WO2022196717A1 - Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life - Google Patents

Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life Download PDF

Info

Publication number
WO2022196717A1
WO2022196717A1 PCT/JP2022/011818 JP2022011818W WO2022196717A1 WO 2022196717 A1 WO2022196717 A1 WO 2022196717A1 JP 2022011818 W JP2022011818 W JP 2022011818W WO 2022196717 A1 WO2022196717 A1 WO 2022196717A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
catalytically active
producing
active element
Prior art date
Application number
PCT/JP2022/011818
Other languages
French (fr)
Japanese (ja)
Inventor
悠 西山
宣利 柳橋
壮一郎 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023507149A priority Critical patent/JPWO2022196717A1/ja
Publication of WO2022196717A1 publication Critical patent/WO2022196717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/32Regeneration or reactivation of catalysts comprising compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene

Definitions

  • the present invention relates to a catalyst, a method for producing a catalyst, a method for producing a diene compound, a method for producing a polymer, a method for producing a polymer molded article, a method for measuring catalyst performance, and a method for extending the service life.
  • a diene compound such as 1,3-butadiene which is a typical example of a diene compound, is used as a raw material for styrene-butadiene rubber (SBR) and the like.
  • SBR styrene-butadiene rubber
  • butadiene was purified from the C4 fraction.
  • the C4 fraction is a by-product of naphtha cracking to produce ethylene from petroleum.
  • oil usage has decreased as shale gas usage has increased.
  • the production of butadiene from naphtha cracking of petroleum is also decreasing. Therefore, there is a need for alternative methods for producing diene compounds.
  • Patent Document 1 describes a method for producing 1,3-butadiene in which 1,3-butadiene is obtained by bringing a raw material containing ethanol into contact with a catalyst under heating.
  • the used catalyst is heated to about 350 to 500 ° C. in a reactor, air is circulated, and a regeneration treatment is performed for 1 to 24 hours, thereby reducing the catalytic activity to unused. It is also described that the catalyst can be recovered to 90% or more and reused.
  • Patent Document 2 discloses a catalyst comprising a porous support, an oxide of a metal element A, and an oxide of a metal element B, wherein at least a portion of the oxide of the metal element A binds to the porous support. It is Further, FIG. 1, paragraphs 0037 to 0038 of Patent Document 2 disclose a catalyst having a configuration in which the surface of a porous support (silica) is coated with an oxide of metal element A and an oxide of metal element B. ing.
  • Patent Document 3 describes a metal-impregnated silica catalyst for selectively converting ethanol to butadiene, that is, a catalyst for butadiene synthesis. More specifically, the catalyst for butadiene synthesis of Patent Document 3 contains hafnium (Hf) and two or more catalytically active metals M1 and M2, wherein the catalytically active metals M1 and M2 are different from each other, It is stated to be selected from the group consisting of zinc (Zn), copper (Cu) and combinations thereof.
  • Hf hafnium
  • M1 and M2 two or more catalytically active metals M1 and M2 are different from each other, It is stated to be selected from the group consisting of zinc (Zn), copper (Cu) and combinations thereof.
  • the efficiency of temperature rise or temperature drop of the catalyst is too high, it becomes difficult to precisely control the temperature of the catalyst. For example, if the temperature rise efficiency of the catalyst is too high, the temperature of the catalyst will rise more than necessary in the regeneration process, which is often an exothermic process. The structure may collapse. Further, in this case, the temperature of the reaction tube filled with the catalyst may exceed the endurable temperature and the reaction tube may deteriorate.
  • the present invention has been made in view of such circumstances, and an object thereof is, for example, a catalyst with high conversion efficiency (i.e., diene compound yield) and high productivity from raw materials containing alcohol to diene compounds, and Catalysts with high initial performance and long life, methods for producing these catalysts, methods for producing diene compounds using such catalysts, methods for producing polymers and methods for producing polymer molded articles, and catalyst performance based on the characteristics of various catalysts It is to provide a measuring method and a method for prolonging the service life.
  • a catalyst with high conversion efficiency i.e., diene compound yield
  • high productivity i.e., diene compound yield
  • Catalysts with high initial performance and long life methods for producing these catalysts, methods for producing diene compounds using such catalysts, methods for producing polymers and methods for producing polymer molded articles, and catalyst performance based on the characteristics of various catalysts It is to provide a measuring method and a method for prolonging the service life.
  • the catalyst of the present invention contains a catalytically active element and a carrier supporting the catalytically active element, and has a temperature elevation efficiency represented by the following formula (1) of 5 to 6.5%. Characterized by
  • the catalyst of the present invention contains a catalytically active element and a carrier that supports the catalytically active element, and has a cooling efficiency represented by the following formula (2) of 2.6 to 4.5%. characterized by
  • the catalyst of the present invention contains a catalytically active element and a carrier that supports the catalytically active element, and has a whiteness ratio represented by the following formula (3) of 98 to 130%. do.
  • the catalyst of the present invention is a catalyst in which the support is composed of an oxide containing element X, and the catalytically active element supported on the surface and inside of the support, It is preferable that the amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth is larger than the amount of the catalytically active element contained inside the region of the catalyst.
  • the predetermined depth region is a region up to 60 ⁇ m from the surface of the catalyst.
  • A is the molar ratio of the catalytically active element to the element X in the entire catalyst
  • B is the molar ratio of the catalytically active element to the element X in the region up to the predetermined depth. Then, B/A is preferably 1-9.
  • the molar ratio of the catalytically active element to the element X is preferably determined by measurement using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method). .
  • the catalytically active element is preferably at least one element belonging to groups 2 to 6, 11 and 12 of the periodic table.
  • the carrier is preferably a porous carrier.
  • the carrier preferably comprises an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table.
  • the catalyst of the present invention contains hafnium (Hf) and at least one element M selected from titanium (Ti) and zirconium (Zr), and the molar ratio of the element M to the hafnium (Hf) ( M/Hf) is more than 20 and 500 or less.
  • the element M is preferably zirconium (Zr).
  • the catalyst of the present invention is an oxide further supporting the hafnium (Hf) and the element M and containing at least one element X selected from groups 13 and 14 of the periodic table. It is preferred to include a carrier composed of: (14)
  • the catalyst of the present invention is a catalyst containing the hafnium (Hf) and the element M supported on the surface and inside of the carrier, and contained in a region from the surface of the catalyst to a predetermined depth. It is preferable that the amounts of the hafnium (Hf) and the element M contained in the catalyst are larger than the amounts of the hafnium (Hf) and the element M contained inside the region of the catalyst.
  • the element X is preferably silicon (Si).
  • the molar ratio (M/X) of the element M to the element X is preferably 0.0001 to 0.5.
  • the catalyst of the present invention is preferably subjected to a reaction process of converting into a second compound by contact with the first compound and a regeneration process of regenerating the catalyst after the reaction process.
  • the heating temperature in the reaction process is preferably 200-600°C.
  • the heating temperature in the regeneration process is preferably 200-600°C.
  • the catalyst of the present invention is preferably a diene compound synthesis catalyst for synthesizing a diene compound from an alcohol-containing raw material.
  • the raw material preferably contains at least one of ethanol and acetaldehyde.
  • One aspect of the method for producing the catalyst of the present invention is a step of preparing a solution obtained by dissolving the compound containing the catalytically active element in a solvent and the carrier; contacting and impregnating the carrier with the solution; calcining the carrier impregnated with the solution; A non-explosive solvent is used as the solvent.
  • Another aspect of the method for producing a catalyst of the present invention is A solution obtained by dissolving the compound containing hafnium (Hf) in a solvent and a solution obtained by dissolving the compound containing the element M in a solvent, or the compound containing the hafnium (Hf) and the compound containing the element M are combined into a solvent.
  • the carrier is preferably a porous carrier.
  • the carrier is composed of an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table.
  • the method for producing a diene compound of the present invention is characterized in that the catalyst of the present invention is brought into contact with an alcohol-containing raw material to produce a diene compound.
  • the method for producing a polymer of the present invention is characterized by producing a polymer using at least part of the diene compound produced by the method for producing a diene compound of the present invention as a polymer raw material.
  • the method for producing a polymer molded product of the present invention is characterized by molding the polymer produced by the method for producing a polymer of the present invention.
  • the method for measuring the catalytic performance of a catalyst suitable for synthesizing a diene compound according to the present invention is characterized by measuring at least one selected from temperature rising efficiency, cooling efficiency and whiteness ratio.
  • the life extension method of the present invention is a method for extending the life of a catalyst comprising a carrier composed of an oxide containing element X and a catalytically active element supported on the surface and inside of the carrier. There is By making the amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth greater than the amount of the catalytically active element contained inside the region of the catalyst, The life of the catalyst is extended as compared with other catalysts in which the catalytically active element is supported only in the region of .
  • a diene compound can be produced from an alcohol-containing raw material at a high yield over a long period of time from the initial stage.
  • the catalyst of the present invention is used, for example, as a diene compound synthesis catalyst for synthesizing a diene compound (second compound) by contact with a raw material containing an alcohol (first compound).
  • a diene compound synthesis catalyst for synthesizing a diene compound (second compound) by contact with a raw material containing an alcohol (first compound).
  • first compound a raw material containing an alcohol
  • the performance (activity) of the catalyst to which the carbon or carbon compound produced during the synthesis of the diene compound adheres is lowered, the carbon or carbon compound is removed by combustion and regenerated by heating in an oxygen-containing atmosphere. (recover activity).
  • Such a catalyst is preferably subjected to a reaction process for converting an alcohol (first compound) into a diene compound (second compound) and a regeneration process for regenerating the catalyst after undergoing this reaction process, more preferably a reaction process. and the regeneration process repeatedly.
  • a diene compound can be continuously produced from a raw material containing alcohol.
  • the raw material preferably contains at least one of ethanol and acetaldehyde, more preferably ethanol.
  • 1,3-butadiene is preferable as described later.
  • One aspect of the catalyst of the present invention includes a catalytically active element and a carrier that supports this catalytically active element.
  • a catalytically active element preferably satisfies one of conditions I to III shown below, more preferably satisfies two conditions, and further preferably satisfies three conditions.
  • Condition I The heating efficiency represented by the following formula (1) is 5 to 6.5%.
  • the temperature rising efficiency or the temperature falling efficiency of the catalyst becomes moderate, so that the time required for the temperature rising or falling of the catalyst can be prevented from becoming unnecessarily long.
  • the time of the reaction process time during which the catalyst can be used
  • the time of the regeneration process can be made longer than the time of the regeneration process, so that the desired amount of 1,3-butadiene can be produced continuously and stably.
  • the temperature of the catalyst can be easily controlled, even if the regeneration process is an exothermic process, it is possible to prevent the temperature of the catalyst from rising more than necessary during the regeneration process.
  • condition III easily satisfies condition I and/or condition II.
  • the temperature rising efficiency under condition I may be 5 to 6.5%, preferably 5.2 to 6.4%, more preferably 5.4 to 6%.
  • the temperature lowering efficiency under condition II may be 2.6 to 4.5%, preferably 2.8 to 4.2%, more preferably 3 to 4%.
  • the whiteness ratio under condition III may be 98 to 130%, preferably 100 to 125%, more preferably 102 to 115%. Therefore, when at least one of the above conditions is satisfied, the above effects can be further enhanced.
  • the above conditions I to III are the quantitative ratio of the catalytically active element and the carrier, the selection of the catalytically active element and the type of the carrier, the conditions of the carrier (average pore diameter, total fineness Pore volume, specific surface area, mesopore volume ratio, etc.), catalyst production conditions (method of contacting a solution of a compound containing a catalytically active element with a support, contact time, type of washing liquid, etc.).
  • the carrier is preferably a porous carrier, preferably a porous carrier having mesopores.
  • the catalytically active element is supported on the pore walls forming the mesopores, so the specific surface area (active site) of the catalyst can be increased. can be increased.
  • the raw material alcohol (ethanol) and its intermediate (crotonaldehyde) enter the mesopores, increasing the collision frequency and improving the reactivity.
  • the resulting catalyst can more reliably satisfy the conditions I to III.
  • the average pore diameter of mesopores is preferably 2 to 50 nm, more preferably 2 to 30 nm, even more preferably 2 to 20 nm, and particularly preferably 2 to 15 nm.
  • the "average pore diameter" can be a value calculated from the total pore volume (the total pore volume of the porous carrier) and the BET specific surface area. Specifically, a calculation method (BJH method) can be used that assumes that the shape of the mesopores is cylindrical. In this case, if the side area of the cylinder is defined as the BET specific surface area A1 and the volume of the cylinder is defined as the total pore volume V1, the average pore diameter of the mesopores can be calculated by 4V1/A1.
  • the total pore volume of the porous carrier is preferably 0.1 to 10 mL/g, more preferably 0.1 to 5 mL/g, and 0.1 to 2 mL/g. More preferred.
  • the total pore volume of the porous support is preferably 0.1 to 10 mL/g, more preferably 0.1 to 5 mL/g, and 0.1 to 2 mL/g. More preferred.
  • the specific surface area of the carrier is preferably 100 to 10,000 m 2 /g, more preferably 200 to 5,000 m 2 /g, still more preferably 200 to 1,500 m 2 /g, and 700 to 1,200 m 2 /g. is particularly preferred.
  • the specific surface area of the carrier By setting the specific surface area of the carrier within the above range, it is possible not only to easily produce a catalyst that satisfies the above conditions I to III, but also to sufficiently increase the number of active sites, and the raw material and the catalyst (catalytically active element ), thus increasing the yield of the diene compound. As a result, high conversion of the feed is maintained even when the alcohol or both alcohol and aldehyde content in the feed is high.
  • the "specific surface area" of the carrier means the BET specific surface area measured by the BET gas adsorption method using nitrogen as the adsorption gas.
  • the product of the total pore volume and the specific surface area of the porous carrier is preferably 10 to 100,000 mL ⁇ m 2 /g 2 , more preferably 20 to 25,000 mL ⁇ m 2 /g 2 , and 20 to 2,000 mL. - It is more preferable that it is m ⁇ 2 >/g ⁇ 2 >.
  • the mesopore volume ratio (total mesopore volume/total pore volume x 100) of the porous carrier is preferably 50% or more, more preferably 50 to 100%, and 80 to 100%. It is more preferable to be 1, and particularly preferably 90 to 100%.
  • the ratio of the mesopore volume ratio can be controlled by the ratio of raw materials (such as compounds containing the element X) used in the method for producing the catalyst described below, the calcination temperature in the calcination step, and the like. Further, the shape of the mesopores of the porous carrier and whether or not the pore walls forming the mesopores have a crystal structure can be confirmed by observing diffraction peaks by X-ray diffraction. . Furthermore, the shape and regularity of mesopores can be confirmed by observing the porous carrier with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the shape of the carrier is not particularly limited, but is preferably granular, for example. If it is granular, it is easy to moderately adjust the packing density of the catalyst of the present invention.
  • "granular" is a concept including powdery, particulate, lumpy, pellet-like, etc., and its shape may be any of spherical, plate-like, polygonal, crushed, columnar, needle-like, scale-like, etc. .
  • the average particle size of the carrier is preferably 150 ⁇ m to 30 mm, more preferably 200 ⁇ m to 20 mm, even more preferably 300 ⁇ m to 10 mm. With a carrier having such an average particle size, the packing density of the catalyst of the present invention tends to be moderate.
  • average particle size means the average value of particle sizes of arbitrary 200 catalysts in one field observed with an electron microscope.
  • particle size means the maximum length of the distance between two points on the outline of the catalyst.
  • the maximum length of the distance between two points on the contour line of the end face is defined as the "particle diameter”.
  • the average particle size is, for example, in the form of lumps, and means the average particle size of the secondary particles when the primary particles are agglomerated.
  • the carrier that supports the catalytically active element is preferably composed of an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table.
  • the element X examples include elements belonging to Group 13 such as aluminum (Al), gallium (Ga), and indium (In), carbon (C), silicon (Si), germanium (Ge), tin (Sn), and the like. and elements belonging to Group 14 of Among them, the element X is preferably an element belonging to Group 14, more preferably carbon or silicon, and still more preferably silicon.
  • the carrier composed of the oxide containing the element X easily stably supports the catalytically active element.
  • the carrier may contain the above element X singly or in combination of two or more.
  • catalytically active element and the element X support
  • a particularly preferred combination of the catalytically active element and the element X is hafnium as the catalytically active element and silicon as the element X.
  • the packing density of the catalyst of the present invention is preferably 1.1 g/mL or less, more preferably 0.4 to 1 g/mL, and further preferably 0.5 to 0.9 g/mL. preferable. If the packing density is too low, the feedstock passes too fast and the contact time between the catalyst and the feedstock is reduced. As a result, the yield of the diene compound tends to decrease. On the other hand, if the packing density is too high, the passage speed of the raw materials becomes too slow, making it difficult for the reaction to proceed or requiring a long time to produce the diene compound.
  • One aspect of the catalyst of the present invention includes a support, preferably a porous support, composed of an oxide containing element X, and a catalytically active element supported on the surface and inside of the porous support.
  • a support preferably a porous support, composed of an oxide containing element X, and a catalytically active element supported on the surface and inside of the porous support.
  • the amount of the catalytically active element contained in the region from the surface of the catalyst to a predetermined depth hereinafter also referred to as "region near the surface”
  • the catalyst of the present invention has a sufficient amount of catalytically active element in the region near the surface, so that the initial yield of the diene compound (initial performance of the catalyst) is high, and the inner region also has the catalytically active element.
  • the initial yield of the diene compound means the yield of the diene compound one hour after starting the supply of the raw materials, as will be described later in Examples.
  • the predetermined depth region is preferably a region from the surface of the catalyst up to 60 ⁇ m, more preferably up to 50 ⁇ m, and further preferably up to 30 ⁇ m. preferable. Such a region is the region on the outermost surface side of the catalyst, and by having sufficient catalytically active elements in this region, the initial yield of the diene compound can be further improved.
  • the extent to which the catalytically active element is unevenly distributed in the region near the surface of the catalyst is determined by the relationship between the molar ratio A of the catalytically active element to the element X in the entire catalyst and the molar ratio B of the catalytically active element to the element X in the region near the surface. can be stipulated.
  • B/A (molar ratio of catalytically active element to element X in the region near the surface/molar ratio of catalytically active element to element X in the entire catalyst) is preferably 1 to 9, preferably 2 to 8 is more preferred, and 3 to 7 is even more preferred.
  • the reaction maintenance rate is the initial yield of the diene compound, that is, the yield of the diene compound after 1 hour from the start of supply of the raw material is C1 [%], and the yield of the diene compound after 20 hours is C2 [%]. , the value is expressed by C2/C1 ⁇ 100.
  • the molar ratio of the catalytically active element to the element X can be obtained by measuring the molar amounts of the element X and the catalytically active element in the object to be measured using a predetermined method and dividing the measured values.
  • Predetermined methods include, for example, energy dispersive X-ray spectroscopy (EDX method), inductively coupled plasma emission spectroscopy (ICP method), X-ray fluorescence spectroscopy (XRF method), and X-ray photoelectron spectroscopy (XPS method). etc.
  • the above method is preferably scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method), transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDX method), More preferred is the SEM-EDX method. According to such a method (particularly, the SEM-EDX method), the molar ratio can be obtained more accurately and simply.
  • the specific value of the molar ratio A is not particularly limited, it is preferably 0.2-10, more preferably 0.5-5.
  • the specific value of the molar ratio B is not particularly limited, it is preferably 0.5-20, more preferably 1-10.
  • the catalytically active element is preferably at least one of the elements belonging to Groups 2 to 6, 11 and 12 of the periodic table. It is more preferably at least one of the belonging elements, and more preferably at least one of magnesium (Mg), tantalum (Ta), hafnium (Hf) and zirconium (Zr). Selection of these elements can improve the yield of the diene compound in particular.
  • a preferred embodiment of the catalyst of the present invention also contains hafnium (Hf) and at least one element M selected from titanium (Ti) and zirconium (Zr).
  • Hafnium has a high raw material conversion rate and diene compound selectivity (hereinafter collectively referred to as "diene compound yield"), but is a metal element that is inexpensive and difficult to obtain in large quantities. . Therefore, in a preferred embodiment of the catalyst of the present invention, hafnium is used in combination with at least one element M of titanium and zirconium, which are metal elements belonging to the same group (group 4) of the periodic table. . Thereby, the production cost can be reduced while maintaining high performance of the catalyst (yield of diene compound).
  • the molar ratio (M/Hf) of the element M to hafnium (Hf) is set in the range of more than 20 to 500 or less. This can prevent hafnium (single element) or its compound (eg, oxide) from being embedded in the element M (single element) or its compound (eg, oxide). Therefore, the stronger interaction between hafnium and the element M increases the number of active sites, and the high performance of the catalyst can be sufficiently maintained. On the other hand, when the molar ratio (M/Hf) exceeds 500, hafnium or its compound is embedded in the element M or its compound.
  • the molar ratio (M/Hf) may be more than 20 and 500 or less, preferably more than 50 and 400 or less, more preferably more than 100 and 400 or less, more preferably more than 100 and 300 or less. .
  • the element M may be at least one of titanium and zirconium, preferably zirconium. Zirconium strongly interacts with hafnium among the elements belonging to group 4 of the periodic table. Therefore, the number of active sites is increased, and the high performance of the catalyst is more reliably maintained.
  • Such a catalyst of the present invention preferably contains a carrier on which hafnium and the element M are supported.
  • the details of the oxide containing the element X that constitutes the carrier and the porous carrier that is a suitable carrier are the same as those described above.
  • a particularly preferable combination of the element M and the element X is that the element M is zirconium and the element X is silicon.
  • the molar ratio (M/X) of element M to element X is preferably 0.0001 to 0.5, more preferably 0.0005 to 0.4, and more preferably 0.0005 to 0.4. 001 to 0.4, and particularly preferably 0.001 to 0.3. If the above range is deviated downward, depending on the combination of the element M and the element X, the interaction between the element M and the element X may be weakened, resulting in a decrease in the number of active sites. If the above range is deviated upward, the surface of the carrier may be coated with the element M and the specific surface area may decrease depending on the type, size, etc. of the carrier used. Therefore, if the molar ratio (M/X) is within the above range, the performance of the catalyst is likely to be improved regardless of the combination of the element M and the element X.
  • the molar ratio of Hf to element X is preferably 0.00001 to 0.1, more preferably 0.00001 to 0.01.
  • the specific value of the heating temperature in the reaction process is not particularly limited, but it is preferably 100 to 600 ° C., preferably 200 to 600 ° C., more preferably 200 to 500 ° C., 250 to It is more preferably 500°C, even more preferably 250 to 450°C, even more preferably 300 to 450°C.
  • the specific value of the heating temperature in the regeneration process is not particularly limited, but it is preferably 200 to 600°C, more preferably 300 to 575°C, and even more preferably 400 to 550°C. .
  • the catalyst of the present invention can favorably exhibit the effects described above.
  • a catalyst in which a catalytically active element is supported on a carrier can be produced through, for example, a preparation step, a contact step and a calcination step. Each step of the catalyst production method of the present embodiment will be described below.
  • a compound containing a catalytically active element (catalytically active element precursor) is dissolved in a solvent to prepare a solution (impregnation liquid).
  • Compounds containing a catalytically active element include, for example, inorganic salts such as chlorides, chloride oxides, sulfides, nitrates, and carbonates of the catalytically active element, oxalates, acetylacetonate salts, and dimethylglyoxime salts. , organic salts such as ethylenediamine acetate, chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds and the like. Among them, the above compound is preferably a chloride or a chloride oxide. Moreover, you may use a hydrate for the said compound as needed.
  • compounds containing catalytically active elements include hafnium chloride (HfCl 4 ), titanium chloride (TiCl 2 , TiCl 3 , TiCl 4 ), titanium alkoxide, zirconium chloride (ZrCl 4 ), and zirconium chloride oxide (ZrCl 2 O). , zirconium alkoxide, hafnium alkoxide and the like.
  • the said compound may be used individually or may use 2 or more types together.
  • the solvent examples include, but are not particularly limited to, organic solvents such as water, aliphatic linear alcohols such as methanol, ethanol, n-propanol, and n-hexanol. These solvents may be used individually by 1 type, and may use 2 or more types together. Among them, from the viewpoint of ease of handling, the solvent is preferably water alone or a mixed solvent of water and methanol or ethanol. The water is preferably deionized water from which metal ions or the like have been removed, or distilled water. When the solvent contains an organic solvent, the amount of the organic solvent used is preferably 10 to 100% by volume, more preferably 10 to 50% by volume, relative to 100% by volume of water.
  • the solvent is preferably a non-explosive solvent.
  • a non-explosive solvent is a solvent containing a combustible organic solvent in a concentration outside the explosive range when vaporized.
  • ethanol can be can be considered as non-explosive solvents.
  • methanol can be can also be considered non-explosive solvents.
  • the polarity parameter of the solvent is preferably 40-80, more preferably 50-70. By using a solvent having a polarity parameter within this range, it becomes easier to produce a catalyst that satisfies the conditions I to III.
  • the polarity parameter of the solvent the ET (30) value in Table SI-1 of Supporting information of Journal of Physical Organic Chemistry, volume 27, issue 6, pages 512-518 can be referred to.
  • the amount of the solvent used is preferably 10 to 10,000 mol %, more preferably 100 to 5,000 mol %, relative to the amount (100 mol %) of the compound containing the catalytically active element.
  • the amount of the compound containing a catalytically active element used is preferably 0.1 to 100 parts by mass, more preferably 1 to 60 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the carrier. It is even more preferable to have
  • the solution is then brought into contact with the carrier.
  • the carrier may be added to the solution, or the solution may be added (for example, dropwise) to the carrier, but the latter is preferred.
  • the carrier can be slowly permeated with the solution, and the carrier can be impregnated with the solution to the inside. Therefore, when the carrier is a porous carrier, this step can also be called an impregnation step.
  • the carrier is preferably immersed in the solution.
  • the time for which the carrier is immersed in the solution may be appropriately set according to the configuration of the carrier, the viscosity of the solution, and the like, and is not particularly limited, but is preferably from 0.1 hour to 5 days, and from 1 hour to 3 days. It is more preferable to have At this time, the pressure of the atmosphere may be increased or decreased.
  • the pressure of the atmosphere is also not particularly limited, but is preferably 0 to 2 MPa, more preferably 0 to 1 MPa.
  • the amount of the solution may be appropriately set according to the configuration of the carrier, the viscosity of the solution, etc., and is not particularly limited, but is preferably 1 to 500 mL, more preferably 5 to 350 mL, per 1 g of the carrier. preferable.
  • the support contacted by the solution is then separated from the solution, dried and then calcined. Thereby, the catalytically active element is immobilized on the carrier, and a catalyst can be obtained.
  • the catalytically active element may be present on the surface of the carrier as it is (simple substance) or through an oxygen element (as an oxide). Separation of the carrier (catalyst) from the solution can be carried out, for example, by filtration, decantation, centrifugation, or the like.
  • the drying temperature is preferably 20 to 200°C, more preferably 50 to 150°C.
  • the drying time is preferably 1 hour to 10 days, more preferably 2 hours to 5 days.
  • the firing temperature is preferably 200 to 800°C, more preferably 400 to 600°C.
  • the firing time is preferably 10 minutes to 2 days, more preferably 1 to 10 hours.
  • a solution prepared by dissolving both the compound containing hafnium and the compound containing element M in one solvent was used.
  • a second solution prepared by dissolving a compound containing M in a solvent may be individually prepared and used.
  • the first solution and the second solution may be brought into contact with the carrier simultaneously or sequentially, but are preferably brought into contact with the carrier sequentially.
  • either the first solution or the second solution may be used first.
  • the catalyst obtained by calcination was analyzed by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma emission spectroscopy (ICP-AES), scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction. After analysis by (XRD) or the like, the diene compound may be produced. By performing the analysis, it is possible to suppress variations in the characteristics of the manufactured catalyst and ensure a certain level of quality. The analysis may be performed on the catalyst as it is, on the catalyst after crushing, or on the catalyst after cleaving.
  • a diene compound production apparatus (hereinafter simply referred to as "production apparatus") includes a reaction tube filled with the catalyst of the present invention. Such a production apparatus produces a diene compound from raw materials containing alcohol. An example of such a manufacturing apparatus will be described below with reference to FIG. A manufacturing apparatus 10 shown in FIG.
  • the reaction tube 1 has a reaction bed 2 inside.
  • the reaction bed 2 is packed with the above catalyst.
  • a supply pipe 3 is connected to the upstream side of the reaction tube 1, and a discharge pipe 4 is connected to the downstream side thereof.
  • a temperature control unit 5 is connected to the reaction tube 1 .
  • a pressure control unit 6 is arranged in the middle of the discharge pipe 4 .
  • the reaction bed 2 may contain only the catalyst of the present invention, or may contain other catalysts together with the catalyst of the present invention.
  • the reaction bed 2 may further have a diluent.
  • This diluent prevents the catalyst from overheating.
  • diluents include quartz sand, alumina balls, aluminum balls, and aluminum shots.
  • the mass ratio of the diluent to the catalyst is appropriately set according to the type and specific gravity of each material, and is not particularly limited, but is 0.1 to 5. It is preferably 0.5 to 5, more preferably 0.5 to 5.
  • the reaction bed 2 may be any of a fixed bed, a moving bed, a fluidized bed and the like.
  • the reaction tube 1 is preferably made of a material that is inert to the starting material and the diene compound. Further, it is preferable that the reaction tube 1 can withstand heating at about 100 to 600° C. and pressurization at about 10 MPa. Therefore, the reaction tube 1 is composed of, for example, a substantially cylindrical tubular body made of stainless steel.
  • the supply pipe 3 is supply means for supplying raw materials into the reaction tube 1 .
  • the supply pipe 3 is made of, for example, a tubular body made of stainless steel or the like.
  • the discharge pipe 4 is discharge means for discharging the gas containing the diene compound produced in the reaction bed 2 .
  • the discharge pipe 4 is configured by a tubular body made of stainless steel or the like, for example.
  • the temperature control unit 5 may set the temperature of the reaction bed 2 in the reaction tube 1 to an arbitrary temperature.
  • the temperature control unit 5 controls the temperature of, for example, an electric furnace (not shown) arranged around the reaction tube 1 to adjust the reaction bed 2 inside the reaction tube 1 to an arbitrary temperature.
  • the pressure control unit 6 should be able to set the pressure inside the reaction tube 1 to an arbitrary pressure.
  • the pressure control unit 6 is composed of, for example, a pressure valve or the like.
  • the manufacturing apparatus 10 may include a gas flow rate adjusting unit or the like capable of adjusting the gas flow rate, such as a mass flow.
  • the catalyst of the present invention is brought into contact with an alcohol-containing raw material to produce a diene compound.
  • the amount of the catalyst used is preferably 0.1 to 10 g/g ⁇ h, more preferably 1 to 5 g/g ⁇ h, relative to the raw material. By setting the amount of the catalyst to be used within the above range, it is possible to improve the conversion rate of the raw material while suppressing the formation of by-products.
  • the raw material contains alcohol.
  • the raw material may further contain aldehyde, inert gas, and the like.
  • the raw material preferably contains at least one of ethanol and acetaldehyde.
  • the raw material is gaseous (also referred to as "raw material gas”) at least during the reaction.
  • the alcohol is not particularly limited, but includes, for example, alcohols having 1 to 6 carbon atoms.
  • specific examples of alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, 3-buten-2-ol, 2-buten-1-ol, 3-hydroxybutanal, 1-ethoxyethanol, butane- 1,3-diol and the like.
  • the diene compound obtained differs depending on the alcohol used. For example, when ethanol is used, butadiene (1,3-butadiene) is obtained. Also, when propanol is used, hexadiene is obtained. Furthermore, when butanol is used, octadiene is obtained.
  • the alcohols may be used alone or in combination of two or more, but from the viewpoint of suppressing side reactions, it is preferable to use them alone.
  • the content of alcohol in the raw material is preferably 10% by volume or more, more preferably 15% by volume or more, further preferably 20% by volume or more, and 30% by volume with respect to 100% by volume of the raw material. % or more is particularly preferred. In addition, when using 2 or more types of alcohol together, it is preferable that the sum is contained in the said range.
  • Aldehydes are usually oxides of alcohols. Specific examples of aldehydes include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, crotonaldehyde and the like. When the raw material contains an aldehyde, it usually contains the aldehyde corresponding to the alcohol. Specifically, methanol is formaldehyde, ethanol is acetaldehyde, propanol is propionaldehyde, butanol is butyraldehyde, and pentanol is valeraldehyde. However, the above aldehydes may contain aldehydes other than the aldehydes corresponding to alcohols.
  • the content of aldehyde in the raw material is preferably 1% by volume or more, more preferably 5% by volume or more, further preferably 10% by volume or more, with respect to 100% by volume of the raw material. % or more is particularly preferred. In addition, when using 2 or more types of aldehydes together, it is preferable that the sum is contained in the said range.
  • the total content of alcohol and aldehyde in the raw material is preferably 15% by volume or more, more preferably 20% by volume or more, and 20 to 40% by volume relative to 100% by volume of the raw material. More preferred.
  • the inert gas examples include, but are not particularly limited to, nitrogen gas, argon gas, and the like. These inert gases may be used alone or in combination of two or more.
  • the content of the inert gas in the raw material is preferably 90% by volume or less, more preferably 30 to 90% by volume, and 50 to 90% by volume with respect to 100% by volume of the raw material. More preferably, it is particularly preferably 60 to 80% by volume.
  • the manner in which the catalyst and raw material are brought into contact is not particularly limited. For example, the raw material is allowed to pass through the reaction bed 2 in the reaction tube 1 shown in FIG. is preferred.
  • the temperature (heating temperature in the reaction process; reaction temperature) at which the catalyst and raw materials are brought into contact with each other is preferably 100 to 600° C., more preferably 200 to 600° C., more preferably 200 to 500° C., as described above. °C, more preferably 250 to 500°C, even more preferably 250 to 450°C, and particularly preferably 300 to 450°C.
  • the pressure (reaction pressure) when the catalyst and raw materials are brought into contact is preferably 0.1 to 10 MPa, more preferably 0.1 to 3 MPa.
  • the temperature control unit 5 and the pressure control unit 6 set the inside of the reaction tube 1 to an arbitrary temperature and an arbitrary pressure.
  • the gasified raw material 20 is supplied from the supply pipe 3 into the reaction tube 1 .
  • the raw material comes into contact with the catalyst in the reaction tube 1 and reacts to produce a diene compound such as butadiene.
  • the produced gas 22 containing the produced diene compound is discharged from the discharge pipe 4 .
  • the generated gas 22 may contain compounds such as acetaldehyde, propylene, and ethylene.
  • the generated gas 22 may be subjected to purification such as gas-liquid separation or distillation to remove unreacted raw materials and by-products.
  • the environmental load can be reduced by producing a diene compound from bioethanol.
  • an oxygen-containing gas for example, air
  • the catalyst is heated to 400 to 550 ° C. while circulating an oxygen-containing gas at a space velocity of 0.1 to 10000 h ⁇ 1 in the reaction tube 1 to 0.1 to 10 MPa.
  • the regeneration treatment may be carried out by burning off the carbon-containing impurities accumulated on the surface under a pressure of .
  • the regeneration treatment may be performed by switching the gas circulating (supplied) in the reaction tube 1, and the catalyst is taken out from the reaction tube 1 and placed in the air or in an oxygen-containing atmosphere (oxygen-containing gas) having a predetermined oxygen concentration. You may perform reproduction
  • the temperature at which the catalyst is brought into contact with the oxygen-containing gas is also preferably 200 to 600°C, more preferably 300 to 575°C, more preferably 400 to 550°C, as described above. It is more preferable to have
  • the pressure (regeneration pressure) when the catalyst and the oxygen-containing gas are brought into contact is preferably 0.1 to 10 MPa, more preferably 0.1 to 3 MPa. By bringing the catalyst into contact with the oxygen-containing gas under the above conditions, the catalyst can be smoothly regenerated.
  • the space velocity (SV) of the oxygen-containing gas is usually adjusted appropriately according to the reaction pressure and reaction temperature, so it is not particularly limited, but it is preferably 0.1 to 100000 h ⁇ 1 in terms of standard conditions.
  • a polymer is produced using at least part of the diene compound produced by the method for producing a diene compound of the present invention as a polymer raw material. That is, the method for producing a diene compound of the present invention is applied to produce a diene compound by bringing a raw material into contact with the catalyst of the present invention. Then, the produced diene compound is separated from the reaction product by appropriate separation treatment or the like, and at least part thereof is used as a raw material to be converted into a polymer.
  • the reaction product is passed through a cooled condenser to separate raw materials such as unreacted alcohol, and the reaction product after separation is bubbled into an organic solvent, It is preferable to dissolve the diene compound (monomer) in a solvent and recover it as a solution. It is preferable that the recovered solution containing the diene compound is used as it is, or after further adding an organic solvent or the like, various types of polymerization are performed to produce a polymer from the diene compound. At this time, the recovered diene compound may be mixed with a monomer other than the diene compound to carry out various polymerizations.
  • the polymerization method for example, a solution polymerization method, a suspension polymerization method, a liquid-phase bulk polymerization method, an emulsion polymerization method, or the like can be used.
  • the solvent may be inert in the polymerization reaction, and examples thereof include hexane, cyclohexane, toluene, and mixtures thereof.
  • the temperature of the polymerization reaction is not particularly limited, it is preferably -100 to 300°C.
  • the pressure of the polymerization reaction is not particularly limited, it is preferably 0.1 to 10.0 MPa.
  • the polymerization reaction time is also not particularly limited, but may be appropriately set according to conditions such as the temperature of the polymerization reaction, and is usually preferably from 1 second to 10 days.
  • Examples of monomers other than diene compounds include aromatic vinyl compounds, olefins, and combinations thereof.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, p-methylstyrene, vinylnaphthalene and the like.
  • Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like.
  • various additives may be added to the diene compound depending on the application.
  • the polymer produced by the method for producing a polymer of the present invention is not particularly limited, but is preferably a polymer having a skeleton derived from butadiene, such as polybutadiene (cis-1,4-polybutadiene), styrene-butadiene copolymer, and the like. more preferred.
  • the polymer produced by the method for producing a polymer of the present invention is molded. That is, the method for producing a diene compound of the present invention is applied to produce a diene compound by bringing a raw material into contact with the catalyst of the present invention. Moreover, the method for producing a polymer of the present invention is applied to produce a polymer using at least part of the produced diene compound as a polymer raw material. The produced polymer is then molded according to the shape of the desired polymer molded article.
  • Examples of polymer molded products include tire rubber members such as treads, base treads, sidewalls, side reinforcements, and bead fillers, tires, anti-vibration rubbers, seismic isolation rubbers, belts (conveyor belts), and rubber crawlers. , various hoses, etc., and rubber members of tires and tires are preferable.
  • Method for measuring catalyst performance By measuring at least one selected from the temperature increase efficiency, temperature decrease efficiency, and whiteness ratio, it is possible to measure catalyst performance suitable for synthesizing a diene compound and select an appropriate catalyst. By using a catalyst selected based on the measurement results, a diene compound can be continuously produced at a high yield.
  • the life extension method of the present invention comprises a catalyst (hereinafter referred to as This is a method for extending the life of the catalyst (referred to as "the catalyst"). Then, the amount of the catalytically active element contained in the region from the surface of the catalyst to a predetermined depth (region near the surface) is larger than the amount of the catalytically active element contained inside the region near the surface (region inside). By doing so, the life of the catalyst is extended compared to other catalysts in which the catalytically active element is supported only in the region near the surface.
  • the configuration, materials, etc. of the porous carrier and the catalytically active element in the life extension method of the present invention are the same as those described for the catalyst of the present invention.
  • the diene when the raw materials of the catalyst and other catalysts are brought into contact with raw materials containing alcohol, and the raw materials are reacted to produce a diene compound, compared with other catalysts, the diene It is preferable that the reduction in the initial yield of the compound is suppressed and the reaction maintenance rate that maintains the initial yield is increased. Thereby, the overall yield of the diene compound can be increased. Furthermore, in the life extension method of the present invention, the initial yield is 80% or more (preferably 85% or more, more preferably 90% or more) of other catalysts, and the reaction maintenance rate is twice that of other catalysts. or more (preferably 3 times or more, more preferably 4 times or more).
  • the catalyst of the present invention the method for producing the catalyst, the method for producing the diene compound, the method for producing the polymer, the method for producing the polymer molded article, the method for measuring the catalyst performance, and the method for extending the life of the catalyst have been described. It is not limited.
  • the catalyst, method for producing a catalyst, method for producing a diene compound, method for producing a polymer, method for producing a polymer molded product, method for measuring catalyst performance, and method for extending service life of the present invention are, with respect to the above embodiments, It may have any other additional configuration, may be replaced with any configuration that exhibits a similar function, or may be partially omitted.
  • the catalyst of the present invention includes, in addition to a diene compound synthesis catalyst for synthesizing a diene compound from a raw material containing alcohol, for example, an alcohol dimerization reaction, an aldehyde dimerization reaction catalyst, an olefin dimerization reaction catalyst, It can also be used as a catalyst for dehydrogenation reaction of saturated compounds, a catalyst for dehydration reaction of alcohol, and the like.
  • Example 1 A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.9 g.
  • Example 2 A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.7 g.
  • Example 3 A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.5 g.
  • Example 4 A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.4 g.
  • Example 5 First, 2.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 100 mL of ethanol to prepare a solution. Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g). Next, the solution in which the porous carrier was immersed was stirred with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration. The recovered porous material was dried at 110° C. for 3 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
  • HfCl 4 manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • Example 6 First, 1.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 1000 mL of water to prepare a solution. Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g). Next, the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration. The recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
  • a porous carrier silicon porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm
  • Example 7 A catalyst was produced in the same manner as in Example 6, except that the amount of solution used was changed to 100 mL and the mixture was stirred under reduced pressure (0.01 MPa).
  • Example 8 A catalyst was produced in the same manner as in Example 6, except that the stirring time was changed to 3 days.
  • Example 9 A catalyst was produced in the same manner as in Example 6, except that the amount of solution used was changed to 500 mL.
  • a porous carrier (silica porous particles, average particle diameter: 300 ⁇ m, average pore diameter: 2.8 nm, total pore volume: 1.09 mL/g, specific surface area: 995 m 2 /g) was obtained.
  • hafnium chloride HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • HfCl 4 hafnium chloride
  • a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle diameter: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL / g, specific surface area: 283 m 2 / g) was calcined at 1000° C. for 10 hours.
  • a nonporous carrier (average particle size: 1.77 mm, specific surface area: >10 m 2 /g) was produced.
  • 1.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 100 mL of water to prepare a solution. This solution was then added dropwise to 2.0 g of non-porous carrier.
  • the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
  • the recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
  • Example 10 First, 0.20 g of zirconium chloride oxide octahydrate (ZrCl 2 O.8H 2 O : manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.007 g of hafnium chloride (HfCl 4 : Kojundo Chemical Laboratory Co., Ltd. ) was dissolved in 100 mL of water to prepare a solution. Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g).
  • a porous carrier siliconca porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /
  • the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
  • the recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
  • Example 11 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 0.69 g.
  • Example 12 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 1.4 g.
  • Example 13 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 2.1 g.
  • Example 14 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 2.8 g.
  • Example 15 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 3.5 g.
  • Example 16 Instead of 0.20 g of zirconium chloride oxide octahydrate, 1.7 g of zirconium oxynitrate dihydrate (ZrO(NO 3 ) 2.2H 2 O: manufactured by Kishida Chemical Co., Ltd.) was used. A catalyst was prepared in the same manner as in Example 10.
  • Example 17 A catalyst was prepared in the same manner as in Example 10, except that 1.2 g of a titanium chloride solution ( TiCl4 : manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of 0.20 g of zirconium chloride oxide octahydrate. manufactured.
  • TiCl4 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 7 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 0.14 g.
  • Example 8 A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 4.2 g.
  • the temperature was raised until the temperature of the thermocouple reached 500° C., and the time when the temperature reached 500° C. was defined as the end time of the temperature rise, and the heating of the electric furnace was stopped.
  • the heating efficiency (%) was calculated according to the following formula (1).
  • the temperature was raised until the temperature of the thermocouple reached 350°C, and the time when the temperature reached 350°C was defined as the cooling end time.
  • the temperature drop efficiency (%) was calculated according to the following formula (2).
  • the catalyst After being used for 2 hours, the catalyst was filled to a height of 2 cm in the longitudinal central portion of a reaction tube having an inner diameter of 7 mm. At this time, a thermocouple was also inserted into the reaction tube and set so that its tip was positioned at the center of the catalyst. Next, the reaction tube in this state was set in an electric furnace, and the temperature was raised until the temperature of the thermocouple reached about 500°C. After completion of the temperature rise, air (oxygen-containing gas) was introduced at a space velocity (SV) of 60000 h -1 while the temperature of the electric furnace was maintained at 500°C. That is, the regeneration process was performed.
  • SV space velocity
  • the heating efficiency ( O / OOO ) was calculated according to the following formula (4) and evaluated according to the following criteria. [Evaluation criteria] Good: The heating efficiency is less than 10300 O / OOO . x: The heating efficiency is 10300 O / OOO or more.
  • reaction process time was evaluated according to the following criteria. +: Reaction process time>Regeneration process time. -: Reaction process time ⁇ regeneration process time.
  • the raw material was supplied to the reaction tube at a space velocity (SV) of 1200 h ⁇ 1 to obtain a generated gas containing BD.
  • SV space velocity
  • a mixed gas of 30% by volume of ethanol (converted to gas) and 70% by volume of nitrogen (converted to gas) was used. Moreover, the supply of raw materials was continued for 20 hours.
  • the produced gas was recovered, and 1 mL of the recovered produced gas was collected while being kept at 200°C.
  • the fractionated generated gas is analyzed by gas chromatography with a hydrogen flame ionization detector (manufactured by Shimadzu Corporation, "GC-2014”), and a data processing device (manufactured by Shimadzu Corporation, "Chromatopak C-R8A ”) to calculate the peak area.
  • the column oven temperature was maintained at 60°C for 11.5 minutes, heated to 100°C at 10°C/min, then maintained at 100°C for 14.5 minutes, and heated to 280°C at 10°C/min. After that, the temperature-rising analysis was programmed to hold at 280°C for 2 minutes.
  • the catalyst of each example in which the heating efficiency, cooling efficiency, and whiteness ratio were in the preferred range, the reaction process time exceeded the regeneration process time (+), and BD was continuously produced while maintaining a high yield. was possible.
  • the catalytically active element is supported on the surface and inside of the porous carrier, and the amount of the catalytically active element contained in the region near the surface of the catalyst is greater than the amount of the catalytically active element contained in the inner region. , BD yield (initial yield) and reaction retention rate were both high.
  • the catalyst of Comparative Example 1 in which the efficiency of temperature rise and efficiency of temperature drop deviated from the preferred range, had a high whiteness ratio.
  • the reaction process time of the catalyst of Comparative Example 1 was shorter than the regeneration process time (-), and the time during which the reaction could not be used occurred, resulting in a decrease in BD production efficiency.
  • the catalyst of Comparative Example 2 in which the temperature rising efficiency and the temperature falling efficiency deviated upward from the preferred range, had a low whiteness ratio.
  • the catalyst of Comparative Example 2 had an excessively high heating efficiency. This encourages overshooting of the heating temperature in the regeneration process, making it easier for the catalyst structure to change and the reaction tube to deteriorate.
  • the catalytically active element was supported on the surface and inside of the porous carrier, and the amount of the catalytically active element contained in the region near the surface of the catalyst was less than the amount of the catalytically active element contained in the inner region.
  • the catalyst (B/A less than 1) also had a low whiteness ratio and a low yield of BD.
  • the catalysts of Comparative Examples 5 and 6, in which the catalytically active element was selectively supported only on the surface of the porous carrier had a high BD yield, but a low reaction retention rate. Since the catalyst of Comparative Example 7 had an M/Hf of 20 and a B/A of less than 1, the yield of BD was low.
  • the catalyst of Comparative Example 8 had a M/Hf of more than 500, a high whiteness ratio, and a B/A of less than 1, so that the yield of BD was low and the reaction retention rate was low.
  • the catalyst of Comparative Example 9 has a temperature rising efficiency, a temperature cooling efficiency, and a whiteness ratio within a suitable range, but the M/Hf is as small as 2.8 and the B/A is less than 1, so the yield of BD is extremely low. was low.
  • reaction tube 2 reaction bed 3 supply tube 4 discharge tube 5 temperature control section 6 pressure control section 10 manufacturing apparatus

Abstract

[Problem] To provide: a catalyst which has, for example, a high conversion efficiency from a starting material that contains an alcohol to a diene compound (namely, a high yield of a diene compound); a method for producing this catalyst; a method for producing a diene compound, the method using this catalyst; a method for producing a polymer; a method for producing a polymer molded article; and a method for measuring catalyst performance. [Solution] A catalyst according to the present invention is characterized by containing a catalytically active element and a carrier that supports the catalytically active element, while being also characterized in that the heating efficiency represented by formula (1) is 5-6.5%. 

Description

触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法Catalyst, method for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded product, method for measuring catalyst performance and method for extending service life
 本発明は、触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法に関する。 The present invention relates to a catalyst, a method for producing a catalyst, a method for producing a diene compound, a method for producing a polymer, a method for producing a polymer molded article, a method for measuring catalyst performance, and a method for extending the service life.
 ジエン化合物の代表例である1,3-ブタジエン等のジエン化合物は、スチレン-ブタジエンゴム(SBR)等の原料として用いられている。従来、ブタジエンは、C4留分から精製されていた。C4留分は、石油からエチレンを製造するナフサクラッキングの際に副生する留分である。しかしながら、シェールガスの利用量の増加に伴って、石油の利用量が減少した。その結果、石油のナフサクラッキングで得られるブタジエンの生産量も減少している。このため、ジエン化合物を製造するための代替方法が求められている。 A diene compound such as 1,3-butadiene, which is a typical example of a diene compound, is used as a raw material for styrene-butadiene rubber (SBR) and the like. Traditionally, butadiene was purified from the C4 fraction. The C4 fraction is a by-product of naphtha cracking to produce ethylene from petroleum. However, oil usage has decreased as shale gas usage has increased. As a result, the production of butadiene from naphtha cracking of petroleum is also decreasing. Therefore, there is a need for alternative methods for producing diene compounds.
 例えば、特許文献1には、加熱下で、エタノールを含む原料を、触媒に接触させることにより、1,3-ブタジエンを得る1,3-ブタジエンの製造方法が記載されている。また、特許文献1には、使用後の触媒を、反応器内において350~500℃程度の加熱下において空気を流通させ、1~24時間の再生処理を行うことにより、触媒活性が未使用の触媒に対して90%以上まで回復し、再利用し得ることも記載されている。 For example, Patent Document 1 describes a method for producing 1,3-butadiene in which 1,3-butadiene is obtained by bringing a raw material containing ethanol into contact with a catalyst under heating. In addition, in Patent Document 1, the used catalyst is heated to about 350 to 500 ° C. in a reactor, air is circulated, and a regeneration treatment is performed for 1 to 24 hours, thereby reducing the catalytic activity to unused. It is also described that the catalyst can be recovered to 90% or more and reused.
 特許文献2には、多孔質担体と、金属元素Aの酸化物と、金属元素Bの酸化物とを有し、金属元素Aの酸化物の少なくとも一部が多孔質担体と結合する触媒が開示されている。また、特許文献2の図1、段落番号0037~0038には、多孔質担体(シリカ)の表面が、金属元素Aの酸化物および金属元素Bの酸化物で被覆された構成の触媒が開示されている。 Patent Document 2 discloses a catalyst comprising a porous support, an oxide of a metal element A, and an oxide of a metal element B, wherein at least a portion of the oxide of the metal element A binds to the porous support. It is Further, FIG. 1, paragraphs 0037 to 0038 of Patent Document 2 disclose a catalyst having a configuration in which the surface of a porous support (silica) is coated with an oxide of metal element A and an oxide of metal element B. ing.
 特許文献3には、エタノールをブタジエンに選択的に変換するための金属含浸シリカ触媒、すなわちブタジエン合成用触媒が記載されている。より詳細には、特許文献3のブタジエン合成用触媒は、ハフニウム(Hf)と、2以上の触媒活性金属M1およびM2とを含み、触媒活性金属M1およびM2が、互いに異なり、ジルコニウム(Zr)、亜鉛(Zn)、銅(Cu)およびこれらの組み合わせからなる群から選択されることが記載されている。 Patent Document 3 describes a metal-impregnated silica catalyst for selectively converting ethanol to butadiene, that is, a catalyst for butadiene synthesis. More specifically, the catalyst for butadiene synthesis of Patent Document 3 contains hafnium (Hf) and two or more catalytically active metals M1 and M2, wherein the catalytically active metals M1 and M2 are different from each other, It is stated to be selected from the group consisting of zinc (Zn), copper (Cu) and combinations thereof.
特開2015-034151号公報JP 2015-034151 A 国際公開第2019/139071号WO2019/139071 国際公開第2014/199349号WO2014/199349
 上記特許文献1に開示された製造方法では、1,3-ブタジエンを連続的に製造する場合、触媒による反応プロセスと触媒の再生プロセスとが繰り返し行われる。このとき、反応プロセスにおける加熱温度と再生プロセスにおける加熱温度とが異なると、これらのプロセスの間で、繰り返して触媒を昇温および降温させる必要がある。
 この場合、触媒の昇温効率または降温効率が低過ぎると、昇温または降温に要する時間が長くなってしまう。その結果、反応プロセスの時間(触媒として使用可能な時間)よりも再生プロセスの時間が長くなり、1,3-ブタジエンの生産性が低下するおそれがある。
In the production method disclosed in Patent Document 1, when continuously producing 1,3-butadiene, a reaction process using a catalyst and a catalyst regeneration process are repeatedly performed. At this time, if the heating temperature in the reaction process and the heating temperature in the regeneration process are different, it is necessary to repeatedly raise and lower the temperature of the catalyst between these processes.
In this case, if the efficiency of temperature rise or temperature drop of the catalyst is too low, the time required for temperature rise or temperature drop will be long. As a result, the time for the regeneration process becomes longer than the time for the reaction process (the time the catalyst can be used as a catalyst), which may reduce the productivity of 1,3-butadiene.
 一方、触媒の昇温効率または降温効率が高過ぎると、触媒の温度を精密にコントロールすることが困難となる。
 例えば、触媒の昇温効率が高過ぎると、発熱プロセスとなる場合が多い再生プロセスにおいて必要以上に触媒の温度が上昇し、これが要因となり、触媒活性元素の凝集や担体の焼き締めが生じ、触媒構造が崩壊するおそれがある。また、この場合、触媒を充填する反応管の温度が耐久温度を超えて、反応管が劣化するおそれもある。
On the other hand, if the efficiency of temperature rise or temperature drop of the catalyst is too high, it becomes difficult to precisely control the temperature of the catalyst.
For example, if the temperature rise efficiency of the catalyst is too high, the temperature of the catalyst will rise more than necessary in the regeneration process, which is often an exothermic process. The structure may collapse. Further, in this case, the temperature of the reaction tube filled with the catalyst may exceed the endurable temperature and the reaction tube may deteriorate.
 また、本発明者らが、特許文献2に記載の触媒について検討した結果、触媒活性を示す金属元素Aの酸化物および金属元素Bの酸化物が、多孔質担体の表面のみに存在し、内部に存在しないため、初期性能(ジエン化合物の初期収率)は高いものの、寿命が極端に短いことを知見した。さらに、本発明者らが、特許文献3に記載のブタジエン合成用触媒について検討したところ、エタノールの転化率およびブタジエンの選択率のうちのいずれか一方または双方が低いため、ブタジエンの収率も低いことを知見した。したがって、ブタジエンの収率の向上には、さらなる検討の余地がある。 Further, as a result of the inventors' examination of the catalyst described in Patent Document 2, the oxide of the metal element A and the oxide of the metal element B that exhibit catalytic activity are present only on the surface of the porous support and inside the porous support. However, the initial performance (initial yield of the diene compound) is high, but the lifetime is extremely short. Furthermore, when the present inventors examined the butadiene synthesis catalyst described in Patent Document 3, either or both of the ethanol conversion rate and butadiene selectivity are low, so the yield of butadiene is also low. I found out. Therefore, improving the yield of butadiene deserves further investigation.
 本発明は、かかる状況に鑑みてなされたものであり、その目的は、例えば、アルコールを含む原料からジエン化合物への変換効率(すなわち、ジエン化合物の収率)が高く生産性が高い触媒、および初期性能が高くかつ寿命の長い触媒、これらの触媒の製造方法、かかる触媒を使用したジエン化合物の製造方法、ポリマーの製造方法およびポリマー成形品の製造方法、ならびに各種触媒の特徴に基づいた触媒性能測定方法をおよび長寿命化方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is, for example, a catalyst with high conversion efficiency (i.e., diene compound yield) and high productivity from raw materials containing alcohol to diene compounds, and Catalysts with high initial performance and long life, methods for producing these catalysts, methods for producing diene compounds using such catalysts, methods for producing polymers and methods for producing polymer molded articles, and catalyst performance based on the characteristics of various catalysts It is to provide a measuring method and a method for prolonging the service life.
 このような目的は、下記の本発明により達成される。
 (1) 本発明の触媒は、触媒活性元素と、該触媒活性元素を担持する担体とを含み、下記式(1)で表される昇温効率が、5~6.5%であることを特徴とする。
Figure JPOXMLDOC01-appb-M000004
Such objects are achieved by the present invention described below.
(1) The catalyst of the present invention contains a catalytically active element and a carrier supporting the catalytically active element, and has a temperature elevation efficiency represented by the following formula (1) of 5 to 6.5%. Characterized by
Figure JPOXMLDOC01-appb-M000004
 (2) 本発明の触媒は、触媒活性元素と、該触媒活性元素を担持する担体とを含み、下記式(2)で表される降温効率が、2.6~4.5%であることを特徴とする。
Figure JPOXMLDOC01-appb-M000005
(2) The catalyst of the present invention contains a catalytically active element and a carrier that supports the catalytically active element, and has a cooling efficiency represented by the following formula (2) of 2.6 to 4.5%. characterized by
Figure JPOXMLDOC01-appb-M000005
 (3) 本発明の触媒は、触媒活性元素と、該触媒活性元素を担持する担体とを含み、下記式(3)で表される白色度比率が、98~130%であることを特徴とする。
Figure JPOXMLDOC01-appb-M000006
(3) The catalyst of the present invention contains a catalytically active element and a carrier that supports the catalytically active element, and has a whiteness ratio represented by the following formula (3) of 98 to 130%. do.
Figure JPOXMLDOC01-appb-M000006
 (4) 本発明の触媒は、前記担体が、元素Xを含有する酸化物で構成された担体であり、該担体の表面および内部に担持された前記触媒活性元素とを含む触媒であって、該触媒の表面から所定の深さまでの領域に含まれる前記触媒活性元素の量が、前記触媒の前記領域より内側に含まれる前記触媒活性元素の量より多いことを特徴とするのが好ましい。
 (5) 本発明の触媒では、前記所定の深さの領域が、前記触媒の前記表面から60μmまでの領域であることが好ましい。
 (6) 本発明の触媒では、前記触媒全体における前記元素Xに対する前記触媒活性元素のモル比をAとし、前記所定の深さまでの領域における前記元素Xに対する前記触媒活性元素のモル比をBとしたとき、B/Aが1~9であることが好ましい。
 (7) 本発明の触媒では、前記元素Xに対する前記触媒活性元素のモル比が、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX法)を使用した測定により求められることが好ましい。
 (8) 本発明の触媒では、前記触媒活性元素が、周期表の第2族~第6族、第11族および第12族に属する元素のうちの少なくとも1種であることが好ましい。
(4) The catalyst of the present invention is a catalyst in which the support is composed of an oxide containing element X, and the catalytically active element supported on the surface and inside of the support, It is preferable that the amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth is larger than the amount of the catalytically active element contained inside the region of the catalyst.
(5) In the catalyst of the present invention, it is preferable that the predetermined depth region is a region up to 60 μm from the surface of the catalyst.
(6) In the catalyst of the present invention, A is the molar ratio of the catalytically active element to the element X in the entire catalyst, and B is the molar ratio of the catalytically active element to the element X in the region up to the predetermined depth. Then, B/A is preferably 1-9.
(7) In the catalyst of the present invention, the molar ratio of the catalytically active element to the element X is preferably determined by measurement using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method). .
(8) In the catalyst of the present invention, the catalytically active element is preferably at least one element belonging to groups 2 to 6, 11 and 12 of the periodic table.
 (9) 本発明の触媒では、前記担体が、多孔質担体であることが好ましい。
 (10) 本発明の触媒では、前記担体が、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成されることが好ましい。
(9) In the catalyst of the present invention, the carrier is preferably a porous carrier.
(10) In the catalyst of the present invention, the carrier preferably comprises an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table.
 (11) 本発明の触媒は、ハフニウム(Hf)と、チタン(Ti)およびジルコニウム(Zr)のうちの少なくとも1種の元素Mとを含み、前記ハフニウム(Hf)に対する前記元素Mのモル比(M/Hf)が、20超500以下であることを特徴とする。
 (12) 本発明の触媒では、前記元素Mが、前記ジルコニウム(Zr)であることが好ましい。
(11) The catalyst of the present invention contains hafnium (Hf) and at least one element M selected from titanium (Ti) and zirconium (Zr), and the molar ratio of the element M to the hafnium (Hf) ( M/Hf) is more than 20 and 500 or less.
(12) In the catalyst of the present invention, the element M is preferably zirconium (Zr).
 (13) 本発明の触媒は、さらに、前記ハフニウム(Hf)および前記元素Mを担持し、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成される担体を含むことが好ましい。
 (14) 本発明の触媒は、前記担体の表面および内部に担持された、前記ハフニウム(Hf)および前記元素Mとを含む触媒であって、該触媒の表面から所定の深さまでの領域に含まれる前記ハフニウム(Hf)および前記元素Mの量が、前記触媒の前記領域より内側に含まれる前記前記ハフニウム(Hf)および前記元素Mの量より多いことを特徴とすることが好ましい。
 (15) 本発明の触媒では、前記元素Xがケイ素(Si)であることが好ましい。
 (16) 本発明の触媒では、前記元素Xに対する前記元素Mのモル比(M/X)が、0.0001~0.5であることが好ましい。
(13) The catalyst of the present invention is an oxide further supporting the hafnium (Hf) and the element M and containing at least one element X selected from groups 13 and 14 of the periodic table. It is preferred to include a carrier composed of:
(14) The catalyst of the present invention is a catalyst containing the hafnium (Hf) and the element M supported on the surface and inside of the carrier, and contained in a region from the surface of the catalyst to a predetermined depth. It is preferable that the amounts of the hafnium (Hf) and the element M contained in the catalyst are larger than the amounts of the hafnium (Hf) and the element M contained inside the region of the catalyst.
(15) In the catalyst of the present invention, the element X is preferably silicon (Si).
(16) In the catalyst of the present invention, the molar ratio (M/X) of the element M to the element X is preferably 0.0001 to 0.5.
 (17) 本発明の触媒は、第1化合物との接触により第2化合物へ変換する反応プロセスと、該反応プロセスを経た後の前記触媒を再生する再生プロセスとに供されることが好ましい。
 (18) 本発明の触媒では、前記反応プロセスにおける加熱温度をAとし、前記再生プロセスにおける加熱温度をBとしたとき、B>AかつB-A=50~400℃を満足することが好ましい。
 (19) 本発明の触媒では、前記反応プロセスにおける加熱温度が、200~600℃であることが好ましい。
 (20) 本発明の触媒では、前記再生プロセスにおける加熱温度が、200~600℃であることが好ましい。
(17) The catalyst of the present invention is preferably subjected to a reaction process of converting into a second compound by contact with the first compound and a regeneration process of regenerating the catalyst after the reaction process.
(18) The catalyst of the present invention preferably satisfies B>A and BA=50 to 400° C., where A is the heating temperature in the reaction process and B is the heating temperature in the regeneration process.
(19) In the catalyst of the present invention, the heating temperature in the reaction process is preferably 200-600°C.
(20) In the catalyst of the present invention, the heating temperature in the regeneration process is preferably 200-600°C.
 (21) 本発明の触媒は、アルコールを含む原料からジエン化合物を合成するジエン化合物合成用触媒であることが好ましい。
 (22) 本発明の触媒では、前記原料が、エタノールおよびアセトアルデヒドのうちの少なくとも1種を含有することが好ましい。
(21) The catalyst of the present invention is preferably a diene compound synthesis catalyst for synthesizing a diene compound from an alcohol-containing raw material.
(22) In the catalyst of the present invention, the raw material preferably contains at least one of ethanol and acetaldehyde.
 (23) 本発明の触媒の製造方法の一態様は、
 前記触媒活性元素を含む化合物を溶媒に溶解してなる溶液と、前記担体とを用意する工程と、
 前記溶液を前記担体に接触させ、含浸させる工程と、
 前記溶液が含浸された前記担体を焼成する工程と、を有し、
 前記溶媒として非爆発性溶媒を用いることを特徴とする。
(23) One aspect of the method for producing the catalyst of the present invention is
a step of preparing a solution obtained by dissolving the compound containing the catalytically active element in a solvent and the carrier;
contacting and impregnating the carrier with the solution;
calcining the carrier impregnated with the solution;
A non-explosive solvent is used as the solvent.
 (24) 本発明の触媒の製造方法の別の態様は、
 前記ハフニウム(Hf)を含む化合物を溶媒に溶解してなる溶液および前記元素Mを含む化合物を溶媒に溶解してなる溶液、または前記ハフニウム(Hf)を含む化合物および前記元素Mを含む化合物を溶媒に溶解してなる溶液と、前記担体とを用意する工程と、
 前記溶液を前記担体に接触させる工程と、
 前記溶液が接触した前記担体を焼成する工程と、を有し、
 前記溶媒として非爆発性溶媒を用いることを特徴とする。
(24) Another aspect of the method for producing a catalyst of the present invention is
A solution obtained by dissolving the compound containing hafnium (Hf) in a solvent and a solution obtained by dissolving the compound containing the element M in a solvent, or the compound containing the hafnium (Hf) and the compound containing the element M are combined into a solvent. A step of preparing a solution dissolved in and the carrier;
contacting the solution with the carrier;
and calcining the carrier contacted by the solution,
A non-explosive solvent is used as the solvent.
 (25) 本発明の触媒の製造方法では、前記担体が、多孔質担体であることが好ましい。
 (26) 本発明の触媒の製造方法では、前記担体が、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成されることが好ましい。
(25) In the method for producing a catalyst of the present invention, the carrier is preferably a porous carrier.
(26) In the method for producing a catalyst of the present invention, it is preferable that the carrier is composed of an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table.
 (27) 本発明のジエン化合物の製造方法は、本発明の触媒に、アルコールを含む原料を接触させてジエン化合物を製造することを特徴とする。
 (28) 本発明のポリマーの製造方法は、本発明のジエン化合物の製造方法により製造されたジエン化合物の少なくとも一部をポリマー原料としてポリマーを製造することを特徴とする。
 (29) 本発明のポリマー成形品の製造方法は、本発明のポリマーの製造方法により製造されたポリマーを成形することを特徴とする。
(27) The method for producing a diene compound of the present invention is characterized in that the catalyst of the present invention is brought into contact with an alcohol-containing raw material to produce a diene compound.
(28) The method for producing a polymer of the present invention is characterized by producing a polymer using at least part of the diene compound produced by the method for producing a diene compound of the present invention as a polymer raw material.
(29) The method for producing a polymer molded product of the present invention is characterized by molding the polymer produced by the method for producing a polymer of the present invention.
 (30) 本発明の、ジエン化合物の合成に適した触媒の触媒性能測定方法は、昇温効率、降温効率および白色度比率から選ばれる少なくとも1つを測定することを特徴とする。 (30) The method for measuring the catalytic performance of a catalyst suitable for synthesizing a diene compound according to the present invention is characterized by measuring at least one selected from temperature rising efficiency, cooling efficiency and whiteness ratio.
 (31) 本発明の長寿命化方法は、元素Xを含有する酸化物で構成された担体と、該担体の表面および内部に担持された触媒活性元素とを含む触媒の寿命を延長する方法であって、
 該触媒の表面から所定の深さまでの領域に含まれる前記触媒活性元素の量を、前記触媒の前記領域より内側に含まれる前記触媒活性元素の量より多くすることにより、表面から所定の深さまでの領域にのみ前記触媒活性元素を担持した他の触媒と比べて、当該触媒の寿命を延長することを特徴とする。
 (32) 本発明の長寿命化方法では、前記触媒および前記他の触媒のそれぞれのアルコールを含む原料との接触により、前記原料を反応させてジエン化合物を製造したとき、前記他の触媒と比べて、前記ジエン化合物の初期収率の低下が抑制されるとともに、前記初期収率を維持する反応維持率が増加することが好ましい。
 (33) 本発明の長寿命化方法では、前記初期収率が前記他の触媒の80%以上であり、かつ前記反応維持率が前記他の触媒の2倍以上であることが好ましい。
(31) The life extension method of the present invention is a method for extending the life of a catalyst comprising a carrier composed of an oxide containing element X and a catalytically active element supported on the surface and inside of the carrier. There is
By making the amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth greater than the amount of the catalytically active element contained inside the region of the catalyst, The life of the catalyst is extended as compared with other catalysts in which the catalytically active element is supported only in the region of .
(32) In the method for extending the service life of the present invention, when the raw materials of the catalyst and the other catalyst are brought into contact with raw materials containing alcohol to produce a diene compound by reacting the raw materials, the Therefore, it is preferable that the decrease in the initial yield of the diene compound is suppressed and the reaction maintenance rate for maintaining the initial yield is increased.
(33) In the method for extending service life of the present invention, it is preferable that the initial yield is 80% or more of the other catalyst and the reaction maintenance rate is twice or more that of the other catalyst.
 本発明によれば、例えば、アルコールを含む原料からジエン化合物を初期から長期にわたって高い収率で製造することができる。 According to the present invention, for example, a diene compound can be produced from an alcohol-containing raw material at a high yield over a long period of time from the initial stage.
ジエン化合物の製造装置の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the manufacturing apparatus of a diene compound.
 以下、本発明の触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法について、好適実施形態に基づいて詳細に説明する。
 [触媒]
 本発明の触媒は、例えば、アルコール(第1化合物)を含む原料との接触によりジエン化合物(第2化合物)を合成するジエン化合物合成用触媒として使用される。また、ジエン化合物の合成に際して生成した炭素または炭素化合物が付着した触媒は、その性能(活性)が低下するが、酸素含有雰囲気下に加熱することにより、炭素または炭素化合物を燃焼により除去して再生(活性を回復)することができる。
Hereinafter, the catalyst, method for producing a catalyst, method for producing a diene compound, method for producing a polymer, method for producing a polymer molded product, method for measuring catalyst performance, and method for extending the service life of the present invention will be described in detail based on preferred embodiments. do.
[catalyst]
The catalyst of the present invention is used, for example, as a diene compound synthesis catalyst for synthesizing a diene compound (second compound) by contact with a raw material containing an alcohol (first compound). In addition, although the performance (activity) of the catalyst to which the carbon or carbon compound produced during the synthesis of the diene compound adheres is lowered, the carbon or carbon compound is removed by combustion and regenerated by heating in an oxygen-containing atmosphere. (recover activity).
 かかる触媒は、好ましくはアルコール(第1化合物)からジエン化合物(第2化合物)に変換する反応プロセスと、この反応プロセスを経た後の触媒を再生する再生プロセスとに供され、より好ましくは反応プロセスと再生プロセスとに繰り返し供される。これにより、アルコールを含む原料からジエン化合物を連続的に製造することができる。
 ここで、原料は、エタノールおよびアセトアルデヒドのうちの少なくとも1種を含有することが好ましく、エタノールであることがより好ましい。また、ジエン化合物としては、後述するように、1,3-ブタジエンであることが好ましい。
Such a catalyst is preferably subjected to a reaction process for converting an alcohol (first compound) into a diene compound (second compound) and a regeneration process for regenerating the catalyst after undergoing this reaction process, more preferably a reaction process. and the regeneration process repeatedly. Thereby, a diene compound can be continuously produced from a raw material containing alcohol.
Here, the raw material preferably contains at least one of ethanol and acetaldehyde, more preferably ethanol. As the diene compound, 1,3-butadiene is preferable as described later.
 本発明の触媒の一態様は、触媒活性元素と、この触媒活性元素を担持する担体とを含む。かかる触媒は、以下に示す条件I~IIIのうちの1つの条件を満足することが好ましく、2つの条件を満足することがより好ましく、3つの条件を満足することがさらに好ましい。 One aspect of the catalyst of the present invention includes a catalytically active element and a carrier that supports this catalytically active element. Such a catalyst preferably satisfies one of conditions I to III shown below, more preferably satisfies two conditions, and further preferably satisfies three conditions.
 条件I:下記式(1)で表される昇温効率が、5~6.5%である。
Figure JPOXMLDOC01-appb-M000007
Condition I: The heating efficiency represented by the following formula (1) is 5 to 6.5%.
Figure JPOXMLDOC01-appb-M000007
 条件II:下記式(2)で表される降温効率が、2.6~4.5%である。
Figure JPOXMLDOC01-appb-M000008
Condition II: The cooling efficiency represented by the following formula (2) is 2.6 to 4.5%.
Figure JPOXMLDOC01-appb-M000008
 条件III:下記式(3)で表される白色度比率が、98~130%である。
Figure JPOXMLDOC01-appb-M000009
Condition III: The whiteness ratio represented by the following formula (3) is 98 to 130%.
Figure JPOXMLDOC01-appb-M000009
 条件Iまたは条件IIを満足することにより、触媒の昇温効率または降温効率が適度となるため、触媒の昇温または降温に要する時間が不要に長くなるのを防止することができる。その結果、反応プロセスの時間(触媒として使用可能な時間)を再生プロセスの時間より長くすることができ、よって、目的とする量の1,3-ブタジエンを連続かつ安定して製造することができる。
 また、触媒の温度をコントロールし易いので、再生プロセスが発熱プロセスであっても、再生プロセスにおいて触媒の温度が必要以上に上昇するのを防止することができる。このため、触媒活性元素の凝集や担体の焼き締めが生じ難く、触媒構造に崩壊が生じるのを阻止することができる。さらに、触媒を充填する反応管の温度が耐久温度を超えてしまうのを防止して、反応管の劣化を抑制することができる。
By satisfying the condition I or the condition II, the temperature rising efficiency or the temperature falling efficiency of the catalyst becomes moderate, so that the time required for the temperature rising or falling of the catalyst can be prevented from becoming unnecessarily long. As a result, the time of the reaction process (time during which the catalyst can be used) can be made longer than the time of the regeneration process, so that the desired amount of 1,3-butadiene can be produced continuously and stably. .
In addition, since the temperature of the catalyst can be easily controlled, even if the regeneration process is an exothermic process, it is possible to prevent the temperature of the catalyst from rising more than necessary during the regeneration process. Therefore, aggregation of the catalytically active element and sintering of the carrier are less likely to occur, and collapse of the catalyst structure can be prevented. Furthermore, it is possible to prevent the temperature of the reaction tube filled with the catalyst from exceeding the endurable temperature, thereby suppressing deterioration of the reaction tube.
 なお、本発明者らの検討によれば、条件IIIを満足する触媒は、上記条件Iおよび/または条件IIを満足し易いことが見出された。
 ここで、条件Iにおける昇温効率は、5~6.5%であればよいが、5.2~6.4%であることが好ましく、5.4~6%であることがより好ましい。
 条件IIにおける降温効率は、2.6~4.5%であればよいが、2.8~4.2%であることが好ましく、3~4%であることがより好ましい。
 条件IIIにおける白色度比率は、98~130%であればよいが、100~125%であることが好ましく、102~115%であることがより好ましい。
 したがって、上記少なくとも1つの条件を満たす場合、上記効果をより向上させることができる。
In addition, according to the study of the present inventors, it was found that a catalyst that satisfies condition III easily satisfies condition I and/or condition II.
Here, the temperature rising efficiency under condition I may be 5 to 6.5%, preferably 5.2 to 6.4%, more preferably 5.4 to 6%.
The temperature lowering efficiency under condition II may be 2.6 to 4.5%, preferably 2.8 to 4.2%, more preferably 3 to 4%.
The whiteness ratio under condition III may be 98 to 130%, preferably 100 to 125%, more preferably 102 to 115%.
Therefore, when at least one of the above conditions is satisfied, the above effects can be further enhanced.
 そして、本発明者らの検討によれば、上記条件I~IIIは、触媒活性元素と担体との量比、触媒活性元素および担体の種類の選択、担体の条件(平均細孔直径、全細孔容積、比表面積、メソ細孔容積率等)、触媒の製造条件(触媒活性元素を含む化合物の溶液と担体との接触方法、接触時間、洗浄用液体の種類等)により調整することができることも判っている。 According to the studies of the present inventors, the above conditions I to III are the quantitative ratio of the catalytically active element and the carrier, the selection of the catalytically active element and the type of the carrier, the conditions of the carrier (average pore diameter, total fineness Pore volume, specific surface area, mesopore volume ratio, etc.), catalyst production conditions (method of contacting a solution of a compound containing a catalytically active element with a support, contact time, type of washing liquid, etc.). I also know
 触媒の比表面積をより増大させる観点からは、担体は多孔質担体であるのが好ましく、メソ細孔を有する多孔質担体であることが好ましい。この場合、上記条件I~IIIを満足する触媒を製造し易いのみならず、メソ細孔を形成する細孔壁にも、触媒活性元素が担持されるので、触媒の比表面積(活性点)をより増大させることができる。
 また、この場合、例えば、原料のアルコール(エタノール)とその中間体(クロトンアルデヒド)等がメソ細孔内に入り、これらの衝突頻度が高まって反応性も向上するものと考えられる。
 さらに、多孔質担体のメソ細孔の数、サイズ等を設定することにより、得られる触媒が上記条件I~IIIをより確実に満足し易くなる。
From the viewpoint of further increasing the specific surface area of the catalyst, the carrier is preferably a porous carrier, preferably a porous carrier having mesopores. In this case, not only is it easy to produce a catalyst that satisfies the above conditions I to III, but also the catalytically active element is supported on the pore walls forming the mesopores, so the specific surface area (active site) of the catalyst can be increased. can be increased.
Also, in this case, for example, the raw material alcohol (ethanol) and its intermediate (crotonaldehyde) enter the mesopores, increasing the collision frequency and improving the reactivity.
Furthermore, by setting the number, size, etc. of mesopores of the porous carrier, the resulting catalyst can more reliably satisfy the conditions I to III.
 メソ細孔の平均細孔直径は、2~50nmであることが好ましく、2~30nmであることがより好ましく、2~20nmであることがさらに好ましく、2~15nmであることが特に好ましい。
 なお、本明細書において、「平均細孔直径」は、全細孔容積(多孔質担体の細孔容積の合計)とBET比表面積とから算出される値を採用することができる。
 具体的には、メソ細孔の形状を円筒形であると仮定して算出する方法(BJH法)を使用することができる。この場合、円筒の側面積をBET比表面積A1とし、円筒の体積を全細孔容積V1と規定すると、メソ細孔の平均細孔直径は、4V1/A1により算出することができる。
The average pore diameter of mesopores is preferably 2 to 50 nm, more preferably 2 to 30 nm, even more preferably 2 to 20 nm, and particularly preferably 2 to 15 nm.
As used herein, the "average pore diameter" can be a value calculated from the total pore volume (the total pore volume of the porous carrier) and the BET specific surface area.
Specifically, a calculation method (BJH method) can be used that assumes that the shape of the mesopores is cylindrical. In this case, if the side area of the cylinder is defined as the BET specific surface area A1 and the volume of the cylinder is defined as the total pore volume V1, the average pore diameter of the mesopores can be calculated by 4V1/A1.
 なお、多孔質担体の全細孔容積は、0.1~10mL/gであることが好ましく、0.1~5mL/gであることがより好ましく、0.1~2mL/gであることがさらに好ましい。多孔質担体の全細孔容積を上記範囲とすることにより、上記条件I~IIIを満足する触媒を製造し易いのみならず、多孔質担体への原料の拡散性が向上するとともに、原料と触媒(触媒活性元素)と間の接触面積が増大し、よって、ジエン化合物の収率をさらに高めることができる。
 なお、本明細書において、多孔質担体の「全細孔容積」は、ガス吸着法により測定される値を採用することができる。
 ここで、ガス吸着法とは、窒素ガスを吸着ガスとして使用し、多孔質担体の表面に窒素分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
The total pore volume of the porous carrier is preferably 0.1 to 10 mL/g, more preferably 0.1 to 5 mL/g, and 0.1 to 2 mL/g. More preferred. By setting the total pore volume of the porous support within the above range, not only is it easy to produce a catalyst that satisfies the above conditions I to III, but also the diffusibility of the raw material into the porous support is improved, and the raw material and the catalyst The contact area between (catalytically active element) is increased, and thus the yield of the diene compound can be further increased.
In addition, in this specification, the value measured by the gas adsorption method can be adopted as the "total pore volume" of the porous carrier.
Here, the gas adsorption method is a method in which nitrogen gas is used as an adsorption gas, nitrogen molecules are adsorbed on the surface of a porous carrier, and the pore size distribution is measured from the condensation of the molecules.
 担体の比表面積は、100~10000m/gであることが好ましく、200~5000m/gであることがより好ましく、200~1500m/gであることがさらに好ましく、700~1200m/gであることが特に好ましい。担体の比表面積を上記範囲とすることにより、上記条件I~IIIを満足する触媒を製造し易いのみならず、活性点の数を十分に多くすることができるとともに、原料と触媒(触媒活性元素)と間の接触面積が増大し、よって、ジエン化合物の収率をさらに高めることができる。その結果、原料中のアルコール、またはアルコールおよびアルデヒドの双方の含有量が高い場合であっても、原料の高い転化率が維持される。
 なお、本明細書において、担体の「比表面積」は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積を意味する。
The specific surface area of the carrier is preferably 100 to 10,000 m 2 /g, more preferably 200 to 5,000 m 2 /g, still more preferably 200 to 1,500 m 2 /g, and 700 to 1,200 m 2 /g. is particularly preferred. By setting the specific surface area of the carrier within the above range, it is possible not only to easily produce a catalyst that satisfies the above conditions I to III, but also to sufficiently increase the number of active sites, and the raw material and the catalyst (catalytically active element ), thus increasing the yield of the diene compound. As a result, high conversion of the feed is maintained even when the alcohol or both alcohol and aldehyde content in the feed is high.
In this specification, the "specific surface area" of the carrier means the BET specific surface area measured by the BET gas adsorption method using nitrogen as the adsorption gas.
 多孔質担体の全細孔容積と比表面積との積は、10~100000mL・m/gであることが好ましく、20~25000mL・m/gであることがより好ましく、20~2000mL・m/gであることがさらに好ましい。多孔質担体の全細孔容積と比表面積との積を上記範囲とすることにより、上記条件I~IIIを満足する触媒を製造し易いのみならず、活性点の数を十分に多くし、かつ多孔質担体への原料の拡散性が向上するとともに、原料と触媒(触媒活性元素)と間の接触面積がより増大し、よって、ジエン化合物の収率をさらに高めることができる。 The product of the total pore volume and the specific surface area of the porous carrier is preferably 10 to 100,000 mL·m 2 /g 2 , more preferably 20 to 25,000 mL·m 2 /g 2 , and 20 to 2,000 mL. - It is more preferable that it is m< 2 >/g< 2 >. By setting the product of the total pore volume and the specific surface area of the porous support within the above range, not only is it easy to produce a catalyst that satisfies the above conditions I to III, the number of active sites is sufficiently increased, and The diffusibility of the raw material into the porous carrier is improved, and the contact area between the raw material and the catalyst (catalytically active element) is increased, thereby further increasing the yield of the diene compound.
 多孔質担体のメソ細孔容積率(全メソ細孔容積/全細孔容積×100)は、50%以上であることが好ましく、50~100%であることがより好ましく、80~100%であることがさらに好ましく、90~100%であることが特に好ましい。メソ細孔容積率を上記範囲とすることにより、上記条件I~IIIを満足する触媒を製造し易いのみならず、多孔質担体に十分な数のメソ細孔が存在し、原料の拡散性が向上するため、ジエン化合物の収率をさらに高めることができる。 The mesopore volume ratio (total mesopore volume/total pore volume x 100) of the porous carrier is preferably 50% or more, more preferably 50 to 100%, and 80 to 100%. It is more preferable to be 1, and particularly preferably 90 to 100%. By setting the mesopore volume ratio within the above range, not only is it easy to produce a catalyst that satisfies the above conditions I to III, but also a sufficient number of mesopores are present in the porous support, and the diffusibility of the raw material is improved. Therefore, the yield of the diene compound can be further increased.
 なお、メソ細孔容積率の割合は、後述する触媒の製造方法における原料(元素Xを含む化合物等)の使用比率、焼成工程の焼成温度等により制御することができる。
 また、多孔質担体のメソ細孔の形状、およびメソ細孔を形成する細孔壁が結晶構造を有しているか否かは、X線回折による回折ピークを観察することにより確認することができる。
 さらに、透過型電子顕微鏡(TEM)により多孔質担体を観察することで、メソ細孔の形状、規則性を確認することもできる。
The ratio of the mesopore volume ratio can be controlled by the ratio of raw materials (such as compounds containing the element X) used in the method for producing the catalyst described below, the calcination temperature in the calcination step, and the like.
Further, the shape of the mesopores of the porous carrier and whether or not the pore walls forming the mesopores have a crystal structure can be confirmed by observing diffraction peaks by X-ray diffraction. .
Furthermore, the shape and regularity of mesopores can be confirmed by observing the porous carrier with a transmission electron microscope (TEM).
 担体の形状としては、特に限定されないが、例えば、粒状が好ましい。粒状であれば、本発明の触媒の充填密度を適度に調整し易い。
 ここで、粒状とは、粉末状、粒子状、塊状、ペレット状等を含む概念であり、その形態も球状、板状、多角状、破砕状、柱状、針状、鱗片状等のいずれでもよい。
 担体の平均粒径は、150μm~30mmであることが好ましく、200μm~20mmであることがより好ましく、300μm~10mmであることがさらに好ましい。かかる平均粒径を有する担体であれば、本発明の触媒の充填密度が適度になり易い。
The shape of the carrier is not particularly limited, but is preferably granular, for example. If it is granular, it is easy to moderately adjust the packing density of the catalyst of the present invention.
Here, "granular" is a concept including powdery, particulate, lumpy, pellet-like, etc., and its shape may be any of spherical, plate-like, polygonal, crushed, columnar, needle-like, scale-like, etc. .
The average particle size of the carrier is preferably 150 μm to 30 mm, more preferably 200 μm to 20 mm, even more preferably 300 μm to 10 mm. With a carrier having such an average particle size, the packing density of the catalyst of the present invention tends to be moderate.
 なお、本明細書において、「平均粒径」とは、電子顕微鏡で観察される一視野中の任意の200個の触媒の粒径の平均値を意味する。
 この際、「粒径」とは、触媒の輪郭線上の2点間の距離のうち最大の長さを意味する。なお、担体が柱状である場合、その端面の輪郭線上の2点間の距離のうち最大の長さを「粒径」とする。
 また、平均粒径は、例えば、塊状などであり、一次粒子が凝集している場合には、二次粒子の平均粒径を意味する。
In this specification, "average particle size" means the average value of particle sizes of arbitrary 200 catalysts in one field observed with an electron microscope.
In this case, "particle size" means the maximum length of the distance between two points on the outline of the catalyst. When the carrier is columnar, the maximum length of the distance between two points on the contour line of the end face is defined as the "particle diameter".
Further, the average particle size is, for example, in the form of lumps, and means the average particle size of the secondary particles when the primary particles are agglomerated.
 本発明において、触媒活性元素を担持する担体は、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成されるのが好ましい。かかる担体に触媒活性元素を担持させることにより、触媒(触媒活性元素)の比表面積を増大させ、触媒の性能をより高めることができ、ジエン化合物の収率をより高めることができる。 In the present invention, the carrier that supports the catalytically active element is preferably composed of an oxide containing at least one element X selected from Groups 13 and 14 of the periodic table. By supporting a catalytically active element on such a carrier, the specific surface area of the catalyst (catalytically active element) can be increased, the performance of the catalyst can be further improved, and the yield of the diene compound can be further increased.
 元素Xとしては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等の第13族に属する元素、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)等の第14族に属する元素が挙げられる。中でも、元素Xとしては、第14族に属する元素が好ましく、炭素、ケイ素であることがより好ましく、ケイ素であることがさらに好ましい。上記元素Xを含有する酸化物で構成される担体は、触媒活性元素を安定的に担持し易い。なお、担体は、上記元素Xを単独で含有しても、2種以上を組み合わせて含有してもよい。 Examples of the element X include elements belonging to Group 13 such as aluminum (Al), gallium (Ga), and indium (In), carbon (C), silicon (Si), germanium (Ge), tin (Sn), and the like. and elements belonging to Group 14 of Among them, the element X is preferably an element belonging to Group 14, more preferably carbon or silicon, and still more preferably silicon. The carrier composed of the oxide containing the element X easily stably supports the catalytically active element. The carrier may contain the above element X singly or in combination of two or more.
 上記列挙した中から、触媒活性元素と元素X(担体)とを選択して、組み合わせることにより、上記条件I~IIIを満足する触媒を製造し易い。
 特に好ましい触媒活性元素と元素Xとの組み合わせとしては、触媒活性元素がハフニウムであり、元素Xがケイ素である。
By selecting and combining the catalytically active element and the element X (support) from the list above, it is easy to produce a catalyst that satisfies the conditions I to III.
A particularly preferred combination of the catalytically active element and the element X is hafnium as the catalytically active element and silicon as the element X.
 かかる本発明の触媒の充填密度は、1.1g/mL以下であることが好ましく、0.4~1g/mLであることがより好ましく、0.5~0.9g/mLであることがさらに好ましい。この充填密度が低過ぎると、原料の通過速度が速くなり過ぎ、触媒と原料とが接触する時間が減少する。その結果、ジエン化合物の収率が低下し易い。一方、この充填密度が高過ぎると、原料の通過速度が遅くなり過ぎ、反応が進行し難くなったり、ジエン化合物を製造するのに長時間を要するようになったりする。 The packing density of the catalyst of the present invention is preferably 1.1 g/mL or less, more preferably 0.4 to 1 g/mL, and further preferably 0.5 to 0.9 g/mL. preferable. If the packing density is too low, the feedstock passes too fast and the contact time between the catalyst and the feedstock is reduced. As a result, the yield of the diene compound tends to decrease. On the other hand, if the packing density is too high, the passage speed of the raw materials becomes too slow, making it difficult for the reaction to proceed or requiring a long time to produce the diene compound.
 本発明の触媒の一態様は、元素Xを含有する酸化物で構成された担体、好適には多孔質担体と、この多孔質担体の表面および内部に担持された触媒活性元素とを含む。
 そして、かかる本発明の触媒の一態様では、触媒の表面から所定の深さまでの領域(以下、「表面付近の領域」とも記載する。)に含まれる触媒活性元素の量が、触媒の表面付近の領域より内側(以下、「内側の領域」とも記載する。)に含まれる触媒活性元素の量より多いことを特徴とする。
 かかる本発明の触媒は、表面付近の領域に十分な量の触媒活性元素を有することにより、ジエン化合物の初期収率(触媒の初期性能)が高く、かつ内側の領域にも触媒活性元素を有することにより、長期にわたって高いジエン化合物の収率(触媒の性能)が維持される(すなわち、長寿命化される)。
 ここで、ジエン化合物の初期収率とは、実施例にて後述する通り、原料の供給開始1時間後のジエン化合物の収率を意味する。
One aspect of the catalyst of the present invention includes a support, preferably a porous support, composed of an oxide containing element X, and a catalytically active element supported on the surface and inside of the porous support.
In one aspect of the catalyst of the present invention, the amount of the catalytically active element contained in the region from the surface of the catalyst to a predetermined depth (hereinafter also referred to as "region near the surface") is (hereinafter also referred to as "inner region").
The catalyst of the present invention has a sufficient amount of catalytically active element in the region near the surface, so that the initial yield of the diene compound (initial performance of the catalyst) is high, and the inner region also has the catalytically active element. As a result, a high diene compound yield (catalyst performance) is maintained over a long period of time (that is, the life of the catalyst is extended).
Here, the initial yield of the diene compound means the yield of the diene compound one hour after starting the supply of the raw materials, as will be described later in Examples.
 なお、所定の深さの領域(表面付近の領域)は、触媒の表面から60μmまでの領域であることが好ましく、50μmまでの領域であることがより好ましく、30μmまでの領域であることがさらに好ましい。かかる領域は、触媒の最表面側の領域であり、この領域に十分な触媒活性元素を有することにより、ジエン化合物の初期収率をより向上させることができる。
 触媒の表面付近の領域に触媒活性元素が偏在する程度は、触媒全体における元素Xに対する触媒活性元素のモル比Aと、表面付近の領域における元素Xに対する触媒活性元素のモル比Bとの関係で規定することができる。
The predetermined depth region (region near the surface) is preferably a region from the surface of the catalyst up to 60 μm, more preferably up to 50 μm, and further preferably up to 30 μm. preferable. Such a region is the region on the outermost surface side of the catalyst, and by having sufficient catalytically active elements in this region, the initial yield of the diene compound can be further improved.
The extent to which the catalytically active element is unevenly distributed in the region near the surface of the catalyst is determined by the relationship between the molar ratio A of the catalytically active element to the element X in the entire catalyst and the molar ratio B of the catalytically active element to the element X in the region near the surface. can be stipulated.
 具体的には、B/A(表面付近の領域における元素Xに対する触媒活性元素のモル比/触媒全体における元素Xに対する触媒活性元素のモル比)が、1~9であることが好ましく、2~8であることがより好ましく、3~7であることがさらに好ましい。この場合、ジエン化合物の初期収率と反応維持率(寿命)とのバランスがより良好になる。
 ここで、反応維持率は、ジエン化合物の初期収率、すなわち原料の供給開始1時間後のジエン化合物の収率をC1[%]とし、20時間後のジエン化合物の収率をC2[%]としたとき、C2/C1×100で表される値である。
Specifically, B/A (molar ratio of catalytically active element to element X in the region near the surface/molar ratio of catalytically active element to element X in the entire catalyst) is preferably 1 to 9, preferably 2 to 8 is more preferred, and 3 to 7 is even more preferred. In this case, the balance between the initial yield of the diene compound and the reaction maintenance rate (lifetime) becomes better.
Here, the reaction maintenance rate is the initial yield of the diene compound, that is, the yield of the diene compound after 1 hour from the start of supply of the raw material is C1 [%], and the yield of the diene compound after 20 hours is C2 [%]. , the value is expressed by C2/C1×100.
 元素Xに対する触媒活性元素のモル比は、測定対象物における元素Xおよび触媒活性元素のモル量を所定の方法を使用して測定し、それらの測定値を除算することにより求めることができる。
 所定の方法としては、例えば、エネルギー分散型X線分光法(EDX法)、誘導結合プラズマ発光分光法(ICP法)、蛍光X線分析法(XRF法)、X線光電子分光法(XPS法)等が挙げられる。中でも、上記方法としては、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX法)、透過型電子顕微鏡-エネルギー分散型X線分光法(TEM-EDX法)であることが好ましく、SEM-EDX法であることがより好ましい。かかる方法(特に、SEM-EDX法)によれば、上記モル比をより正確かつ簡便に求めることができる。
The molar ratio of the catalytically active element to the element X can be obtained by measuring the molar amounts of the element X and the catalytically active element in the object to be measured using a predetermined method and dividing the measured values.
Predetermined methods include, for example, energy dispersive X-ray spectroscopy (EDX method), inductively coupled plasma emission spectroscopy (ICP method), X-ray fluorescence spectroscopy (XRF method), and X-ray photoelectron spectroscopy (XPS method). etc. Among them, the above method is preferably scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method), transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDX method), More preferred is the SEM-EDX method. According to such a method (particularly, the SEM-EDX method), the molar ratio can be obtained more accurately and simply.
 モル比Aの具体的な値は、特に限定されないが、0.2~10であることが好ましく、0.5~5であることがより好ましい。一方、モル比Bの具体的な値も、特に限定されないが、0.5~20であることが好ましく、1~10であることがより好ましい。 Although the specific value of the molar ratio A is not particularly limited, it is preferably 0.2-10, more preferably 0.5-5. On the other hand, although the specific value of the molar ratio B is not particularly limited, it is preferably 0.5-20, more preferably 1-10.
 触媒活性元素は、周期表の第2族~第6族、第11族および第12族に属する元素のうちの少なくとも1種であることが好ましく、第2族、第4族および第5族に属する元素のうちの少なくとも1種であることがより好ましく、マグネシウム(Mg)、タンタル(Ta)、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも1種であることがさらに好ましい。これらの元素を選択すれば、特に、ジエン化合物の収率を向上させることができる。 The catalytically active element is preferably at least one of the elements belonging to Groups 2 to 6, 11 and 12 of the periodic table. It is more preferably at least one of the belonging elements, and more preferably at least one of magnesium (Mg), tantalum (Ta), hafnium (Hf) and zirconium (Zr). Selection of these elements can improve the yield of the diene compound in particular.
 本発明の触媒の好適な一態様はまた、ハフニウム(Hf)と、チタン(Ti)およびジルコニウム(Zr)のうちの少なくとも1種の元素Mとを含む。
 ハフニウムは、原料の転化率およびジエン化合物の選択率(以下、これらを併せて「ジエン化合物の収率」とも記載する。)が高いが、安価かつ大量に入手するのが困難な金属元素である。そこで、本発明の触媒の好適な一態様では、ハフニウムと周期表の同族(第4族)に属する金属元素であるチタンおよびジルコニウムのうちの少なくとも1種の元素Mを組み合わせて使用することとした。これにより、触媒の高い性能(ジエン化合物の収率)を維持しつつ、その製造コストを低減することができる。
A preferred embodiment of the catalyst of the present invention also contains hafnium (Hf) and at least one element M selected from titanium (Ti) and zirconium (Zr).
Hafnium has a high raw material conversion rate and diene compound selectivity (hereinafter collectively referred to as "diene compound yield"), but is a metal element that is inexpensive and difficult to obtain in large quantities. . Therefore, in a preferred embodiment of the catalyst of the present invention, hafnium is used in combination with at least one element M of titanium and zirconium, which are metal elements belonging to the same group (group 4) of the periodic table. . Thereby, the production cost can be reduced while maintaining high performance of the catalyst (yield of diene compound).
 かかる本発明の触媒では特に、ハフニウム(Hf)に対する元素Mのモル比(M/Hf)を20超500以下の範囲に設定した。これにより、ハフニウム(単体)またはその化合物(例えば、酸化物)が元素M(単体)またはその化合物(例えば、酸化物)に包埋されるのを防止することができる。このため、ハフニウムと元素Mとの相互作用が強くなることで活性点の数が多くなり、触媒の高い性能を十分に維持することができる。
 一方、モル比(M/Hf)が500を超えると、ハフニウムまたはその化合物が元素Mまたはその化合物に包埋される。また、モル比(M/Hf)が20以下であると、ハフニウムと元素Mとの相互作用が弱くなることで活性点の数が少なくなる。したがって、モル比(M/Hf)が上記範囲を上方向および下方向のいずれに逸脱しても、触媒の性能が低下する。
Especially in the catalyst of the present invention, the molar ratio (M/Hf) of the element M to hafnium (Hf) is set in the range of more than 20 to 500 or less. This can prevent hafnium (single element) or its compound (eg, oxide) from being embedded in the element M (single element) or its compound (eg, oxide). Therefore, the stronger interaction between hafnium and the element M increases the number of active sites, and the high performance of the catalyst can be sufficiently maintained.
On the other hand, when the molar ratio (M/Hf) exceeds 500, hafnium or its compound is embedded in the element M or its compound. Further, when the molar ratio (M/Hf) is 20 or less, the interaction between hafnium and the element M is weakened, resulting in a decrease in the number of active sites. Therefore, the performance of the catalyst deteriorates when the molar ratio (M/Hf) deviates from the above range either upwards or downwards.
 モル比(M/Hf)は、20超500以下であればよいが、50超400以下であることが好ましく、100超400以下であることがより好ましく、100超300以下であることがさらに好ましい。この場合、触媒の性能をより向上させることができる。
 元素Mは、チタンおよびジルコニウムのうちの少なくとも1種であればよいが、ジルコニウムであることが好ましい。ジルコニウムは、周期表の第4族の属する元素の中でも、特にハフニウムと強く相互作用する。このため、活性点の数がより多くなり、触媒の高い性能がより確実に維持される。
 かかる本発明の触媒は、ハフニウムおよび元素Mを担持する担体を含むことが好ましい。担体を構成する元素Xを含有する酸化物、好適な担体である多孔質担体の詳細については、前述の説明と同様である。
 特に好ましい元素Mと元素Xとの組み合わせとしては、元素Mがジルコニウムであり、元素Xがケイ素である。
The molar ratio (M/Hf) may be more than 20 and 500 or less, preferably more than 50 and 400 or less, more preferably more than 100 and 400 or less, more preferably more than 100 and 300 or less. . In this case, the performance of the catalyst can be further improved.
The element M may be at least one of titanium and zirconium, preferably zirconium. Zirconium strongly interacts with hafnium among the elements belonging to group 4 of the periodic table. Therefore, the number of active sites is increased, and the high performance of the catalyst is more reliably maintained.
Such a catalyst of the present invention preferably contains a carrier on which hafnium and the element M are supported. The details of the oxide containing the element X that constitutes the carrier and the porous carrier that is a suitable carrier are the same as those described above.
A particularly preferable combination of the element M and the element X is that the element M is zirconium and the element X is silicon.
 本発明の触媒において、元素Xに対する元素Mのモル比(M/X)は、0.0001~0.5であることが好ましく、0.0005~0.4であることがより好ましく、0.001~0.4であることがさらに好ましく、0.001~0.3であることが特に好ましい。上記範囲を下方向に逸脱すると、元素Mおよび元素Xの組み合わせによっては、元素Mと元素Xとの相互作用が弱くなることで活性点の数が少なくなるおそれがある。上記範囲を上方向に逸脱すると、使用する担体の種類、サイズ等によっては、その表面を元素Mが被覆して比表面積が低下するおそれがある。したがって、モル比(M/X)が上記範囲であれば、元素Mおよび元素Xの組み合わせによらず、触媒の性能が向上し易い。 In the catalyst of the present invention, the molar ratio (M/X) of element M to element X is preferably 0.0001 to 0.5, more preferably 0.0005 to 0.4, and more preferably 0.0005 to 0.4. 001 to 0.4, and particularly preferably 0.001 to 0.3. If the above range is deviated downward, depending on the combination of the element M and the element X, the interaction between the element M and the element X may be weakened, resulting in a decrease in the number of active sites. If the above range is deviated upward, the surface of the carrier may be coated with the element M and the specific surface area may decrease depending on the type, size, etc. of the carrier used. Therefore, if the molar ratio (M/X) is within the above range, the performance of the catalyst is likely to be improved regardless of the combination of the element M and the element X.
 なお、元素Mを2種以上組み合わせて含有する場合はそれらの和、元素Xを2種以上組み合わせて含有する場合はそれらの和を使用して、上記モル比(M/X)を計算する。
 本発明の触媒において、元素Xに対するHfのモル比(Hf/X)は、0.00001~0.1であることが好ましく、0.00001~0.01であることがより好ましい。かかる範囲でHfを使用することにより、触媒の高い性能を維持しつつ、触媒を安価に製造することができる。
When the element M is contained in combination of two or more types, the sum thereof is used, and when the element X is contained in combination of two or more types, the sum thereof is used to calculate the molar ratio (M/X).
In the catalyst of the present invention, the molar ratio of Hf to element X (Hf/X) is preferably 0.00001 to 0.1, more preferably 0.00001 to 0.01. By using Hf within this range, the catalyst can be produced at low cost while maintaining high performance of the catalyst.
 本発明の触媒は、上記条件I~IIIを満足するので、触媒の温度を精密にコントロールすることができる。
 したがって、本発明の触媒は、反応プロセスにおける加熱温度をAとし、再生プロセスにおける加熱温度をBとしたとき、B>AかつB-A=50~400℃(特に、100~400℃)を満足する反応プロセスおよび再生プロセスに供することが好ましい。
 本発明の触媒によれば、このような反応プロセスおよび再生プロセスに供する場合であっても、反応プロセスの時間(触媒として使用可能な時間)を十分に確保して、ジエン化合物を効率よく製造することができる。また、触媒活性元素の凝集や担体の焼き締めによる触媒構造の崩壊や、触媒を充填する反応管の温度が耐久温度を超過することによる反応管の劣化等の不都合の発生も好適に防止することができる。
Since the catalyst of the present invention satisfies the above conditions I to III, the temperature of the catalyst can be precisely controlled.
Therefore, the catalyst of the present invention satisfies B>A and BA=50 to 400° C. (especially 100 to 400° C.), where A is the heating temperature in the reaction process and B is the heating temperature in the regeneration process. It is preferable to subject it to a reaction process and a regeneration process.
According to the catalyst of the present invention, even when subjected to such a reaction process and a regeneration process, a diene compound can be produced efficiently by securing a sufficient time for the reaction process (time during which the catalyst can be used). be able to. In addition, the occurrence of inconveniences such as collapse of the catalyst structure due to agglomeration of catalytically active elements and quenching of the carrier, and deterioration of the reaction tube due to the temperature of the reaction tube filled with the catalyst exceeding the endurance temperature should be preferably prevented. can be done.
 反応プロセスにおける加熱温度の具体的な値は、特に限定されないが、100~600℃であることが好ましく、200~600℃であることが好ましく、200~500℃であることがより好ましく、250~500℃であることがより好ましく、250~450℃であることがさらに好ましく、300~450℃であることがさらに好ましい。
 一方、再生プロセスにおける加熱温度の具体的な値は、特に限定されないが、200~600℃であることが好ましく、300~575℃であることがより好ましく、400~550℃であることがさらに好ましい。
 このように比較的高い加熱温度で行われる反応プロセスおよび再生プロセスでの使用において、本発明の触媒は、上記効果を好適に発揮することができる。
The specific value of the heating temperature in the reaction process is not particularly limited, but it is preferably 100 to 600 ° C., preferably 200 to 600 ° C., more preferably 200 to 500 ° C., 250 to It is more preferably 500°C, even more preferably 250 to 450°C, even more preferably 300 to 450°C.
On the other hand, the specific value of the heating temperature in the regeneration process is not particularly limited, but it is preferably 200 to 600°C, more preferably 300 to 575°C, and even more preferably 400 to 550°C. .
When used in reaction processes and regeneration processes that are carried out at such relatively high heating temperatures, the catalyst of the present invention can favorably exhibit the effects described above.
 [触媒の製造方法]
 触媒活性元素が担体に担持されてなる触媒は、例えば、調製工程、接触工程および焼成工程を経て製造することができる。以下、本実施形態の触媒の製造方法の各工程について説明する。
 (調製工程)
 まず、触媒活性元素を含む化合物(触媒活性元素前駆体)を、溶媒に溶解して、溶液(含浸液)を調製する。
[Method for producing catalyst]
A catalyst in which a catalytically active element is supported on a carrier can be produced through, for example, a preparation step, a contact step and a calcination step. Each step of the catalyst production method of the present embodiment will be described below.
(Preparation process)
First, a compound containing a catalytically active element (catalytically active element precursor) is dissolved in a solvent to prepare a solution (impregnation liquid).
 触媒活性元素を含む化合物としては、それぞれ、例えば、触媒活性元素の塩化物、塩化酸化物、硫化物、硝酸塩、炭酸塩のような無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩のような有機塩、キレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等が挙げられる。
 中でも、上記化合物としては、塩化物または塩化酸化物であることが好ましい。また、上記化合物には、必要に応じて、水和物を使用してもよい。
Compounds containing a catalytically active element include, for example, inorganic salts such as chlorides, chloride oxides, sulfides, nitrates, and carbonates of the catalytically active element, oxalates, acetylacetonate salts, and dimethylglyoxime salts. , organic salts such as ethylenediamine acetate, chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds and the like.
Among them, the above compound is preferably a chloride or a chloride oxide. Moreover, you may use a hydrate for the said compound as needed.
 触媒活性元素を含む化合物の具体例としては、塩化ハフニウム(HfCl)、塩化チタン(TiCl、TiCl、TiCl)、チタンアルコキシド、塩化ジルコニウム(ZrCl)、塩化酸化ジルコニウム(ZrClO)、ジルコニウムアルコキシド、ハフニウムアルコキシド等が挙げられる。
 なお、上記化合物は、単独で使用しても、2種以上を併用してもよい。
Specific examples of compounds containing catalytically active elements include hafnium chloride (HfCl 4 ), titanium chloride (TiCl 2 , TiCl 3 , TiCl 4 ), titanium alkoxide, zirconium chloride (ZrCl 4 ), and zirconium chloride oxide (ZrCl 2 O). , zirconium alkoxide, hafnium alkoxide and the like.
In addition, the said compound may be used individually or may use 2 or more types together.
 溶媒としては、特に限定されないが、例えば、水、メタノール、エタノール、n-プロパノール、n-ヘキサノールのような脂肪族直鎖アルコールのような有機溶媒等が挙げられる。これらの溶媒は、1種を単独で使用してもよく、2種類以上を併用してもよい。
 中でも、溶媒としては、取り扱い性が容易である観点から、水単独、水とメタノールまたはエタノールとの混合溶媒が好ましい。
 なお、水としては、金属イオン等を除去したイオン交換水、または蒸留水が好ましい。
 また、溶媒が有機溶媒を含有する場合、有機溶媒の使用量は、水100体積%に対して、10~100体積%であることが好ましく、10~50体積%であることがより好ましい。
Examples of the solvent include, but are not particularly limited to, organic solvents such as water, aliphatic linear alcohols such as methanol, ethanol, n-propanol, and n-hexanol. These solvents may be used individually by 1 type, and may use 2 or more types together.
Among them, from the viewpoint of ease of handling, the solvent is preferably water alone or a mixed solvent of water and methanol or ethanol.
The water is preferably deionized water from which metal ions or the like have been removed, or distilled water.
When the solvent contains an organic solvent, the amount of the organic solvent used is preferably 10 to 100% by volume, more preferably 10 to 50% by volume, relative to 100% by volume of water.
 溶媒は、非爆発性溶媒であることが好ましい。非爆発性溶媒とは、可燃性の有機溶媒を含有する場合であっても、これを気化した際の爆発範囲から外れる範囲の濃度で含む溶媒のことを言う。例えば、エタノールの爆発範囲は2~20体積%であるため、溶媒全体(100体積%)に対して、2体積%(爆発下限界)未満または20体積%(爆発上限界)超の濃度でエタノールを含む溶媒は非爆発性溶媒と見なすことができる。また、メタノールの爆発範囲は7~40体積%であるため、溶媒全体(100体積%)に対して、7体積%(爆発下限界)未満または40体積%(爆発上限界)超の濃度でメタノールを含む溶媒も非爆発性溶媒と見なすことができる。 The solvent is preferably a non-explosive solvent. A non-explosive solvent is a solvent containing a combustible organic solvent in a concentration outside the explosive range when vaporized. For example, since the explosive range of ethanol is 2-20% by volume, ethanol can be can be considered as non-explosive solvents. In addition, since the explosive range of methanol is 7 to 40% by volume, methanol can be can also be considered non-explosive solvents.
 また、溶媒の極性パラメータは、40~80であることが好ましく、50~70であることがより好ましい。かかる範囲の極性パラメータを有する溶媒を使用することにより、上記条件I~IIIを満足する触媒を製造し易くなる。なお、溶媒の極性パラメータとしては、Journal of Physical Organic Chemistry, volume 27, issue 6, page 512-518のSupporting informationのTable SI-1中のET(30)値を参照することができる。
 溶媒の使用量は、触媒活性元素を含む化合物の量(100モル%)に対して、10~10000モル%であることが好ましく、100~5000モル%であることがより好ましい。溶媒の使用量を上記範囲とすることにより、上記化合物を十分に加水分解することができるとともに、加水分解により生成した固形分が溶解し難くすることができる。
 触媒活性元素を含む化合物の使用量は、担体100質量部に対して、0.1~100質量部であることが好ましく、1~60質量部であることがより好ましく、10~50質量部であることがさらに好ましい。
The polarity parameter of the solvent is preferably 40-80, more preferably 50-70. By using a solvent having a polarity parameter within this range, it becomes easier to produce a catalyst that satisfies the conditions I to III. As the polarity parameter of the solvent, the ET (30) value in Table SI-1 of Supporting information of Journal of Physical Organic Chemistry, volume 27, issue 6, pages 512-518 can be referred to.
The amount of the solvent used is preferably 10 to 10,000 mol %, more preferably 100 to 5,000 mol %, relative to the amount (100 mol %) of the compound containing the catalytically active element. By setting the amount of the solvent to be used within the above range, the compound can be sufficiently hydrolyzed, and the solid content generated by the hydrolysis can be made difficult to dissolve.
The amount of the compound containing a catalytically active element used is preferably 0.1 to 100 parts by mass, more preferably 1 to 60 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the carrier. It is even more preferable to have
 (接触工程)
 次に、溶液を担体に接触させる。
 溶液を担体に接触させる際には、溶液に担体を添加してもよく、担体に溶液を添加(例えば、滴下)してもよいが、後者が好ましい。後者の方法によれば、担体が特に多孔質担体である場合、溶液を担体に緩徐に浸透させることができ、担体のより内部にまで溶液を含浸させることができる。したがって、担体が多孔質担体である場合、本工程を含浸工程と呼ぶこともできる。
 溶液および担体のいずれか一方に、他方を添加した後には、担体を溶液に浸漬することが好ましい。
(Contact process)
The solution is then brought into contact with the carrier.
When the solution is brought into contact with the carrier, the carrier may be added to the solution, or the solution may be added (for example, dropwise) to the carrier, but the latter is preferred. According to the latter method, especially when the carrier is a porous carrier, the carrier can be slowly permeated with the solution, and the carrier can be impregnated with the solution to the inside. Therefore, when the carrier is a porous carrier, this step can also be called an impregnation step.
After one of the solution and the carrier is added to the other, the carrier is preferably immersed in the solution.
 担体を溶液に浸漬する時間は、担体の構成、溶液の粘度等に応じて適宜設定すればよく、特に限定されないが、0.1時間~5日間であることが好ましく、1時間~3日間であることがより好ましい。この際、雰囲気の圧力を増減してもよい。雰囲気の圧力も、特に限定されないが、0~2MPaであることが好ましく、0~1MPaであることがより好ましい。
 また、溶液の量も、担体の構成、溶液の粘度等に応じて適宜設定すればよく、特に限定されないが、担体1gあたり、1~500mLであることが好ましく、5~350mLであることがより好ましい。
 このような条件で、溶液を担体に接触させることにより、十分な量の触媒活性元素を担体に担持させることができる。
 また、この際、溶液には、例えば、振動(超音波振動)、揺動のような外部エネルギーを付与してもよい。
The time for which the carrier is immersed in the solution may be appropriately set according to the configuration of the carrier, the viscosity of the solution, and the like, and is not particularly limited, but is preferably from 0.1 hour to 5 days, and from 1 hour to 3 days. It is more preferable to have At this time, the pressure of the atmosphere may be increased or decreased. The pressure of the atmosphere is also not particularly limited, but is preferably 0 to 2 MPa, more preferably 0 to 1 MPa.
In addition, the amount of the solution may be appropriately set according to the configuration of the carrier, the viscosity of the solution, etc., and is not particularly limited, but is preferably 1 to 500 mL, more preferably 5 to 350 mL, per 1 g of the carrier. preferable.
By bringing the solution into contact with the carrier under such conditions, a sufficient amount of the catalytically active element can be supported on the carrier.
In this case, external energy such as vibration (ultrasonic vibration) or rocking may be applied to the solution.
 (焼成工程)
 次に、溶液が接触した担体を、溶液から分離および乾燥した後、焼成する。これにより、触媒活性元素が担体に固定され、触媒を得ることができる。なお、触媒活性元素は、そのまま(単体)で、または酸素元素を介して(酸化物として)、担体の表面に存在していてもよい。
 担体(触媒)の溶液からの分離は、例えば、濾過、デカンテーション、遠心分離等により行うことができる。
 乾燥温度は、20~200℃であることが好ましく、50~150℃であることがより好ましい。また、乾燥時間は、1時間~10日間であることが好ましく、2時間~5日間であることがより好ましい。
(Baking process)
The support contacted by the solution is then separated from the solution, dried and then calcined. Thereby, the catalytically active element is immobilized on the carrier, and a catalyst can be obtained. The catalytically active element may be present on the surface of the carrier as it is (simple substance) or through an oxygen element (as an oxide).
Separation of the carrier (catalyst) from the solution can be carried out, for example, by filtration, decantation, centrifugation, or the like.
The drying temperature is preferably 20 to 200°C, more preferably 50 to 150°C. The drying time is preferably 1 hour to 10 days, more preferably 2 hours to 5 days.
 焼成温度は、200~800℃であることが好ましく、400~600℃であることがより好ましい。また、焼成時間は、10分間~2日間であることが好ましく、1~10時間であることがより好ましい。
 このような条件で、焼成を行うことにより、触媒中に不純物が残留しないか、ほとんど残留しないようにしつつ、触媒活性元素を直接または酸素元素を介して担体に強固に結合させることができる。
 なお、担体を使用しない場合、触媒は、ハフニウム単体、元素M単体、ハフニウムの酸化物、元素Mの酸化物、またはこれらの複合体で構成される。
The firing temperature is preferably 200 to 800°C, more preferably 400 to 600°C. The firing time is preferably 10 minutes to 2 days, more preferably 1 to 10 hours.
By carrying out the calcination under such conditions, it is possible to firmly bond the catalytically active element directly or via the oxygen element to the carrier while leaving no or almost no impurities in the catalyst.
When no carrier is used, the catalyst is composed of hafnium alone, element M alone, hafnium oxide, element M oxide, or a composite thereof.
 本実施形態では、ハフニウムを含む化合物および元素Mを含む化合物の双方を、1つの溶媒に溶解して調製した溶液を使用したが、ハフニウムを含む化合物を溶媒に溶解してなる第1溶液と元素Mを含む化合物を溶媒に溶解してなる第2溶液とをそれぞれ個別に調整して使用するようにしてもよい。
 この場合、第1溶液および第2溶液は、同時または逐次的に担体に接触させてもよいが、逐次的に担体に接触させることが好ましい。逐次的に担体に接触させる場合、第1溶液と第2溶液とは、いずれを先に使用してもよい。
 以上の工程を経て、上記条件I~IIIを満足する触媒を製造することができる。
In the present embodiment, a solution prepared by dissolving both the compound containing hafnium and the compound containing element M in one solvent was used. A second solution prepared by dissolving a compound containing M in a solvent may be individually prepared and used.
In this case, the first solution and the second solution may be brought into contact with the carrier simultaneously or sequentially, but are preferably brought into contact with the carrier sequentially. When contacting the carrier sequentially, either the first solution or the second solution may be used first.
Through the steps described above, a catalyst that satisfies the conditions I to III can be produced.
 焼成により得られた触媒は、X線光電子分光法(XPS)、誘導結合プラズマ発光分析(ICP-AES)、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)、X線回折法(XRD)等により分析を行った後に、ジエン化合物の製造に供してもよい。分析を行うことにより製造した触媒の特性のバラつきを抑制して、一定の品質を担保することができる。
 分析は、そのままの状態の触媒に行ってもよく、破砕後の触媒に行ってよく、割断後の触媒に行ってもよい。
The catalyst obtained by calcination was analyzed by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma emission spectroscopy (ICP-AES), scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction. After analysis by (XRD) or the like, the diene compound may be produced. By performing the analysis, it is possible to suppress variations in the characteristics of the manufactured catalyst and ensure a certain level of quality.
The analysis may be performed on the catalyst as it is, on the catalyst after crushing, or on the catalyst after cleaving.
 [ジエン化合物の製造装置]
 ジエン化合物の製造装置(以下、単に「製造装置」と記載する。)は、本発明の触媒が充填された反応管を備える。このような製造装置により、アルコールを含む原料からジエン化合物を製造する。
 以下、かかる製造装置の一例について、図1に基づいて説明する。
 図1に示す製造装置10は、反応管1と供給管3と排出管4と温度制御部5と圧力制御部6とを備える。
[Device for producing diene compound]
A diene compound production apparatus (hereinafter simply referred to as "production apparatus") includes a reaction tube filled with the catalyst of the present invention. Such a production apparatus produces a diene compound from raw materials containing alcohol.
An example of such a manufacturing apparatus will be described below with reference to FIG.
A manufacturing apparatus 10 shown in FIG.
 反応管1は、内部に反応床2を備える。反応床2には、上記触媒が充填されている。
 反応管1の上流側には供給管3が、下流側には排出管4が、それぞれ接続されている。
 温度制御部5は、反応管1に接続されている。
 排出管4の途中には、圧力制御部6が配置されている。
 反応床2は、本発明の触媒のみを有してもよいし、本発明の触媒とともに他の触媒を有していてもよい。
The reaction tube 1 has a reaction bed 2 inside. The reaction bed 2 is packed with the above catalyst.
A supply pipe 3 is connected to the upstream side of the reaction tube 1, and a discharge pipe 4 is connected to the downstream side thereof.
A temperature control unit 5 is connected to the reaction tube 1 .
A pressure control unit 6 is arranged in the middle of the discharge pipe 4 .
The reaction bed 2 may contain only the catalyst of the present invention, or may contain other catalysts together with the catalyst of the present invention.
 また、反応床2は、希釈材をさらに有していてもよい。この希釈材は、触媒が過度に発熱することを防止する。希釈材としては、例えば、石英砂、アルミナボール、アルミボール、アルミショット等が挙げられる。
 反応床2に希釈材を充填する場合、触媒に対する希釈材の質量比(希釈材/触媒)は、それぞれの種類や比重等に応じて適宜設定され、特に限定されないが、0.1~5であることが好ましく、0.5~5であることがより好ましい。
 なお、反応床2は、固定床、移動床、流動床等のいずれでもよい。
Moreover, the reaction bed 2 may further have a diluent. This diluent prevents the catalyst from overheating. Examples of diluents include quartz sand, alumina balls, aluminum balls, and aluminum shots.
When the reaction bed 2 is filled with a diluent, the mass ratio of the diluent to the catalyst (diluent/catalyst) is appropriately set according to the type and specific gravity of each material, and is not particularly limited, but is 0.1 to 5. It is preferably 0.5 to 5, more preferably 0.5 to 5.
Incidentally, the reaction bed 2 may be any of a fixed bed, a moving bed, a fluidized bed and the like.
 反応管1は、原料およびジエン化合物に対して不活性な材料で構成されることが好ましい。また、反応管1は、100~600℃程度の加熱、かつ10MPa程度の加圧に耐え得ることが好ましい。
 したがって、反応管1は、例えば、ステンレス製の略円筒形の管体で構成される。
 供給管3は、原料を反応管1内に供給する供給手段である。供給管3は、例えば、ステンレス製等の管体で構成される。
 一方、排出管4は、反応床2で生成したジエン化合物を含むガスを排出する排出手段である。排出管4は、例えば、ステンレス製等の管体で構成される。
The reaction tube 1 is preferably made of a material that is inert to the starting material and the diene compound. Further, it is preferable that the reaction tube 1 can withstand heating at about 100 to 600° C. and pressurization at about 10 MPa.
Therefore, the reaction tube 1 is composed of, for example, a substantially cylindrical tubular body made of stainless steel.
The supply pipe 3 is supply means for supplying raw materials into the reaction tube 1 . The supply pipe 3 is made of, for example, a tubular body made of stainless steel or the like.
On the other hand, the discharge pipe 4 is discharge means for discharging the gas containing the diene compound produced in the reaction bed 2 . The discharge pipe 4 is configured by a tubular body made of stainless steel or the like, for example.
 温度制御部5は、反応管1内の反応床2を任意の温度に設定できればよい。温度制御部5は、例えば、反応管1の周囲に配置される電気炉等(図示せず。)の温度を制御して、反応管1内の反応床2を任意の温度を調整する。
 圧力制御部6は、反応管1内の圧力を任意の圧力に設定できればよい。圧力制御部6は、例えば、圧力弁等で構成される。
 なお、製造装置10は、マスフローのようなガスの流量を調整可能なガス流量調整部等を備えていてもよい。
The temperature control unit 5 may set the temperature of the reaction bed 2 in the reaction tube 1 to an arbitrary temperature. The temperature control unit 5 controls the temperature of, for example, an electric furnace (not shown) arranged around the reaction tube 1 to adjust the reaction bed 2 inside the reaction tube 1 to an arbitrary temperature.
The pressure control unit 6 should be able to set the pressure inside the reaction tube 1 to an arbitrary pressure. The pressure control unit 6 is composed of, for example, a pressure valve or the like.
Note that the manufacturing apparatus 10 may include a gas flow rate adjusting unit or the like capable of adjusting the gas flow rate, such as a mass flow.
 [ジエン化合物の製造方法]
 本発明のジエン化合物の製造方法では、本発明の触媒に、アルコールを含む原料を接触させてジエン化合物を製造する。
 触媒の使用量は、原料に対して、0.1~10g/g・hであることが好ましく、1~5g/g・hであることがより好ましい。触媒の使用量を上記範囲とすることにより、副生成物の生成を抑制しつつ、原料の転化率を向上させることができる。
 原料は、アルコールを含む。その他、原料は、アルデヒド、不活性ガス等をさらに含んでいてもよい。なお、原料は、エタノールおよびアセトアルデヒドのうちの少なくとも1種を含有することが好ましい。
 また、原料は、少なくとも反応時にガス状(「原料ガス」とも言う。)となっていることが好ましい。
[Method for producing diene compound]
In the method for producing a diene compound of the present invention, the catalyst of the present invention is brought into contact with an alcohol-containing raw material to produce a diene compound.
The amount of the catalyst used is preferably 0.1 to 10 g/g·h, more preferably 1 to 5 g/g·h, relative to the raw material. By setting the amount of the catalyst to be used within the above range, it is possible to improve the conversion rate of the raw material while suppressing the formation of by-products.
The raw material contains alcohol. In addition, the raw material may further contain aldehyde, inert gas, and the like. The raw material preferably contains at least one of ethanol and acetaldehyde.
Moreover, it is preferable that the raw material is gaseous (also referred to as "raw material gas") at least during the reaction.
 アルコールとしては、特に限定されないが、例えば、炭素数1~6のアルコールが挙げられる。アルコールの具体例としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、3-ブテン-2-オール、2-ブテン-1-オール、3-ヒドロシキブタナール、1-エトキシエタノール、ブタン-1,3-ジオール等が挙げられる。
 原則として、使用するアルコールによって得られるジエン化合物が異なる。例えば、エタノールを使用する場合、ブタジエン(1,3-ブタジエン)が得られる。また、プロパノールを使用する場合、ヘキサジエンが得られる。さらに、ブタノールを使用する場合、オクタジエンが得られる。
 アルコールは、単独で使用しても、2種以上を併用してもよいが、副反応を抑制する観点からは、単独で使用することが好ましい。
The alcohol is not particularly limited, but includes, for example, alcohols having 1 to 6 carbon atoms. Specific examples of alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, 3-buten-2-ol, 2-buten-1-ol, 3-hydroxybutanal, 1-ethoxyethanol, butane- 1,3-diol and the like.
In principle, the diene compound obtained differs depending on the alcohol used. For example, when ethanol is used, butadiene (1,3-butadiene) is obtained. Also, when propanol is used, hexadiene is obtained. Furthermore, when butanol is used, octadiene is obtained.
The alcohols may be used alone or in combination of two or more, but from the viewpoint of suppressing side reactions, it is preferable to use them alone.
 原料中のアルコールの含有量は、原料100体積%に対して、10体積%以上であることが好ましく、15体積%以上であることがより好ましく、20体積%以上であることがさらに好ましく、30体積%以上であることが特に好ましい。
 なお、2種以上のアルコールを併用する場合、その和が上記範囲に含まれることが好ましい。
 本発明の触媒を使用すれば、原料中のアルコールの含有量が多い場合であっても、効率的に反応を進行させることができる。
The content of alcohol in the raw material is preferably 10% by volume or more, more preferably 15% by volume or more, further preferably 20% by volume or more, and 30% by volume with respect to 100% by volume of the raw material. % or more is particularly preferred.
In addition, when using 2 or more types of alcohol together, it is preferable that the sum is contained in the said range.
By using the catalyst of the present invention, the reaction can proceed efficiently even when the alcohol content in the raw material is high.
 アルデヒドは、通常、アルコールの酸化物である。アルデヒドの具体例としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、クロトンアルデヒド等が挙げられる。
 原料がアルデヒドを含む場合、通常、アルコールに対応するアルデヒドが含まれる。具体的には、メタノールの場合、ホルムアルデヒドであり、エタノールの場合、アセトアルデヒドであり、プロパノールの場合、プロピオンアルデヒドであり、ブタノールの場合、ブチルアルデヒドであり、ペンタノールの場合、バレルアルデヒドである。
 ただし、上記アルデヒドは、アルコールに対応するアルデヒド以外のアルデヒドを含んでいてもよい。
Aldehydes are usually oxides of alcohols. Specific examples of aldehydes include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, crotonaldehyde and the like.
When the raw material contains an aldehyde, it usually contains the aldehyde corresponding to the alcohol. Specifically, methanol is formaldehyde, ethanol is acetaldehyde, propanol is propionaldehyde, butanol is butyraldehyde, and pentanol is valeraldehyde.
However, the above aldehydes may contain aldehydes other than the aldehydes corresponding to alcohols.
 原料中のアルデヒドの含有量は、原料100体積%に対して、1体積%以上であることが好ましく、5体積%以上であることがより好ましく、10体積%以上であることがさらに好ましく、30体積%以上であることが特に好ましい。
 なお、2種以上のアルデヒドを併用する場合、その和が上記範囲に含まれることが好ましい。
 原料中のアルコールおよびアルデヒドの総含有量は、原料100体積%に対して、15体積%以上であることが好ましく、20体積%以上であることがより好ましく、20~40体積%であることがさらに好ましい。
The content of aldehyde in the raw material is preferably 1% by volume or more, more preferably 5% by volume or more, further preferably 10% by volume or more, with respect to 100% by volume of the raw material. % or more is particularly preferred.
In addition, when using 2 or more types of aldehydes together, it is preferable that the sum is contained in the said range.
The total content of alcohol and aldehyde in the raw material is preferably 15% by volume or more, more preferably 20% by volume or more, and 20 to 40% by volume relative to 100% by volume of the raw material. More preferred.
 不活性ガスとしては、特に限定されないが、例えば、窒素ガス、アルゴンガス等が挙げられる。これらの不活性ガスは、単独で使用しても、2種以上を併用してもよい。
 原料中の不活性ガスの含有量は、原料100体積%に対して、90体積%以下であることが好ましく、30~90体積%であることがより好ましく、50~90体積%であることがさらに好ましく、60~80体積%であることが特に好ましい。
 触媒と原料とを接触させる態様は、特に限定されないが、例えば、図1に示す反応管1内の反応床2に原料を通過させ、反応床2の触媒と原料とを接触させる態様であることが好ましい。
Examples of the inert gas include, but are not particularly limited to, nitrogen gas, argon gas, and the like. These inert gases may be used alone or in combination of two or more.
The content of the inert gas in the raw material is preferably 90% by volume or less, more preferably 30 to 90% by volume, and 50 to 90% by volume with respect to 100% by volume of the raw material. More preferably, it is particularly preferably 60 to 80% by volume.
The manner in which the catalyst and raw material are brought into contact is not particularly limited. For example, the raw material is allowed to pass through the reaction bed 2 in the reaction tube 1 shown in FIG. is preferred.
 触媒と原料とを接触させる際の温度(反応プロセスにおける加熱温度;反応温度)は、上述した通り、100~600℃であることが好ましく、200~600℃であることがより好ましく、200~500℃であることがさらに好ましく、250~500℃であることがよりさらに好ましく、250~450℃であることが一層好ましく、300~450℃であることが特に好ましい。また、触媒と原料とを接触させる際の圧力(反応圧力)は、0.1~10MPaであることが好ましく、0.1~3MPaであることがより好ましい。
 上記条件で触媒と原料とを接触させることにより、反応速度が十分に高まり、ジエン化合物をより効率的に製造できるとともに、触媒の劣化を防止または抑制することもできる。
 反応床中の原料の空間速度(SV)は、通常、反応圧力および反応温度に応じて適宜調整されるため、特に限定されないが、標準状態換算で、0.1~10000h-1とすることが好ましい。
The temperature (heating temperature in the reaction process; reaction temperature) at which the catalyst and raw materials are brought into contact with each other is preferably 100 to 600° C., more preferably 200 to 600° C., more preferably 200 to 500° C., as described above. °C, more preferably 250 to 500°C, even more preferably 250 to 450°C, and particularly preferably 300 to 450°C. Further, the pressure (reaction pressure) when the catalyst and raw materials are brought into contact is preferably 0.1 to 10 MPa, more preferably 0.1 to 3 MPa.
By contacting the catalyst and the raw material under the above conditions, the reaction rate is sufficiently increased, the diene compound can be produced more efficiently, and the deterioration of the catalyst can be prevented or suppressed.
The space velocity (SV) of the raw material in the reaction bed is not particularly limited because it is usually adjusted appropriately according to the reaction pressure and reaction temperature, but it can be 0.1 to 10000 h -1 in terms of standard conditions. preferable.
 例えば、図1に示す製造装置10を使用してジエン化合物を製造する場合、次のようにすることができる。
 まず、温度制御部5および圧力制御部6で反応管1内を任意の温度および任意の圧力に設定する。
 次に、ガス化された原料20を供給管3から反応管1内に供給する。このとき、反応管1内において原料が触媒に接触して反応し、ブタジエンのようなジエン化合物が生成する。
 その後、生成されたジエン化合物を含む生成ガス22を、排出管4から排出する。なお、生成ガス22には、アセトアルデヒド、プロピレン、エチレン等の化合物が含まれていてもよい。
For example, when manufacturing a diene compound using the manufacturing apparatus 10 shown in FIG. 1, it can be performed as follows.
First, the temperature control unit 5 and the pressure control unit 6 set the inside of the reaction tube 1 to an arbitrary temperature and an arbitrary pressure.
Next, the gasified raw material 20 is supplied from the supply pipe 3 into the reaction tube 1 . At this time, the raw material comes into contact with the catalyst in the reaction tube 1 and reacts to produce a diene compound such as butadiene.
After that, the produced gas 22 containing the produced diene compound is discharged from the discharge pipe 4 . The generated gas 22 may contain compounds such as acetaldehyde, propylene, and ethylene.
 また、生成ガス22に対しては、必要に応じて、気液分離や蒸留精製等の精製を行って、未反応の原料や副生成物を除去するようにしてもよい。
 また、本発明では、バイオエタノールからジエン化合物を製造することにより、環境負荷を低減することもできる。
 なお、触媒の活性(性能)が低下した場合には、酸素含有ガス(例えば、空気等)を供給管3または排出管4から反応管1内に供給することにより、触媒を再生する再生プロセスに供するようにしてもよい。
 例えば、ジエン化合物を製造した後の触媒には、反応管1内に空間速度0.1~10000h-1として酸素含有ガスを流通させつつ、400~550℃に加熱して、0.1~10MPaの圧力下で、表面に蓄積した炭素含有不純物を燃焼除去することにより再生処理を行ってもよい。その場合、反応管1内に流通(供給)するガスを切り替えることで再生処理を行ってもよく、反応管1から触媒を取り出し大気中または所定の酸素濃度の酸素含有雰囲気(酸素含有ガス)中で再生処理を行ってもよい。これにより、触媒を再利用することができる。
If necessary, the generated gas 22 may be subjected to purification such as gas-liquid separation or distillation to remove unreacted raw materials and by-products.
Moreover, in the present invention, the environmental load can be reduced by producing a diene compound from bioethanol.
In addition, when the activity (performance) of the catalyst is lowered, an oxygen-containing gas (for example, air) is supplied into the reaction tube 1 from the supply pipe 3 or the discharge pipe 4 to perform a regeneration process for regenerating the catalyst. may be provided.
For example, after the diene compound is produced, the catalyst is heated to 400 to 550 ° C. while circulating an oxygen-containing gas at a space velocity of 0.1 to 10000 h −1 in the reaction tube 1 to 0.1 to 10 MPa. The regeneration treatment may be carried out by burning off the carbon-containing impurities accumulated on the surface under a pressure of . In that case, the regeneration treatment may be performed by switching the gas circulating (supplied) in the reaction tube 1, and the catalyst is taken out from the reaction tube 1 and placed in the air or in an oxygen-containing atmosphere (oxygen-containing gas) having a predetermined oxygen concentration. You may perform reproduction|regeneration processing by . Thereby, the catalyst can be reused.
 触媒と酸素含有ガスとを接触させる際の温度(再生プロセスにおける加熱温度)も、上述した通り200~600℃であることが好ましく、300~575℃であることがより好ましく、400~550℃であることがより好ましい。また、触媒と酸素含有ガスとを接触させる際の圧力(再生圧力)は、0.1~10MPaであることが好ましく、0.1~3MPaであることがより好ましい。
 上記条件で触媒と酸素含有ガスとを接触させることにより、触媒を円滑に再生することもできる。
 酸素含有ガスの空間速度(SV)は、通常、反応圧力および反応温度に応じて適宜調整されるため、特に限定されないが、標準状態換算で、0.1~100000h-1とすることが好ましい。
The temperature at which the catalyst is brought into contact with the oxygen-containing gas (heating temperature in the regeneration process) is also preferably 200 to 600°C, more preferably 300 to 575°C, more preferably 400 to 550°C, as described above. It is more preferable to have The pressure (regeneration pressure) when the catalyst and the oxygen-containing gas are brought into contact is preferably 0.1 to 10 MPa, more preferably 0.1 to 3 MPa.
By bringing the catalyst into contact with the oxygen-containing gas under the above conditions, the catalyst can be smoothly regenerated.
The space velocity (SV) of the oxygen-containing gas is usually adjusted appropriately according to the reaction pressure and reaction temperature, so it is not particularly limited, but it is preferably 0.1 to 100000 h −1 in terms of standard conditions.
 [ポリマーの製造方法]
 本発明のポリマーの製造方法では、本発明のジエン化合物の製造方法により製造されたジエン化合物の少なくとも一部をポリマー原料としてポリマーを製造する。
 すなわち、本発明の触媒に原料を接触させてジエン化合物を製造するのに、本発明のジエン化合物の製造方法を適用する。そして、製造されたジエン化合物は、適宜分離処理等により反応生成物から分離され、その少なくとも一部が原料とされてポリマーに変換される。
[Polymer production method]
In the method for producing a polymer of the present invention, a polymer is produced using at least part of the diene compound produced by the method for producing a diene compound of the present invention as a polymer raw material.
That is, the method for producing a diene compound of the present invention is applied to produce a diene compound by bringing a raw material into contact with the catalyst of the present invention. Then, the produced diene compound is separated from the reaction product by appropriate separation treatment or the like, and at least part thereof is used as a raw material to be converted into a polymer.
 ジエン化合物の反応生成物からの分離方法としては、冷却した凝縮器に反応生成物を通過させ、未反応のアルコール等の原料を分離し、分離後の反応生成物を有機溶媒中にバブリングし、ジエン化合物(単量体)を溶媒中に溶解させて、溶液として回収することが好ましい。
 回収したジエン化合物を含有する溶液は、そのまま、あるいは有機溶媒等をさらに加えた後、各種重合を行ってジエン化合物からポリマーを製造することが好ましい。このとき、回収したジエン化合物に、当該ジエン化合物以外のモノマーを混合して、各種重合等を行ってもよい。
As a method for separating the diene compound from the reaction product, the reaction product is passed through a cooled condenser to separate raw materials such as unreacted alcohol, and the reaction product after separation is bubbled into an organic solvent, It is preferable to dissolve the diene compound (monomer) in a solvent and recover it as a solution.
It is preferable that the recovered solution containing the diene compound is used as it is, or after further adding an organic solvent or the like, various types of polymerization are performed to produce a polymer from the diene compound. At this time, the recovered diene compound may be mixed with a monomer other than the diene compound to carry out various polymerizations.
 重合方法としては、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法等を使用することができる。また、重合反応に溶媒を用いる場合、当該溶媒は、重合反応において不活性であればよく、例えば、ヘキサン、シクロヘキサン、トルエン、これらの混合物等が挙げられる。
 重合反応の温度は、特に限定されないが、-100~300℃であることが好ましい。重合反応の圧力は、特に限定されないが、0.1~10.0MPaであることが好ましい。重合反応の時間も、特に限定されないが、重合反応の温度等の条件によって適宜設定すればよく、通常、1秒~10日であることが好ましい。
As the polymerization method, for example, a solution polymerization method, a suspension polymerization method, a liquid-phase bulk polymerization method, an emulsion polymerization method, or the like can be used. Moreover, when a solvent is used in the polymerization reaction, the solvent may be inert in the polymerization reaction, and examples thereof include hexane, cyclohexane, toluene, and mixtures thereof.
Although the temperature of the polymerization reaction is not particularly limited, it is preferably -100 to 300°C. Although the pressure of the polymerization reaction is not particularly limited, it is preferably 0.1 to 10.0 MPa. The polymerization reaction time is also not particularly limited, but may be appropriately set according to conditions such as the temperature of the polymerization reaction, and is usually preferably from 1 second to 10 days.
 ここで、ジエン化合物以外のモノマーとしては、例えば、芳香族ビニル化合物、オレフィン、およびこれらの組み合わせ等が挙げられる。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルナフタレン等が挙げられる。オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。
 なお、ジエン化合物には、上記モノマー以外にも、用途に応じて、種々の添加剤を添加してもよい。
Examples of monomers other than diene compounds include aromatic vinyl compounds, olefins, and combinations thereof.
Examples of aromatic vinyl compounds include styrene, α-methylstyrene, p-methylstyrene, vinylnaphthalene and the like. Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like.
In addition to the above monomers, various additives may be added to the diene compound depending on the application.
 本発明のポリマーの製造方法により製造されるポリマーとしては、特に限定されないが、ブタジエンに起因する骨格を有するポリマーが好ましく、ポリブタジエン(シス-1,4-ポリブタジエン)、スチレン-ブタジエン共重合体等がより好ましい。 The polymer produced by the method for producing a polymer of the present invention is not particularly limited, but is preferably a polymer having a skeleton derived from butadiene, such as polybutadiene (cis-1,4-polybutadiene), styrene-butadiene copolymer, and the like. more preferred.
 [ポリマー成形品の製造方法]
 本発明のポリマー成形品の製造方法では、本発明のポリマーの製造方法により製造されたポリマーを成形する。
 すなわち、本発明の触媒に原料を接触させてジエン化合物を製造するのに、本発明のジエン化合物の製造方法を適用する。また、製造されたジエン化合物の少なくとも一部をポリマー原料としてポリマーを製造するのに、本発明のポリマーの製造方法を適用する。そして、製造されたポリマーは、所望のポリマー成形品の形態に応じて成形する。
[Method for producing polymer molded product]
In the method for producing a polymer molded article of the present invention, the polymer produced by the method for producing a polymer of the present invention is molded.
That is, the method for producing a diene compound of the present invention is applied to produce a diene compound by bringing a raw material into contact with the catalyst of the present invention. Moreover, the method for producing a polymer of the present invention is applied to produce a polymer using at least part of the produced diene compound as a polymer raw material. The produced polymer is then molded according to the shape of the desired polymer molded article.
 ここで、ポリマー成形品としては、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強、ビードフィラーのようなタイヤのゴム部材、タイヤ、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース等が挙げられ、タイヤのゴム部材、タイヤが好ましい。 Examples of polymer molded products include tire rubber members such as treads, base treads, sidewalls, side reinforcements, and bead fillers, tires, anti-vibration rubbers, seismic isolation rubbers, belts (conveyor belts), and rubber crawlers. , various hoses, etc., and rubber members of tires and tires are preferable.
 [触媒性能測定方法]
 前記昇温効率、降温効率および白色度比率から選ばれる少なくとも1つを測定することで、ジエン化合物の合成に適した触媒性能を測定し、適切な触媒を選択することができる。当該測定結果に基づいて選択された触媒を用いることで、ジエン化合物を高い収率で連続的に製造することができる。
[Method for measuring catalyst performance]
By measuring at least one selected from the temperature increase efficiency, temperature decrease efficiency, and whiteness ratio, it is possible to measure catalyst performance suitable for synthesizing a diene compound and select an appropriate catalyst. By using a catalyst selected based on the measurement results, a diene compound can be continuously produced at a high yield.
 [長寿命化方法]
 本発明の長寿命化方法は、元素Xを含有する酸化物で構成された担体、好適には多孔質担体と、この担体の表面および内部に担持された触媒活性元素とを含む触媒(以下、「当該触媒」と記載する。)の寿命を延長する方法である。
 そして、当該触媒の表面から所定の深さまでの領域(表面付近の領域)に含まれる触媒活性元素の量を、表面付近の領域より内側(内側の領域)に含まれる触媒活性元素の量より多くすることにより、表面付近の領域にのみ触媒活性元素を担持した他の触媒と比べて、当該触媒の寿命を延長する。
 なお、本発明の長寿命化方法における多孔質担体および触媒活性元素の構成、材料等は、本発明の触媒で説明したのと同様である。
[Long life method]
The life extension method of the present invention comprises a catalyst (hereinafter referred to as This is a method for extending the life of the catalyst (referred to as "the catalyst").
Then, the amount of the catalytically active element contained in the region from the surface of the catalyst to a predetermined depth (region near the surface) is larger than the amount of the catalytically active element contained inside the region near the surface (region inside). By doing so, the life of the catalyst is extended compared to other catalysts in which the catalytically active element is supported only in the region near the surface.
The configuration, materials, etc. of the porous carrier and the catalytically active element in the life extension method of the present invention are the same as those described for the catalyst of the present invention.
 また、本発明の長寿命化方法では、当該触媒および他の触媒のそれぞれのアルコールを含む原料との接触により、この原料を反応させてジエン化合物を製造したとき、他の触媒と比べて、ジエン化合物の初期収率の低下が抑制されるとともに、初期収率を維持する反応維持率が増加することが好ましい。これにより、ジエン化合物の全体としての収率を高めることができる。
 さらに、本発明の長寿命化方法では、初期収率が他の触媒の80%以上(好ましくは85%以上、より好ましくは90%以上)であり、かつ反応維持率が他の触媒の2倍以上(好ましくは3倍以上、より好ましくは4倍以上)であることが好ましい。
In addition, in the method for extending the life of the present invention, when the raw materials of the catalyst and other catalysts are brought into contact with raw materials containing alcohol, and the raw materials are reacted to produce a diene compound, compared with other catalysts, the diene It is preferable that the reduction in the initial yield of the compound is suppressed and the reaction maintenance rate that maintains the initial yield is increased. Thereby, the overall yield of the diene compound can be increased.
Furthermore, in the life extension method of the present invention, the initial yield is 80% or more (preferably 85% or more, more preferably 90% or more) of other catalysts, and the reaction maintenance rate is twice that of other catalysts. or more (preferably 3 times or more, more preferably 4 times or more).
 以上、本発明の触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法について説明したが、本発明は、これらに限定されるものではない。
 例えば、本発明の触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法は、それぞれ、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 また、本発明の触媒は、アルコールを含む原料からジエン化合物を合成するジエン化合物合成用触媒の他、例えば、アルコールの二量化反応やアルデヒドの二量化反応用触媒、オレフィンの二量化反応用触媒、飽和化合物の脱水素化反応用触媒、アルコールの脱水反応用触媒等として使用することもできる。
As described above, the catalyst of the present invention, the method for producing the catalyst, the method for producing the diene compound, the method for producing the polymer, the method for producing the polymer molded article, the method for measuring the catalyst performance, and the method for extending the life of the catalyst have been described. It is not limited.
For example, the catalyst, method for producing a catalyst, method for producing a diene compound, method for producing a polymer, method for producing a polymer molded product, method for measuring catalyst performance, and method for extending service life of the present invention are, with respect to the above embodiments, It may have any other additional configuration, may be replaced with any configuration that exhibits a similar function, or may be partially omitted.
Further, the catalyst of the present invention includes, in addition to a diene compound synthesis catalyst for synthesizing a diene compound from a raw material containing alcohol, for example, an alcohol dimerization reaction, an aldehyde dimerization reaction catalyst, an olefin dimerization reaction catalyst, It can also be used as a catalyst for dehydrogenation reaction of saturated compounds, a catalyst for dehydration reaction of alcohol, and the like.
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.
1.触媒の製造
 (比較例1)
 まず、1.0gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)を、水2.0mLに溶解して、溶液を調製した。
 次に、この溶液を、2.0gの多孔質担体(富士シリシア化学株式会社製のシリカ多孔質粒子、平均粒径:1.77mm、平均細孔直径:10nm、全細孔容積:1.01mL/g、比表面積:283m/g)に滴下した。
 次に、多孔質担体が浸漬された溶液を1時間放置した後、濾過により溶液を分離した。
 回収された多孔質体を110℃で3時間乾燥した後、さらに400℃で4.5時間焼成して、触媒を製造した。
1. Production of catalyst (Comparative Example 1)
First, 1.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 2.0 mL of water to prepare a solution.
Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g).
Next, after leaving the solution in which the porous carrier was immersed for 1 hour, the solution was separated by filtration.
The recovered porous material was dried at 110° C. for 3 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
 (実施例1)
 塩化ハフニウム(HfCl)の使用量を0.9gに変更した以外は、比較例1と同様にして、触媒を製造した。
(Example 1)
A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.9 g.
 (実施例2)
 塩化ハフニウム(HfCl)の使用量を0.7gに変更した以外は、比較例1と同様にして、触媒を製造した。
(Example 2)
A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.7 g.
 (実施例3)
 塩化ハフニウム(HfCl)の使用量を0.5gに変更した以外は、比較例1と同様にして、触媒を製造した。
(Example 3)
A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.5 g.
 (実施例4)
 塩化ハフニウム(HfCl)の使用量を0.4gに変更した以外は、比較例1と同様にして、触媒を製造した。
(Example 4)
A catalyst was produced in the same manner as in Comparative Example 1, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 0.4 g.
 (実施例5)
 まず、2.0gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)を、エタノール100mLに溶解して、溶液を調製した。
 次に、この溶液を、2.0gの多孔質担体(富士シリシア化学株式会社製のシリカ多孔質粒子、平均粒径:1.77mm、平均細孔直径:10nm、全細孔容積:1.01mL/g、比表面積:283m/g)に滴下した。
 次に、多孔質担体が浸漬された溶液を、超音波洗浄機で、1時間攪拌した後、濾過により溶液を分離した。
 回収された多孔質体を110℃で3時間乾燥した後、さらに400℃で4.5時間焼成して、触媒を製造した。
(Example 5)
First, 2.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 100 mL of ethanol to prepare a solution.
Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g).
Next, the solution in which the porous carrier was immersed was stirred with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
The recovered porous material was dried at 110° C. for 3 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
 (比較例2)
 塩化ハフニウム(HfCl)の使用量を1.0gに変更した以外は、実施例5と同様にして、触媒を製造した。
(Comparative example 2)
A catalyst was produced in the same manner as in Example 5, except that the amount of hafnium chloride (HfCl 4 ) used was changed to 1.0 g.
 (実施例6)
 まず、1.0gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)を、水1000mLに溶解して、溶液を調製した。
 次に、この溶液を、2.0gの多孔質担体(富士シリシア化学株式会社製のシリカ多孔質粒子、平均粒径:1.77mm、平均細孔直径:10nm、全細孔容積:1.01mL/g、比表面積:283m/g)に滴下した。
 次に、多孔質担体が浸漬された溶液を、大気圧下、超音波洗浄機で、1時間攪拌した後、濾過により溶液を分離した。
 回収された多孔質体を110℃で4時間乾燥した後、さらに400℃で4.5時間焼成して、触媒を製造した。
(Example 6)
First, 1.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 1000 mL of water to prepare a solution.
Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g).
Next, the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
The recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
 (実施例7)
 溶液の使用量を100mLに変更するとともに、減圧(0.01MPa)下に攪拌を行った以外は、実施例6と同様にして、触媒を製造した。
(Example 7)
A catalyst was produced in the same manner as in Example 6, except that the amount of solution used was changed to 100 mL and the mixture was stirred under reduced pressure (0.01 MPa).
 (実施例8)
 攪拌時間を3日間に変更した以外は、実施例6と同様にして、触媒を製造した。
(Example 8)
A catalyst was produced in the same manner as in Example 6, except that the stirring time was changed to 3 days.
 (実施例9)
 溶液の使用量を500mLに変更した以外は、実施例6と同様にして、触媒を製造した。
(Example 9)
A catalyst was produced in the same manner as in Example 6, except that the amount of solution used was changed to 500 mL.
 (比較例3)
 攪拌時間を1週間に変更した以外は、実施例6と同様にして、触媒を製造した。
(Comparative Example 3)
A catalyst was produced in the same manner as in Example 6, except that the stirring time was changed to one week.
 (比較例4)
 溶液の使用量を100mLに変更した以外は、実施例6と同様にして、触媒を製造した。
(Comparative Example 4)
A catalyst was produced in the same manner as in Example 6, except that the amount of solution used was changed to 100 mL.
 (比較例5)
 まず、4gの界面活性剤(BASF社製、「P123」)と、8.5gのテトラエトキシシランとをビーカー内に仕込み、これに2mol/Lの塩酸水溶液150gを加え、20時間室温で攪拌して加水分解を行った。
 次に、加水分解後の溶液中の固形分を濾過によって分離し、大気下に30℃で6時間乾燥した。
 その後、乾燥した固形分を空気雰囲気下の電気炉を使用して、500℃で14時間焼成した。これにより、多孔質担体(シリカ多孔質粒子、平均粒径:300μm、平均細孔直径:2.8nm、全細孔容積:1.09mL/g、比表面積:995m/g)を得た。
(Comparative Example 5)
First, 4 g of a surfactant (manufactured by BASF, "P123") and 8.5 g of tetraethoxysilane were placed in a beaker, and 150 g of a 2 mol/L hydrochloric acid aqueous solution was added thereto, followed by stirring at room temperature for 20 hours. hydrolysis was carried out.
Next, the solid content in the hydrolyzed solution was separated by filtration and dried in the atmosphere at 30° C. for 6 hours.
After that, the dried solid content was calcined at 500° C. for 14 hours using an electric furnace under an air atmosphere. As a result, a porous carrier (silica porous particles, average particle diameter: 300 μm, average pore diameter: 2.8 nm, total pore volume: 1.09 mL/g, specific surface area: 995 m 2 /g) was obtained.
 次に、0.6gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)を、水100mLに溶解して、溶液を調製した。
 次に、この溶液に、2.0gの多孔質担体を添加した。
 次に、多孔質担体が浸漬された溶液を、室温で4時間攪拌した後、吸引濾過により溶液から分離した。
 回収された多孔質体を大気下に80℃で4時間乾燥した後、さらに400℃で6時間焼成して、触媒を得た。
Next, 0.6 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 100 mL of water to prepare a solution.
Next, 2.0 g of porous carrier was added to this solution.
Next, the solution in which the porous carrier was immersed was stirred at room temperature for 4 hours, and then separated from the solution by suction filtration.
The recovered porous material was dried in the atmosphere at 80° C. for 4 hours and then calcined at 400° C. for 6 hours to obtain a catalyst.
 (比較例6)
 まず、多孔質担体(富士シリシア化学株式会社製のシリカ多孔質粒子、平均粒径:1.77mm、平均細孔直径:10nm、全細孔容積:1.01mL/g、比表面積:283m/g)を1000℃、10時間で焼成した。これにより、無孔質担体(平均粒径:1.77mm、比表面積:>10m/g)を作製した。
 次に、1.0gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)を、水100mLに溶解して、溶液を調製した。そして、この溶液を、2.0gの無孔質担体に滴下した。
(Comparative Example 6)
First, a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle diameter: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL / g, specific surface area: 283 m 2 / g) was calcined at 1000° C. for 10 hours. Thus, a nonporous carrier (average particle size: 1.77 mm, specific surface area: >10 m 2 /g) was produced.
Next, 1.0 g of hafnium chloride (HfCl 4 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dissolved in 100 mL of water to prepare a solution. This solution was then added dropwise to 2.0 g of non-porous carrier.
 次に、多孔質担体が浸漬された溶液を、大気圧下、超音波洗浄機で、1時間攪拌した後、濾過により溶液を分離した。
 回収された多孔質体を110℃で4時間乾燥した後、さらに400℃で4.5時間焼成して、触媒を製造した。
Next, the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
The recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
 (実施例10)
 まず、0.20gの塩化酸化ジルコニウム八水和物(ZrClO・8HO:株式会社高純度化学研究所製)と、0.007gの塩化ハフニウム(HfCl:株式会社高純度化学研究所製)とを、水100mLに溶解して、溶液を調製した。
 次に、この溶液を、2.0gの多孔質担体(富士シリシア化学株式会社製のシリカ多孔質粒子、平均粒径:1.77mm、平均細孔直径:10nm、全細孔容積:1.01mL/g、比表面積:283m/g)に滴下した。
 次に、多孔質担体が浸漬された溶液を、大気圧下、超音波洗浄機で、1時間攪拌した後、濾過により溶液を分離した。
 回収された多孔質体を110℃で4時間乾燥した後、さらに400℃で4.5時間焼成して、触媒を製造した。
(Example 10)
First, 0.20 g of zirconium chloride oxide octahydrate (ZrCl 2 O.8H 2 O : manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.007 g of hafnium chloride (HfCl 4 : Kojundo Chemical Laboratory Co., Ltd. ) was dissolved in 100 mL of water to prepare a solution.
Next, this solution was added to 2.0 g of a porous carrier (silica porous particles manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.77 mm, average pore diameter: 10 nm, total pore volume: 1.01 mL /g, specific surface area: 283 m 2 /g).
Next, the solution in which the porous carrier was immersed was stirred under atmospheric pressure with an ultrasonic cleaner for 1 hour, and the solution was separated by filtration.
The recovered porous material was dried at 110° C. for 4 hours and then calcined at 400° C. for 4.5 hours to produce a catalyst.
 (実施例11)
 塩化酸化ジルコニウム八水和物の量を0.69gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Example 11)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 0.69 g.
 (実施例12)
 塩化酸化ジルコニウム八水和物の量を1.4gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Example 12)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 1.4 g.
 (実施例13)
 塩化酸化ジルコニウム八水和物の量を2.1gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Example 13)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 2.1 g.
 (実施例14)
 塩化酸化ジルコニウム八水和物の量を2.8gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Example 14)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 2.8 g.
 (実施例15)
 塩化酸化ジルコニウム八水和物の量を3.5gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Example 15)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 3.5 g.
 (実施例16)
 0.20gの塩化酸化ジルコニウム八水和物に代えて、1.7gのオキシ硝酸ジルコニウム二水和物(ZrO(NO・2HO:キシダ化学株式会社製)を使用した以外は、実施例10と同様にして、触媒を製造した。
(Example 16)
Instead of 0.20 g of zirconium chloride oxide octahydrate, 1.7 g of zirconium oxynitrate dihydrate (ZrO(NO 3 ) 2.2H 2 O: manufactured by Kishida Chemical Co., Ltd.) was used. A catalyst was prepared in the same manner as in Example 10.
 (実施例17)
 0.20gの塩化酸化ジルコニウム八水和物に代えて、1.2gの塩化チタン溶液(TiCl:富士フィルム和光純薬株式会社製)を使用した以外は、実施例10と同様にして、触媒を製造した。
(Example 17)
A catalyst was prepared in the same manner as in Example 10, except that 1.2 g of a titanium chloride solution ( TiCl4 : manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of 0.20 g of zirconium chloride oxide octahydrate. manufactured.
 (比較例7)
 塩化酸化ジルコニウム八水和物の量を0.14gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Comparative Example 7)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 0.14 g.
 (比較例8)
 塩化酸化ジルコニウム八水和物の量を4.2gに変更した以外は、実施例10と同様にして、触媒を製造した。
(Comparative Example 8)
A catalyst was produced in the same manner as in Example 10, except that the amount of zirconium chloride oxide octahydrate was changed to 4.2 g.
 (比較例9)
 0.69gの塩化酸化ジルコニウム八水和物に代えて、0.018gの硝酸亜鉛六水和物(Zn(NO・6HO:富士フィルム和光純薬株式会社製)を使用した以外は、実施例10と同様にして、触媒を製造した。
(Comparative Example 9)
Instead of 0.69 g of zirconium chloride oxide octahydrate, 0.018 g of zinc nitrate hexahydrate (Zn(NO 3 ) 2 6H 2 O: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used. manufactured the catalyst in the same manner as in Example 10.
2.触媒の測定および評価
 2-1.昇温効率の測定
 まず、各実施例および各比較例で製造された触媒を、内径7mmの反応管の長手方向の中央部に2cmの高さで充填した。また、このとき、熱電対も反応管に挿入し、その先端が触媒の中心部に位置するようにセットした。
 次に、この状態の反応管を電気炉にセットし、熱電対の温度が350℃になるまで昇温した。反応管内の熱電対の温度が350℃(±0.1℃)に到達した時点で、昇温速度100℃/分での昇温を開始した。この時刻を昇温開始時間0分とした。
2. Measurement and Evaluation of Catalyst 2-1. Measurement of Temperature Raising Efficiency First, the catalysts produced in each example and each comparative example were filled in a reaction tube having an inner diameter of 7 mm at a height of 2 cm in the center in the longitudinal direction. At this time, a thermocouple was also inserted into the reaction tube and set so that its tip was positioned at the center of the catalyst.
Next, the reaction tube in this state was set in an electric furnace, and the temperature was raised until the temperature of the thermocouple reached 350°C. When the temperature of the thermocouple inside the reaction tube reached 350° C. (±0.1° C.), the temperature was raised at a rate of 100° C./min. This time was defined as the temperature rise start time of 0 minutes.
 熱電対の温度が500℃になるまで昇温し、500℃に到達した時点の時刻を、昇温終了時間とし、電気炉の加熱を停止した。
 昇温効率(%)は、下記式(1)に従って算出した。
Figure JPOXMLDOC01-appb-M000010
The temperature was raised until the temperature of the thermocouple reached 500° C., and the time when the temperature reached 500° C. was defined as the end time of the temperature rise, and the heating of the electric furnace was stopped.
The heating efficiency (%) was calculated according to the following formula (1).
Figure JPOXMLDOC01-appb-M000010
 2-2.降温効率の測定
 まず、各実施例および各比較例で製造された触媒を、内径7mmの反応管の長手方向の中央部に2cmの高さで充填した。また、このとき、熱電対も反応管に挿入し、その先端が触媒の中心部に位置するようにセットした。
 次に、この状態の反応管を電気炉にセットし、熱電対の温度が500℃になるまで昇温した。反応管内の熱電対の温度が500℃(±0.1℃)に到達した時点で、電気炉の加熱を停止した。この時刻を降温開始時間0分とした。
2-2. Measurement of Temperature-Lowering Efficiency First, the catalysts produced in each example and each comparative example were filled in a reaction tube having an inner diameter of 7 mm at a height of 2 cm in the central portion in the longitudinal direction. At this time, a thermocouple was also inserted into the reaction tube and set so that its tip was positioned at the center of the catalyst.
Next, the reaction tube in this state was set in an electric furnace, and the temperature was raised until the temperature of the thermocouple reached 500°C. When the temperature of the thermocouple inside the reaction tube reached 500° C. (±0.1° C.), the heating of the electric furnace was stopped. This time was defined as 0 minutes of temperature drop start time.
 熱電対の温度が350℃になるまで昇温し、350℃に到達した時点の時刻を、降温終了時間とした。
 降温効率(%)は、下記式(2)に従って算出した。
Figure JPOXMLDOC01-appb-M000011
The temperature was raised until the temperature of the thermocouple reached 350°C, and the time when the temperature reached 350°C was defined as the cooling end time.
The temperature drop efficiency (%) was calculated according to the following formula (2).
Figure JPOXMLDOC01-appb-M000011
 2-3.白色度比率の測定
 まず、各実施例および各比較例で製造された触媒または多孔質担体を1g計量し、20ccのスクリューバイアル(アズワン社製)に収容した。
 次に、ポータブル白度計(オガワ精機株式会社製、「OSK97BX216」)の測定開口部に、触媒または多孔質担体を収容したバイアルを直接載置し、電源を入れて白色度の測定を開始した。
 数値が安定化するまで3分間待機し、そのときの値を白色度として記録した。
2-3. Measurement of Whiteness Ratio First, 1 g of the catalyst or porous carrier produced in each example and each comparative example was weighed and placed in a 20 cc screw vial (manufactured by AS ONE).
Next, the vial containing the catalyst or the porous carrier was placed directly in the measurement opening of a portable whiteness meter (manufactured by Ogawa Seiki Co., Ltd., "OSK97BX216"), and the power was turned on to start measuring the whiteness. .
It waited for 3 minutes until the numerical value stabilized, and the value at that time was recorded as the whiteness index.
 2-4.加熱効率の測定
 まず、実施例1~5および比較例1~2で製造された触媒を、内径7mmの反応管の長手方向の中央部に2cmの高さで充填して、反応床を形成した。
 次に、反応温度(反応床の温度)を325℃とし、反応圧力(反応床の圧力)を0.1MPaとした。
 この状態で、空間速度(SV)12000h-1で原料を反応管に供給し、1,3-ブタジエンを含む生成ガスを得た。すなわち、反応プロセスを行った。
 なお、原料には、エタノール30体積%(気体換算)、窒素70体積%(気体換算)の混合ガスを使用した。また、原料の供給を2時間継続した。
2-4. Measurement of Heating Efficiency First, the catalysts produced in Examples 1 to 5 and Comparative Examples 1 and 2 were packed in the longitudinal center of a reaction tube with an inner diameter of 7 mm to a height of 2 cm to form a reaction bed. .
Next, the reaction temperature (temperature of the reaction bed) was set to 325° C., and the reaction pressure (pressure of the reaction bed) was set to 0.1 MPa.
In this state, the raw material was supplied to the reaction tube at a space velocity (SV) of 12000 h −1 to obtain a product gas containing 1,3-butadiene. That is, a reaction process was performed.
As a raw material, a mixed gas of 30% by volume of ethanol (converted to gas) and 70% by volume of nitrogen (converted to gas) was used. Also, the supply of raw materials was continued for 2 hours.
 2時間使用した後の触媒を、内径7mmの反応管の長手方向の中央部に2cmの高さで充填した。また、このとき、熱電対も反応管に挿入し、その先端が触媒の中心部に位置するようにセットした。
 次に、この状態の反応管を電気炉にセットし、熱電対の温度が約500℃になるまで昇温した。
 昇温完了後、電気炉の温度を500℃に保持した状態で、空間速度(SV)60000h-1で空気(酸素含有ガス)を流入させた。すなわち、再生プロセスを行った。
After being used for 2 hours, the catalyst was filled to a height of 2 cm in the longitudinal central portion of a reaction tube having an inner diameter of 7 mm. At this time, a thermocouple was also inserted into the reaction tube and set so that its tip was positioned at the center of the catalyst.
Next, the reaction tube in this state was set in an electric furnace, and the temperature was raised until the temperature of the thermocouple reached about 500°C.
After completion of the temperature rise, air (oxygen-containing gas) was introduced at a space velocity (SV) of 60000 h -1 while the temperature of the electric furnace was maintained at 500°C. That is, the regeneration process was performed.
 そして、反応管内の温度が上昇するのを観測し、最高温度を記録した。
 加熱効率(O/OOO)は、下記式(4)に従って算出し、以下の基準に従って評価した。
Figure JPOXMLDOC01-appb-M000012
 [評価基準]
 〇:加熱効率が10300O/OOO未満である。
 ×:加熱効率が10300O/OOO以上である。
Then, it was observed that the temperature inside the reaction tube rose, and the maximum temperature was recorded.
The heating efficiency ( O / OOO ) was calculated according to the following formula (4) and evaluated according to the following criteria.
Figure JPOXMLDOC01-appb-M000012
[Evaluation criteria]
Good: The heating efficiency is less than 10300 O / OOO .
x: The heating efficiency is 10300 O / OOO or more.
 2-5.プロセス時間の検討
 (反応プロセス時間)
 実施例1~5および比較例1~2で製造された触媒について、2-4における反応プロセスの開始1時間後における1,3-ブタジエンの収率を基準(100%)とし、1,3-ブタジエンの収率が80%に低下するまでの時間を、反応プロセス時間とした。
 (再生プロセス時間)
 実施例1~5および比較例1~2で製造された触媒について、2-1および2-2において測定された昇温時間(昇温終了時間-昇温開始時間)と降温時間(降温終了時間-降温開始時間)との和を、再生プロセス時間とした。
2-5. Examination of process time (reaction process time)
For the catalysts produced in Examples 1-5 and Comparative Examples 1-2, the yield of 1,3-butadiene one hour after the start of the reaction process in 2-4 was taken as the standard (100%), and 1,3- The time until the yield of butadiene decreased to 80% was taken as the reaction process time.
(playback process time)
For the catalysts produced in Examples 1 to 5 and Comparative Examples 1 and 2, the temperature rise time (temperature rise end time - temperature rise start time) and temperature drop time (temperature drop end time) measured in 2-1 and 2-2 - temperature drop start time) was taken as the regeneration process time.
 そして、反応プロセス時間と再生プロセス時間との関係を、以下の基準に従って評価した。
 +:反応プロセス時間>再生プロセス時間である。
 -:反応プロセス時間<再生プロセス時間である。
Then, the relationship between the reaction process time and the regeneration process time was evaluated according to the following criteria.
+: Reaction process time>Regeneration process time.
-: Reaction process time<regeneration process time.
 2-6.ジエン化合物の合成
 各実施例および各比較例で製造された触媒を用いて、エタノールを1,3-ブタジエン(以下、「BD」とも記載する。)に変換し、BDの収率を求めた。
 具体的には、まず、3.4gの触媒を直径1/2インチ(1.27cm)、長さ15.7インチ(40cm)のステンレス製円筒型の反応管に充填して反応床を形成した。
 次に、反応温度(反応床の温度)を325℃とし、反応圧力(反応床の圧力)を0.1MPaとした。
 この状態で、空間速度(SV)1200h-1で原料を反応管に供給し、BDを含む生成ガスを得た。
 なお、原料には、エタノール30体積%(気体換算)、窒素70体積%(気体換算)の混合ガスを使用した。また、原料の供給を20時間継続した。
2-6. Synthesis of Diene Compounds Ethanol was converted to 1,3-butadiene (hereinafter also referred to as “BD”) using the catalysts produced in Examples and Comparative Examples, and the yield of BD was determined.
Specifically, 3.4 g of catalyst was first packed into a stainless steel cylindrical reaction tube having a diameter of 1/2 inch (1.27 cm) and a length of 15.7 inches (40 cm) to form a reaction bed. .
Next, the reaction temperature (temperature of the reaction bed) was set to 325° C., and the reaction pressure (pressure of the reaction bed) was set to 0.1 MPa.
In this state, the raw material was supplied to the reaction tube at a space velocity (SV) of 1200 h −1 to obtain a generated gas containing BD.
As a raw material, a mixed gas of 30% by volume of ethanol (converted to gas) and 70% by volume of nitrogen (converted to gas) was used. Moreover, the supply of raw materials was continued for 20 hours.
 その後、原料の供給開始1時間後に生成ガスを回収し、回収した生成ガスを200℃に保持した状態で1mLを分取した。
 次に、分取した生成ガスを、水素炎イオン化検出器付きガスクロマトグラフィー(島津製作所社製、「GC-2014」)により分析し、データ処理装置(島津製作所社製、「クロマトパックC-R8A」)にてピーク面積を算出した。
 なお、カラムオーブン温度は、60℃で11.5分間保持し、10℃/minで100℃まで昇温した後、100℃で14.5分間保持し、10℃/minで280℃まで昇温した後、280℃で2分間保持するようにプログラムした昇温分析とした。
Then, after 1 hour from the start of supply of the raw material, the produced gas was recovered, and 1 mL of the recovered produced gas was collected while being kept at 200°C.
Next, the fractionated generated gas is analyzed by gas chromatography with a hydrogen flame ionization detector (manufactured by Shimadzu Corporation, "GC-2014"), and a data processing device (manufactured by Shimadzu Corporation, "Chromatopak C-R8A ”) to calculate the peak area.
The column oven temperature was maintained at 60°C for 11.5 minutes, heated to 100°C at 10°C/min, then maintained at 100°C for 14.5 minutes, and heated to 280°C at 10°C/min. After that, the temperature-rising analysis was programmed to hold at 280°C for 2 minutes.
 ガスクロマトグラフィーの条件を、以下に示す。
 カラム:   Restek社製、「Rt-Q-BOND(内径:0.32mm、長さ:30m、膜厚:10μm)」
 検出器温度: 300℃
 注入口温度: 270℃
 キャリアガス:ヘリウム
 入口圧:   69.2kPa
 線速度:   30cm/s
 スプリット比:75
 モード:   線速度制御モード
The conditions for gas chromatography are shown below.
Column: "Rt-Q-BOND (inner diameter: 0.32 mm, length: 30 m, film thickness: 10 μm)" manufactured by Restek
Detector temperature: 300°C
Inlet temperature: 270°C
Carrier gas: Helium Inlet pressure: 69.2 kPa
Linear velocity: 30cm/s
Split ratio: 75
Mode: Linear velocity control mode
 BDの収率を、以下の式に従って計算し、以下の基準に従って評価した。
 BDの収率(%) =
   (BDに由来するピークの面積)/(検出される全ピークの面積の和)×100
 [評価基準]
   ◎◎:BDの収率が55%以上である。
   ◎ :BDの収率が45%以上55%未満である。
   〇 :BDの収率が35%以上45%未満である。
   △ :BDの収率が30%以上35%未満である。
   × :BDの収率が30%未満である。
 なお、「BDの初期収率」とは、かかる原料の供給開始1時間後のBDの収率を意味する。
 また、反応維持率(%)を以下の式に従って算出した。
 反応維持率(%)=20時間後のBDの収率/1時間後のBDの収率×100
The yield of BD was calculated according to the following formula and evaluated according to the following criteria.
Yield of BD (%) =
(area of peak derived from BD)/(sum of areas of all detected peaks) x 100
[Evaluation criteria]
⊚: The yield of BD is 55% or more.
A: The yield of BD is 45% or more and less than 55%.
O: The yield of BD is 35% or more and less than 45%.
Δ: The yield of BD is 30% or more and less than 35%.
x: Yield of BD is less than 30%.
In addition, the "initial yield of BD" means the yield of BD one hour after starting the supply of such raw materials.
Also, the reaction maintenance rate (%) was calculated according to the following formula.
Reaction maintenance rate (%) = yield of BD after 20 hours/yield of BD after 1 hour × 100
3.元素Xに対する触媒活性元素のモル比の計算
 3-1.触媒全体
 まず、各実施例および各比較例で製造された触媒から、ランダムに100mg採取し、粒径が50μm以下となるように粉砕した。
 次に、この粉砕物の一部を採取し、1mm×1mmの範囲内に少なくとも粉砕物が10個以上存在する箇所を選択し、SEM-EDX法を使用して、上記範囲内に存在する全ての粉砕物の元素Xおよび触媒活性元素の量を測定した。
 その後、測定値に基づいて、触媒全体における元素Xに対する触媒活性元素のモル比Aを計算した。
3. Calculation of molar ratio of catalytically active element to element X 3-1. Entire Catalyst First, 100 mg of the catalyst produced in each example and each comparative example was randomly sampled and pulverized to a particle size of 50 μm or less.
Next, a part of this pulverized material is sampled, a portion where at least 10 or more pulverized materials exist within a range of 1 mm × 1 mm is selected, and the SEM-EDX method is used to measure all existing within the above range. The amounts of the element X and the catalytically active element in the pulverized product were measured.
Then, based on the measured values, the molar ratio A of catalytically active element to element X in the whole catalyst was calculated.
 3-2.触媒の表面から60μmまでの領域(表面付近の領域)
 まず、各実施例および各比較例で製造された触媒から、ランダムに3つの粒子を選択し、選択した粒子を半分に切断した。
 次に、切断した粒子の切断面を鉛直上方として、カーボンペーストを使用して、試料板に固定して、測定用試料を作製した。
 その後、粒子の切断面をSEM-EDX法を使用して、触媒の表面付近の領域に含まれる箇所において、50μm×50μmの範囲を選択し、SEM-EDX法を使用して、上記範囲内の元素Xおよび触媒活性元素の量を測定した。
 その後、測定値に基づいて、触媒の表面付近の領域における元素Xに対する触媒活性元素のモル比Bを計算した。
 得られたモル比Aおよびモル比から、B/Aを求めた。
3-2. Area from the surface of the catalyst to 60 μm (area near the surface)
First, three particles were randomly selected from the catalysts produced in each example and each comparative example, and the selected particles were cut in half.
Next, the cut surface of the cut particles was set vertically upward, and carbon paste was used to fix the particles to a sample plate to prepare a measurement sample.
After that, using the SEM-EDX method, the cut surface of the particle is used to select a range of 50 μm × 50 μm in the area included in the region near the surface of the catalyst. The amounts of element X and catalytically active elements were measured.
Then, based on the measurements, the molar ratio B of catalytically active element to element X in the region near the surface of the catalyst was calculated.
B/A was determined from the obtained molar ratio A and the molar ratio.
 これらの結果を、以下の表1~表3に示す。 These results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 昇温効率、降温効率および白色度比率が好適範囲であった各実施例の触媒は、反応プロセス時間が再生プロセス時間を上回り(+)、高い収率を維持しつつ、連続的にBDを製造することが可能であった。
 多孔質担体の表面および内部に触媒活性元素を担持させ、触媒の表面付近の領域に含まれる触媒活性元素の量が、内側の領域に含まれる触媒活性元素の量より多い各実施例の触媒は、BDの収率(初期収率)および反応維持率の双方が高かった。
 また、B(表面付近の領域における元素Xに対する触媒活性元素のモル比)/A(触媒全体における元素Xに対する触媒活性元素のモル比)を変更することにより、BDの収率と反応維持率とのバランスをより良好にすることができた。
 さらに、ハフニウム(Hf)に対する元素Mのモル比(M/Hf)が、20超500以下である実施例10~17の触媒を使用した場合、BDの収率が高かった。また、元素Mの種類および量を変更することにより、BDの収率をより高めることができた。
The catalyst of each example, in which the heating efficiency, cooling efficiency, and whiteness ratio were in the preferred range, the reaction process time exceeded the regeneration process time (+), and BD was continuously produced while maintaining a high yield. was possible.
The catalytically active element is supported on the surface and inside of the porous carrier, and the amount of the catalytically active element contained in the region near the surface of the catalyst is greater than the amount of the catalytically active element contained in the inner region. , BD yield (initial yield) and reaction retention rate were both high.
In addition, by changing B (molar ratio of catalytically active element to element X in the region near the surface) / A (molar ratio of catalytically active element to element X in the entire catalyst), the yield of BD and the reaction maintenance rate could be better balanced.
Furthermore, when using the catalysts of Examples 10 to 17 in which the molar ratio (M/Hf) of the element M to hafnium (Hf) is more than 20 and 500 or less, the yield of BD was high. Also, by changing the type and amount of the element M, the yield of BD could be further increased.
 これに対して、昇温効率および降温効率が好適範囲から下側に逸脱した比較例1の触媒は、白色度比率が高くなった。また、比較例1の触媒は、反応プロセス時間が再生プロセス時間を下回り(-)、反応に使用不可な時間が生じることで、BDの製造効率が低下した。
 昇温効率および降温効率が好適範囲から上側に逸脱した比較例2の触媒は、白色度比率が低くなった。また、比較例2の触媒は、加熱効率が高くなり過ぎた。これは、再生プロセスにおける加熱温度の上振れを助長し、触媒構造が変化したり、反応管が劣化したりし易くなる。
 また、多孔質担体の表面および内部に触媒活性元素を担持させ、触媒の表面付近の領域に含まれる触媒活性元素の量が、内側の領域に含まれる触媒活性元素の量より少ない比較例3の触媒(B/Aが1未満)は白色度比率も低く、BDの収率が低かった。
 一方、多孔質担体の表面にのみ触媒活性元素を選択的に担持させた比較例5~6の触媒は、BDの収率が高かったものの、反応維持率が低かった。
 比較例7の触媒はM/Hfが20で、またB/Aも1未満であるためBDの収率が低かった。
 比較例8の触媒はM/Hfが500を超え白色度比率が高く、またB/Aも1未満であるためBDの収率が低く、また反応維持率が低かった。
 比較例9の触媒は昇温効率、降温効率および白色度比率が好適範囲ではあるが、M/Hfが2.8と小さく、またB/Aも1未満であるため、BDの収率が極端に低かった。
On the other hand, the catalyst of Comparative Example 1, in which the efficiency of temperature rise and efficiency of temperature drop deviated from the preferred range, had a high whiteness ratio. In addition, the reaction process time of the catalyst of Comparative Example 1 was shorter than the regeneration process time (-), and the time during which the reaction could not be used occurred, resulting in a decrease in BD production efficiency.
The catalyst of Comparative Example 2, in which the temperature rising efficiency and the temperature falling efficiency deviated upward from the preferred range, had a low whiteness ratio. In addition, the catalyst of Comparative Example 2 had an excessively high heating efficiency. This encourages overshooting of the heating temperature in the regeneration process, making it easier for the catalyst structure to change and the reaction tube to deteriorate.
Further, in Comparative Example 3, the catalytically active element was supported on the surface and inside of the porous carrier, and the amount of the catalytically active element contained in the region near the surface of the catalyst was less than the amount of the catalytically active element contained in the inner region. The catalyst (B/A less than 1) also had a low whiteness ratio and a low yield of BD.
On the other hand, the catalysts of Comparative Examples 5 and 6, in which the catalytically active element was selectively supported only on the surface of the porous carrier, had a high BD yield, but a low reaction retention rate.
Since the catalyst of Comparative Example 7 had an M/Hf of 20 and a B/A of less than 1, the yield of BD was low.
The catalyst of Comparative Example 8 had a M/Hf of more than 500, a high whiteness ratio, and a B/A of less than 1, so that the yield of BD was low and the reaction retention rate was low.
The catalyst of Comparative Example 9 has a temperature rising efficiency, a temperature cooling efficiency, and a whiteness ratio within a suitable range, but the M/Hf is as small as 2.8 and the B/A is less than 1, so the yield of BD is extremely low. was low.
 1    反応管
 2    反応床
 3    供給管
 4    排出管
 5    温度制御部
 6    圧力制御部
 10   製造装置
REFERENCE SIGNS LIST 1 reaction tube 2 reaction bed 3 supply tube 4 discharge tube 5 temperature control section 6 pressure control section 10 manufacturing apparatus

Claims (33)

  1.  触媒活性元素と、該触媒活性元素を担持する担体とを含み、
     下記式(1)で表される昇温効率が、5~6.5%であることを特徴とする触媒。
    Figure JPOXMLDOC01-appb-M000001
    comprising a catalytically active element and a carrier supporting the catalytically active element,
    A catalyst characterized by having a temperature rising efficiency represented by the following formula (1) of 5 to 6.5%.
    Figure JPOXMLDOC01-appb-M000001
  2.  触媒活性元素と、該触媒活性元素を担持する担体とを含み、
     下記式(2)で表される降温効率が、2.6~4.5%であることを特徴とする触媒。
    Figure JPOXMLDOC01-appb-M000002
    comprising a catalytically active element and a carrier supporting the catalytically active element,
    A catalyst characterized by having a temperature lowering efficiency represented by the following formula (2) of 2.6 to 4.5%.
    Figure JPOXMLDOC01-appb-M000002
  3.  触媒活性元素と、該触媒活性元素を担持する担体とを含み、
     下記式(3)で表される白色度比率が、98~130%であることを特徴とする触媒。
    Figure JPOXMLDOC01-appb-M000003
    comprising a catalytically active element and a carrier supporting the catalytically active element,
    A catalyst characterized by having a whiteness ratio represented by the following formula (3) of 98 to 130%.
    Figure JPOXMLDOC01-appb-M000003
  4.  前記担体が、元素Xを含有する酸化物で構成された担体であり、該担体の表面および内部に担持された前記触媒活性元素とを含む触媒であって、
     該触媒の表面から所定の深さまでの領域に含まれる前記触媒活性元素の量が、前記触媒の前記領域より内側に含まれる前記触媒活性元素の量より多いことを特徴とする、請求項1~3のいずれか1項に記載の触媒。
    The carrier is a carrier composed of an oxide containing element X, and the catalyst contains the catalytically active element supported on the surface and inside of the carrier,
    The amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth is greater than the amount of the catalytically active element contained inside the region of the catalyst. 4. The catalyst according to any one of 3.
  5.  前記所定の深さの領域が、前記触媒の前記表面から60μmまでの領域である、請求項4に記載の触媒。 The catalyst according to claim 4, wherein said predetermined depth region is a region up to 60 µm from said surface of said catalyst.
  6.  前記触媒全体における前記元素Xに対する前記触媒活性元素のモル比をAとし、前記所定の深さまでの領域における前記元素Xに対する前記触媒活性元素のモル比をBとしたとき、B/Aが1~9である、請求項4または5に記載の触媒。 When the molar ratio of the catalytically active element to the element X in the entire catalyst is A, and the molar ratio of the catalytically active element to the element X in the region up to the predetermined depth is B, B/A is 1 to 6. A catalyst according to claim 4 or 5, which is 9.
  7.  前記元素Xに対する前記触媒活性元素のモル比が、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX法)を使用した測定により求められる、請求項4~6のいずれか1項に記載の触媒。 7. The method according to any one of claims 4 to 6, wherein the molar ratio of said catalytically active element to said element X is determined by measurement using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method). Catalyst as described.
  8.  前記触媒活性元素が、周期表の第2族~第6族、第11族および第12族に属する元素のうちの少なくとも1種である、請求項1~7のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 7, wherein the catalytically active element is at least one of elements belonging to Groups 2 to 6, 11 and 12 of the periodic table. .
  9.  前記担体が、多孔質担体である、請求項1~8のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 8, wherein the carrier is a porous carrier.
  10.  前記担体が、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成される、請求項1~9のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 9, wherein the support is composed of an oxide containing at least one element X selected from groups 13 and 14 of the periodic table.
  11.  ハフニウム(Hf)と、チタン(Ti)およびジルコニウム(Zr)のうちの少なくとも1種の元素Mとを含み、
     前記ハフニウム(Hf)に対する前記元素Mのモル比(M/Hf)が、20超500以下であることを特徴とする触媒。
    hafnium (Hf) and at least one element M selected from titanium (Ti) and zirconium (Zr);
    A catalyst, wherein the molar ratio (M/Hf) of the element M to the hafnium (Hf) is more than 20 and 500 or less.
  12.  前記元素Mが、前記ジルコニウム(Zr)である、請求項11に記載の触媒。 The catalyst according to claim 11, wherein said element M is said zirconium (Zr).
  13.  さらに、前記ハフニウム(Hf)および前記元素Mを担持し、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成される担体を含む、請求項11または12に記載の触媒。 Further comprising a carrier comprising an oxide supporting the hafnium (Hf) and the element M and containing at least one element X selected from groups 13 and 14 of the periodic table. The catalyst according to 11 or 12.
  14.  前記担体の表面および内部に担持された、前記ハフニウム(Hf)および前記元素Mとを含む触媒であって、
     該触媒の表面から所定の深さまでの領域に含まれる前記ハフニウム(Hf)および前記元素Mの量が、前記触媒の前記領域より内側に含まれる前記前記ハフニウム(Hf)および前記元素Mの量より多いことを特徴とする、請求項13に記載の触媒。
    A catalyst containing the hafnium (Hf) and the element M supported on the surface and inside of the carrier,
    The amounts of the hafnium (Hf) and the element M contained in a region from the surface of the catalyst to a predetermined depth are greater than the amounts of the hafnium (Hf) and the element M contained inside the region of the catalyst. 14. A catalyst according to claim 13, characterized in that it is numerous.
  15.  前記元素Xがケイ素(Si)である、請求項4~10、13及び14に記載の触媒。 The catalyst according to claims 4 to 10, 13 and 14, wherein said element X is silicon (Si).
  16.  前記元素Xに対する前記元素Mのモル比(M/X)が、0.0001~0.5である、請求項13~15のいずれか1項に記載の触媒。 The catalyst according to any one of claims 13 to 15, wherein the molar ratio (M/X) of said element M to said element X is 0.0001 to 0.5.
  17.  当該触媒は、第1化合物との接触により第2化合物へ変換する反応プロセスと、該反応プロセスを経た後の前記触媒を再生する再生プロセスとに供される、請求項1~16のいずれか1項に記載の触媒。 Any one of claims 1 to 16, wherein the catalyst is subjected to a reaction process of converting to a second compound by contact with the first compound, and a regeneration process of regenerating the catalyst after undergoing the reaction process. Catalyst according to paragraph.
  18.  前記反応プロセスにおける加熱温度をAとし、前記再生プロセスにおける加熱温度をBとしたとき、B>AかつB-A=50~400℃を満足する、請求項17に記載の触媒。 The catalyst according to claim 17, which satisfies B>A and BA=50 to 400° C., where A is the heating temperature in the reaction process and B is the heating temperature in the regeneration process.
  19.  前記反応プロセスにおける加熱温度が、200~600℃である、請求項17または18に記載の触媒。 The catalyst according to claim 17 or 18, wherein the heating temperature in the reaction process is 200-600°C.
  20.  前記再生プロセスにおける加熱温度が、200~600℃である、請求項17~19のいずれか1項に記載の触媒。 The catalyst according to any one of claims 17-19, wherein the heating temperature in the regeneration process is 200-600°C.
  21.  当該触媒が、アルコールを含む原料からジエン化合物を合成するジエン化合物合成用触媒である、請求項1~20のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 20, which is a diene compound synthesis catalyst for synthesizing a diene compound from a raw material containing alcohol.
  22.  前記原料が、エタノールおよびアセトアルデヒドのうちの少なくとも1種を含有する、請求項21に記載の触媒。 The catalyst according to claim 21, wherein the raw material contains at least one of ethanol and acetaldehyde.
  23.  請求項1~10及び請求項17~22のいずれか1項に記載の触媒を製造する方法であって、
     前記触媒活性元素を含む化合物を溶媒に溶解してなる溶液と、前記担体とを用意する工程と、
     前記溶液を前記担体に接触させ、含浸させる工程と、
     前記溶液が含浸された前記担体を焼成する工程と、を有し、
     前記溶媒として非爆発性溶媒を用いることを特徴とする、触媒の製造方法。
    A method for producing the catalyst according to any one of claims 1 to 10 and claims 17 to 22,
    a step of preparing a solution obtained by dissolving the compound containing the catalytically active element in a solvent and the carrier;
    contacting and impregnating the carrier with the solution;
    calcining the carrier impregnated with the solution;
    A method for producing a catalyst, wherein a non-explosive solvent is used as the solvent.
  24.  請求項13~16のいずれか1項に記載の触媒を製造する方法であって、
     前記ハフニウム(Hf)を含む化合物を溶媒に溶解してなる溶液および前記元素Mを含む化合物を溶媒に溶解してなる溶液、または前記ハフニウム(Hf)を含む化合物および前記元素Mを含む化合物を溶媒に溶解してなる溶液と、前記担体とを用意する工程と、
     前記溶液を前記担体に接触させる工程と、
     前記溶液が接触した前記担体を焼成する工程と、を有し、
     前記溶媒として非爆発性溶媒を用いることを特徴とする、触媒の製造方法。
    A method for producing the catalyst according to any one of claims 13 to 16,
    A solution obtained by dissolving the compound containing hafnium (Hf) in a solvent and a solution obtained by dissolving the compound containing the element M in a solvent, or the compound containing the hafnium (Hf) and the compound containing the element M are combined into a solvent. A step of preparing a solution dissolved in and the carrier;
    contacting the solution with the carrier;
    and calcining the carrier contacted by the solution,
    A method for producing a catalyst, wherein a non-explosive solvent is used as the solvent.
  25.  前記担体が、多孔質担体である、請求項23または24に記載の製造方法。 The production method according to claim 23 or 24, wherein the carrier is a porous carrier.
  26.  前記担体が、周期表の第13族および第14族から選択される少なくとも1種の元素Xを含有する酸化物で構成される、請求項23~25のいずれか1項に記載の製造方法。 The production method according to any one of claims 23 to 25, wherein the support is composed of an oxide containing at least one element X selected from groups 13 and 14 of the periodic table.
  27.  請求項1~22のいずれか1項に記載の触媒に、アルコールを含む原料を接触させてジエン化合物を製造することを特徴とする、ジエン化合物の製造方法。 A method for producing a diene compound, which comprises bringing an alcohol-containing raw material into contact with the catalyst according to any one of claims 1 to 22 to produce a diene compound.
  28.  請求項27に記載のジエン化合物の製造方法により製造されたジエン化合物の少なくとも一部をポリマー原料としてポリマーを製造することを特徴とする、ポリマーの製造方法。 A method for producing a polymer, which comprises producing a polymer using at least part of the diene compound produced by the method for producing a diene compound according to claim 27 as a polymer raw material.
  29.  請求項28に記載のポリマーの製造方法により製造されたポリマーを成形することを特徴とする、ポリマー成形品の製造方法。 A method for producing a polymer molded article, characterized by molding a polymer produced by the method for producing a polymer according to claim 28.
  30.  昇温効率、降温効率および白色度比率から選ばれる少なくとも1つを測定することを特徴とする、ジエン化合物の合成に適した触媒の触媒性能測定方法。 A method for measuring the catalytic performance of a catalyst suitable for synthesizing a diene compound, characterized by measuring at least one selected from temperature rise efficiency, temperature drop efficiency, and whiteness ratio.
  31.  元素Xを含有する酸化物で構成された担体と、該担体の表面および内部に担持された触媒活性元素とを含む触媒の寿命を延長する方法であって、
     該触媒の表面から所定の深さまでの領域に含まれる前記触媒活性元素の量を、前記触媒の前記領域より内側に含まれる前記触媒活性元素の量より多くすることにより、表面から所定の深さまでの領域にのみ前記触媒活性元素を担持した他の触媒と比べて、当該触媒の寿命を延長することを特徴とする長寿命化方法。
    A method for extending the life of a catalyst comprising a carrier composed of an oxide containing element X and a catalytically active element supported on and in the carrier, comprising:
    By making the amount of the catalytically active element contained in a region from the surface of the catalyst to a predetermined depth greater than the amount of the catalytically active element contained inside the region of the catalyst, A method for prolonging the service life of the catalyst, characterized by extending the service life of the catalyst as compared with other catalysts in which the catalytically active element is supported only in the region of .
  32.  前記触媒および前記他の触媒のそれぞれのアルコールを含む原料との接触により、前記原料を反応させてジエン化合物を製造したとき、
     前記他の触媒と比べて、前記ジエン化合物の初期収率の低下が抑制されるとともに、前記初期収率を維持する反応維持率が増加する、請求項31に記載の長寿命化方法。
    When the raw materials of the catalyst and the other catalyst are brought into contact with raw materials containing alcohol to react the raw materials to produce a diene compound,
    32. The method for extending service life according to claim 31, wherein the decrease in the initial yield of the diene compound is suppressed and the reaction maintenance rate for maintaining the initial yield is increased as compared with the other catalyst.
  33.  前記初期収率が前記他の触媒の80%以上であり、かつ前記反応維持率が前記他の触媒の2倍以上である、請求項32に記載の長寿命化方法。 The life extension method according to claim 32, wherein the initial yield is 80% or more of the other catalyst, and the reaction maintenance rate is twice or more that of the other catalyst.
PCT/JP2022/011818 2021-03-16 2022-03-16 Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life WO2022196717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023507149A JPWO2022196717A1 (en) 2021-03-16 2022-03-16

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-042181 2021-03-16
JP2021042182 2021-03-16
JP2021-042180 2021-03-16
JP2021042181 2021-03-16
JP2021042180 2021-03-16
JP2021-042182 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196717A1 true WO2022196717A1 (en) 2022-09-22

Family

ID=83321030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011818 WO2022196717A1 (en) 2021-03-16 2022-03-16 Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life

Country Status (2)

Country Link
JP (1) JPWO2022196717A1 (en)
WO (1) WO2022196717A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519404A (en) * 2011-05-13 2014-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Stacked design catalyst-supporting soot filter
JP2018171587A (en) * 2017-03-31 2018-11-08 日揮株式会社 Catalyst and process for production of 1,3-butadiene from ethanol
JP2019043943A (en) * 2017-08-30 2019-03-22 積水化学工業株式会社 Method for producing 1,3-butadiene and acetaldehyde diethyl acetal
WO2019139071A1 (en) * 2018-01-12 2019-07-18 積水化学工業株式会社 Catalyst, method for producing same, and method for producing diene compound using said catalyst
WO2020059889A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Catalyst, and method for producing 1,3-butadiene using same
WO2020161074A1 (en) * 2019-02-04 2020-08-13 Evonik Operations Gmbh Salt-free production of methionine from methionine nitrile
JP2020533170A (en) * 2017-09-13 2020-11-19 ルーサイト インターナショナル ユーケー リミテッド Catalysts and processes for producing ethylenically unsaturated carboxylic acids or esters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519404A (en) * 2011-05-13 2014-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Stacked design catalyst-supporting soot filter
JP2018171587A (en) * 2017-03-31 2018-11-08 日揮株式会社 Catalyst and process for production of 1,3-butadiene from ethanol
JP2019043943A (en) * 2017-08-30 2019-03-22 積水化学工業株式会社 Method for producing 1,3-butadiene and acetaldehyde diethyl acetal
JP2020533170A (en) * 2017-09-13 2020-11-19 ルーサイト インターナショナル ユーケー リミテッド Catalysts and processes for producing ethylenically unsaturated carboxylic acids or esters
WO2019139071A1 (en) * 2018-01-12 2019-07-18 積水化学工業株式会社 Catalyst, method for producing same, and method for producing diene compound using said catalyst
WO2020059889A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Catalyst, and method for producing 1,3-butadiene using same
WO2020161074A1 (en) * 2019-02-04 2020-08-13 Evonik Operations Gmbh Salt-free production of methionine from methionine nitrile

Also Published As

Publication number Publication date
JPWO2022196717A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US7285685B2 (en) Method for dehydrogenation of carbonyl compounds
Wu et al. Ethane and propane dehydrogenation over PtIr/Mg (Al) O
EP3233765B1 (en) Process for dehydration of oxygenates with heteropolyacid catalysts having mixed oxide supports and use of the same
JP7305558B2 (en) Catalyst, method for producing the same, and method for producing a diene compound using the catalyst
US20220161235A1 (en) Catalyst, and method for producing 1,3-butadiene using same
CN107107033A (en) 1,3 butadiene catalyst for synthesizing, the manufacture method of 1,3 butadiene catalyst for synthesizing, the manufacture method of the manufacture device of 1,3 butadiene and 1,3 butadiene
WO2022196717A1 (en) Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life
JP6678429B2 (en) Method for producing conjugated diene compound and catalyst for dehydrating allylic unsaturated alcohol
JP7160604B2 (en) Method for producing 1,3-butadiene and acetaldehyde diethyl acetal
US20200391188A1 (en) Catalyst and method for producing diene compound using said catalyst
JP2018086647A (en) Catalyst for selective hydrogenation of c3 hydrocarbon fractions from steam cracking and/or catalytic cracking
JP6656074B2 (en) Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol
KR102365677B1 (en) Steam-free process for the conversion of butenes to 1,3-butadiene
WO2020262486A1 (en) Catalyst and method for producing diene compound
CN111356527A (en) Catalyst, method for producing catalyst, and method for producing diene compound using catalyst
JP6869020B2 (en) Method for producing conjugated diene compound
JP6684641B2 (en) Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol
US11352307B2 (en) Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
CN115297961A (en) Catalyst and process for producing diene compound
JP2023046748A (en) Catalyst for producing butadiene, apparatus for producing butadiene, and method for producing butadiene
JP2023046749A (en) Catalyst for producing butadiene, apparatus for producing butadiene, and method for producing butadiene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771462

Country of ref document: EP

Kind code of ref document: A1