JP2018091398A - Holder for bearing, and rolling bearing - Google Patents

Holder for bearing, and rolling bearing Download PDF

Info

Publication number
JP2018091398A
JP2018091398A JP2016235051A JP2016235051A JP2018091398A JP 2018091398 A JP2018091398 A JP 2018091398A JP 2016235051 A JP2016235051 A JP 2016235051A JP 2016235051 A JP2016235051 A JP 2016235051A JP 2018091398 A JP2018091398 A JP 2018091398A
Authority
JP
Japan
Prior art keywords
bearing
oil groove
circumferential direction
pocket
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016235051A
Other languages
Japanese (ja)
Inventor
俊貴 河合
Toshitaka Kawai
俊貴 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016235051A priority Critical patent/JP2018091398A/en
Publication of JP2018091398A publication Critical patent/JP2018091398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a holder for bearing capable of easily delivering lubricant to a rolling body and a raceway, during operation of a rolling bearing in a bearing operation condition such as an application of supporting a rotational shaft included in a transmission.SOLUTION: On an inner peripheral surface of a column part 8 of a holder 4 for bearing, an oil groove 10 is formed, which communicates with a pocket 7 positioned on a one-direction side of a circumferential direction with respect to the column part 8. A depth of the oil groove 10 is made deeper gradually toward the pocket 7 in the one direction of the circumferential direction. A rotation direction A of the holder 4 for bearing during bearing operation is the other direction of the circumferential direction opposite to the one direction of the circumferential direction. A raceway ring rotated during the bearing operation is an inner ring 1.SELECTED DRAWING: Figure 1

Description

この発明は、軸受用保持器、及びこれを備える転がり軸受に関する。   The present invention relates to a bearing cage and a rolling bearing including the same.

転がり軸受に供給される潤滑油が少量かつ低粘度である過酷な潤滑条件下においては、潤滑性能の低下を軽減するための対策が取られる。例えば、近年、車両用のトランスミッションでは、燃費の向上を目的として潤滑油の撹拌抵抗を下げるため、オイルレベルの設定を必要最低限に下げることや、動粘度の低いオイルを選択する傾向にあり、軸受には過酷な潤滑環境下となる。それでも、油膜切れが起因となる焼き付き等の破損が無く、要求寿命を満足することができるように対策が求められている。   Under severe lubrication conditions in which the amount of lubricating oil supplied to the rolling bearing is small and the viscosity is low, measures are taken to alleviate the deterioration of the lubrication performance. For example, in recent years, in vehicle transmissions, in order to lower the agitation resistance of lubricating oil for the purpose of improving fuel efficiency, there is a tendency to lower the oil level setting to the minimum necessary or to select oil with low kinematic viscosity, The bearing is subjected to a severe lubrication environment. Even so, there is a need for countermeasures so that there is no damage such as seizure due to oil film breakage and the required life can be satisfied.

その対策として、特許文献1の軸受用保持器では、隣接するポケット間を仕切る柱部の内径や外径から径方向に凹んだ複数の細い油溝を周方向に平行に形成し、これら油溝によって潤滑油等の流体の流れを整流化することにより、攪拌抵抗の低減を図り、軸受回転トルクの低減及び発熱を抑えている。   As a countermeasure, in the bearing cage of Patent Document 1, a plurality of thin oil grooves recessed in the radial direction from the inner and outer diameters of the pillars partitioning adjacent pockets are formed in parallel to the circumferential direction. By rectifying the flow of fluid such as lubricating oil, the agitation resistance is reduced, and the bearing rotational torque is reduced and heat generation is suppressed.

特開2003−232362号公報JP 2003-232362 A

一般に、トランスミッションの回転軸は、一方向に限って回転させられる。この回転軸を支持する転がり軸受は、図8に示すように、内輪101と、外輪102と、軸受用保持器103と、複数の転動体104とを備える。内輪101は、回転軸に取り付けられている。軸受運転中、内輪101と外輪102のうち、内輪101だけが回転させられる。その内輪101の回転方向は、回転軸の回転方向と同一方向に限られる。このような軸受運転条件の場合、内輪101の回転方向によって軸受用保持器103の回転方向が決まり、図8のようになる。すなわち、同図中に例示する矢線Aを内輪101の回転方向と仮定したとき、軸受用保持器103も矢線A方向に回転する。このとき、転動体104の自転方向は、図8中の矢線B方向となる。   Generally, the rotation shaft of the transmission is rotated only in one direction. As shown in FIG. 8, the rolling bearing that supports the rotating shaft includes an inner ring 101, an outer ring 102, a bearing cage 103, and a plurality of rolling elements 104. The inner ring 101 is attached to the rotating shaft. During the bearing operation, only the inner ring 101 of the inner ring 101 and the outer ring 102 is rotated. The rotation direction of the inner ring 101 is limited to the same direction as the rotation direction of the rotation shaft. In such a bearing operating condition, the rotational direction of the bearing cage 103 is determined by the rotational direction of the inner ring 101, as shown in FIG. That is, when it is assumed that the arrow A illustrated in the figure is the rotation direction of the inner ring 101, the bearing cage 103 also rotates in the arrow A direction. At this time, the rotation direction of the rolling element 104 is the arrow B direction in FIG.

特許文献1の軸受用保持器103では、ポケット105間の柱部106に形成された油溝107の径方向深さが一定なため、潤滑油が流れる方向は、図8中で油溝107内に矢線fで概念的に示すように、周方向に沿う方向となる。油溝107から周方向に流出した潤滑油は、ポケット105に収容された転動体104と直交する。局部的にみると、転動体104に直交した潤滑油が乱流化するので(図中矢線fからの分岐矢線を参照。)、過酷潤滑時にポケット105の内面と転動体104との間に潤滑油が積極的に介入し難く、内輪101、外輪102の軌道へ潤滑油が行き届き難くなり、やがて焼き付きや異常発熱を引き起こしてしまう恐れがある。   In the bearing cage 103 of Patent Document 1, since the radial depth of the oil groove 107 formed in the column portion 106 between the pockets 105 is constant, the direction in which the lubricating oil flows is the inside of the oil groove 107 in FIG. As shown conceptually by the arrow line f, the direction is along the circumferential direction. The lubricating oil that has flowed out in the circumferential direction from the oil groove 107 is orthogonal to the rolling element 104 accommodated in the pocket 105. When viewed locally, the lubricating oil orthogonal to the rolling element 104 becomes turbulent (see the branch arrow line from the arrow f in the figure), and therefore, between severely lubricated, between the inner surface of the pocket 105 and the rolling element 104. Lubricating oil is difficult to actively intervene, and it becomes difficult for the lubricating oil to reach the races of the inner ring 101 and the outer ring 102, which may eventually cause seizure and abnormal heat generation.

上述の背景に鑑み、この発明が解決しようとする課題は、トランスミッションに備わる回転軸の支持用途のような軸受運転条件の転がり軸受の運転中、潤滑油を転動体及び軌道に行き届き易くすることが可能な軸受用保持器を提供することである。   In view of the above-mentioned background, the problem to be solved by the present invention is to make it easy for the lubricant to reach the rolling elements and the raceway during the operation of the rolling bearing under the bearing operating condition such as the support for the rotating shaft provided in the transmission. It is to provide a possible bearing cage.

上記の課題を達成するため、この発明は、周方向に隣接するポケット間を仕切る複数の柱部を備え、前記複数の柱部のうち少なくとも1つの柱部が、前記ポケットに連通して軸受運転中に潤滑油を前記ポケットへ導く油溝を有する軸受用保持器において、前記油溝が、前記柱部に対して周方向一方側に位置する前記ポケットに連通するように当該柱部の内周面に形成されると共に、前記ポケットに向かって次第に深くなっている構成を採用した。   In order to achieve the above object, the present invention includes a plurality of column parts that partition between pockets adjacent in the circumferential direction, and at least one of the plurality of column parts communicates with the pockets to perform bearing operation. A bearing retainer having an oil groove for guiding lubricating oil into the pocket therein, wherein the oil groove communicates with the pocket located on one side in the circumferential direction with respect to the column part. A configuration was adopted in which it was formed on the surface and gradually deepened toward the pocket.

上記構成によれば、軸受運転中に回転させられる軌道輪が内輪である転がり軸受に対し、軸受運転中の軸受用保持器の回転方向が周方向一方と反対の周方向他方となるように軸受用保持器を適用することができる。その軸受運転中に回転する軸受用保持器の油溝に対して、潤滑油が相対的に周方向一方側へ流れることになる。したがって、その油溝に入り込んだ潤滑油は、当該油溝に対して周方向一方側に位置するポケットへ導かれる。油溝が柱部の内周面に形成されているため、油溝における潤滑油の流れは、遠心力の影響により、径方向に深さをもった油溝の溝底面に沿う。その油溝の深さが周方向一方へポケットに向かって次第に深くなっているので、油溝において潤滑油の流れの向きを軸受用保持器の外径側へ変えつつ、潤滑油を当該油溝に対して周方向一方側のポケットまで導くことが可能である。このため、当該油溝から当該ポケットへ排出される潤滑油は、軸受用保持器の外径側へ排出され易くなり、ポケットに収容された転動体にスムーズに巻き込まれる。したがって、潤滑油の攪拌抵抗が低減され、局部的な乱流化が抑えられるので、転動体及び軌道に潤滑油が行き届き易くなる。結果的に、軸受回転トルクが低トルクになり、また、油膜形成能力が向上し、過酷潤滑環境下における焼き付きも防止される。   According to the above configuration, with respect to the rolling bearing in which the bearing ring rotated during the bearing operation is the inner ring, the bearing cage is rotated such that the rotational direction of the bearing cage during the bearing operation is the other circumferential direction opposite to the circumferential one. A cage can be applied. The lubricating oil flows relatively to one side in the circumferential direction with respect to the oil groove of the bearing cage that rotates during the bearing operation. Therefore, the lubricating oil that has entered the oil groove is guided to a pocket located on one side in the circumferential direction with respect to the oil groove. Since the oil groove is formed on the inner peripheral surface of the column portion, the flow of the lubricating oil in the oil groove follows the groove bottom surface of the oil groove having a radial depth due to the influence of centrifugal force. Since the depth of the oil groove is gradually increased toward the pocket in one circumferential direction, the lubricating oil is changed to the outer diameter side of the bearing cage while changing the direction of the flow of the lubricating oil in the oil groove. It is possible to guide to the pocket on one side in the circumferential direction. For this reason, the lubricating oil discharged from the oil groove to the pocket is easily discharged to the outer diameter side of the bearing retainer, and is smoothly wound into the rolling elements housed in the pocket. Therefore, the agitation resistance of the lubricating oil is reduced and local turbulence is suppressed, so that the lubricating oil easily reaches the rolling elements and the track. As a result, the bearing rotational torque becomes low, the oil film forming ability is improved, and seizure in a severe lubrication environment is prevented.

例えば、前記複数の柱部がそれぞれ前記油溝を有するようにしてもよい。   For example, each of the plurality of pillars may have the oil groove.

例えば、前記油溝が、ラジアル平面において(すなわち、周方向に沿った切断面において)円弧状、直線状又はS字状の流路になっていてもよい。   For example, the oil groove may be a circular, linear, or S-shaped flow path in a radial plane (that is, in a cut surface along the circumferential direction).

例えば、前記油溝が、アキシアル平面において(すなわち、軸方向に沿った切断面において)四角状、V字状又はU字状の流路になっていてもよい。   For example, the oil groove may be a square, V-shaped, or U-shaped channel in an axial plane (that is, in a cut surface along the axial direction).

例えば、軸受用保持器が樹脂製の冠形保持器になっていてもよい。   For example, the bearing retainer may be a resin crown-shaped retainer.

この発明を転がり軸受として考えると、この発明に係る軸受用保持器を備え、軸受運転中の前記軸受用保持器の回転方向が、前記周方向一方と反対の周方向他方であり、軸受運転中に回転させられる軌道輪が、内輪である転がり軸受といえる。   When considering the present invention as a rolling bearing, the bearing retainer according to the present invention is provided, and the rotational direction of the bearing retainer during bearing operation is the other circumferential direction opposite to the one circumferential direction, and the bearing is in operation. It can be said that the bearing ring that is rotated to the right is a rolling bearing that is an inner ring.

この発明に係る転がり軸受は、トランスミッションに備わる回転軸を支持する用途に好適である。   The rolling bearing according to the present invention is suitable for use in supporting a rotating shaft provided in a transmission.

上述のように、この発明は、上記構成の採用により、トランスミッションに備わる回転軸の支持用途のような軸受運転条件の転がり軸受の運転中、潤滑油を転動体及び軌道に行き届き易くすることが可能な軸受用保持器を提供することができる。   As described above, according to the present invention, by adopting the above configuration, it is possible to make the lubricant easily reach the rolling elements and the raceway during the operation of the rolling bearing under the bearing operating condition such as the use for supporting the rotating shaft provided in the transmission. A bearing retainer can be provided.

この発明の第一実施形態に係る転がり軸受を図3中のI−I線の切断面で示す部分断面図The partial sectional view which shows the rolling bearing which concerns on 1st embodiment of this invention in the cut surface of the II line in FIG. この発明の第一実施形態に係る軸受用保持器の斜視図The perspective view of the bearing retainer which concerns on 1st embodiment of this invention この発明の第一実施形態に係る軸受用保持器の部分正面図The partial front view of the bearing retainer which concerns on 1st embodiment of this invention (a)は図1の油溝のアキシアル平面における流路形状を示す部分断面図、(b)はその流路形状の変更例を示す部分断面図、(c)はその流路形状の別の変更例を示す部分断面図(A) is a partial cross-sectional view showing the flow channel shape in the axial plane of the oil groove of FIG. 1, (b) is a partial cross-sectional view showing a modification example of the flow channel shape, and (c) is another flow channel shape. Partial sectional view showing a modified example この発明の第二実施形態に係る軸受用保持器を図1と同じ切断面で示す部分断面図The fragmentary sectional view which shows the cage for bearings concerning 2nd embodiment of this invention by the same cut surface as FIG. この発明の第三実施形態に係る軸受用保持器を図1と同じ切断面で示す部分断面図The fragmentary sectional view which shows the cage for bearings concerning 3rd embodiment of this invention by the same cut surface as FIG. この発明に係る転がり軸受を備えるトランスミッションの一例を示す断面図Sectional drawing which shows an example of a transmission provided with the rolling bearing which concerns on this invention 従来例の軸受用保持器を示す断面図Sectional view showing a conventional cage for bearings

この発明の第一実施形態に係る軸受用保持器及び転がり軸受を添付図面に基づいて説明する。
図1に示すように、この転がり軸受50は、内輪1と、外輪2と、複数の転動体3と、これら転動体3を保持する軸受用保持器4とを備える。
A bearing cage and a rolling bearing according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the rolling bearing 50 includes an inner ring 1, an outer ring 2, a plurality of rolling elements 3, and a bearing retainer 4 that holds the rolling elements 3.

ここで、内輪1の中心軸と、外輪2の中心軸と、軸受用保持器4の中心軸Cとは、同軸に設定されている。以下、「軸方向」とは、軸受用保持器4の中心軸Cに沿った方向のことをいい、「径方向」とは、その中心軸Cに対して直角な方向のことをいい、「周方向」とは、その中心軸C周りの円周方向のことをいう。また、その中心軸Cに直交する仮想平面のことをラジアル平面といい、その中心軸Cを含む仮想平面のことをアキシアル平面という。   Here, the central axis of the inner ring 1, the central axis of the outer ring 2, and the central axis C of the bearing retainer 4 are set coaxially. Hereinafter, the “axial direction” means a direction along the central axis C of the bearing cage 4, and the “radial direction” means a direction perpendicular to the central axis C, “ The “circumferential direction” refers to a circumferential direction around the central axis C. A virtual plane orthogonal to the central axis C is referred to as a radial plane, and a virtual plane including the central axis C is referred to as an axial plane.

内輪1は、内側の軌道5を有する軌道輪になっている。外輪2は、外側の軌道6を有する軌道輪になっている。内輪1と外輪2は、ラジアル軸受用のものとなっている。同軸に配置された内輪1の外周と外輪2の内周との間は、環状の軸受内部空間になっている。   The inner ring 1 is a track ring having an inner track 5. The outer ring 2 is a race ring having an outer race 6. The inner ring 1 and the outer ring 2 are for radial bearings. An annular bearing internal space is formed between the outer periphery of the inner ring 1 and the inner periphery of the outer ring 2 that are arranged coaxially.

転動体3は、内側の軌道5と、外側の軌道6との間に介在する。転動体3として、玉が採用されている。   The rolling element 3 is interposed between the inner track 5 and the outer track 6. A ball is used as the rolling element 3.

軸受用保持器4は、図1〜図3に示すように、周方向に所定間隔でポケット7が形成された環状の軸受部品になっている。ポケット7は、転動体3を収容する空間になっている。ポケット7は、軸受用保持器4の内径面と外径面間を貫通している。各ポケット7に一個の転動体3が収容されている。軸受用保持器4は、周方向に隣接するポケット7、7間を仕切る複数の柱部8と、複数の柱部8の軸方向一方側に連続すると共に周方向全周に亘って連続する環状部9とを有し、内側の軌道5と外側の軌道6間に介在する複数の転動体3間の周方向間隔を所定に保つ。   As shown in FIGS. 1 to 3, the bearing cage 4 is an annular bearing component in which pockets 7 are formed at predetermined intervals in the circumferential direction. The pocket 7 is a space for accommodating the rolling elements 3. The pocket 7 penetrates between the inner diameter surface and the outer diameter surface of the bearing cage 4. One rolling element 3 is accommodated in each pocket 7. The bearing retainer 4 has a plurality of column portions 8 that partition the pockets 7 adjacent to each other in the circumferential direction, and an annular shape that continues to one side in the axial direction of the plurality of column portions 8 and continues all around the circumferential direction. The circumferential interval between the plurality of rolling elements 3 having a portion 9 and interposed between the inner raceway 5 and the outer raceway 6 is kept constant.

軸受用保持器4は、樹脂製の冠形保持器になっている。ここで、冠形保持器とは、弾性変形によって複数の転動体3と軸受用保持器4とを組み合わせることが可能な形の片持ちの柱部8をもった軸受用保持器のことをいう。樹脂製の冠形保持器は、鋼製のものに比して、形状設計の自由度が大きく、低トルク(低摩擦、低摩耗)化、軽量化を実現可能である。このため、軸受回転トルクの低トルク性が重視される玉軸受の場合、樹脂製の冠形保持器を利用することが好ましい。   The bearing cage 4 is a resin crown-shaped cage. Here, the crown-shaped cage refers to a bearing cage having a cantilevered column portion 8 that can be combined with a plurality of rolling elements 3 and a bearing cage 4 by elastic deformation. . Resin crown-shaped cages have a greater degree of freedom in shape design than steel ones, and can realize low torque (low friction, low wear) and light weight. For this reason, in the case of a ball bearing in which low torque performance of the bearing rotational torque is important, it is preferable to use a resin-made crown cage.

軸受用保持器4の全体を形成する樹脂として、例えば、ポリアミド樹脂(PA46、PA66、PA9T等)、ポリエーテルエーテルケトン樹脂(PEEK)、又はポリフェニレンサルファイド樹脂(PSS)が挙げられる。   Examples of the resin forming the entire bearing cage 4 include polyamide resin (PA46, PA66, PA9T, etc.), polyetheretherketone resin (PEEK), or polyphenylene sulfide resin (PSS).

軸受用保持器4は、転動体案内方式のものとなっている。ここで、転動体案内方式とは、軸受用保持器4が転動体3によって径方向に案内されることをいう。ポケット7を規定する対の柱部8及び環状部9の内面部分は、転動体3の玉径よりも若干大きい単一球面に沿った形態のものを例示したが、他の内面形状に変更してもよい。   The bearing retainer 4 is of a rolling element guide type. Here, the rolling element guide method means that the bearing retainer 4 is guided in the radial direction by the rolling element 3. The inner surface portions of the pair of column portions 8 and the annular portion 9 that define the pocket 7 are exemplified by a shape along a single spherical surface that is slightly larger than the ball diameter of the rolling element 3, but the inner surface portions are changed to other inner surface shapes. May be.

軸受用保持器4の各柱部8は、ポケット7に連通する油溝10を有する。油溝10は、潤滑油をポケット7に導く溝からなる。油溝10は、柱部8の内周面に形成されている。柱部8の内周面は、柱部8の表面のうち、軸受用保持器4の内側で径方向に露出する表面部分のことをいう。柱部8の内周面のうち、油溝10以外の部分は、軸受用保持器4の内径寸法を規定する円弧面状部となっている。このため、油溝10の深さは、軸受用保持器4の内径からの深さに相当している。油溝10の溝幅は、油溝10の周方向全長に亘って一定になっている。油溝10の溝幅中央は、ポケット7の軸方向の中心を含むラジアル平面上に設定されている。   Each column portion 8 of the bearing retainer 4 has an oil groove 10 communicating with the pocket 7. The oil groove 10 is a groove that guides the lubricating oil to the pocket 7. The oil groove 10 is formed on the inner peripheral surface of the column portion 8. The inner peripheral surface of the column portion 8 refers to a surface portion of the surface of the column portion 8 that is exposed in the radial direction inside the bearing retainer 4. Of the inner peripheral surface of the column portion 8, a portion other than the oil groove 10 is an arcuate surface portion that defines the inner diameter dimension of the bearing retainer 4. For this reason, the depth of the oil groove 10 corresponds to the depth from the inner diameter of the bearing retainer 4. The groove width of the oil groove 10 is constant over the entire circumferential length of the oil groove 10. The center of the groove width of the oil groove 10 is set on a radial plane including the center of the pocket 7 in the axial direction.

油溝10は、アキシアル平面において四角状の流路になっている。ここで、四角状の流路とは、図4(a)に示すように、油溝10に交差する任意のアキシアル平面において、軸方向に沿った溝底面10aと、ラジアル平面に沿った一対の溝側面10b、10bとで形成された溝のことをいう。   The oil groove 10 is a rectangular channel in the axial plane. Here, as shown in FIG. 4A, a square channel is a pair of a groove bottom surface 10a along the axial direction and a pair of surfaces along the radial plane in an arbitrary axial plane intersecting the oil groove 10. It refers to a groove formed by the groove side surfaces 10b and 10b.

油溝10は、アキシアル平面においてV字状の流路になっていてもよい。ここで、V字状の流路とは、図4(b)に示すように、油溝10に交差する任意のアキシアル平面において、溝底で交差する傾斜直線を成す一対の溝底面10c、10cによって形成され、その溝底から深さが浅くなるに連れて次第に溝幅が大きくなっている溝のことをいう。また、油溝10は、アキシアル平面においてU字状の流路になっていてもよい。ここで、U字状の流路とは、図4(c)に示すように、油溝10に交差する任意のアキシアル平面において、凹円弧面状の溝底面10dと、ラジアル平面に沿った一対の溝側面10e、10eによって形成されている溝のことをいう。油溝10を前述のようなV字状又はU字状の流路にすると、潤滑油が油溝10を速く流れ易くなるため、油溝10に異物が滞留しにくくなり、潤滑油の排出もスムーズに行われ易くなる。   The oil groove 10 may be a V-shaped flow path in the axial plane. Here, as shown in FIG. 4 (b), the V-shaped flow path is a pair of groove bottom surfaces 10 c and 10 c that form an inclined straight line that intersects at the groove bottom in an arbitrary axial plane that intersects the oil groove 10. The groove width is gradually increased as the depth becomes shallower from the bottom of the groove. Further, the oil groove 10 may be a U-shaped flow path in the axial plane. Here, as shown in FIG. 4C, the U-shaped flow path is a pair of grooves bottom surface 10 d having a concave arc surface shape and a radial plane in an arbitrary axial plane intersecting the oil groove 10. It is a groove formed by the groove side surfaces 10e, 10e. If the oil groove 10 is a V-shaped or U-shaped flow path as described above, the lubricating oil is likely to flow through the oil groove 10 quickly, so that foreign matter is less likely to stay in the oil groove 10, and the lubricating oil is also discharged. It becomes easy to be performed smoothly.

油溝10は、図1〜図3に示すように、周方向に隣接するポケット7、7間に亘って連通している。油溝10は、図1、図2に示すように、周方向一方へポケット7に向かって次第に深くなっている。図1例では、油溝10が、ラジアル平面において円弧状の溝底面10aを有する流路になっている。油溝10は、当該柱部8に対して周方向一方側に位置するポケット7に連通すればよく、当該柱部8に対して周方向一方と反対の周方向他方側に位置するポケット7に連通している必要はない。   As shown in FIGS. 1 to 3, the oil groove 10 communicates between pockets 7 and 7 adjacent in the circumferential direction. As shown in FIGS. 1 and 2, the oil groove 10 gradually becomes deeper toward the pocket 7 in one circumferential direction. In the example of FIG. 1, the oil groove 10 is a flow path having an arc-shaped groove bottom surface 10a in the radial plane. The oil groove 10 only needs to communicate with the pocket 7 located on one side in the circumferential direction with respect to the column part 8, and the pocket 7 located on the other circumferential direction opposite to the one side in the circumferential direction with respect to the column part 8. There is no need to communicate.

図1中に軸受運転中に回転させられる軌道輪の回転方向、軸受用保持器4の回転方向をそれぞれ矢線Aで示し、軸受運転中の転動体3の自転方向を矢線Bで示す。図1中に示すように、この転がり軸受において、軸受運転中に回転させられる軌道輪は、内輪1である。その内輪1の回転方向は、前述の周方向一方と反対の周方向他方であり、図中時計回りの方向に設定されている。軸受運転中、転動体3の公転方向及び軸受用保持器4の回転方向は内輪1と同じになるが、転動体3の自転方向Bは内輪1の回転方向とは逆に図中反時計回りの方向となる。   In FIG. 1, the rotation direction of the bearing ring rotated during the bearing operation and the rotation direction of the bearing retainer 4 are indicated by an arrow A, and the rotation direction of the rolling element 3 during the bearing operation is indicated by an arrow B. As shown in FIG. 1, in this rolling bearing, the bearing ring that is rotated during the bearing operation is an inner ring 1. The rotation direction of the inner ring 1 is the other circumferential direction opposite to the aforementioned circumferential direction, and is set in the clockwise direction in the figure. During the bearing operation, the revolution direction of the rolling element 3 and the rotation direction of the bearing cage 4 are the same as those of the inner ring 1, but the rotation direction B of the rolling element 3 is counterclockwise in the figure opposite to the rotation direction of the inner ring 1. Direction.

図1に示す転がり軸受の運転中、軸受用保持器4の柱部8の内周面に形成された油溝10には、潤滑油が入り込む(図1中に潤滑油の流れを矢線で概念的に示す。)。軸受運転中に回転する軸受用保持器4の油溝10に対して、油溝10に入り込んだ潤滑油が相対的に周方向一方側(矢線A方向と反対側)へ流れることになり、ここで潤滑油の流れが整流化される。油溝10に入り込んだ潤滑油は、やがて、当該油溝10に対して周方向一方側に位置するポケット7へ導かれる。油溝10が柱部8の内周面に形成されているため、油溝10における潤滑油の流れは、遠心力の影響により、径方向に深さをもった油溝10の溝底面10aに沿う傾向をもつ。油溝10の深さが周方向一方(矢線A方向と反対の方)へポケット7に向かって次第に深くなっているので、油溝10において潤滑油の流れの向きを軸受用保持器4の外径側へ変えつつ、潤滑油を当該柱部8に対して周方向一方側のポケット7まで導くことが可能である。このため、油溝10から当該油溝10に対して周方向一方側のポケット7へ排出される潤滑油は、軸受用保持器4の外径側へ排出され易くなり、自転方向Bに自転する転動体3にスムーズに巻き込まれる。したがって、潤滑油の攪拌抵抗が低減され、局部的な乱流化が抑えられるので、転動体3及び軌道5、6に潤滑油が行き届き易くなる。結果的に、軸受回転トルクが低トルクになり、また、油膜形成能力が向上し、過酷潤滑環境下における焼き付きも防止される。   During operation of the rolling bearing shown in FIG. 1, the lubricating oil enters the oil groove 10 formed on the inner peripheral surface of the column portion 8 of the bearing retainer 4 (the flow of the lubricating oil in FIG. Conceptually shown.) With respect to the oil groove 10 of the bearing cage 4 that rotates during the bearing operation, the lubricating oil that has entered the oil groove 10 will flow relatively to one side in the circumferential direction (the side opposite to the arrow A direction), Here, the flow of the lubricating oil is rectified. The lubricating oil that has entered the oil groove 10 is eventually guided to the pocket 7 located on one side in the circumferential direction with respect to the oil groove 10. Since the oil groove 10 is formed on the inner peripheral surface of the column part 8, the flow of the lubricating oil in the oil groove 10 is caused by the influence of centrifugal force on the groove bottom surface 10a of the oil groove 10 having a depth in the radial direction. Has a tendency to follow. Since the depth of the oil groove 10 is gradually increased toward the pocket 7 toward one side in the circumferential direction (opposite to the direction of the arrow A), the direction of the flow of the lubricating oil in the oil groove 10 is changed to that of the bearing retainer 4. It is possible to guide the lubricating oil to the pocket 7 on one side in the circumferential direction with respect to the column portion 8 while changing to the outer diameter side. For this reason, the lubricating oil discharged from the oil groove 10 to the pocket 7 on one side in the circumferential direction with respect to the oil groove 10 is easily discharged to the outer diameter side of the bearing retainer 4 and rotates in the rotation direction B. It is smoothly wound around the rolling element 3. Accordingly, the stirring resistance of the lubricating oil is reduced and local turbulence is suppressed, so that the lubricating oil easily reaches the rolling elements 3 and the tracks 5 and 6. As a result, the bearing rotational torque becomes low, the oil film forming ability is improved, and seizure in a severe lubrication environment is prevented.

このように、軸受用保持器4は、トランスミッションに備わる回転軸の支持用途のような軸受運転条件、すなわち軸受運転中の軸受用保持器4の回転方向が周方向一方と反対の周方向他方(矢線A方向)であり、かつ軸受運転中に回転させられる軌道輪が内輪1である転がり軸受の運転中、潤滑油を転動体3及び軌道5、6に行き届き易くすることができる。   In this way, the bearing cage 4 has a bearing operation condition such as a use for supporting the rotary shaft provided in the transmission, that is, the other circumferential direction in which the rotational direction of the bearing cage 4 during the bearing operation is opposite to the circumferential direction ( It is possible to make the lubricant easily reach the rolling elements 3 and the tracks 5 and 6 during the operation of the rolling bearing in which the bearing ring is the inner ring 1 in the direction of arrow A).

なお、第一実施形態では、軸受運転中の軸受用保持器4の回転方向が矢線A方向(図1中時計回り方向)に設定された転がり軸受の場合を示したが、軸受用保持器の回転方向が図1中反時計回り方向に設定された転がり軸受の場合は、油溝を図1中時計回り方向へポケット7に向かって次第に深くなっている流路に変更すればよいだけのことであり、その詳細説明を省略する。   In the first embodiment, the case of the rolling bearing in which the rotation direction of the bearing cage 4 during the bearing operation is set in the direction of the arrow A (clockwise direction in FIG. 1) is shown. In the case of a rolling bearing in which the rotation direction is set in the counterclockwise direction in FIG. 1, the oil groove has only to be changed to a flow path that becomes gradually deeper toward the pocket 7 in the clockwise direction in FIG. Therefore, detailed description thereof is omitted.

また、第一実施形態では、各柱部8に一本の油溝10を形成したが、各柱部8に複数本の油溝10を形成してもよい。   In the first embodiment, one oil groove 10 is formed in each column portion 8, but a plurality of oil grooves 10 may be formed in each column portion 8.

また、第一実施形態では、冠形の樹脂製の軸受用保持器4を例示したが、かご形の軸受用保持器や、金属製の軸受用保持器に変更してもよい。   Further, in the first embodiment, the crown-shaped bearing cage 4 made of resin is illustrated, but it may be changed to a cage-shaped bearing cage or a metal bearing cage.

また、第一実施形態では、転動体3として玉を例示したが、転動体をころに変更してもよい。   Moreover, in 1st embodiment, although the ball | bowl was illustrated as the rolling element 3, you may change a rolling element into a roller.

また、第一実施形態のように、各柱部8に油溝10を形成することにより、全ての転動体3について攪拌抵抗を抑えることが好ましいが、所望の低トルク性や潤滑性を確保できるのであれば、軸受用保持器の全ての柱部に油溝を形成する必要はなく、少なくとも1つの柱部が油溝を有していてもよい。   Further, as in the first embodiment, it is preferable to suppress the stirring resistance for all the rolling elements 3 by forming the oil groove 10 in each column part 8, but it is possible to ensure the desired low torque and lubricity. If it is, it is not necessary to form an oil groove in all the pillar parts of a bearing retainer, and at least one pillar part may have an oil groove.

また、油溝10は円弧状の溝底面10aを有するものを例示したが、油溝は潤滑油流入側が浅く、潤滑油流出側が深くあれば良く、潤滑油の流れ方を考慮して、円弧状、直線状、S字状の溝底面を使い分けてもよい。その一例としての第二実施形態を図5に基づいて説明する。なお、以下では、第一実施形態との相違点を述べるに留める。   The oil groove 10 has an arc-shaped groove bottom surface 10a. However, the oil groove only needs to be shallow on the lubricating oil inflow side and deep on the lubricating oil outflow side. Alternatively, straight and S-shaped groove bottoms may be used properly. A second embodiment as an example thereof will be described with reference to FIG. In the following, only differences from the first embodiment will be described.

図5に示す軸受用保持器20の柱部21に形成された油溝22は、ラジアル平面において直線状の溝底面22aを有する流路になっている。ここで、溝底面22aとは、油溝22の表面部分のうち、最も深い溝底を含み、かつ径方向に深さをもって露出する領域のことをいう。また、直線状とは、溝底面22aに交差する任意のラジアル平面において、一直線状のことをいう。   The oil groove 22 formed in the column portion 21 of the bearing retainer 20 shown in FIG. 5 is a flow path having a linear groove bottom surface 22a in the radial plane. Here, the groove bottom surface 22a refers to a region of the surface portion of the oil groove 22 that includes the deepest groove bottom and is exposed with a depth in the radial direction. Further, the straight line means a straight line in an arbitrary radial plane intersecting the groove bottom surface 22a.

別の油溝の変更例としての第三実施形態を図6に基づいて説明する。
図6に示す軸受用保持器30の柱部31に形成された油溝32は、ラジアル平面においてS字状の溝底面32aを有する流路になっている。ここで、S字状とは、溝底面32aに交差する任意のラジアル平面において、溝底面32aに対して軸受用保持器30の内径側に曲率中心をもった第一の曲線状領域と、溝底面32aに対して軸受用保持器30の外径側に曲率中心をもった第二の曲線状領域とが連続していることをいう。
A third embodiment as another modification of the oil groove will be described with reference to FIG.
The oil groove 32 formed in the column portion 31 of the bearing retainer 30 shown in FIG. 6 is a flow path having an S-shaped groove bottom surface 32a in the radial plane. Here, the S-shape refers to a first curved region having a center of curvature on the inner diameter side of the bearing retainer 30 with respect to the groove bottom surface 32a in an arbitrary radial plane intersecting the groove bottom surface 32a, and a groove It means that the second curved region having the center of curvature on the outer diameter side of the bearing cage 30 is continuous with the bottom surface 32a.

上述の第一〜第三実施形態のいずれかに係る転がり軸受によって車用のトランスミッションに備わる回転軸を支持する構成の一例を図7に示す。   An example of the structure which supports the rotating shaft with which the rolling bearing which concerns on either of the above-mentioned 1st-3rd embodiment is equipped with the transmission for vehicles is shown in FIG.

図7に示すトランスミッションは、段階的に変速比を変化させる多段変速機になっており、その回転軸(例えば入力軸S1および出力軸S2)を回転可能に支持する転がり軸受Bとして、上述の第一〜第三実施形態のいずれかに係る転がり軸受を備えている。図示のトランスミッションは、エンジンの回転が入力される入力軸S1と、入力軸S1と平行に設けられた出力軸S2と、入力軸S1から出力軸S2に回転を伝達する複数のギア列G1〜G4と、各ギア列G1〜G4と入力軸S1または出力軸S2との間に組み込まれた図示しないクラッチとを有する。トランスミッションは、クラッチを選択的に係合させることで使用するギア列G1〜G4を切り替え、入力軸S1から出力軸S2に伝達する回転の変速比を変化させるものである。出力軸S2の回転は出力ギアG5に出力され、その出力ギアG5の回転がディファレンシャルギヤ等に伝達される。入力軸S1と出力軸S2は、それぞれ転がり軸受Bで回転可能に支持されている。また、このトランスミッションは、ギアの回転に伴う潤滑油のはね掛けにより、又はハウジングHの内部に設けられたノズル(図示省略)からの潤滑油の噴射により、はね掛け又は噴射された潤滑油が各転がり軸受Bの側面にかかるようになっている。   The transmission shown in FIG. 7 is a multi-stage transmission that changes the gear ratio stepwise, and the above-described first bearing is used as the rolling bearing B that rotatably supports the rotation shaft (for example, the input shaft S1 and the output shaft S2). The rolling bearing according to any one of the first to third embodiments is provided. The illustrated transmission includes an input shaft S1 to which engine rotation is input, an output shaft S2 provided in parallel with the input shaft S1, and a plurality of gear trains G1 to G4 that transmit the rotation from the input shaft S1 to the output shaft S2. And a clutch (not shown) incorporated between each of the gear trains G1 to G4 and the input shaft S1 or the output shaft S2. The transmission switches the gear trains G1 to G4 to be used by selectively engaging the clutch, and changes the transmission gear ratio transmitted from the input shaft S1 to the output shaft S2. The rotation of the output shaft S2 is output to the output gear G5, and the rotation of the output gear G5 is transmitted to the differential gear or the like. The input shaft S1 and the output shaft S2 are rotatably supported by a rolling bearing B, respectively. Further, the transmission is splashed or sprayed by splashing of the lubricant accompanying the rotation of the gear or by jetting of lubricant from a nozzle (not shown) provided inside the housing H. Is applied to the side surface of each rolling bearing B.

例えば、入力軸S1は、エンジンからの駆動力を伝達する回転軸なので、一方向にのみ回転する。その回転方向は、図1中の矢線A方向に一致している。図7に示す入力軸S1が回転する転がり軸受Bの運転時、転がり軸受Bの内部に存在する潤滑油の一部が上述のように軸受用保持器の油溝を相対的に流れて整流化されると共に、転動体によってスムーズに巻き込まれるため、攪拌抵抗が低減され、ひいては、転がり軸受Bの回転トルクの低減及び発熱の抑制を図ることができる。特に、トランスミッションにおいて、自動車の燃費向上を目的とした条件(例えば、動粘度の低いオイルを用いる等)が設定された場合でも、転がり軸受Bの焼き付き及び異常発熱の抑制を図ることができる。   For example, since the input shaft S1 is a rotating shaft that transmits driving force from the engine, it rotates only in one direction. The rotation direction coincides with the arrow A direction in FIG. During operation of the rolling bearing B in which the input shaft S1 shown in FIG. 7 rotates, a part of the lubricating oil existing inside the rolling bearing B flows relatively in the oil groove of the bearing cage as described above and is rectified. At the same time, since the rolling element smoothly entrains, the agitation resistance is reduced, and as a result, the rotational torque of the rolling bearing B can be reduced and heat generation can be suppressed. In particular, seizure of the rolling bearing B and abnormal heat generation can be suppressed even when conditions (for example, using oil with low kinematic viscosity) are set in the transmission in order to improve the fuel efficiency of the automobile.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. Therefore, the scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 内輪
2 外輪
3 転動体
4、20、30 軸受用保持器
5 内側の軌道
6 外側の軌道
7 ポケット
8、21、31 柱部
10、22、32 油溝
10a、10c、10d、22a、32a 溝底面
50、B 転がり軸受
S1 入力軸(回転軸)
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Rolling element 4, 20, 30 Bearing cage 5 Inner track 6 Outer track 7 Pocket 8, 21, 31 Pillar part 10, 22, 32 Oil groove 10a, 10c, 10d, 22a, 32a Groove Bottom 50, B Rolling bearing S1 Input shaft (rotating shaft)

Claims (7)

周方向に隣接するポケット間を仕切る複数の柱部を備え、
前記複数の柱部のうち少なくとも1つの柱部が、前記ポケットに連通して軸受運転中に潤滑油を前記ポケットへ導く油溝を有する軸受用保持器において、
前記油溝が、前記柱部に対して周方向一方側に位置する前記ポケットに連通するように当該柱部の内周面に形成されると共に、前記ポケットに向かって次第に深くなっていることを特徴とする軸受用保持器。
Provided with a plurality of pillars separating the pockets adjacent in the circumferential direction,
In the bearing retainer, the at least one column portion of the plurality of column portions includes an oil groove that communicates with the pocket and guides lubricating oil to the pocket during a bearing operation.
The oil groove is formed on the inner peripheral surface of the pillar portion so as to communicate with the pocket located on one side in the circumferential direction with respect to the pillar portion, and is gradually deepened toward the pocket. A bearing retainer characterized.
前記複数の柱部が、それぞれ前記油溝を有する請求項1に記載の軸受用保持器。   The bearing retainer according to claim 1, wherein each of the plurality of column portions has the oil groove. 前記油溝が、ラジアル平面において円弧状、直線状又はS字状の溝底面を有する流路になっている請求項1又は2に記載の軸受用保持器。   The bearing retainer according to claim 1 or 2, wherein the oil groove is a flow path having an arc-shaped, linear or S-shaped groove bottom surface in a radial plane. 前記油溝が、アキシアル平面において四角状、V字状又はU字状の流路になっている請求項1から3のいずれか1項に記載の軸受用保持器。   The bearing retainer according to any one of claims 1 to 3, wherein the oil groove is a rectangular, V-shaped, or U-shaped channel in an axial plane. 樹脂製の冠形保持器になっている請求項1から4のいずれか1項に記載の軸受用保持器。   The bearing cage according to any one of claims 1 to 4, wherein the bearing cage is a resin-made crown cage. 請求項1から5のいずれか1項に記載の軸受用保持器を備え、
軸受運転中の前記軸受用保持器の回転方向は、前記周方向一方と反対の周方向他方であり、
軸受運転中に回転させられる軌道輪が、内輪である転がり軸受。
A bearing retainer according to any one of claims 1 to 5, comprising:
The rotational direction of the bearing cage during bearing operation is the other circumferential direction opposite to the one circumferential direction,
A rolling bearing in which the bearing ring that is rotated during bearing operation is an inner ring.
トランスミッションに備わる回転軸を支持する請求項6に記載の転がり軸受。   The rolling bearing according to claim 6 which supports a rotating shaft provided in a transmission.
JP2016235051A 2016-12-02 2016-12-02 Holder for bearing, and rolling bearing Pending JP2018091398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235051A JP2018091398A (en) 2016-12-02 2016-12-02 Holder for bearing, and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235051A JP2018091398A (en) 2016-12-02 2016-12-02 Holder for bearing, and rolling bearing

Publications (1)

Publication Number Publication Date
JP2018091398A true JP2018091398A (en) 2018-06-14

Family

ID=62564362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235051A Pending JP2018091398A (en) 2016-12-02 2016-12-02 Holder for bearing, and rolling bearing

Country Status (1)

Country Link
JP (1) JP2018091398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677763A (en) * 2020-06-28 2020-09-18 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Balance support bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677763A (en) * 2020-06-28 2020-09-18 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Balance support bearing

Similar Documents

Publication Publication Date Title
JP5633185B2 (en) Rolling bearing
JP6212862B2 (en) Liquid lubricated bearing and vehicle pinion shaft support device
WO2009131139A1 (en) Rolling bearing
JP6481717B2 (en) Ball bearing, motor and spindle device using the same
JP4848964B2 (en) Roller bearing cage
EP2479446A2 (en) A bearing race for a rolling-element bearing
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
EP2840269B1 (en) Rolling bearing
JP6672059B2 (en) Crown type cage and ball bearing
JP2015064087A (en) Deep groove ball bearing
JP2018179039A (en) Tapered roller bearing
JP2018091398A (en) Holder for bearing, and rolling bearing
JP7466501B2 (en) Tapered roller bearings
US20090028486A1 (en) Tapered roller bearing
JP2009168064A (en) Conical roller bearing and differential
KR101404790B1 (en) A ball supporting structure and ball bearing using the same
JP2013053743A (en) Ball bearing, motor and main shaft device using the same
JP2011196393A (en) Thrust roller bearing
JP2018138797A (en) Ball bearing
JP2019173918A (en) Four-point contact ball bearing and cage for ball bearing using the same
JP2019011850A (en) Thrust roller bearing
WO2020246589A1 (en) Tapered roller bearing
JP2023012833A (en) rolling bearing
US20210301874A1 (en) Roller and cage assembly and planetary gear support structure
JP2020200944A (en) Tapered roller bearing