JP2018168982A - Conical roller bearing - Google Patents

Conical roller bearing Download PDF

Info

Publication number
JP2018168982A
JP2018168982A JP2017067639A JP2017067639A JP2018168982A JP 2018168982 A JP2018168982 A JP 2018168982A JP 2017067639 A JP2017067639 A JP 2017067639A JP 2017067639 A JP2017067639 A JP 2017067639A JP 2018168982 A JP2018168982 A JP 2018168982A
Authority
JP
Japan
Prior art keywords
tapered roller
end surface
large end
annular portion
oil groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017067639A
Other languages
Japanese (ja)
Other versions
JP6903463B2 (en
Inventor
貴則 石川
Takanori Ishikawa
貴則 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017067639A priority Critical patent/JP6903463B2/en
Publication of JP2018168982A publication Critical patent/JP2018168982A/en
Priority to JP2021102412A priority patent/JP7466501B2/en
Application granted granted Critical
Publication of JP6903463B2 publication Critical patent/JP6903463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

To avoid increase in rotational torque of a conical roller bearing, and prevent lubrication deficiency between a large flange part of an inner ring and a large end surface of a conical roller at the initial stage of operation resumption.SOLUTION: In a second annular part 42 on a large diameter side of a cage-shaped holder 40, at a connection part 48 connecting an inner peripheral part 46 and an outer peripheral part 47, an oil groove 49 is formed on a pocket inside surface 48a forming a pocket 43. The oil groove 49 penetrates from an outer diameter of the second annular part 42 to an inner diameter thereof, and is opposite to a large end surface 12 of a conical roller 10. Consequently, an interval between the oil groove 49 and the large end surface 12 expands to easily hold lubricant the interval, so that the lubricant easily adheres to the large end surface 12.SELECTED DRAWING: Figure 1

Description

この発明は、円すいころ軸受に関する。   The present invention relates to a tapered roller bearing.

例えば、自動車のトランスミッションの軸、デファレンシャルの軸等、各種機械装置の回転軸を支持する用途において、従来、円すいころ軸受が用いられている。軸受内部の潤滑には液体の潤滑油を用いる油潤滑方式が一般的である。その潤滑油の供給方式としては、機械装置の運転中、ギヤの回転に伴う潤滑油の撹拌などによって当該潤滑油が軸受にはね飛ばされる跳ね掛け潤滑法、又は軸受の一部をオイルバス中に浸ける油浴潤滑法が一般的である。   For example, tapered roller bearings are conventionally used in applications that support rotating shafts of various mechanical devices such as automobile transmission shafts and differential shafts. An oil lubrication method using a liquid lubricating oil is generally used for lubrication inside the bearing. As a method for supplying the lubricating oil, a splash lubrication method in which the lubricating oil is splashed onto the bearing by agitation of the lubricating oil accompanying the rotation of the gear during operation of the mechanical device, or a part of the bearing in the oil bath. An oil bath lubrication method that is soaked in water is common.

円すいころ軸受の内輪は、運転中、円すいころの大端面を案内する大鍔部を有する。その大鍔部と円すいころの大端面との摺接部では、周方向に滑る接触となるため、その摺接部において潤滑油が不足したり枯渇したりすることによる焼き付きの発生が懸念される。   The inner ring of the tapered roller bearing has a large collar portion that guides the large end face of the tapered roller during operation. Since the sliding contact portion between the large collar portion and the large end surface of the tapered roller is a sliding contact in the circumferential direction, there is a concern that seizure may occur due to insufficient or depletion of lubricating oil in the sliding contact portion. .

運転中は、大鍔部と円すいころの大端面に十分な量の潤滑油が供給される。運転中に大鍔部又は円すいころの大端面に付着した潤滑油は、運転停止時後、重力によって次第に流れ落ちていくが、短時間であれば、その摺接部に十分に残っている。このため、短時間で運転が再開される場合は、潤滑油の不足等が起こる懸念はない。運転再開までの時間が長い場合、円すいころの大端面や大鍔部から潤滑油が流れ落ちてしまい、運転再開当初、その摺接部において潤滑油の不足等が起こる。   During operation, a sufficient amount of lubricating oil is supplied to the large collar and the large end surfaces of the tapered rollers. The lubricating oil adhering to the large collar or the tapered end of the tapered roller during operation gradually flows down by gravity after the operation is stopped, but remains sufficiently in the sliding contact portion for a short time. For this reason, when the operation is resumed in a short time, there is no concern that a shortage of lubricating oil will occur. When the time until the operation is restarted is long, the lubricating oil flows down from the large end face and the large flange portion of the tapered roller, and the lubricating oil is insufficient at the sliding contact portion at the beginning of the operation.

また、潤滑油が運転中に低粘度のものである程、あるいは、運転中に軸受内部へ供給される潤滑油量が少なくなる程、内輪の大鍔部と円すいころの大端面との摺接部における潤滑環境が厳しくなる。円すいころ軸受では、運転中に軸受内部で生じるポンプ作用により、潤滑油が保持器と内輪の間から軸受内部に入り易く、遠心力によって軸受内部を外輪側へ流動して軸受の外部へ抜け易い。このため、少油量化を進めると、潤滑油が大鍔部に届きにくくなる。   In addition, as the lubricating oil has a lower viscosity during operation or the amount of lubricating oil supplied into the bearing during operation decreases, the sliding contact between the large collar portion of the inner ring and the large end surface of the tapered roller becomes smaller. The lubrication environment in the part becomes severe. In tapered roller bearings, due to the pumping action that occurs inside the bearing during operation, lubricating oil tends to enter the bearing from between the cage and the inner ring, and the centrifugal force causes the inside of the bearing to flow toward the outer ring and easily escape to the outside of the bearing. . For this reason, if the amount of oil is reduced, the lubricating oil is difficult to reach the large collar.

特に、自動車のトランスミッション又はデファレンシャルに使用される円すいころ軸受では、近年、自動車の省燃費化を目的に軸受回転トルクの低減が求められている。軸受回転トルクの低減を図る手段として、軸受内部での潤滑油の攪拌抵抗を抑えることが有効である。このため、低粘度潤滑油の使用又は少油量化の傾向にあり、内輪の大鍔部と円すいころの大端面との摺接部において、十分な潤滑が確保できないことが懸念される。   In particular, tapered roller bearings used for automobile transmissions or differentials have recently been required to reduce bearing rotational torque for the purpose of reducing the fuel consumption of automobiles. As a means for reducing the bearing rotational torque, it is effective to suppress the agitation resistance of the lubricating oil inside the bearing. For this reason, there is a tendency to use low-viscosity lubricating oil or reduce the amount of oil, and there is a concern that sufficient lubrication cannot be ensured at the sliding contact portion between the large collar portion of the inner ring and the large end surface of the tapered roller.

この懸念に対して、特許文献1に開示された円すいころ軸受では、樹脂によって形成されたかご形保持器の柱部が複数の溝状の油誘導部を有し、これら油誘導部により、上述のポンプ作用で軸受内部を流れる潤滑油が内輪側へ誘導される。このような円すいころ軸受は、保持器の軽量化により、軸受回転トルクの低減を図ることができ、さらに、油誘導部により、内輪の大鍔部と円すいころの大端面との摺接部に潤滑油が供給され易くすることができる。 In response to this concern, in the tapered roller bearing disclosed in Patent Document 1, the pillar portion of the cage-shaped cage formed of resin has a plurality of groove-shaped oil guiding portions, and these oil guiding portions allow the above-described problem. The lubricating oil flowing inside the bearing is guided to the inner ring side by the pump action. Such tapered roller bearings can reduce the rotational torque of the bearing by reducing the weight of the cage. Furthermore, the oil guiding part can be used to slide the large collar part of the inner ring and the large end face of the tapered roller. Lubricating oil can be easily supplied.

特開2008−45711号公報JP 2008-45711 A

しかしながら、特許文献1に開示された円すいころ軸受では、潤滑油が柱部の油誘導部を通って円すいころの大端面や大鍔部側へ供給される際、潤滑油は、円すいころの転動面に接触する。つまり、運転中に公転する円すいころの転動面とぶつかる潤滑油が増加するため、攪拌抵抗の増加につながり、軸受回転トルクが増加する問題がある。   However, in the tapered roller bearing disclosed in Patent Document 1, when the lubricating oil is supplied to the large end face or the large flange portion side of the tapered roller through the oil guiding portion of the column portion, the lubricating oil is transferred to the tapered roller. Touch the moving surface. That is, since the lubricating oil that collides with the rolling surface of the tapered roller that revolves during operation increases, the agitation resistance increases and the bearing rotational torque increases.

また、保持器の柱部に複数の油誘導部を形成すると、柱部の径方向幅が大きくなる。これに伴い、柱部のうち、円すいころと周方向に接触するころ案内面も、径方向に拡大するため、円すいころの転動面と柱部のころ案内面との間に発生する潤滑油のせん断抵抗が大きくなり、これも軸受回転トルクの増加要因になってしまう。   In addition, when a plurality of oil guiding portions are formed in the pillar portion of the cage, the radial width of the pillar portion is increased. Along with this, the roller guide surface that contacts the tapered roller in the circumferential direction in the column portion also expands in the radial direction, so that the lubricating oil generated between the rolling surface of the tapered roller and the roller guide surface of the column portion. This increases the shear resistance, and this also increases the bearing rotational torque.

また、最近では、円すいころ軸受の外輪を支持するアルミハウジングの採用による軸受のミスアライメント量の増加、軸受回転トルクを低トルク化するために円すいころ軸受に与える予圧量の低減による軸受剛性の低下等により、運転中の円すいころの挙動が不安定となり、内輪の大鍔部と円すいころ大端面の摺接部における潤滑不足の懸念が一層高まっている。   Recently, the use of an aluminum housing that supports the outer ring of a tapered roller bearing has increased the amount of bearing misalignment, and the bearing rigidity has been reduced by reducing the amount of preload applied to the tapered roller bearing in order to reduce the bearing torque. As a result, the behavior of the tapered roller during operation becomes unstable, and there is a further concern about insufficient lubrication at the sliding contact portion between the large collar portion of the inner ring and the large end surface of the tapered roller.

また、運転再開当初は、潤滑油の温度が低く、軸受内部に供給される潤滑油の粘度が高くて流動性が悪いため、内輪の大鍔部と円すいころ大端面間に潤滑油が特に届き難くい条件となり、その摺接部における潤滑不足が特に懸念される。この懸念は、特に寒冷地(例えば、−40℃〜−30℃のような極低温環境下)で顕著となる。   In addition, when the operation is restarted, the temperature of the lubricating oil is low, the viscosity of the lubricating oil supplied to the bearing is high, and the fluidity is poor, so that the lubricating oil particularly reaches between the large collar of the inner ring and the large end face of the tapered roller. This is a difficult condition, and there is a particular concern about insufficient lubrication at the sliding contact portion. This concern is particularly noticeable in cold regions (for example, in a cryogenic environment such as -40 ° C to -30 ° C).

上述の背景に鑑み、この発明が解決しようとする課題は、円すいころ軸受の回転トルクの増加を避けつつ、運転再開当初における内輪の大鍔部と円すいころの大端面間の潤滑不足を防止することである。   In view of the above-described background, the problem to be solved by the present invention is to prevent insufficient lubrication between the large collar portion of the inner ring and the large end surface of the tapered roller at the beginning of the operation while avoiding an increase in rotational torque of the tapered roller bearing. That is.

上記の課題を達成するため、この発明は、小端面と大端面と転動面とを有する円すいころと、外周に設けられた軌道面と、前記円すいころの前記大端面を案内する大鍔部とを有する内輪と、内周に設けられた軌道面を有し、前記内輪と同軸に配置される外輪と、樹脂によって形成された保持器と、を備え、前記保持器は、第一環状部と、当該第一環状部に比して大径な第二環状部と、当該第一環状部と当該第二環状部との間をポケットに区切る複数の柱部とを有し、前記円すいころは、前記大端面を前記第二環状部側へ向けた姿勢で前記ポケットに収容されており、前記第二環状部のうち前記ポケットを形成するポケット内側面には、外径から内径まで貫通する油溝が設けられており、前記油溝の少なくとも一部分が、前記円すいころの前記大端面と対向している構成を採用したものである。   To achieve the above object, the present invention provides a tapered roller having a small end surface, a large end surface and a rolling surface, a raceway surface provided on the outer periphery, and a large collar portion for guiding the large end surface of the tapered roller. An inner ring having a raceway surface provided on the inner circumference, and an outer ring disposed coaxially with the inner ring, and a cage formed of resin, wherein the cage is a first annular portion. And a second annular portion having a diameter larger than that of the first annular portion, and a plurality of column portions that divide the first annular portion and the second annular portion into pockets, and the tapered roller Is accommodated in the pocket in a posture in which the large end surface is directed toward the second annular portion, and penetrates from the outer diameter to the inner diameter in the pocket inner surface forming the pocket of the second annular portion. An oil groove is provided, and at least a part of the oil groove is formed of the tapered roller. It is obtained by adopting a configuration in which opposes the end face.

上記構成によれば、軸受運転中に外部から供給される潤滑油は、第二環状部の内径側又は外径側から油溝へ容易に入り込む。その油溝の少なくとも一部分が円すいころの大端面と対向するポケット内側面上の領域を通っているため、その対向領域では、ポケット内側面と円すいころの大端面との間が広くなり、潤滑油が多く保持され易くなり、ポケット内側面付近で円すいころの大端面に付着する潤滑油の量が増加する。ポケット内側面付近で円すいころの大端面に付着した潤滑油は、円すいころの中心軸回りの回転に伴い、内輪の大鍔部との間へ運ばれる。したがって、ポケット内側面付近で円すいころの大端面に付着する潤滑油の量が増加すれば、内輪の大鍔部と円すいころの大端面との摺接部への潤滑油供給量も増加する。これにより、運転再開当初のように潤滑油が少量になった環境でも、内輪の大鍔部と円すいころの大端面間の潤滑不足が防止される。   According to the above configuration, the lubricating oil supplied from the outside during the bearing operation easily enters the oil groove from the inner diameter side or the outer diameter side of the second annular portion. Since at least a part of the oil groove passes through a region on the inner surface of the pocket that faces the large end surface of the tapered roller, the gap between the inner surface of the pocket and the large end surface of the tapered roller is widened in the facing region. The amount of lubricating oil adhering to the large end surface of the tapered roller near the inner surface of the pocket increases. Lubricating oil adhering to the large end surface of the tapered roller near the inner surface of the pocket is carried to the large collar portion of the inner ring as the tapered roller rotates about the central axis. Therefore, if the amount of lubricating oil adhering to the large end surface of the tapered roller near the pocket inner surface increases, the amount of lubricating oil supplied to the sliding contact portion between the large collar portion of the inner ring and the large end surface of the tapered roller also increases. This prevents insufficient lubrication between the large collar portion of the inner ring and the large end surface of the tapered roller even in an environment where the amount of lubricating oil becomes small as in the beginning of resumption of operation.

さらに、上記構成によれば、油溝が第二環状部のポケット内側面を通っているため、円すいころの転動面とぶつかる潤滑油の増加がなく(すなわち攪拌抵抗の増加がなく)、これにより、円すいころ軸受の回転トルクの増加が避けられる。   Further, according to the above configuration, since the oil groove passes through the inner surface of the pocket of the second annular portion, there is no increase in lubricating oil that collides with the rolling surface of the tapered roller (that is, there is no increase in stirring resistance). This avoids an increase in the rotational torque of the tapered roller bearing.

さらに、上記構成によれば、第二環状部のポケット内側面が有する油溝と円すいころの大端面との対向領域では、ポケット内側面と円すいころの大端面との間が広くなるため、油溝がないとき比較して、ポケット内側面と円すいころの大端面との間に発生する潤滑油のせん断抵抗が低減される。このことも、円すいころ軸受の回転トルクの低減につながる。   Furthermore, according to the above configuration, the oil groove on the inner surface of the pocket of the second annular portion and the large end surface of the tapered roller have a wide area between the inner surface of the pocket and the large end surface of the tapered roller. Compared to the case where there is no groove, the shear resistance of the lubricating oil generated between the inner surface of the pocket and the large end surface of the tapered roller is reduced. This also leads to a reduction in rotational torque of the tapered roller bearing.

好ましくは、前記油溝の全部が、前記円すいころの前記大端面と対向する位置を通っているとよい。このようにすると、油溝を無駄なく活用して前述の潤滑不足を防止することができる。   Preferably, all of the oil groove passes through a position facing the large end surface of the tapered roller. If it does in this way, the above-mentioned insufficient lubrication can be prevented by utilizing an oil groove without waste.

この発明において、ポケットごとの油溝の本数は問わない。   In the present invention, the number of oil grooves per pocket is not limited.

例えば、前記第二環状部は、前記ポケットごとに複数の前記油溝を有し、前記複数の油溝は、前記ポケットを周方向に二等分する仮想平面を境界として対称形状になっていることが挙げられる。このようにすると、円すいころの公転方向がいずれであっても同様に前述の潤滑不足を防止することができる。   For example, the second annular portion has a plurality of the oil grooves for each of the pockets, and the plurality of oil grooves are symmetrical with respect to a virtual plane that bisects the pockets in the circumferential direction. Can be mentioned. If it does in this way, the above-mentioned insufficient lubrication can be similarly prevented regardless of the revolution direction of the tapered roller.

この発明において、油溝は、径方向に一直線に延びてもよいし、傾斜していてもよいし、曲がっていてもよい。いずれにせよ、円すいころの大端面と油溝とが当該円すいころの中心軸方向に対向する面積が大きくなる程、当該大端面に潤滑油が付着し易くなる。このため、油溝は、当該大端面の周長(円すいころの中心軸回りの周長)が大きいところと多く対向する程よい。   In this invention, the oil groove may extend in a straight line in the radial direction, may be inclined, or may be bent. In any case, the larger the area in which the tapered roller's large end surface and the oil groove face each other in the direction of the central axis of the tapered roller, the more easily the lubricating oil adheres to the large end surface. For this reason, it is better that the oil groove is more opposed to a place where the circumference of the large end surface (a circumference around the central axis of the tapered roller) is large.

例えば、前記油溝は、前記第二環状部の外径から内径に向かって次第に前記柱部へ接近する方向に延びていることが挙げられる。このようにすると、第二環状部の外径から内径に向かって油溝が、円すいころの大端面の周縁投影位置から遠ざかることを抑えて、当該大端面に潤滑油を供給し易くすることができる。   For example, the oil groove extends in the direction of gradually approaching the column part from the outer diameter to the inner diameter of the second annular part. In this way, the oil groove can be prevented from moving away from the peripheral projection position of the large end surface of the tapered roller from the outer diameter to the inner diameter of the second annular portion, and the lubricating oil can be easily supplied to the large end surface. it can.

また、別例として、前記油溝は、前記円すいころの回転方向に向けて曲がる曲面状の溝側面を有することが挙げられる。このようにすると、軸受運転中、円すいころの大端面が当該円すいころの中心軸回りに回転する方向と、油溝を通る潤滑油の流れの向きが近くなるため、油溝の溝側面が直線状のときと比して、潤滑油が回転する当該大端面に巻き込まれて内輪の大鍔部まで届き易くなるので、当該大鍔部と当該大端面との摺接部へ潤滑油を供給し易くすることができる。   As another example, the oil groove may have a curved groove side surface that bends in the rotation direction of the tapered roller. In this way, during the operation of the bearing, the direction in which the large end surface of the tapered roller rotates around the central axis of the tapered roller and the direction of the flow of the lubricating oil through the oil groove are close to each other. Compared to the case of the shape, the lubricating oil is caught in the rotating large end surface and easily reaches the large collar portion of the inner ring, so the lubricating oil is supplied to the sliding contact portion between the large collar portion and the large end surface. Can be made easier.

この発明において、油溝の幅は、一定でもよいし、変化してもよい。また、油溝の幅は、要求される円すいころの大端面と内輪の大鍔部との摺接部における潤滑性能、第二環状部の機械的強度、油溝の成形難易度等を考慮して適宜に決定すればよい。   In the present invention, the width of the oil groove may be constant or may vary. The width of the oil groove also takes into account the required lubrication performance at the sliding contact portion between the large end surface of the tapered roller and the large collar portion of the inner ring, the mechanical strength of the second annular portion, the difficulty of forming the oil groove, and the like. May be determined as appropriate.

例えば、前記油溝は、前記第二環状部の外径から内径まで一定の幅を有することが挙げられる。   For example, the oil groove has a certain width from the outer diameter to the inner diameter of the second annular portion.

例えば、前記油溝の幅は、前記円すいころの最大径の半分以下であることが挙げられる。   For example, the width of the oil groove is less than or equal to half the maximum diameter of the tapered roller.

この発明においては、第二環状部のポケット内側面に油溝を形成するだけなので、柱部の径方向幅を特許文献1の保持器のように広く設定する必要がない。   In this invention, since the oil groove is only formed on the pocket inner surface of the second annular portion, it is not necessary to set the radial width of the column portion as wide as the cage of Patent Document 1.

例えば、前記柱部は、前記円すいころの前記転動面と周方向に接触するころ案内面を有し、当該ころ案内面の径方向幅は、当該転動面の最小径の1/3以下であることが挙げられる。このようにすると、特許文献1の保持器と比して、柱部のころ案内面と、円すいころの転動面との間での潤滑油のせん断抵抗を抑えることができる。   For example, the column portion has a roller guide surface that contacts the rolling surface of the tapered roller in the circumferential direction, and the radial width of the roller guide surface is 1/3 or less of the minimum diameter of the rolling surface. It is mentioned that. If it does in this way, compared with the holder | retainer of patent document 1, the shear resistance of the lubricating oil between the roller guide surface of a pillar part and the rolling surface of a tapered roller can be suppressed.

この発明に係る円すいころ軸受は、自動車の動力伝達経路に含まれた回転軸を支持する用途であって、跳ね掛け又は油浴潤滑法で潤滑油を外部から軸受内部へ供給する用途に好適である。この発明に係る円すいころ軸受は、前述のように円すいころ軸受の回転トルクの増加を避けつつ、運転再開当初における内輪の大鍔部と円すいころの大端面間の潤滑不足を防止することが可能なため、低粘度潤滑油の使用や少油量化にも対応することができ、ひいては自動車の動力損失を低減して低燃費化に貢献することができる。   The tapered roller bearing according to the present invention is suitable for use in supporting a rotating shaft included in a power transmission path of an automobile, and for supplying lubricating oil from the outside to the inside of the bearing by splashing or oil bath lubrication. is there. The tapered roller bearing according to the present invention can prevent insufficient lubrication between the large collar portion of the inner ring and the large end surface of the tapered roller at the beginning of the operation while avoiding an increase in rotational torque of the tapered roller bearing as described above. Therefore, it is possible to cope with the use of low-viscosity lubricating oil and a reduction in the amount of oil, which in turn can contribute to lower fuel consumption by reducing the power loss of the automobile.

この発明は、上記構成の採用により、保持器の第二環状部のポケット内側面が有する油溝で円すいころの大端面に付着する潤滑油の量を増やし、ポケット内側面と円すいころの大端面との間に発生する潤滑油のせん断抵抗の低減を図ることが可能なため、円すいころ軸受の回転トルクの増加を避けつつ、運転再開当初における内輪の大鍔部と円すいころの大端面間の潤滑不足を防止することができる。   By adopting the above configuration, the present invention increases the amount of lubricating oil adhering to the large end surface of the tapered roller at the oil groove of the pocket inner surface of the second annular portion of the cage, thereby increasing the pocket inner surface and the large end surface of the tapered roller. It is possible to reduce the shear resistance of the lubricating oil generated between the inner ring and the gap between the large collar of the inner ring and the large end face of the tapered roller at the beginning of the operation while avoiding an increase in the rotational torque of the tapered roller bearing. Insufficient lubrication can be prevented.

この発明の第一実施形態に係る円すいころ軸受を図2中のI−I線の切断面で示す断面図Sectional drawing which shows the tapered roller bearing which concerns on 1st embodiment of this invention by the cut surface of the II line | wire in FIG. 図1の保持器を図1中のII−II線の切断面で示す部分断面図1 is a partial cross-sectional view showing the cage of FIG. 1 taken along the line II-II in FIG. 図1の保持器の外観を示す部分斜視図The fragmentary perspective view which shows the external appearance of the holder | retainer of FIG. 図1の保持器の外観を示す部分平面図The partial top view which shows the external appearance of the holder | retainer of FIG. この発明の第二実施形態に係る保持器の部分断面図Partial sectional view of the cage according to the second embodiment of the present invention この発明の第三実施形態に係る保持器の部分断面図Partial sectional view of the cage according to the third embodiment of the present invention この発明の第四実施形態に係る保持器の部分断面図Partial sectional view of a cage according to a fourth embodiment of the present invention この発明の実施形態に係る円すいころ軸受を組み込んだ自動車用デファレンシャルの一例を示す断面図Sectional drawing which shows an example of the differential for motor vehicles incorporating the tapered roller bearing which concerns on embodiment of this invention この発明の実施形態に係る円すいころ軸受を組み込んだ自動車用トランスミッションの一例を示す断面図Sectional drawing which shows an example of the transmission for motor vehicles incorporating the tapered roller bearing which concerns on embodiment of this invention

以下、この発明の第一実施形態に係る円すいころ軸受を添付図面の図1〜図4に基づいて説明する。   Hereinafter, a tapered roller bearing according to a first embodiment of the present invention will be described with reference to FIGS.

図1に示す円すいころ軸受1は、所定数の円すいころ10と、内輪20と、外輪30と、保持器40と、を備える。なお、図1は、この円すいころ軸受1の軸受中心軸(図示省略)を含む仮想アキシアル平面上における断面を示すものであり、その断面の位置は、図2に示すI−I線を通る位置である。図2は、図1中の円すいころ10の中心軸に直交する仮想ラジアル平面上における断面を示すものであり、その断面の位置は、図1中に示すII−II線を通る位置である。   The tapered roller bearing 1 shown in FIG. 1 includes a predetermined number of tapered rollers 10, an inner ring 20, an outer ring 30, and a cage 40. FIG. 1 shows a cross section of the tapered roller bearing 1 on a virtual axial plane including a bearing central axis (not shown), and the position of the cross section is a position passing through the line I-I shown in FIG. It is. FIG. 2 shows a cross section on a virtual radial plane orthogonal to the central axis of the tapered roller 10 in FIG. 1, and the position of the cross section is a position passing through the line II-II shown in FIG.

内輪20、外輪30及び保持器40の各中心軸(図示省略)は、同軸上にある。この同軸の回転中心となる軸線が、この円すいころ軸受1の軸受中心軸(図示省略)である。以下、この軸受中心軸(図示省略)に沿った方向のことを単に「軸方向」といい、この軸方向は、図1中左右方向に相当する。また、その軸受中心軸に対して直角な方向のことを単に「径方向」といい、この径方向は、図1中上下方向に相当する。また、その軸受中心軸(図示省略)周りの円周方向のことを単に「周方向」という。   The central axes (not shown) of the inner ring 20, the outer ring 30, and the cage 40 are coaxial. The axis that serves as the coaxial rotation center is the bearing central axis (not shown) of the tapered roller bearing 1. Hereinafter, the direction along the bearing central axis (not shown) is simply referred to as “axial direction”, and this axial direction corresponds to the horizontal direction in FIG. A direction perpendicular to the bearing central axis is simply referred to as a “radial direction”, and this radial direction corresponds to the vertical direction in FIG. The circumferential direction around the bearing central axis (not shown) is simply referred to as “circumferential direction”.

図1に示す内輪20は、その外周に円すい状の軌道面21と、この軌道面21の大径側よりも径方向に高い大鍔部22とを有する軌道輪となっている。大鍔部22は、周方向に沿った全周連続部となっている。   The inner ring 20 shown in FIG. 1 is a race ring having a conical raceway surface 21 on its outer periphery and a large flange portion 22 that is higher in the radial direction than the large diameter side of the raceway surface 21. The large collar portion 22 is an all-round continuous portion along the circumferential direction.

外輪30は、その内周に円すい状の軌道面31を有する軌道輪となっている。   The outer ring 30 is a race ring having a conical raceway surface 31 on its inner periphery.

円すいころ10は、小端面11と、大端面12と、内輪20の軌道面21及び外輪30の軌道面31に対応の円すい状に形成された転動面13とを有する転動体となっている。小端面11は、円すいころ10の小径側の側面であって、内輪20の軌道面21、外輪30の軌道面31を転がることのない表面部分である。大端面12は、円すいころ10の大径側の側面であって、内輪20の軌道面21、外輪30の軌道面31を転がることのない表面部分である。円すいころ10の側面は、円すいころ10の中心軸方向に露出する円すいころ10の表面部分である。   The tapered roller 10 is a rolling element having a small end surface 11, a large end surface 12, and a rolling surface 13 formed in a tapered shape corresponding to the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30. . The small end surface 11 is a side surface on the small diameter side of the tapered roller 10 and is a surface portion that does not roll on the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30. The large end surface 12 is a large-diameter side surface of the tapered roller 10 and is a surface portion that does not roll on the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30. The side surface of the tapered roller 10 is a surface portion of the tapered roller 10 exposed in the central axis direction of the tapered roller 10.

ここで、円すいころ10の中心軸方向は、中心軸CLが延びる直線方向のことをいい、以下、この方向を単に「ころ中心軸方向」という。また、円すいころ10の中心軸CL周りの円周方向のことを単に「ころ周方向」という。   Here, the central axis direction of the tapered roller 10 refers to a linear direction in which the central axis CL extends. Hereinafter, this direction is simply referred to as a “roller central axis direction”. Further, the circumferential direction around the central axis CL of the tapered roller 10 is simply referred to as “roller circumferential direction”.

円すいころ10の大端面12と内輪20の大鍔部22とは、この円すいころ軸受1に対する予圧により、ころ中心軸方向に接触する状態とされる。軸受運転中、円すいころ10は、この転動面13において、内輪20の軌道面21と外輪30の軌道面31との間に介在し、円すいころ10の中心軸CL回りに回転しながら、軌道面21、31上を転がる(円すいころ10の公転)。この際、円すいころ10の大端面12は、内輪20の大鍔部22に対して周方向に滑り、大鍔部22は、当該大端面12を周方向に案内する。   The large end face 12 of the tapered roller 10 and the large collar portion 22 of the inner ring 20 are brought into contact with the tapered roller bearing 1 in the direction of the center axis of the roller. During the bearing operation, the tapered roller 10 is interposed between the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30 on the rolling surface 13, and rotates around the central axis CL of the tapered roller 10. Roll on the surfaces 21 and 31 (revolution of the tapered roller 10). At this time, the large end surface 12 of the tapered roller 10 slides in the circumferential direction with respect to the large collar portion 22 of the inner ring 20, and the large collar portion 22 guides the large end surface 12 in the circumferential direction.

円すいころ10、内輪20及び外輪30は、それぞれ鋼、例えば軸受鋼によって一体に形成されている。   The tapered roller 10, the inner ring 20 and the outer ring 30 are integrally formed of steel, for example, bearing steel.

保持器40は、第一環状部41と、第一環状部41に比して大径な第二環状部42と、第一環状部41と第二環状部42との間をポケット43に区切る複数の柱部44とを有する。   The cage 40 divides the first annular portion 41, the second annular portion 42 having a larger diameter than the first annular portion 41, and the pockets 43 between the first annular portion 41 and the second annular portion 42. A plurality of column portions 44.

保持器40は、合成樹脂により一体に形成されている。その合成樹脂は、例えば、強化繊維が含まれた繊維強化樹脂であってもよい。保持器40は、軸方向に二分割された金型によって形成されている。   The cage 40 is integrally formed of synthetic resin. The synthetic resin may be, for example, a fiber reinforced resin containing reinforced fibers. The cage 40 is formed by a mold that is divided into two in the axial direction.

第一環状部41は、保持器40の小径側で周方向に連続する保持器部分となっている。   The first annular portion 41 is a cage portion that is continuous in the circumferential direction on the small diameter side of the cage 40.

第二環状部42は、保持器40の大径側で周方向に連続する保持器部分となっている。第二環状部42の外径は、第一環状部41の外径よりも大径である。   The second annular portion 42 is a cage portion that is continuous in the circumferential direction on the large diameter side of the cage 40. The outer diameter of the second annular portion 42 is larger than the outer diameter of the first annular portion 41.

ポケット43は、保持器40に形成された、円すいころ10を収容するための空間である。柱部44は、隣接するポケット43、43間を周方向に分離するように第一環状部41と第二環状部42間に亘る保持器部分となっている。保持器40におけるポケット43の数は、内輪20の軌道面21と外輪30の軌道面31との間に配置される円すいころ10の総数と同数になっている。   The pocket 43 is a space formed in the cage 40 for accommodating the tapered roller 10. The pillar portion 44 is a cage portion that extends between the first annular portion 41 and the second annular portion 42 so as to separate the adjacent pockets 43, 43 in the circumferential direction. The number of pockets 43 in the cage 40 is the same as the total number of tapered rollers 10 disposed between the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30.

円すいころ10は、この大端面12を第二環状部42側へ向けた姿勢でポケット43に収容されている。   The tapered roller 10 is accommodated in the pocket 43 in such a posture that the large end surface 12 faces the second annular portion 42 side.

保持器40は、軸受運転中、円すいころ10間の周方向間隔を柱部44で所定に保ちながら回転する。保持器40は、円すいころ10によって径方向に案内される、いわゆる転動体案内方式のものとなっている。   The cage 40 rotates while maintaining a predetermined interval in the circumferential direction between the tapered rollers 10 during the bearing operation. The cage 40 is of a so-called rolling element guide type that is guided in the radial direction by the tapered roller 10.

図1では、保持器40と円すいころ10との間に設定された径方向のポケットすきまδの大きさを示すため、当該ポケットすきまδに相当分、外輪30を円すいころ10から径方向に離れた位置に描いている。軸受運転中、外輪30の軌道面31が円すいころ10の転動面13に接することは勿論である。ポケット43に収容された円すいころ10に対して保持器40が相対的に径方向へ自由に移動可能な範囲は、径方向のポケットすきまδに相当する。   In FIG. 1, in order to show the size of the radial pocket clearance δ set between the cage 40 and the tapered roller 10, the outer ring 30 is separated from the tapered roller 10 in the radial direction by an amount corresponding to the pocket clearance δ. It is drawn at the position. Of course, the raceway surface 31 of the outer ring 30 contacts the rolling surface 13 of the tapered roller 10 during the bearing operation. The range in which the cage 40 can freely move in the radial direction relative to the tapered roller 10 accommodated in the pocket 43 corresponds to the pocket clearance δ in the radial direction.

柱部44は、円すいころ10の転動面13と周方向に接触するころ案内面45を有する。ころ案内面45は、前述のポケットすきまδの範囲で円すいころ10の転動面13と周方向に接触し得る。ころ案内面45の径方向幅W1は、その転動面13における最小径D1の1/3以下であることが好ましい。ころ案内面45の径方向幅W1は、円すいころ10の転動面13と最も径方向内側で接触する柱部44上の接触位置と、円すいころ10の転動面13と最も径方向外側で接触する柱部44上の接触位置との間の径方向の距離である。   The column portion 44 has a roller guide surface 45 that contacts the rolling surface 13 of the tapered roller 10 in the circumferential direction. The roller guide surface 45 can come into contact with the rolling surface 13 of the tapered roller 10 in the circumferential direction within the aforementioned pocket clearance δ. The radial width W1 of the roller guide surface 45 is preferably 1/3 or less of the minimum diameter D1 of the rolling surface 13 thereof. The radial width W1 of the roller guide surface 45 is such that the contact position on the column portion 44 that is in contact with the rolling surface 13 of the tapered roller 10 on the innermost side in the radial direction and the rolling surface 13 of the tapered roller 10 on the outermost radial direction. It is a distance in the radial direction between the contact position on the pillar portion 44 that comes into contact.

第二環状部42は、内周部46と、外周部47と、当該内周部46と当該外周部47とを連結する連結部48とを有する。第二環状部42の内周部46は、内輪20の大鍔部22を取り囲む全周表面部となっている。第二環状部42の外周部47は、内周部46に周方向に沿う全周表面部となっている。第二環状部42の連結部48は、ポケット43を形成するポケット内側面48aを有する。第二環状部42のポケット内側面48aは、ポケット43ごとに形成され、いずれも同形になっている。   The second annular portion 42 includes an inner peripheral portion 46, an outer peripheral portion 47, and a connecting portion 48 that connects the inner peripheral portion 46 and the outer peripheral portion 47. The inner peripheral portion 46 of the second annular portion 42 is an entire peripheral surface portion surrounding the large collar portion 22 of the inner ring 20. The outer peripheral portion 47 of the second annular portion 42 is an entire peripheral surface portion along the circumferential direction of the inner peripheral portion 46. The connecting portion 48 of the second annular portion 42 has a pocket inner side surface 48 a that forms the pocket 43. The pocket inner side surface 48a of the second annular portion 42 is formed for each pocket 43, and has the same shape.

ポケット内側面48aは、第二環状部42の外径から内径(外周部47から内周部46)まで貫通する油溝49を有する。図2〜図4に示すように、油溝49の全部は、軸方向のうちポケット43側へ向けて開放されており、軸方向に凹んでいる。このような油溝49の形状は、軸方向に二分割された金型の一方で転写することが可能であり、アンダーカットとなる部分を含まない点で好ましい。   The pocket inner side surface 48 a has an oil groove 49 that penetrates from the outer diameter to the inner diameter (from the outer peripheral portion 47 to the inner peripheral portion 46) of the second annular portion 42. As shown in FIGS. 2 to 4, the entire oil groove 49 is open toward the pocket 43 in the axial direction and is recessed in the axial direction. Such a shape of the oil groove 49 is preferable in that it can be transferred by one of the dies divided in the axial direction and does not include an undercut portion.

油溝49は、周方向に向き合う溝側面49a、49bと、径方向に沿った溝底部49cとで構成されている。溝側面49a、49b、49cは、油溝49の深さをもたせるための溝内面部分である。   The oil groove 49 includes groove side surfaces 49a and 49b facing in the circumferential direction, and a groove bottom portion 49c along the radial direction. The groove side surfaces 49 a, 49 b and 49 c are groove inner surface portions for providing the oil groove 49 with a depth.

図示例では、油溝49の全部で深さを一定にしたが、油溝の深さは変化してもよく、例えば、油溝を横断面V溝状に、すなわち、周方向に沿った断面でV字状を成す対の溝側面で構成してもよい。   In the illustrated example, the depth of the oil groove 49 is made constant throughout, but the depth of the oil groove may vary. For example, the oil groove has a cross-sectional shape along the circumferential direction, that is, a cross section along the circumferential direction. It may be constituted by a pair of groove side surfaces forming a V shape.

油溝49は、第二環状部42の外径(外周部47)から内径(内周部46)まで一定の幅W2を有する。油溝49の幅W2は、溝側面49aの縁上の任意の一点と、溝側面49bの縁上との間の最短距離である。   The oil groove 49 has a constant width W2 from the outer diameter (outer peripheral portion 47) to the inner diameter (inner peripheral portion 46) of the second annular portion 42. The width W2 of the oil groove 49 is the shortest distance between an arbitrary point on the edge of the groove side surface 49a and the edge of the groove side surface 49b.

油溝49の幅W2は、円すいころ10の最大径D2の半分以下である。円すいころ10の最大径D2は、転動面13の最大径である。   The width W2 of the oil groove 49 is less than or equal to half of the maximum diameter D2 of the tapered roller 10. The maximum diameter D2 of the tapered roller 10 is the maximum diameter of the rolling surface 13.

ポケット43を周方向に二等分する仮想平面Paxを図2に示す。仮想平面Paxは、軸受中心軸(図示省略)を含む仮想平面であって、ポケット内側面48aの周方向中央を通る。図1に示す円すいころ10の中心軸CLが図2の仮想平面Pax上にある位置で、円すいころ10の大端面12をころ中心軸方向に第二環状部42へ投影したとき、その大端面12の周縁の投影位置を図2に二点鎖線で示し、その二点鎖線に符号12を付す。大端面12のころ周方向の最大周長さは、二点鎖線で示す周縁上である。   A virtual plane Pax that bisects the pocket 43 in the circumferential direction is shown in FIG. The virtual plane Pax is a virtual plane including a bearing center axis (not shown) and passes through the center in the circumferential direction of the pocket inner side surface 48a. When the central axis CL of the tapered roller 10 shown in FIG. 1 is on the virtual plane Pax in FIG. The projection position of the periphery of 12 is shown by a two-dot chain line in FIG. The maximum circumferential length of the large end surface 12 in the roller circumferential direction is on the periphery indicated by a two-dot chain line.

その二点鎖線の内側に油溝49の全部が収まっていることから分かるように、油溝49の全部は、円すいころ10の大端面12と対向している。言い換えると、油溝49の全部は、ころ中心軸方向に大端面12と対向する位置に設けられている。   As can be seen from the fact that the entire oil groove 49 is accommodated inside the two-dot chain line, the entire oil groove 49 faces the large end face 12 of the tapered roller 10. In other words, the entire oil groove 49 is provided at a position facing the large end surface 12 in the roller central axis direction.

図2、図3に示すように、油溝49は、第二環状部42の外径(外周部47)から内径(内周部46)に向かって次第に柱部44へ接近する方向に延びている。このため、仮想平面Paxに沿って真っ直ぐに延びる油溝を採用した場合に比して、第二環状部42の外周部47から内周部46に向かって油溝49が大端面12の周縁投影位置(二点鎖線上)から遠ざかることが抑えられている。   As shown in FIGS. 2 and 3, the oil groove 49 extends from the outer diameter (outer peripheral portion 47) of the second annular portion 42 toward the inner diameter (inner peripheral portion 46) and gradually approaches the column portion 44. Yes. For this reason, the oil groove 49 is projected from the outer peripheral portion 47 of the second annular portion 42 toward the inner peripheral portion 46 in the peripheral projection of the large end surface 12 as compared with the case where the oil groove extending straight along the virtual plane Pax is adopted. Moving away from the position (on the two-dot chain line) is suppressed.

第二環状部42は、ポケット43ごとに複数の油溝49を有する。図示例では、2つの油溝49がポケット内側面48aに含まれている。   The second annular portion 42 has a plurality of oil grooves 49 for each pocket 43. In the illustrated example, two oil grooves 49 are included in the pocket inner surface 48a.

複数の油溝49は、仮想平面Paxを境界として対称形状になっている。仮想平面Paxと、仮想平面Paxを境とした周方向両側に存在する各油溝49との間の各距離は、第二環状部42の外周部47から内周部46に向かって次第に大きくなる。つまり、どの油溝49も、内周部46に接近する程、ポケット43の周方向両側に位置する柱部44の中で自己に近い側の柱部44の方へ接近するため、大端面12の周縁投影位置(二点鎖線上)から遠ざかることが抑えられている。   The plurality of oil grooves 49 are symmetrical with respect to the virtual plane Pax. Each distance between the virtual plane Pax and each oil groove 49 existing on both sides in the circumferential direction with the virtual plane Pax as a boundary gradually increases from the outer peripheral portion 47 of the second annular portion 42 toward the inner peripheral portion 46. . In other words, the greater the oil groove 49 is, the closer to the inner peripheral portion 46, the closer to the pillar portion 44 closer to itself among the pillar portions 44 located on both sides in the circumferential direction of the pocket 43. The distance from the peripheral projection position (on the chain double-dashed line) is suppressed.

この円すいころ軸受1は、跳ね掛け又は油浴潤滑方式で使用される。軸受運転中、外部から供給される潤滑油は、第二環状部42の内径側又は外径側から油溝49の夫々へ容易に入り込む(図1、図2参照)。これら油溝49の全部が円すいころ10の大端面12ところ中心軸方向に対向するポケット内側面48a上の領域を通っているため、その油溝49の対向領域では、ポケット内側部48aと大端面12との間が広くなり、潤滑油(図1中にドット模様で示す)が多く保持され易くなり、結果的に、ポケット内側面48a付近で大端面12に付着する潤滑油の量が増加する。しかも、運転再開当初のように潤滑油の粘度が高い状態である程、大端面12と油溝49との間に潤滑油が保持され易くなる。ポケット内側面48a付近で大端面12に付着した潤滑油は、円すいころ10のころ周方向回転に伴い、内輪20の大鍔部22との間へ運ばれる。したがって、大鍔部22と大端面12との摺接部への潤滑油供給量も増加する。これにより、運転再開当初のように、円すいころ軸受1へ供給される潤滑油が少量である環境でも、大鍔部22と大端面12間の潤滑不足が防止される。   The tapered roller bearing 1 is used in a splashing or oil bath lubrication system. During the operation of the bearing, the lubricating oil supplied from the outside easily enters the oil groove 49 from the inner diameter side or the outer diameter side of the second annular portion 42 (see FIGS. 1 and 2). Since all of these oil grooves 49 pass through a region on the pocket inner side surface 48a facing the central axis in the large end surface 12 of the tapered roller 10, the pocket inner side portion 48a and the large end surface are opposed to the region facing the oil groove 49. 12, the amount of lubricating oil (indicated by a dot pattern in FIG. 1) is easily retained, and as a result, the amount of lubricating oil adhering to the large end surface 12 near the pocket inner side surface 48a increases. . In addition, as the viscosity of the lubricating oil is higher as at the beginning of the resumption of operation, the lubricating oil is more easily held between the large end surface 12 and the oil groove 49. Lubricating oil adhering to the large end surface 12 near the pocket inner side surface 48 a is carried to the large collar portion 22 of the inner ring 20 as the tapered roller 10 rotates in the circumferential direction of the roller. Therefore, the amount of lubricating oil supplied to the sliding contact portion between the large collar portion 22 and the large end surface 12 also increases. As a result, insufficient lubrication between the large collar portion 22 and the large end face 12 is prevented even in an environment where the amount of lubricating oil supplied to the tapered roller bearing 1 is small, as in the beginning of resumption of operation.

また、油溝49が第二環状部42のポケット内側面48aを通っているため、円すいころ10の転動面13とぶつかる潤滑油の増加がなく(すなわち攪拌抵抗の増加がなく)、これにより、円すいころ軸受1の回転トルクの増加が避けられる。   Further, since the oil groove 49 passes through the pocket inner side surface 48a of the second annular portion 42, there is no increase in lubricating oil that collides with the rolling surface 13 of the tapered roller 10 (that is, there is no increase in stirring resistance). The increase in the rotational torque of the tapered roller bearing 1 can be avoided.

また、油溝49と大端面12との対向領域では、ポケット内側面48aと大端面12との間が広くなるため、油溝49がないとき比較して、ポケット内側面48aと大端面12との間に発生する潤滑油のせん断抵抗が低減される。このことも、円すいころ軸受1の回転トルクの低減につながる。   Further, in the region where the oil groove 49 and the large end surface 12 are opposed, the space between the pocket inner side surface 48a and the large end surface 12 becomes wider. Therefore, compared with the case where there is no oil groove 49, the pocket inner side surface 48a and the large end surface 12 The shear resistance of the lubricating oil generated during this period is reduced. This also leads to a reduction in rotational torque of the tapered roller bearing 1.

このように、この円すいころ軸受1は、保持器40の第二環状部42のポケット内側面48aが有する油溝49で円すいころ10の大端面12に付着する潤滑油の量を増やして内輪20の大鍔部22と大端面12との摺接部への潤滑油の供給量を増やすことが可能であると共に、ポケット内側面48aと大端面12との間に発生する潤滑油のせん断抵抗の低減を図ることが可能なため、軸受回転トルクの増加を避けつつ、運転再開当初における大鍔部22と大端面12間の潤滑不足を防止することができる。   Thus, the tapered roller bearing 1 increases the amount of lubricating oil adhering to the large end surface 12 of the tapered roller 10 by the oil groove 49 provided in the pocket inner surface 48a of the second annular portion 42 of the retainer 40 to increase the inner ring 20. It is possible to increase the amount of lubricating oil supplied to the sliding contact portion between the large collar portion 22 and the large end surface 12, and to reduce the shear resistance of the lubricating oil generated between the pocket inner side surface 48 a and the large end surface 12. Since reduction can be achieved, insufficient lubrication between the large collar portion 22 and the large end face 12 at the beginning of resumption of operation can be prevented while avoiding an increase in bearing rotational torque.

また、この円すいころ軸受1は、油溝49の全部がころ中心軸方向に大端面12と対向する位置を通っているため、油溝49を無駄なく活用して前述の潤滑不足を防止することができる。   Further, in the tapered roller bearing 1, since all of the oil groove 49 passes through the position facing the large end surface 12 in the roller central axis direction, the oil groove 49 can be used without waste to prevent the above-described insufficient lubrication. Can do.

また、円すいころ10の公転方向に転がり、大端面12がころ周方向に回転するとき、油溝49と大端面12との間で潤滑油が当該回転方向にせん断される。円すいころ10の回転方向に応じて、仮想平面Paxを境界とした周方向一方側の油溝49では、潤滑油が内輪20の大鍔部22側へ引き摺られ、反対の周方向他方側の油溝49では、潤滑油が外輪30側へ引き摺られる。この円すいころ軸受1は、第二環状部42がポケット43ごとに複数の油溝49を有し、これら油溝49がポケット43を周方向に二等分する仮想平面Paxを境界として対称形状になっているので(図2参照)、円すいころ10の公転方向がいずれであっても複数の油溝49による潤滑油の保持、供給性能に差がでず、同様に前述の潤滑不足を防止することができる。   When the tapered roller 10 rolls in the revolution direction and the large end surface 12 rotates in the roller circumferential direction, the lubricating oil is sheared between the oil groove 49 and the large end surface 12 in the rotation direction. According to the rotational direction of the tapered roller 10, in the oil groove 49 on one side in the circumferential direction with the imaginary plane Pax as a boundary, the lubricating oil is dragged toward the large flange portion 22 side of the inner ring 20, and the oil on the other side in the opposite circumferential direction In the groove 49, the lubricating oil is dragged toward the outer ring 30 side. In the tapered roller bearing 1, the second annular portion 42 has a plurality of oil grooves 49 for each pocket 43, and the oil grooves 49 are symmetrical with respect to a virtual plane Pax that bisects the pocket 43 in the circumferential direction. (See FIG. 2), there is no difference in the retention and supply performance of the lubricating oil by the plurality of oil grooves 49 regardless of the revolution direction of the tapered roller 10, and similarly the above-described lack of lubrication is prevented. be able to.

また、この円すいころ軸受1は、油溝49が第二環状部42の外周部47から内周部46に向かって次第に柱部44へ接近する方向に延びているので、当該外周部47から内周部46に向かって油溝49が大端面12の周縁投影位置(図2中の二点鎖線上)から遠ざかることを抑えて、当該大端面12に潤滑油を供給し易くすることができる。   Further, the tapered roller bearing 1 has an oil groove 49 extending from the outer peripheral portion 47 of the second annular portion 42 toward the inner peripheral portion 46 in a direction of gradually approaching the column portion 44. The oil groove 49 can be prevented from moving away from the peripheral projection position (on the two-dot chain line in FIG. 2) of the large end surface 12 toward the peripheral portion 46, and the lubricating oil can be easily supplied to the large end surface 12.

また、この円すいころ軸受1は、柱部44が円すいころ10の転動面13と周方向に接触するころ案内面45を有し、ころ案内面45の径方向幅W1が転動面13の最小径の1/3以下であるので、ころ案内面45と転動面13との間での潤滑油のせん断抵抗を抑えることができる。   Further, the tapered roller bearing 1 has a roller guide surface 45 in which the column portion 44 is in contact with the rolling surface 13 of the tapered roller 10 in the circumferential direction, and the radial width W1 of the roller guide surface 45 is that of the rolling surface 13. Since it is 1/3 or less of the minimum diameter, the shear resistance of the lubricating oil between the roller guide surface 45 and the rolling surface 13 can be suppressed.

なお、第一実施形態では、油溝49の全部がころ中心軸方向に大端面12と対向する位置を通る例を示したが、油溝の少なくとも一部分が当該対向する位置を通るように変更してもよく、このような変更を行っても、大端面12に付着する潤滑油の量を増やすことは可能である。   In the first embodiment, an example in which all of the oil groove 49 passes through the position facing the large end surface 12 in the roller central axis direction is shown. However, the oil groove 49 is changed so that at least a part of the oil groove passes through the facing position. Even if such a change is made, it is possible to increase the amount of lubricating oil adhering to the large end face 12.

この発明の第二実施形態を図5に基づいて説明する。なお、以下では、第一実施形態との相違点を述べるに留め、第一実施形態と対応の構成要素に同じ名称を用いる。   A second embodiment of the present invention will be described with reference to FIG. In the following, only the differences from the first embodiment will be described, and the same names will be used for the components corresponding to the first embodiment.

図5に示すように、第二実施形態の第二環状部50は、ポケット51ごとに油溝53を1つだけ有する。なお、図5は、軸受中心軸(図示省略)に対して直角な仮想ラジアル平面上における柱部44の断面を示し、第二環状部50のポケット51付近を軸方向から視た外観を示している。   As shown in FIG. 5, the second annular portion 50 of the second embodiment has only one oil groove 53 for each pocket 51. FIG. 5 shows a cross section of the column portion 44 on a virtual radial plane perpendicular to the bearing center axis (not shown), and shows an appearance of the vicinity of the pocket 51 of the second annular portion 50 viewed from the axial direction. Yes.

第二実施形態は、ポケット51ごとに油溝53が1つだけであり、円すいころの公転方向の相違で油溝53による潤滑油の保持、供給性能に差が生じるが、第二環状部50の肉量減少を抑えることができ、軸受回転方向が一方向に限定される場合に好適である。   In the second embodiment, there is only one oil groove 53 for each pocket 51, and the difference in the retention and supply performance of the lubricating oil by the oil groove 53 is caused by the difference in the revolution direction of the tapered roller. This is suitable when the bearing rotation direction is limited to one direction.

この発明の第三実施形態を図6に基づいて説明する。なお、図6は、図5と切断位置が異なるが同様の断面及び外観を示している。   A third embodiment of the present invention will be described with reference to FIG. FIG. 6 shows the same cross section and appearance, although the cutting position is different from FIG.

図6に示すように、第三実施形態の第二環状部60は、円弧状に延びる油溝61を有する。油溝61は、円すいころの大端面12の周縁(図中に二点鎖線で示す)と同側へ曲がる曲面状の溝側面61a、61bを有する。つまり、片側の溝側面61aの曲率の中心は、溝側面61aを境として大端面12の中心に近い側にある。反対の片側の溝側面61bの曲率の中心も同様にある。   As shown in FIG. 6, the second annular portion 60 of the third embodiment has an oil groove 61 extending in an arc shape. The oil groove 61 has curved groove side surfaces 61a and 61b that bend to the same side as the periphery (indicated by a two-dot chain line in the drawing) of the large end surface 12 of the tapered roller. That is, the center of curvature of the groove side surface 61a on one side is closer to the center of the large end surface 12 with the groove side surface 61a as a boundary. The center of curvature of the opposite groove side surface 61b is also the same.

軸受運転中、大端面12がころ周方向に回転すると、ころ10の回転方向と同じ方向に曲がる油溝61の溝側面61a、61bにより、油溝61を通る潤滑油の流れの向きが当該ころ10の回転方向に近くなるため、油溝の溝側面が直線状の第一実施形態又は第二実施形態と比して、油溝61の潤滑油が回転する当該大端面12に巻き込まれて内輪の大鍔部(図1参照)まで届き易くなる.このため、第三実施形態は、当該大端面12と内輪の大鍔部との摺接部へ潤滑油をより供給し易くすることができる。   When the large end surface 12 rotates in the roller circumferential direction during the bearing operation, the flow direction of the lubricating oil passing through the oil groove 61 is changed by the groove side surfaces 61a and 61b of the oil groove 61 that bend in the same direction as the rotation direction of the roller 10. Therefore, the lubricating oil in the oil groove 61 is wound around the rotating large end surface 12 as compared with the first embodiment or the second embodiment in which the oil groove has a linear shape. It will be easy to reach the vase (see Fig. 1). For this reason, 3rd embodiment can make it easier to supply lubricating oil to the sliding contact part of the said big end surface 12 and the large collar part of an inner ring | wheel.

なお、溝側面61a、61bは、単一の円弧面状にしてもよいし、複数の円弧面を滑らかに繋いだ複合曲面状にしてもよい。また、図示例では、油溝61の両側の溝側面61a、61bを曲面状にしたが、大端面12への付着性を考慮すると、少なくとも大端面12の周縁に近い側の溝側面61aを曲面状にすることが好ましく、一方側のみを曲面状にしてもよい。   The groove side surfaces 61a and 61b may have a single arc surface shape or a complex curved surface shape in which a plurality of arc surfaces are smoothly connected. In the illustrated example, the groove side surfaces 61 a and 61 b on both sides of the oil groove 61 are curved. However, considering the adhesion to the large end surface 12, at least the groove side surface 61 a near the periphery of the large end surface 12 is curved. Preferably, only one side may be curved.

この発明の第四実施形態を図7に基づいて説明する。なお、図7は、図5と切断位置が異なるが、同様の断面及び外観を示している。   A fourth embodiment of the present invention will be described with reference to FIG. 7 shows the same cross section and appearance, although the cutting position is different from FIG.

図7に示すように、第四実施形態の第二環状部70は、油溝71の幅W2が第二環状部70の内周面に向かって次第に小さくなっている。この幅変化は、片側の溝側面71aが延びる方向に対して、反対の片側の溝側面71bが延びる方向を溝側面71a側へ傾斜させることにより、実現されている。   As shown in FIG. 7, in the second annular portion 70 of the fourth embodiment, the width W <b> 2 of the oil groove 71 gradually decreases toward the inner peripheral surface of the second annular portion 70. This width change is realized by inclining the direction in which the opposite groove side surface 71b extends to the groove side surface 71a side with respect to the direction in which the groove side surface 71a on one side extends.

軸受運転中、円すいころの大端面(図1参照)がころ周方向に回転するとき、油溝71と当該大端面との間に存在する潤滑油は、当該回転方向、例えば、図7中時計回りの方向にせん断される。そうすると、図7中右側の油溝71において、潤滑油は、時計回りの方向に第二環状部70の内周面側(つまり内輪側)へ引き摺られる。その油溝71の幅W2が第二環状部70の内周面に向かって次第に小さくなっているので、油溝71から潤滑油が内輪側へ流出し難くなる。したがって、第四実施形態は、油溝71と当該大端面(図1参照)との間に潤滑油をより保持し易くすることができる。   When the large end surface (see FIG. 1) of the tapered roller rotates in the roller circumferential direction during the bearing operation, the lubricating oil existing between the oil groove 71 and the large end surface is in the rotation direction, for example, the clock in FIG. Sheared around. Then, in the oil groove 71 on the right side in FIG. 7, the lubricating oil is dragged in the clockwise direction toward the inner peripheral surface side (that is, the inner ring side) of the second annular portion 70. Since the width W2 of the oil groove 71 is gradually reduced toward the inner peripheral surface of the second annular portion 70, the lubricating oil hardly flows out from the oil groove 71 to the inner ring side. Therefore, 4th embodiment can make it easier to hold | maintain lubricating oil between the oil groove 71 and the said big end surface (refer FIG. 1).

上述した実施形態に係る円すいころ軸受は、自動車用円すいころ軸受として用いると好適である。具体的には、上述した実施形態に係る円すいころ軸受は、自動車の動力伝達装置の回転軸を支持する用途であって、跳ね掛け又は油浴潤滑によって、潤滑油を外部から軸受内部へ供給する用途に好適である。上述の円すいころ軸受の使用例を図8及び図9に基づいて説明する。図8は、自動車用デファレンシャルの一例を示すものである。   The tapered roller bearing according to the above-described embodiment is preferably used as a tapered roller bearing for automobiles. Specifically, the tapered roller bearing according to the above-described embodiment is used to support a rotating shaft of a power transmission device of an automobile, and supplies lubricating oil from the outside to the inside of the bearing by splashing or oil bath lubrication. Suitable for use. The usage example of the above-mentioned tapered roller bearing will be described with reference to FIGS. FIG. 8 shows an example of an automobile differential.

図8に示すデファレンシャルは、ハウジング101に対して2つの円すいころ軸受102、103で回転自在に支持されたドライブピニオン104と、このドライブピニオン104に噛み合うリングギヤ105と、このリングギヤ105が取り付けられ、一対の円すいころ軸受106でハウジング101に対して回転自在に支持された差動歯車ケース107と、この差動歯車ケース107の中に配設されたピニオン108と、ピニオン108と噛み合う一対のサイドギヤ109とを備え、これらがギヤオイルの封入されたハウジング101内に収納されている。このギヤオイルは、各円すいころ軸受102、103、106の潤滑油にもなっており、跳ね掛け又は油浴潤滑法により軸受側面に供給される。各円すいころ軸受102、103、106は、上述の実施形態のいずれかに該当するものである。   The differential shown in FIG. 8 has a drive pinion 104 rotatably supported by two tapered roller bearings 102 and 103 with respect to the housing 101, a ring gear 105 meshing with the drive pinion 104, and the ring gear 105 attached thereto. A differential gear case 107 rotatably supported with respect to the housing 101 by a tapered roller bearing 106, a pinion 108 disposed in the differential gear case 107, and a pair of side gears 109 meshing with the pinion 108 These are housed in a housing 101 in which gear oil is enclosed. This gear oil also serves as a lubricating oil for the tapered roller bearings 102, 103, and 106, and is supplied to the bearing side surface by splashing or oil bath lubrication. Each tapered roller bearing 102, 103, 106 corresponds to any of the above-described embodiments.

上述の円すいころ軸受の別の使用例を図9に基づいて説明する。図9は、自動車用トランスミッションの一例を示すものである。   Another example of use of the above tapered roller bearing will be described with reference to FIG. FIG. 9 shows an example of an automobile transmission.

図9に示すトランスミッションは、段階的に変速比を変化させる多段変速機になっており、その回転軸(例えば入力軸201および出力軸202)を回転可能に支持する転がり軸受203〜208として、上述の実施形態のいずれかに係る円すいころ軸受を備えている。図示のトランスミッションは、エンジンの回転が入力される入力軸201と、入力軸201と平行に設けられた出力軸202と、入力軸201から出力軸202に回転を伝達する複数のギヤ列209〜212と、各ギヤ列209〜212と入力軸201または出力軸202との間に組み込まれた図示しないクラッチとを有する。トランスミッションは、クラッチを選択的に係合させることで使用するギヤ列209〜212を切り替え、入力軸201から出力軸202に伝達する回転の変速比を変化させるものである。出力軸202の回転は出力ギヤ213に出力され、その出力ギヤ213の回転がディファレンシャルギヤ等に伝達される。入力軸201と出力軸202は、それぞれ対応の円すいころ軸受203、204又は円すいころ軸受205、206で回転可能に支持されている。また、このトランスミッションは、ギヤの回転に伴う潤滑油(ミッションオイル)のはね掛けにより、潤滑油が各円すいころ軸受203〜208の側面にかかるようになっている。   The transmission shown in FIG. 9 is a multi-stage transmission that changes the gear ratio step by step. The rolling bearings 203 to 208 that rotatably support the rotation shafts (for example, the input shaft 201 and the output shaft 202) are described above. The tapered roller bearing according to any one of the embodiments is provided. The illustrated transmission includes an input shaft 201 to which engine rotation is input, an output shaft 202 provided in parallel with the input shaft 201, and a plurality of gear trains 209 to 212 that transmit the rotation from the input shaft 201 to the output shaft 202. And a clutch (not shown) incorporated between each of the gear trains 209 to 212 and the input shaft 201 or the output shaft 202. The transmission switches the gear trains 209 to 212 to be used by selectively engaging a clutch, and changes the transmission gear ratio transmitted from the input shaft 201 to the output shaft 202. The rotation of the output shaft 202 is output to the output gear 213, and the rotation of the output gear 213 is transmitted to a differential gear or the like. The input shaft 201 and the output shaft 202 are rotatably supported by corresponding tapered roller bearings 203 and 204 or tapered roller bearings 205 and 206, respectively. In this transmission, the lubricating oil is applied to the side surfaces of the tapered roller bearings 203 to 208 by splashing of the lubricating oil (mission oil) accompanying the rotation of the gear.

図8、図9に例示する円すいころ軸受102、103、106、203〜208は、図1〜7に示すいずれかの円すいころ軸受を使用している。そのため、トランスミッション又はデファレンシャル内で跳ね掛け又は油浴潤滑法により軸受内部へ供給された潤滑油の攪拌抵抗やせん断抵抗による軸受回転トルクの増加を避けつつ、運転再開当初における内輪の大鍔部と円すいころの大端面間の潤滑不足を防止することが可能なため、低粘度潤滑油の使用や少油量化にも対応することができ、ひいては自動車の動力損失を低減して低燃費化に貢献することができる。   The tapered roller bearings 102, 103, 106, 203 to 208 illustrated in FIGS. 8 and 9 use any of the tapered roller bearings shown in FIGS. Therefore, while avoiding an increase in bearing rotation torque due to the agitation resistance and shear resistance of the lubricating oil supplied to the inside of the bearing by splashing or oil bath lubrication in the transmission or differential, the inner ring large collar and cone Since it is possible to prevent insufficient lubrication between the large end faces of the rollers, it is possible to cope with the use of low-viscosity lubricating oil and a reduction in the amount of oil, which in turn contributes to lower fuel consumption by reducing the power loss of automobiles. be able to.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. Accordingly, the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 円すいころ
11 小端面
12 大端面
13 転動面
20 内輪
21 軌道面
22 大鍔部
30 外輪
40 保持器
41 第一環状部
42、50、60、70 第二環状部
43、51 ポケット
44 柱部
45 ころ案内面
46 内周部
47 外周部
48 連結部
48a ポケット内側面
49、53、61、71 油溝
49a、49b、61a、61b、71a、71b 溝側面
1、102、103、106、203〜208 円すいころ軸受
DESCRIPTION OF SYMBOLS 10 Tapered roller 11 Small end surface 12 Large end surface 13 Rolling surface 20 Inner ring 21 Raceway surface 22 Large collar part 30 Outer ring 40 Cage 41 First annular part 42, 50, 60, 70 Second annular part 43, 51 Pocket 44 Column part 45 Roller guide surface 46 Inner peripheral portion 47 Outer peripheral portion 48 Connecting portion 48a Pocket inner side surface 49, 53, 61, 71 Oil groove 49a, 49b, 61a, 61b, 71a, 71b Groove side surface 1, 102, 103, 106, 203- 208 Tapered roller bearing

Claims (8)

小端面と大端面と転動面とを有する円すいころと、
外周に設けられた軌道面と、前記円すいころの前記大端面を案内する大鍔部とを有する内輪と、
内周に設けられた軌道面を有し、前記内輪と同軸に配置される外輪と、
樹脂によって形成された保持器と、
を備え、
前記保持器は、第一環状部と、当該第一環状部に比して大径な第二環状部と、当該第一環状部と当該第二環状部との間をポケットに区切る複数の柱部とを有し、
前記円すいころは、前記大端面を前記第二環状部側へ向けた姿勢で前記ポケットに収容されており、
前記第二環状部のうち前記ポケットを形成するポケット内側面には、外径から内径まで貫通する油溝が設けられており、
前記油溝の少なくとも一部分が、前記円すいころの前記大端面と対向していることを特徴とする円すいころ軸受。
A tapered roller having a small end surface, a large end surface and a rolling surface;
An inner ring having a raceway surface provided on the outer periphery and a large collar portion for guiding the large end surface of the tapered roller;
An outer ring having a raceway surface provided on the inner periphery, and disposed coaxially with the inner ring;
A cage formed of resin;
With
The cage includes a first annular portion, a second annular portion having a diameter larger than that of the first annular portion, and a plurality of columns that divide the first annular portion and the second annular portion into pockets. And
The tapered roller is accommodated in the pocket in a posture in which the large end surface is directed to the second annular portion side;
An oil groove penetrating from the outer diameter to the inner diameter is provided on the inner surface of the pocket forming the pocket in the second annular portion,
A tapered roller bearing, wherein at least a part of the oil groove is opposed to the large end surface of the tapered roller.
前記油溝の全部が、前記円すいころの前記大端面と対向している請求項1に記載の円すいころ軸受。   The tapered roller bearing according to claim 1, wherein all of the oil grooves are opposed to the large end surface of the tapered roller. 前記第二環状部は、前記ポケットごとに複数の前記油溝を有し、
前記複数の油溝は、前記ポケットを周方向に二等分する仮想平面を境界として対称形状になっている請求項1又は2に記載の円すいころ軸受。
The second annular portion has a plurality of the oil grooves for each pocket,
The tapered roller bearing according to claim 1 or 2, wherein the plurality of oil grooves are symmetrical with respect to a virtual plane that bisects the pocket in the circumferential direction.
前記油溝は、前記第二環状部の外径から内径に向かって次第に前記柱部へ接近する方向に延びている請求項1から3のいずれか1項に記載の円すいころ軸受。   4. The tapered roller bearing according to claim 1, wherein the oil groove extends in a direction of gradually approaching the column portion from the outer diameter to the inner diameter of the second annular portion. 5. 前記油溝は、前記円すいころの回転方向に向けて曲がる曲面状の溝側面を有する請求項1から4のいずれか1項に記載の円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 4, wherein the oil groove has a curved groove side surface that bends in a rotating direction of the tapered roller. 前記油溝は、前記第二環状部の外径から内径まで一定の幅を有する請求項1から5のいずれか1項に記載の円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 5, wherein the oil groove has a constant width from an outer diameter to an inner diameter of the second annular portion. 前記油溝の幅は、前記円すいころの最大径の半分以下である請求項1から6のいずれか1項に記載の円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 6, wherein a width of the oil groove is not more than half of a maximum diameter of the tapered roller. 前記柱部は、前記円すいころの前記転動面と周方向に接触するころ案内面を有し、当該ころ案内面の径方向幅は、当該転動面の最小径の1/3以下である請求項1から7のいずれか1項に記載の円すいころ軸受。   The column portion has a roller guide surface that is in circumferential contact with the rolling surface of the tapered roller, and the radial width of the roller guide surface is equal to or less than 1/3 of the minimum diameter of the rolling surface. The tapered roller bearing according to any one of claims 1 to 7.
JP2017067639A 2017-03-30 2017-03-30 Tapered roller bearing Active JP6903463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017067639A JP6903463B2 (en) 2017-03-30 2017-03-30 Tapered roller bearing
JP2021102412A JP7466501B2 (en) 2017-03-30 2021-06-21 Tapered roller bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067639A JP6903463B2 (en) 2017-03-30 2017-03-30 Tapered roller bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021102412A Division JP7466501B2 (en) 2017-03-30 2021-06-21 Tapered roller bearings

Publications (2)

Publication Number Publication Date
JP2018168982A true JP2018168982A (en) 2018-11-01
JP6903463B2 JP6903463B2 (en) 2021-07-14

Family

ID=64020228

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017067639A Active JP6903463B2 (en) 2017-03-30 2017-03-30 Tapered roller bearing
JP2021102412A Active JP7466501B2 (en) 2017-03-30 2021-06-21 Tapered roller bearings

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021102412A Active JP7466501B2 (en) 2017-03-30 2021-06-21 Tapered roller bearings

Country Status (1)

Country Link
JP (2) JP6903463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143765A (en) * 2017-03-30 2021-09-24 Ntn株式会社 Conical roller bearing
CN113924425A (en) * 2019-06-05 2022-01-11 Ntn株式会社 Tapered roller bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH068815U (en) * 1992-07-07 1994-02-04 日本精工株式会社 Tapered roller bearing
JP2007032612A (en) * 2005-07-22 2007-02-08 Nsk Ltd Roller bearing
JP2015183804A (en) * 2014-03-25 2015-10-22 株式会社ジェイテクト Retainer unit, and conical roller bearing including retainer unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903463B2 (en) * 2017-03-30 2021-07-14 Ntn株式会社 Tapered roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH068815U (en) * 1992-07-07 1994-02-04 日本精工株式会社 Tapered roller bearing
JP2007032612A (en) * 2005-07-22 2007-02-08 Nsk Ltd Roller bearing
JP2015183804A (en) * 2014-03-25 2015-10-22 株式会社ジェイテクト Retainer unit, and conical roller bearing including retainer unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143765A (en) * 2017-03-30 2021-09-24 Ntn株式会社 Conical roller bearing
JP7466501B2 (en) 2017-03-30 2024-04-12 Ntn株式会社 Tapered roller bearings
CN113924425A (en) * 2019-06-05 2022-01-11 Ntn株式会社 Tapered roller bearing

Also Published As

Publication number Publication date
JP7466501B2 (en) 2024-04-12
JP6903463B2 (en) 2021-07-14
JP2021143765A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6295727B2 (en) Tapered roller bearing
EP2816247B1 (en) Tapered roller bearing and power transmission device using tapered roller bearing
JP7466501B2 (en) Tapered roller bearings
US11300155B2 (en) Cage for a tapered roller bearing and tapered roller bearing
WO2018186346A1 (en) Tapered roller bearing
JP2019143796A (en) Cage for conical roller bearing, and conical roller bearing
JPH1151159A (en) Bearing device of pinion shaft for final reduction gear
WO2011096466A1 (en) Conical roller bearing
JP2008128404A (en) Roller bearing retainer and roller bearing
JP5005207B2 (en) Tapered roller bearing
JP2011256914A (en) Deep groove ball bearing
EP2017487A2 (en) Tapered roller bearing with lubricant grooves on the cage
JP2009168064A (en) Conical roller bearing and differential
JP2005098316A (en) Conical roller bearing
JP2018091398A (en) Holder for bearing, and rolling bearing
JP2017187119A (en) Rolling bearing
WO2018181756A1 (en) Tapered roller bearing
JP2019031991A (en) Conical roller bearing
JP6127761B2 (en) Power transmission device using tapered roller bearing and tapered roller bearing
JP2012202533A (en) Lubricating structure of differential device
JP5909893B2 (en) Radial needle bearing
JP2011163387A (en) Tapered roller bearing
JP2011196393A (en) Thrust roller bearing
JP2018138797A (en) Ball bearing
US20210301874A1 (en) Roller and cage assembly and planetary gear support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150