하므로 촉매반응에서 반응속도를 빨리하고 부반응을 줄이며 선택성을 높이하고 촉매의 수명을 늘인다. 마이크로파 하에 나노카본을 이용한 직접적 합성은 기타 금속산화물의 담지에 응용이 가능하며 공업적 촉매로 사용할 수가 있다. Mesopores produced in zeolite crystals can be used for rapid diffusion and delivery of materials, resulting in faster reaction rates, lower side reactions, higher selectivity, and longer catalyst life. Direct synthesis using nanocarbon under microwave can be applied to supporting other metal oxides and can be used as an industrial catalyst.
본 발명에서 나노카본을 사용하여 한차례의 하소로 금속산화물을 담지하여 제올라이트를 합성하였으며 값싼 금속염을 사용하고 마이크로파합성으로 합성시간을 줄여 경제성을 달성하였다.In the present invention, the nano-carbon was used to support the metal oxide with one time of calcination to synthesize zeolite, and the economical efficiency was achieved by using a cheap metal salt and reducing the synthesis time by microwave synthesis.
이하 실시예에 의하여 본 발명을 예시하여 설명한다. 합성방법과 X선회절분석법, 주사전자현미경, 투과전자현미경, 가스흡착 탈착 의한 물성조사 그리고 스티렌 모노머를 합성하는 에틸벤젠의 탈수소화반응들이 예시되어 자세히 설명되어 있다.The present invention is illustrated by the following examples. Synthesis methods, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, gas adsorption and desorption, and dehydrogenation of ethylbenzene to synthesize styrene monomer are described in detail.
실시예1Example 1
금속수산화물이 침적된 Metal hydroxide deposited 나노카본의Nanocarbon 제조 Produce
500 ml의 비커에 6 g의 12nm 입자크기에 1500 m2/g 비표면적의 카본(BP- 2000, Carbot Corp., USA)과 ZrOCl2 와 TiCl4 1.5mM 용액 200 ml를 넣고 기계적으로 강하게 교반한다. 5 % 암모니아수로 용액의 pH를 10까지 중화한다. 침적된 물질을 증류수로 중성까지 씻는다. 120 도 오븐에서 24 시간 건조시킨다.In a 500 ml beaker, 6 g of 12 nm particle size and 200 ml of 1500 m 2 / g specific surface carbon (BP-2000, Carbot Corp., USA) and 200 ml of ZrOCl2 and TiCl4 1.5 mM solution are stirred mechanically. Neutralize the pH of the solution to 10 with 5% aqueous ammonia. The deposited material is washed with distilled water to neutral. Dry in a 120 degree oven for 24 hours.
메조세공Mezzo 제올라이트에 On zeolite TiO2TiO2 -- ZrO2ZrO2 이중금속산화물 나노입자의 담지 Support of Double Metal Oxide Nanoparticles
30 g의 20 % 테트라프로필알미늄하이드록사이드("TPAOH")용액에 30g의 증류수와 15g의 TEOS를 섞어 실온에서 4시간 교반하여 투명한 용액을 얻는다. 상기 침적된 나노카본을 넣고 1시간 더 교반한 후 마이크로웨이브로 1시간 동안 165 도를 유지하고 파워는 300W로 한다. 결정화된 산물을 거르고 증류수로 씻고 120 도에서 건조시킨다. 주형물질은 550도에서 6시간 하소하여 제거한다. 30 g of 20% tetrapropylaluminum hydroxide ("TPAOH") solution is mixed with 30 g of distilled water and 15 g of TEOS and stirred at room temperature for 4 hours to obtain a clear solution. After the deposited nanocarbon was added and stirred for 1 hour, the microwave was kept at 165 degrees for 1 hour and the power was 300W. The crystallized product is filtered off, washed with distilled water and dried at 120 degrees. The template material is removed by calcining at 550 ° C for 6 hours.
합성된 제올라이트결정(TZ/CS-1)을 X선회절분석기로 분석하였다. 전형적인 MFI 구조의 결정체가 합성되였고(도 1) 금속산화물의 결정구조는 결정속의 메조세공에 나노입자 형태로 담지되여서 회절반사를 보여주지 않는다. 투과전자현미경으로 제올라이트결정속의 메조세공을 볼수 있고 EDX 분석으로 그속에 담지되여 있는 TiO2과 ZrO2를 확인하였다(도 2). 라만 스펙트럼을 통하여 이중산화물이 새로운 결정구조를 이루고 있음을 보여준다(도 3). NH3 와 CO2의 TPD(temperature programmed desorption) 분석을 통하여 담지된 나노입자의 산, 염기점이 담지 전에 비하여 더 많이 나타나고 있음을 확인하였다(도 4 와 도 5).Synthesized zeolite crystals (TZ / CS-1) were analyzed by X-ray diffractometer. Crystals of a typical MFI structure were synthesized (FIG. 1), and the crystal structure of the metal oxide was supported in the form of nanoparticles in the mesopores in the crystal, showing no diffraction reflection. The transmission electron microscope showed mesopores in the zeolite crystals and the
실시예2Example 2
MgOMgO 나노입자의 Nanoparticles 담지된Supported 메조세공Mezzo 제올라이트의 제조 Preparation of Zeolite
ZrOCl2 와 TiCl4 1.5mM 용액 200 ml 대신에 0.5mM인 마그네슘 질산염용액 200 ml 를 사용하는 것을 제외하고는 실시예1에 따라 마그네슘수산화물이 지지된 나노카본을 주형으로 제올라이트를 합성하였다.Zeolite was synthesized using magnesium hydroxide-supported nanocarbon as a template according to Example 1, except that 200 ml of a magnesium nitrate solution of 0.5 mM was used instead of 200 ml of a 1.5 mM solution of ZrOCl2 and TiCl4.
합성된 결정은 X선회절분석기로 MFI구조임을 알수 있고 MgO 결정은 나노입자가 메조세공에 담지되여 있어 회절반사를 보여주지 않는다. 투과전자현미경을 통하여 메조세공과 담지된 MgO를 확인하였다. CO2의 TPD(temperature programmed desorption) 분석을 통하여 담지된 나노입자의 염기점이 담지 전에 비하여 더 많이 나타나고 있음을 확인하였다(도 6).The synthesized crystals can be seen as X-ray diffractometer and the MFI structure, and the MgO crystals do not show diffraction reflection because nanoparticles are supported in mesopores. Mesopores and supported MgO were confirmed by transmission electron microscopy. Temperature programmed desorption (TPD) analysis of
실시예3Example 3
에틸벤젠의 탈수소반응에서 In dehydrogenation of ethylbenzene 메조세공에To mezzo 담지된Supported TiO2TiO2 -- ZrO2ZrO2 의 촉매반응성 시험Catalytic Reactivity Test of
실시예1에서 제조된 탈수소 촉매 0.5 g 을 18-30 메쉬(mesh)의 크기로 내경이 1cm 스테인레스 스틸재질의 고정층 촉매 반응기에 충진한 후 반응시키기 전에 보통 600 ℃에서 질소로 1시간 동안 전처리하였으며 반응물인 알킬벤젠을 이산화탄소 기류하에서 액체주입 펌프를 통해 촉매층을 통과시켜 반응시켰다. 알킬벤젠은 정량펌프를 사용하여 주입하고 유량조절 장치를 통과하는 이산화탄소 기체(20 ml/min)는 알킬 벤젠(0.4 g/min의 속도로)과 함께 섞여 예열기에서 200 ℃로 예열한 후 반응기에 0.4 g/min의 속도로 주입하였다. 반응 후 액상의 반응물 및 생성물은 장치에 직접 연결된 기체크로마토그래프(DS6200 도남기기)로 분석하고 도7 에 결과를 표시하였다. 에틸벤젠 전환율과 스티렌 수율은 다음과 같이 정의하였다.0.5 g of the dehydrogenation catalyst prepared in Example 1 was charged into a fixed bed catalyst reactor made of 1-30 cm stainless steel with a size of 18-30 mesh, and then pretreated with nitrogen at 600 ° C. for 1 hour before reaction. Phosphorus alkylbenzene was reacted by passing the catalyst bed through a liquid injection pump under a stream of carbon dioxide. Alkylbenzene is injected using a metering pump, and carbon dioxide gas (20 ml / min) passing through the flow control unit is mixed with alkyl benzene (at a rate of 0.4 g / min), preheated to 200 ° C. in a preheater, and then 0.4 Inject at a rate of g / min. After the reaction, the reactants and products in the liquid phase were analyzed by a gas chromatograph (DS6200 dormant device) directly connected to the apparatus, and the results are shown in FIG. Ethylbenzene conversion and styrene yield were defined as follows.
에텔벤젠 전환율(%)=100X{(주입되는 에틸벤젠의 농도 - 반응한 후에 잔류하는 에틸벤젠의 농도)/ 주입되는 에틸벤젠의 농도}% Ethylenebenzene conversion (%) = 100X {concentration of ethylbenzene injected-concentration of ethylbenzene remaining after reaction) / concentration of ethylbenzene injected}
스티렌 수율(%)=100X(반응으로 생성된 스티렌의 농도/ 주입되는 에틸벤젠의 농도)Styrene yield (%) = 100X (concentration of styrene produced by reaction / concentration of ethylbenzene injected)
실시예4Example 4
실시예2에서 제조된 촉매 0.5 g을 18-30 메쉬(mesh)의 크기로 내경이 1cm 스테인레스 스틸재질의 고정층 촉매 반응기에 충진한 후 반응시키기 전에 보통 550 ℃에서 질소로 3시간 동안 전처리하였다. 500 도에서 반응물인 톨루엔과 메탄올을 몰비 10대1로 질소 기류 하에서 액체주입 펌프를 통해 촉매층을 통과시켜 반응시켰다. 통과하는 질소 기체는 반응물과 함께 섞여 예열기에서 150 ℃로 예열한 후 반응기에 0.4 g/min의 속도로 주입하였다. 반응 후 액상의 반응물 및 생성물은 장치에 직접 연결된 기체크로마토그래프(DS6200 도남기기)로 분석하였다. C8(에틸벤젠과 스티렌) 수율은 반응 2시간에 8%였다(도 8). C8(에틸벤젠과 스티렌) 수율은 다음과 같이 계산한다.0.5 g of the catalyst prepared in Example 2 was packed into a fixed bed catalyst reactor made of 1 cm stainless steel with an internal diameter of 18-30 mesh and then pretreated with nitrogen at 550 ° C. for 3 hours before reaction. At 500 degrees, reactants toluene and methanol were reacted by passing the catalyst bed through a liquid injection pump under a nitrogen stream at a molar ratio of 10: 1. The nitrogen gas passing through was mixed with the reactant, preheated to 150 ° C. in a preheater, and injected into the reactor at a rate of 0.4 g / min. After the reaction, the reactants and products in the liquid phase were analyzed by a gas chromatograph (DS6200 dormer) directly connected to the apparatus. The yield of C8 (ethylbenzene and styrene) was 8% at 2 hours of reaction (Figure 8). The C8 (ethylbenzene and styrene) yield is calculated as follows.
C8 수율(%)=100X{(반응으로 생성된 스티렌농도+ 에틸벤젠의 농도)/(주입되는 메탄올의 농도 - 반응한 후에 잔류하는 메탄올의 농도)}C8 yield (%) = 100X {(concentration of styrene produced by reaction + ethylbenzene concentration) / (concentration of methanol injected-concentration of methanol remaining after reaction)}
도 1은 (a) TiO2, (b) ZrO2, (c) TiO2-ZrO2, (d) CS-1와 (e) TZ/CS-1의 XRD 패턴1 shows XRD patterns of (a) TiO 2 , (b) ZrO 2 , (c) TiO 2 -ZrO 2 , (d) CS-1 and (e) TZ / CS-1
도 2는 TZ/CS-1의 각각 (a) SEM 이미지, (b) TEM 이미지, (c) TEM 이미지에서 백색 영역의 EDXS의 스펙트럼과 (d) TEM이미지에서 흑색 영역의 EDXZS 스펙트럼 Figure 2 shows (a) SEM image, (b) TEM image, (c) EDXS spectrum of white region in TEM image and (D) EDXZS spectrum of black region in TEM image of TZ / CS-1, respectively.
도 3은 각각 (a) TiO2, (b) ZrO2, (c) TiO2-ZrO2, (d) TZ/CS-1의 라만 스펙트럼3 shows Raman spectra of (a) TiO 2 , (b) ZrO 2 , (c) TiO 2 -ZrO 2 , and (d) TZ / CS-1, respectively.
도 4는 각각 (a) TiO2-ZrO2 이중산화물과 (b) TZ/CS-1의 NH3 TPD프로필4 shows (a) TiO 2 -ZrO 2, respectively. Bioxide and (b) NH 3 of TZ / CS-1 TPD Profile
도 5는 각각 (a) TiO2-ZrO2이중산화물과 (b) TZ/CS-1의 CO2 TPD프로필Figure 5 is respectively (a) TiO 2 -ZrO 2 of the double oxide and (b) TZ / CS-1
도 6은 각각 a) MgO, b) CS-1, c) 1 % MgO/CS-1과 d) 5 % MgO/CS-1의 CO2TPDFigure 6 shows CO 2 TPD of a) MgO, b) CS-1, c) 1% MgO / CS-1 and d) 5% MgO / CS-1, respectively.
도 7은 에틸벤젠의 탈수소화반응 전환율 그래프7 is a graph of conversion rate of dehydrogenation of ethylbenzene
도 8은 MgO 촉매상의 톨루엔 분지상 알킬화 반응의 수율과 선택성 그래프8 is a graph of the yield and selectivity of toluene branched alkylation reaction on MgO catalyst
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080050581A KR100979106B1 (en) | 2008-05-30 | 2008-05-30 | mesoporous MFI zeolite supporting metal oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080050581A KR100979106B1 (en) | 2008-05-30 | 2008-05-30 | mesoporous MFI zeolite supporting metal oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090124384A KR20090124384A (en) | 2009-12-03 |
KR100979106B1 true KR100979106B1 (en) | 2010-08-31 |
Family
ID=41686322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080050581A KR100979106B1 (en) | 2008-05-30 | 2008-05-30 | mesoporous MFI zeolite supporting metal oxides |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100979106B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170917B1 (en) | 2010-01-08 | 2012-08-06 | 성균관대학교산학협력단 | Method for preparing mesoporous metal oxides |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101364139B1 (en) * | 2011-11-07 | 2014-02-18 | 주식회사 미랜 | Method for preparation of mesoporous zeolite/Mn oxide composites, and the mesoporous zeolite/Mn oxide composites thereby |
WO2015001122A1 (en) | 2013-07-05 | 2015-01-08 | Danmarks Tekniske Universitet | Method of producing zeolite encapsulated nanoparticles |
EP3016741B1 (en) | 2013-07-05 | 2020-07-01 | Danmarks Tekniske Universitet | Method for producing zeolites and zeotypes |
KR102017207B1 (en) | 2015-12-09 | 2019-09-02 | 주식회사 엘지화학 | Catalyst for oxidative dehydrogenation and method for preparing the catalyst |
CN114380301B (en) * | 2022-01-27 | 2023-03-21 | 复旦大学 | Nano-sheet MFI molecular sieve and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1106575A2 (en) | 1999-12-06 | 2001-06-13 | Haldor Topsoe A/S | Method of preparing zeolite single crystals |
EP1284237A1 (en) | 2001-08-15 | 2003-02-19 | Haldor Topsoe A/S | Method of preparing zeolite single crystals with straight mesopores |
WO2003104148A1 (en) | 2002-06-10 | 2003-12-18 | 科学技術振興事業団 | Method for synthesizing mesoporous zeolite |
KR20070006922A (en) * | 2004-04-23 | 2007-01-11 | 매사추세츠 인스티튜트 오브 테크놀로지 | Mesostructured zeolitic materials and methods of making and using the same |
-
2008
- 2008-05-30 KR KR1020080050581A patent/KR100979106B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1106575A2 (en) | 1999-12-06 | 2001-06-13 | Haldor Topsoe A/S | Method of preparing zeolite single crystals |
EP1284237A1 (en) | 2001-08-15 | 2003-02-19 | Haldor Topsoe A/S | Method of preparing zeolite single crystals with straight mesopores |
WO2003104148A1 (en) | 2002-06-10 | 2003-12-18 | 科学技術振興事業団 | Method for synthesizing mesoporous zeolite |
KR20070006922A (en) * | 2004-04-23 | 2007-01-11 | 매사추세츠 인스티튜트 오브 테크놀로지 | Mesostructured zeolitic materials and methods of making and using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170917B1 (en) | 2010-01-08 | 2012-08-06 | 성균관대학교산학협력단 | Method for preparing mesoporous metal oxides |
Also Published As
Publication number | Publication date |
---|---|
KR20090124384A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martínez et al. | Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores | |
KR100979106B1 (en) | mesoporous MFI zeolite supporting metal oxides | |
Yin et al. | Synthesis of the nanosized MCM-22 zeolite and its catalytic performance in methane dehydro-aromatization reaction | |
Hosseinpour et al. | Novel synthesis and characterization of Fe-ZSM-5 nanocrystals in hot compressed water for selective catalytic reduction of NO with NH3 | |
Guo et al. | Low-cost synthesis of nanoaggregate SAPO-34 and its application in the catalytic alcoholysis of furfuryl alcohol | |
Xu et al. | Methane non-oxidative aromatization on Mo/ZSM-5: Effect of adding triethoxyphenylsilanes into the synthesis system of ZSM-5 | |
Zhou et al. | A facile one-pot synthesis of hierarchically porous Cu (I)-ZSM-5 for radicals-involved oxidation of cyclohexane | |
Wen et al. | Organosilane-assisted synthesis of hierarchical porous ZSM-5 zeolite as a durable catalyst for light-olefins production from chloromethane | |
Appaturi et al. | Efficient synthesis of butyl levulinate from furfuryl alcohol over ordered mesoporous Ti-KIT-6 catalysts for green chemistry applications | |
Shi et al. | Hierarchically structured Pt/K-Beta zeolites for the catalytic conversion of n-heptane to aromatics | |
Chen et al. | Synthesis of ZSM-5 via organotemplate-free and dry gel conversion method: Investigating the effects of experimental parameters | |
Jin et al. | Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances | |
Xue et al. | Hollow TS-1 mesocrystals: hydrothermal construction and high catalytic performances in cyclohexanone ammoximation | |
Ge et al. | One-pot synthesis of hierarchically structured ZSM-5 zeolites using single micropore-template | |
Sadeghpour et al. | Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction | |
Zhao et al. | Synthesis of hierarchical ZSM-5 aggregates by an alkali-treated seeds method with cetyltrimethylammonium bromide for the methanol to gasoline reaction | |
Chen et al. | Synthesis of nano-ZSM-5 zeolite via a dry gel conversion crystallization process and its application in MTO reaction | |
Zhang et al. | Direct hydrothermal synthesis of Mo-containing MFI zeolites using Mo-EDTA complex and their catalytic application in cyclohexene epoxidation | |
Wang et al. | Synthesis of submicron-sized SAPO-34 as efficient catalyst for olefin generation from CH3Br | |
Reddy et al. | Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream | |
KR101451902B1 (en) | Zeolite with MRE structure and their analogue materials possessing mesopore, and synthesis method thereof | |
Rana et al. | Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective hydroxylation of benzene to phenol | |
Bao et al. | Synthesis of amorphous silica-alumina with enhanced specific surface area and acidity by pH-swing method and its catalytic activity in cumene cracking | |
Jin et al. | Catalytic enhancement of cyclohexene hydration by Ga-doped ZSM-5 zeolites | |
Wang et al. | High selectivity in methanethiol synthesis over a coated composite comprising ZSM-5 with t-ZrO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130527 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140612 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150626 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160602 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |