JP2018168597A - Method for constructing outer shell precedent tunnel - Google Patents

Method for constructing outer shell precedent tunnel Download PDF

Info

Publication number
JP2018168597A
JP2018168597A JP2017066730A JP2017066730A JP2018168597A JP 2018168597 A JP2018168597 A JP 2018168597A JP 2017066730 A JP2017066730 A JP 2017066730A JP 2017066730 A JP2017066730 A JP 2017066730A JP 2018168597 A JP2018168597 A JP 2018168597A
Authority
JP
Japan
Prior art keywords
steel shell
shell element
joint
cross
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017066730A
Other languages
Japanese (ja)
Other versions
JP6901889B2 (en
Inventor
均 浅野
Hitoshi Asano
均 浅野
田中 孝
Takashi Tanaka
孝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2017066730A priority Critical patent/JP6901889B2/en
Publication of JP2018168597A publication Critical patent/JP2018168597A/en
Application granted granted Critical
Publication of JP6901889B2 publication Critical patent/JP6901889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To construct a tunnel having a variable cross section that a cross-section area is gradually changed in an outer shell precedent tunnel construction method.SOLUTION: Between steel shell elements 2, 3, a joint portion has a structure in which concave joints 24, 26 mounted on the tip end of protrusion members 23, 25 for protruding from one side of the steel shell element 2 to the other side of the steel shell element 3 and convex joints 38, 40 mounted on the tip end of protrusion members 37, 39 for protruding from the other end of the steel shell element 3 to one side of the steel shell element 2 are fitted together. In the joint portion of adjacent steel shell element 2, 3, each protrusion length of the apron members 23, 25 of the concave joints 24, 26 is gradually changed, whereby an outer shell structure 1 whose cross section can be variable to a tunnel direction is constructed.SELECTED DRAWING: Figure 1

Description

本発明は、角型中空断面の鋼殻エレメントを順次、貫入済みの鋼殻エレメントと継手同士を連結させながら貫入する手順を繰り返して、地盤中に前記鋼殻エレメントによる閉合断面の外殻構造体を構築した後、この外殻構造体の内部土砂を除去することによりトンネルを構築する外殻先行トンネル構築方法において、トンネル方向に断面積を徐々に変化させた可変断面のトンネルを構築する方法に関する。   The present invention repeats a procedure of sequentially inserting a steel hollow shell element having a square hollow cross section while connecting a steel shell element and a joint that have already been penetrated, and an outer shell structure having a closed cross section by the steel shell element in the ground. This is a method for constructing a tunnel with a variable cross-section in which the cross-sectional area is gradually changed in the tunnel direction in the method of constructing a tunnel ahead by constructing a tunnel by removing the inner earth and sand of this outer shell structure. .

近年、図13に示されるように、継手付きの鋼殻エレメント50、50…を順次掘削・連結して、上版52A、下版52B及び両側壁版52C、52Cによって矩形状に外殻構造体52を構築し、各鋼殻エレメント50、50…内にコンクリート51を充填した後、この外殻構造体52の内部土砂を掘削除去することによってトンネルを完成させる非開削工法が実用化されている。このトンネル構築工法は、外殻先行トンネル構築工法と呼ばれ、周辺地盤への影響が少ない利点を有するため、道路や鉄道のアンダーパス工事などに多く適用されている。   In recent years, as shown in FIG. 13, steel shell elements 50, 50... With joints are sequentially excavated and connected to form an outer shell structure in a rectangular shape by an upper plate 52A, a lower plate 52B, and both side wall plates 52C, 52C. 52 is constructed, and the steel shell elements 50, 50... Are filled with concrete 51, and then the non-open cutting method of completing the tunnel by excavating and removing the inner soil of the outer shell structure 52 has been put into practical use. . This tunnel construction method is called the outer shell leading tunnel construction method, and has the advantage of having little influence on the surrounding ground, so it is often applied to underpass construction of roads and railways.

本出願人においても、下記特許文献1において、発進側に元押しジャッキを設置し、角形断面の鋼殻エレメントを順次、貫入済みの鋼殻エレメントと連結させながら貫入する手順を繰り返し、前記鋼殻エレメントにより地下構造物を構築する鋼殻エレメントの構築方法において、先行して貫入させた鋼殻エレメントの1側面に所定長さの推力伝達部材が縦列的に付設されている状態から、この貫入済みの鋼殻エレメントに付設された推力伝達部材と隣接する側において、掘削装置を貫入済みの鋼殻エレメントに付設された推力伝達部材と連結した後、順次所定長さの鋼殻エレメントを後続させるとともに、貫入済みの鋼殻エレメントと連結させた状態とし、かつ前記貫入済みの鋼殻エレメントに付設された推力伝達部材に順次所定長さの推力伝達部材を後続させるとともに、貫入させる鋼殻エレメントの1側面に順次所定長さの推力伝達部材を付設しながら、これら2箇所に配置された推力伝達部材を前記元押しジャッキによって押込み、鋼殻エレメントを間接的に牽引しながら貫入させる手順を順次繰り返すようにした鋼殻エレメントの構築方法を提案した。   The present applicant also repeats the above-mentioned steel shell in Patent Document 1 described below in which a main pushing jack is installed on the starting side and the steel shell elements having a square cross section are sequentially connected to the steel shell elements that have already been inserted. In the steel shell element construction method for constructing an underground structure with an element, the thrust transmission member of a predetermined length is attached in tandem on one side of the steel shell element previously penetrated. On the side adjacent to the thrust transmission member attached to the steel shell element, after connecting the drilling device with the thrust transmission member attached to the penetrated steel shell element, the steel shell element of a predetermined length is successively followed. The thrust of a predetermined length is sequentially applied to the thrust transmission member attached to the penetrated steel shell element and attached to the penetrated steel shell element. A thrust transmission member having a predetermined length is sequentially attached to one side of the steel shell element to be inserted and the steel transmission element is inserted, and the thrust transmission members disposed at these two locations are pushed in by the former push jack, A steel shell element construction method was proposed in which the steps of intrusion while indirectly pulling were repeated sequentially.

特開2009−263883号公報JP 2009-263883 A

従来から実施ないし提案されている外殻先行トンネル構築工法は、いずれもトンネル方向に断面積が等しい単一断面のトンネルしか構築できないという問題点があった。そのため、用地問題や内部空間確保上の制約からトンネル方向に徐々に断面積が拡大又は縮小したい場合や、地盤深さ方向にトンネル高さを徐々に拡大又は縮小したい場合に対応できないという欠点があった。   Conventionally, the outer shell leading tunnel construction methods implemented or proposed have a problem that only a single-section tunnel having the same cross-sectional area in the tunnel direction can be constructed. For this reason, there is a drawback in that it is not possible to cope with the case where it is desired to gradually expand or reduce the cross-sectional area in the tunnel direction due to land problems or restrictions on securing the internal space, or to gradually increase or decrease the tunnel height in the ground depth direction. It was.

そこで本発明の主たる課題は、外殻先行トンネル構築工法において、断面積を徐々に変化させた可変断面のトンネルを構築する方法を提供することにある。   Accordingly, a main object of the present invention is to provide a method for constructing a tunnel having a variable cross section in which the cross-sectional area is gradually changed in the outer shell preceding tunnel construction method.

上記課題を解決するために請求項1に係る本発明として、角型中空断面の鋼殻エレメントを順次、貫入済みの鋼殻エレメントと継手同士を連結させながら貫入する手順を繰り返して、地盤中に前記鋼殻エレメントによる閉合断面の外殻構造体を構築した後、この外殻構造体の内部土砂を除去することによりトンネルを構築する外殻先行トンネル構築方法において、
前記継手部は、隣り合う鋼殻エレメント間において、一方側の鋼殻エレメントから他方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凹継手と、他方側の鋼殻エレメントから一方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凸継手とを嵌合させた構造とされ、
隣り合う鋼殻エレメントの継手部において、前記凹継手及び凸継手の内の一方側の張出部材の張出長さを徐々に変化させることにより、トンネル方向に可変断面の外殻構造体を構築することを特徴とする外殻先行トンネル構築方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, the steel shell element having a square hollow cross section is sequentially inserted while connecting the steel shell element and the joints that have already been inserted into the ground. In the outer shell preceding tunnel construction method of constructing a tunnel by removing the inner earth and sand of the outer shell structure after constructing the outer shell structure of the closed cross section by the steel shell element,
The joint portion includes a concave joint provided at the tip of an overhang member that protrudes from one steel shell element to the other steel shell element between adjacent steel shell elements, and the other steel shell element. It is a structure in which a convex joint provided at the tip of the overhang member protruding toward the steel shell element on one side is fitted,
Constructing an outer shell structure with a variable cross section in the tunnel direction by gradually changing the extension length of one of the concave and convex joints at the joint of adjacent steel shell elements An outer shell advance tunnel construction method is provided.

上記請求項1記載の発明では、外殻先行トンネル構築方法において、継手部は、隣り合う鋼殻エレメント間において、一方側の鋼殻エレメントから他方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凹継手と、他方側の鋼殻エレメントから一方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凸継手とを嵌合させた構造とし、隣り合う鋼殻エレメントの継手部において、凹継手及び凸継手の内の一方側の張出部材の張出長さを徐々に変化させることにより、トンネル方向に可変断面の外殻構造体を構築するようにした。すなわち、隣接する鋼殻エレメント間の継手部において、継手を支持している張出部材の張出長さを徐々に変化させることによってトンネル方向に可変断面の外殻構造体を構築することが可能となる。なお、継手の張出長さを変化させることにより拡幅ないし縮小させる部分は、図13を参照しながら説明すると、外殻構造体52の上版52A、下版52B及び側壁版52C、52Cの内のどれか全部である必要はなく、上版52A及び下版52Bの内の一部、両側壁版52C、52Cの内の一部であってよい。   In the first aspect of the invention, in the outer shell preceding tunnel construction method, the joint portion projects between the adjacent steel shell elements from the steel shell element on one side toward the steel shell element on the other side. Adjacent to each other, and a concave joint provided at the tip of the overhanging member that protrudes from the other steel shell element toward the one steel shell element. In the joint part of the steel shell element, an outer shell structure with a variable cross section is constructed in the tunnel direction by gradually changing the overhang length of the overhang member on one side of the concave joint and the convex joint. did. In other words, it is possible to construct an outer shell structure with a variable cross section in the tunnel direction by gradually changing the overhang length of the overhang member supporting the joint at the joint between adjacent steel shell elements. It becomes. The portion that is widened or reduced by changing the overhang length of the joint will be described with reference to FIG. 13. The upper plate 52A, the lower plate 52B, and the side plates 52C, 52C of the outer shell structure 52 It is not necessary to be all of them, and may be a part of the upper plate 52A and the lower plate 52B, or a part of the side wall plates 52C and 52C.

請求項2に係る本発明として、前記各鋼殻エレメントは、角型中空断面の最大幅寸法と最大高さ寸法とから規定される基本断面寸法をトンネル方向に一定としてある請求項1記載の外殻先行トンネル構築方法が提供される。   According to a second aspect of the present invention, in the steel shell element, the basic cross-sectional dimension defined by the maximum width dimension and the maximum height dimension of the square hollow section is constant in the tunnel direction. A shell advance tunnel construction method is provided.

上記請求項2記載の発明では、各鋼殻エレメントは、角型中空断面の最大幅寸法と最大高さ寸法とから規定される基本断面寸法をトンネル方向に一定とするものである。各鋼殻エレメントの断面形状は、基本的に掘削機に掘削断面形状と合致させるのがよいため、各鋼殻エレメントの基本断面寸法はトンネル方向に一定とするのが望ましい。   In the second aspect of the present invention, each steel shell element has a basic cross-sectional dimension defined by the maximum width dimension and the maximum height dimension of the square hollow section in the tunnel direction. Since the cross-sectional shape of each steel shell element should basically match the excavation cross-sectional shape of the excavator, it is desirable that the basic cross-sectional dimension of each steel shell element be constant in the tunnel direction.

請求項3に係る本発明として、貫入済みの鋼殻エレメントの凹継手に対して、次順の鋼殻エレメントの凸継手を連結させながら貫入する手順とする請求項1,2いずれかに記載の外殻先行トンネル構築方法が提供される。   The present invention according to claim 3 is a procedure according to any one of claims 1 and 2, which is a procedure of penetrating a concave joint of a steel shell element that has already been penetrated while connecting a convex joint of the next steel shell element. An outer shell leading tunnel construction method is provided.

上記請求項3記載の発明は、貫入済みの鋼殻エレメントの凹継手に対して、次順の鋼殻エレメントの凸継手を連結させながら貫入する手順とするものである。すなわち、貫入させる際に、鋼殻エレメントの凹継手部分は連結無しに貫入させ、次順の鋼殻エレメントの貫入時に、凸継手を設置済みの鋼殻エレメントの凹継手に連結させた状態で貫入設置することが望まししい。この手順によると、鋼殻エレメントの貫入精度及び効率が良好になるとともに、同時に止水性も確保し易くなる。   The invention according to claim 3 is a procedure for inserting a concave joint of a steel shell element that has already been penetrated while connecting the convex joint of the next steel shell element. In other words, when penetrating, the concave joint part of the steel shell element is penetrated without being connected, and when the next steel shell element is penetrated, the convex joint is connected with the concave joint of the installed steel shell element. It is desirable to install. According to this procedure, the penetration accuracy and efficiency of the steel shell element are improved, and at the same time, it is easy to ensure water blocking.

請求項4に係る本発明として、鋼殻エレメントにおける角型中空断面の継手配設面において、両側部又は片側部に、断面欠損部分を形成することにより段状部を形成し、非断面欠損部分の端部から隣接する鋼殻エレメントに向けて延びる張出部材を設けるとともに、この張出部材の先端に前記凹継手が設けられ、かつ前記張出部材の張出長さを徐々に変化させるとともに、前記凹継手は前記段状部内に位置している請求項3記載の外殻先行トンネル構築方法が提供される。   As the present invention according to claim 4, in the joint arrangement surface of the square hollow cross section in the steel shell element, a stepped portion is formed by forming a cross-sectional defect portion on both sides or one side portion, and a non-cross-sectional defect portion A projecting member extending from the end of the projecting member toward the adjacent steel shell element, the concave joint is provided at the tip of the projecting member, and the projecting length of the projecting member is gradually changed. The method for constructing an outer shell preceding tunnel according to claim 3, wherein the concave joint is located in the stepped portion.

上記請求項4記載の発明では、隣接する鋼殻エレメント間において、仮に従来のように角型中空断面よりも側方に突出させて凹継手と凸継手とを形成した場合、本発明では継手の張出長さを徐々に変化させている関係上、角型中空断面の離隔幅が大きく成りすぎてしまうという問題が発生する。この角型中空断面の離隔幅の部分は未掘削部分となる箇所であり、コンクリートを充填する前に手作業で土砂を撤去する必要性が生じる。そこで、角型中空断面の継手配設面において、両側部又は片側部に、断面欠損部分を形成することにより段状部を形成し、非断面欠損部分の端部から隣接する鋼殻エレメントに向けて延びる張出部材を設けるとともに、この張出部材の先端に前記凹継手を設けるようにしている。そして、前記張出部材の張出長さを徐々に変化させるとともに、凹継手は前記段状部内に位置するようにする。このように、継手部を角型中空断面から側方に離れた位置とするのではなく、角型中空断面内の位置とすることにより、隣接する鋼殻エレメント間で角型中空断面の離隔幅を最小限に留めることができ、後の土砂撤去作業を省力化できるようになる。   In the invention described in claim 4, when the concave joint and the convex joint are formed between the adjacent steel shell elements by projecting sideward from the square hollow section as in the prior art, Due to the gradual change of the overhang length, there arises a problem that the separation width of the square hollow cross section becomes too large. The part of the separation width of this square hollow cross section is a portion that becomes an unexcavated portion, and there is a need to manually remove earth and sand before filling with concrete. Therefore, a stepped part is formed by forming a cross-sectional defect part on both sides or one side part on the joint arrangement surface of the square hollow cross section, and from the end part of the non-cross-sectional defect part to the adjacent steel shell element In addition, a projecting member extending in the direction is provided, and the concave joint is provided at the tip of the projecting member. The overhanging length of the overhanging member is gradually changed, and the concave joint is positioned in the stepped portion. In this way, the separation width of the square hollow cross section between the adjacent steel shell elements is not set by setting the joint portion to a position within the square hollow cross section instead of being positioned laterally away from the square hollow cross section. Therefore, it is possible to save labor in the subsequent earth and sand removal work.

請求項5に係る本発明として、鋼殻エレメントの隅部から隣接する鋼殻エレメントに向けて突出する張出部材の先端に凸継手が設けられ、かつ前記張出部材の張出長さは一定とされている請求項3、4いずれかに記載の外殻先行トンネル構築方法が提供される。   As the present invention according to claim 5, a convex joint is provided at the tip of the overhanging member protruding from the corner of the steel shell element toward the adjacent steel shell element, and the overhanging length of the overhanging member is constant. An outer shell preceding tunnel construction method according to any one of claims 3 and 4 is provided.

上記請求項5記載の発明では、鋼殻エレメントの隅部から隣接する鋼殻エレメントに向けて突出する張出部材の先端に凸継手が設けられるようにし、かつ前記張出部材の張出長さは一定とされている。鋼殻エレメントの隅部から隣接する鋼殻エレメントに向けて突出する張出部材の先端に凸継手が設けられるようにすると、貫入済みの鋼殻エレメントの前記段状部で凹継手と連結することが可能となる。また、貫入させる鋼殻エレメントの凸継手を貫入済みの鋼殻エレメントの凹継手に連結させた状態で貫入する際、貫入させる鋼殻エレメントの凸継手の張出長さを一定としない場合、発進坑口において、貫入済みの凹継手は一定位置であるため、凸継手の張出長さの変化により、貫入する鋼殻エレメント位置が幅方向に移動することになり、鋼殻エレメントが貫入できなくなる。従って、後行の鋼殻エレメントの凸継手の張出長さは一定としておくのがよい。   In the invention according to claim 5, a protruding joint is provided at the tip of the overhanging member protruding from the corner of the steel shell element toward the adjacent steel shell element, and the overhang length of the overhanging member Is assumed to be constant. When a convex joint is provided at the tip of the projecting member protruding from the corner of the steel shell element toward the adjacent steel shell element, it is connected to the concave joint at the stepped portion of the penetrated steel shell element. Is possible. In addition, when the projecting joint of the steel shell element to be penetrated is connected to the concave joint of the steel shell element that has already been penetrated, if the protruding length of the convex joint of the steel shell element to be penetrated is not fixed, Since the recessed joint that has been penetrated is at a fixed position at the wellhead, the position of the steel shell element to penetrate moves in the width direction due to the change in the protruding length of the convex joint, and the steel shell element cannot be penetrated. Therefore, it is preferable to keep the protruding length of the convex joint of the subsequent steel shell element constant.

以上詳説のとおり本発明によれば、外殻先行トンネル構築工法において、断面積を徐々に変化させた可変断面のトンネルを構築することができるようになる。   As described above in detail, according to the present invention, it is possible to construct a tunnel having a variable cross section in which the cross-sectional area is gradually changed in the outer shell preceding tunnel construction method.

可変断面部分の外殻構造体1を示す要部斜視図である。It is a principal part perspective view which shows the outer shell structure 1 of a variable cross-section part. その外殻構造体1を示す、(A)は平面図、(B)は到達側断面、(C)は発進側断面である。The outer shell structure 1 is shown, (A) is a plan view, (B) is a reaching side section, and (C) is a starting side section. 中央部鋼殻エレメント2を示す、(A)は平面図、(B)は到達側断面、(C)は発進側断面である。The central steel shell element 2 is shown. (A) is a plan view, (B) is a reaching side section, and (C) is a starting side section. 拡幅用連結鋼殻エレメント3を示す、(A)は平面図、(B)は到達側断面、(C)は発進側断面である。The widened connecting steel shell element 3 is shown, (A) is a plan view, (B) is a reaching side section, and (C) is a starting side section. 等幅用連結鋼殻エレメント5を示す、(A)は平面図、(B)は到達側断面、(C)は発進側断面である。The equal-width connecting steel shell elements 5 are shown, (A) is a plan view, (B) is a reaching side section, and (C) is a starting side section. 継手部の拡大断面図である。It is an expanded sectional view of a joint part. 凹継手6の拡大断面図である。3 is an enlarged cross-sectional view of a concave joint 6. FIG. 止水部13を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing a water stop part 13. 凸継手7の変形例を示す継手部拡大断面図である。FIG. 6 is an enlarged sectional view of a joint portion showing a modification of the convex joint 7. 使用する掘削機45の第1例を示す、(A)は正面図、(B)は補助カッター46の配設部位の断面図である。The 1st example of the excavator 45 to be used is shown, (A) is a front view, (B) is a cross-sectional view of a portion where the auxiliary cutter 46 is disposed. 使用する掘削機45の第2例を示す、(A)は正面図、(B)は補助カッター46の配設部位の断面図である。The 2nd example of the excavator 45 used is shown, (A) is a front view, (B) is sectional drawing of the arrangement | positioning site | part of the auxiliary cutter 46. FIG. 外殻構造体1を高さ方向に可変断面とした場合の要部斜視図である。It is a principal part perspective view at the time of making the outer shell structure 1 a variable cross section in the height direction. 外殻先行トンネル構築方法で構築されたトンネル52の例を示す断面図である。It is sectional drawing which shows the example of the tunnel 52 constructed | assembled with the outer shell preceding tunnel construction method.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本願発明は、図1に示されるように、角型中空断面の鋼殻エレメント3,4を順次、貫入済みの鋼殻エレメント2と継手部同士を連結させながら貫入する手順を繰り返して、地盤中に多数の鋼殻エレメントによって、断面視で矩形状や円形、多角形状などの形状に閉合させた外殻構造体1を構築した後、この外殻構造体1の内部土砂を除去することによりトンネルを構築する外殻先行トンネル構築方法において、
前記継手部は、隣り合う鋼殻エレメント2,3(2,4)間において、一方側の鋼殻エレメント2から他方側の鋼殻エレメント3,4に向けて突出する張出部材23の先端に設けられた凹継手24と、他方側の鋼殻エレメント3,4から一方側の鋼殻エレメント2に向けて突出する張出部材37の先端に設けられた凸継手38とを嵌合させた構造とされ、前記隣り合う鋼殻エレメント2,3の継手部において、凹継手24及び凸継手38の内の一方側の張出部材23の張出長さを徐々に変化させることにより、トンネル方向に可変断面の外殻構造体を構築するものである。
As shown in FIG. 1, the present invention repeats the procedure of penetrating the steel shell elements 3 and 4 having a square hollow cross section while sequentially connecting the steel shell elements 2 and the joints that have already been penetrated. After constructing the outer shell structure 1 which is closed to a rectangular shape, a circular shape, a polygonal shape or the like in a cross-sectional view by a number of steel shell elements, the tunnel is formed by removing the inner earth and sand of the outer shell structure 1 In the outer shell leading tunnel construction method of building
The joint portion is between the adjacent steel shell elements 2 and 3 (2, 4) at the tip of the overhanging member 23 protruding from the steel shell element 2 on one side toward the steel shell elements 3 and 4 on the other side. A structure in which a concave joint 24 provided and a convex joint 38 provided at the tip of an overhanging member 37 protruding from the other steel shell elements 3 and 4 toward the one steel shell element 2 are fitted. In the joint portion of the adjacent steel shell elements 2 and 3, by gradually changing the overhang length of the overhang member 23 on one side of the concave joint 24 and the convex joint 38, in the tunnel direction. An outer shell structure having a variable cross section is constructed.

前記外殻先行トンネル構築方法は、周辺地盤への影響が少ないなどの利点を有するため、道路路線や鉄道路線などの路線下の地盤に非開削によって、アンダーパストンネルを構築する際の工法として多用されているものである。   The outer shell leading tunnel construction method has advantages such as little impact on the surrounding ground, so it is frequently used as a construction method when constructing an underpass tunnel by non-cutting the ground under the route such as a road route or railway route It is what has been.

本願発明では特に、前記外殻先行トンネル構築工法において、外殻構造体1の断面積を徐々に変化させた可変断面のトンネルを構築する方法を提供する。以下、さらに具体的に詳述する。   In particular, the present invention provides a method of constructing a tunnel having a variable cross section in which the cross-sectional area of the outer shell structure 1 is gradually changed in the outer shell preceding tunnel construction method. This will be described in more detail below.

図1は、可変断面部分の外殻構造体1の一部を示した要部斜視図である。例えば図13に示すように、上版52A、下版52B及び両側壁版52C、52Cによって矩形状に外殻構造体52が構築される場合に、図1は前記上版及び下版において、発進側から到達側にかけて徐々に、外殻構造体1の幅寸法を増加させるように可変断面とした場合の要部斜視図を示している。   FIG. 1 is a main part perspective view showing a part of an outer shell structure 1 having a variable cross section. For example, as shown in FIG. 13, when the outer shell structure 52 is constructed in a rectangular shape by the upper plate 52A, the lower plate 52B, and the side wall plates 52C, 52C, FIG. The principal part perspective view at the time of making it a variable cross section so that the width dimension of the outer shell structure 1 may be gradually increased from the side to the arrival side is shown.

図示の外殻構造体1(上版又は下版)は、図2にも示されるように、3つの鋼殻エレメント2〜4によって構成されている例を示している。すなわち、真ん中に中央部鋼殻エレメント2が配置され、その両側に拡幅用連結鋼殻エレメント3,4が配置されている。これら3つの鋼殻エレメント2〜4は、それぞれ角型中空断面の最大幅寸法Bと最大高さ寸法Hとから規定される基本断面寸法はトンネル方向に同一とされる。すなわち、使用する掘削機の掘削部断面寸法に合わせて、各鋼殻エレメント2〜4はいずれも最大幅寸法がBとされ、最大高さ寸法がHとされ、この基本断面寸法はトンネル方向に亘って同一とされる。なお、図中、鋼殻エレメント2〜4の角型中空部分は太い波線で示している。   The illustrated outer shell structure 1 (upper plate or lower plate) shows an example constituted by three steel shell elements 2 to 4 as shown in FIG. That is, the central steel shell element 2 is arranged in the middle, and the widening connecting steel shell elements 3 and 4 are arranged on both sides thereof. These three steel shell elements 2 to 4 have the same basic cross-sectional dimension in the tunnel direction defined by the maximum width dimension B and the maximum height dimension H of the square hollow section. That is, according to the cross-sectional dimension of the excavating part to be used, each of the steel shell elements 2 to 4 has a maximum width dimension of B and a maximum height dimension of H, and this basic cross-sectional dimension is in the tunnel direction. It is made the same throughout. In the drawing, the square hollow portions of the steel shell elements 2 to 4 are indicated by thick wavy lines.

先ず、前記中央部鋼殻エレメント2は、詳細には図3に示されるように、上板20、下板21及び側板22,22によって構成される角型中空断面のエレメントを基本形とする。前記上板20において、中央部20Aを残してその両側部分に、断面欠損部分20B、20Bを形成することにより段状部を形成している。そして、前記中央部20Aの両端部(出隅部)から隣接する鋼殻エレメント3,4に向けて延びる張出部材23,23を設けるとともに、この張出部材23,23の先端に部材長手方向に沿って凹継手24,24を設けている。   First, as shown in detail in FIG. 3, the central steel shell element 2 has a square hollow cross-section element composed of an upper plate 20, a lower plate 21 and side plates 22 and 22 as a basic shape. In the upper plate 20, stepped portions are formed by forming cross-sectional defect portions 20 </ b> B and 20 </ b> B on both side portions, leaving the central portion 20 </ b> A. And the extension members 23 and 23 extended toward the steel shell elements 3 and 4 which adjoin from both ends (protrusion corner) of the said center part 20A are provided, and a member longitudinal direction is provided at the front-end | tip of these extension members 23 and 23 Concave joints 24, 24 are provided along.

また、下板21においても、中央部21Aを残してその両側部分に、断面欠損部分21B、21Bを形成することにより段状部を形成している。そして、前記中央部21Aの両端部(出隅部)から隣接する鋼殻エレメント3,4に向けて延びる張出部材25,25を設けるとともに、この張出部材25,25の先端に部材長手方向に沿って凹継手26,26を設けている。   In the lower plate 21, stepped portions are formed by forming cross-sectional defect portions 21B and 21B on both side portions, leaving the central portion 21A. And the extension members 25 and 25 extended toward the steel shell elements 3 and 4 which adjoin from the both ends (protrusion corner) of the said center part 21A are provided, and member longitudinal direction is at the front-end | tip of these extension members 25 and 25. Are provided with concave joints 26 and 26.

図3(B)と図3(C)とを対比すると分かるように、発進側から到達側にかけて張出部材23、25は徐々に張出長さが長くなっている。すなわち、発進側では前記張出部材23、25の張出長さはLとされ、到達側では前記前記張出部材23、25の張出長さはLとされる。張出長さの差分(L−L)が拡幅量である。また、前記凹継手24、26の幅方向位置は、前記断面欠損部分20B(21B)内に位置するように前記張出部材23(25)の張出長さが調整されている。 As can be seen by comparing FIG. 3 (B) and FIG. 3 (C), the overhang members 23 and 25 gradually increase in length from the start side to the arrival side. That is, the protruding length of the protruding member 23 and 25 at the start side is a L 1, is reached side projecting length of said projecting member 23 and 25 are L 2. The difference between the overhang lengths (L 2 −L 1 ) is the amount of widening. Further, the overhang length of the overhang member 23 (25) is adjusted so that the positions in the width direction of the concave joints 24 and 26 are located in the cross-sectional defect portion 20B (21B).

上記中央部鋼殻エレメント2は、両側に凹継手24,24(26,26)を有するものであり、地盤中に最初に貫入設置される鋼殻エレメントとなる。鋼殻エレメント2の貫入設置の際に使用される掘削機は、前記角型中空断面の最大幅寸法Bと最大高さ寸法Hとの比は、2:1とされているため、図10に示されるように、正方形断面のカッターを横に連設した構造の掘削機45が用いられる。前記凹継手24、26は角型中空断面よりも若干上下方向外側に突出し、かつ掘進に伴って徐々に幅方向外側に移動することになるため、胴体部に前記凹継手24,26に対応する土砂部分を掘削するために掘削機45の上面及び下面にそれぞれ補助カッター46、46を備えていることが望ましい。なお、前記掘削機45の推進方式は、元押し方式でもよいし、牽引方式としてもよい。   The central steel shell element 2 has concave joints 24, 24 (26, 26) on both sides, and is a steel shell element that is first installed in the ground. The excavator used for the penetration installation of the steel shell element 2 has a ratio of the maximum width dimension B to the maximum height dimension H of the square hollow cross section of 2: 1. As shown in the figure, an excavator 45 having a structure in which square-section cutters are arranged side by side is used. The concave joints 24 and 26 protrude slightly outward in the vertical direction from the square hollow cross section, and gradually move outward in the width direction along with the excavation, so that the body portion corresponds to the concave joints 24 and 26. In order to excavate the earth and sand part, it is desirable to provide auxiliary cutters 46 and 46 on the upper and lower surfaces of the excavator 45, respectively. The propulsion method of the excavator 45 may be a main pushing method or a towing method.

次いで、前記中央部鋼殻エレメント2の片側に隣接配置される拡幅用連結鋼殻エレメント3は、詳細には図4に示されるように、上板30、下板31及び側板32、32によって構成される角型中空断面のエレメントを基本形とする。前記上板30において、一方側30A(中央部鋼殻エレメント2側)を残して片側部分に、断面欠損部分30Bを形成することにより段状部を形成している。そして、前記一方側30Aの端部(出隅部)から外方側に向けて延びる張出部材33を設けるとともに、この張出部材33の先端に部材長手方向に沿って凹継手34を設けている。前記凹継手34を設けた反対側には、角型中空断面の隅部から中央鋼殻エレメント2側に向けて突出する張出部材37の先端に凸継手38が設けられている。   Next, the connecting steel shell element 3 for widening adjacently disposed on one side of the central steel shell element 2 is constituted by an upper plate 30, a lower plate 31, and side plates 32, 32 as shown in detail in FIG. An element having a square hollow cross section is used as a basic shape. In the upper plate 30, a stepped portion is formed by forming a cross-sectional defect portion 30 </ b> B on one side portion while leaving one side 30 </ b> A (central steel shell element 2 side). And while providing the overhang | projection member 33 extended toward the outward side from the edge part (protrusion corner part) of the said one side 30A, the concave joint 34 is provided in the front-end | tip of this overhang member 33 along the member longitudinal direction. Yes. On the opposite side of the concave joint 34, a convex joint 38 is provided at the tip of an overhanging member 37 that protrudes from the corner of the square hollow cross section toward the central steel shell element 2 side.

また、下板31においても、一方側31A(中央部鋼殻エレメント2側)を残して片側部分に、断面欠損部分31Bを形成することにより段状部を形成している。そして、前記一方側31Aの端部(出隅部)から外方側にに向けて延びる張出部材35を設けるとともに、この張出部材35の先端に部材長手方向に沿って凹継手36を設けている。前記凹継手36を設けた反対側には、角型中空断面の隅部から中央部鋼殻エレメント2側に向けて突出する張出部材39の先端に凸継手40が設けられている。   Further, the lower plate 31 also forms a stepped portion by forming a cross-sectional defect portion 31B on one side portion while leaving one side 31A (the central steel shell element 2 side). Then, a protruding member 35 extending outward from the end portion (protruding corner) of the one side 31A is provided, and a concave joint 36 is provided at the tip of the protruding member 35 along the longitudinal direction of the member. ing. On the opposite side of the concave joint 36, a convex joint 40 is provided at the tip of a protruding member 39 that protrudes from the corner of the square hollow cross section toward the central steel shell element 2 side.

図4(B)と図4(C)とを対比すると分かるように、凹継手34,36では、発進側から到達側にかけて張出部材33、35は徐々に張出長さが長くなっている。すなわち、発進側では前記張出部材33、35の張出長さはLとされ、到達側では前記張出部材33、35の張出長さはLとされる。張出長さの差分(L−L)が拡幅量である。また、前記凹継手34、36の幅方向位置は、前記断面欠損部分30B、31B内に位置するように前記張出部材33、35の張出長さが調整されている。一方、凸継手側では、凸継手38、40を支持する張出部材37、39の張出長さLはトンネル方向に亘って一定とされている。 As can be seen by comparing FIG. 4 (B) and FIG. 4 (C), in the concave joints 34 and 36, the overhang members 33 and 35 gradually increase in length from the starting side to the reaching side. . That is, the protruding length of the protruding member 33 and 35 at the start side is a L 1, is reached side projecting length of the projecting member 33 and 35 are L 2. The difference between the overhang lengths (L 2 −L 1 ) is the amount of widening. Further, the overhang lengths of the overhang members 33 and 35 are adjusted so that the positions of the concave joints 34 and 36 in the width direction are located in the cross-sectional defect portions 30B and 31B. On the other hand, the convex joint side, overhanging length L 3 of the overhang member 37, 39 for supporting the convex joint 38, 40 is constant over the tunnel direction.

前記鋼殻エレメント3の貫入設置の際に使用される掘削機としては、前記角型中空断面の最大幅寸法Bと最大高さ寸法Hとの比は、2:1とされているため、図11に示されるように、正方形断面のカッターを横に連設した構造の掘削機47が用いられるが、胴体部に、側方に大きく突出している張出部材37,39と凸継手38、40に対応する土砂部分を掘削するために、掘削機47の一方側(凸継手側)には上下面に夫々、角型中空部分よりも水平側方向に突出させた補助カッター48、48を備え、掘削機47の他方側(凹継手側)には、上下面に夫々、凹継手34,36部分を掘削するための補助カッター46を備えていることが望ましい。   As an excavator used for the penetration installation of the steel shell element 3, the ratio of the maximum width dimension B and the maximum height dimension H of the square hollow section is 2: 1. As shown in FIG. 11, an excavator 47 having a structure in which square-section cutters are continuously arranged side by side is used. However, projecting members 37 and 39 and convex joints 38 and 40 that protrude greatly to the side are formed on the body. In order to excavate the earth and sand part corresponding to the above, on one side (convex joint side) of the excavator 47 is provided with auxiliary cutters 48, 48 projecting in the horizontal direction from the square hollow part on the upper and lower surfaces, respectively. On the other side (concave joint side) of the excavator 47, it is desirable to provide auxiliary cutters 46 for excavating the concave joints 34 and 36 on the upper and lower surfaces, respectively.

前記拡幅用鋼殻エレメント3に対して、連結して貫入される次の鋼殻エレメントは、仮に更なる拡幅を行いたい場合には、前述した拡幅用鋼殻エレメント3とまったく同じ拡幅用鋼殻エレメント3を用いて連結貫入させる。拡幅用鋼殻エレメント3は張出部材33、35が幅方向に徐々に張り出しているため、この張出長さの増加分だけ更なる拡幅を図ることができる。   If the next steel shell element to be connected and penetrated with respect to the widening steel shell element 3 is to be further widened, the same widening steel shell as the widening steel shell element 3 described above is used. The element 3 is used for connection penetration. In the steel shell element 3 for widening, since the overhang members 33 and 35 are gradually overhanging in the width direction, further widening can be achieved by the increase in the overhang length.

また、これ以上の拡幅を行わなくてもよい場合は、図5に示される等幅用鋼殻エレメント5を用い、これを前記拡幅用鋼殻エレメント3の隣接位置に貫入設置すればよい。この等幅用鋼殻エレメント5は、凹継手34,36の張出部材33,35の張出長さLがトンネル方向に亘って一定とされる点だけが前記拡幅用鋼殻エレメント3と相違し、それ以外の構成は同一の鋼殻エレメントである。 Further, when it is not necessary to perform further widening, the equal-width steel shell element 5 shown in FIG. 5 may be used and installed so as to penetrate into the adjacent position of the widening steel shell element 3. The equal-width steel shell element 5, the overhanging length L 1 only in that it is a constant over the tunnel direction the wider steel shell element 3 of the overhang member 33, 35 of凹継hand 34 The other configuration is the same steel shell element.

他方、前記中央部鋼殻エレメント2の反対側に位置する連結鋼殻エレメント4は、前述した拡幅用連結鋼殻エレメント3、等幅用鋼殻エレメント5を中央部鋼殻エレメント2の中心線を跨いで線対象とした構造であるため説明は省略する。   On the other hand, the connecting steel shell element 4 located on the opposite side of the central steel shell element 2 is connected to the widening connecting steel shell element 3 and the equal-width steel shell element 5 with respect to the center line of the central steel shell element 2. The description is omitted because it is a straddling line structure.

次に、前記鋼殻エレメント2,3(2,4)同士を連結している継手構造について後述する。この継手構造は、図6に示されるように、貫入済みの鋼殻エレメント2に順次鋼殻エレメント3を連結する際の継手構造であって、隣り合う一方の鋼殻エレメント2〜4に設けられた前記凹継手6(24,26、34…)と、他方の鋼殻エレメント3,4に設けられた前記凸継手7(38)との連結構造からなるものである。   Next, a joint structure connecting the steel shell elements 2 and 3 (2, 4) will be described later. As shown in FIG. 6, this joint structure is a joint structure for sequentially connecting the steel shell elements 3 to the penetrated steel shell elements 2, and is provided in one of the adjacent steel shell elements 2 to 4. The concave joint 6 (24, 26, 34...) And the convex joint 7 (38) provided on the other steel shell elements 3 and 4 are connected.

前記凹継手6は、図7に示されるように、鋼殻エレメントの軸方向に沿うとともに、隣接する鋼殻エレメントに向けて開口する溝部8と、前記溝部8の開口を閉塞する止水部9と、前記溝部8内において両側から突出する係止部10、10とが備えられている。   As shown in FIG. 7, the concave joint 6 includes a groove portion 8 that opens along the axial direction of the steel shell element and opens toward the adjacent steel shell element, and a water stop portion 9 that closes the opening of the groove portion 8. And the latching | locking parts 10 and 10 which protrude from both sides in the said groove part 8 are provided.

前記止水部9は、図8に示されるように、少なくとも前記溝部8の開口の両側からそれぞれ開口中央方向に向けて延びる板バネ状のパッキン11,11を有している。前記パッキン11は、両側からそれぞれ開口中央方向に向けて延びるとともに、中間位置で溝部8の内側に向けて折り曲げられた板厚約0.3mm程度の2枚の屈曲板状体を対向させることによって構成され、外側端部が凹継手6側に固定され、中央端側が自由端とされることにより板バネとして作用するものである。前記パッキン11,11の自由端同士は、突き合わされるように設けられている。パッキン11,11が溝部8の内側に向けて折り曲げ加工されることにより、凹継手6と凸継手7を嵌合させたときに、パッキン11、11が溝部内側に向けて拡開するようになる。   As shown in FIG. 8, the water stop portion 9 has leaf spring-like packings 11, 11 extending from at least both sides of the opening of the groove portion 8 toward the center of the opening. The packing 11 extends from both sides toward the center of the opening and faces two bent plate-like bodies having a thickness of about 0.3 mm that are bent toward the inside of the groove 8 at an intermediate position. The outer end portion is fixed to the concave joint 6 side, and the central end side serves as a free end, thereby acting as a leaf spring. The free ends of the packings 11 and 11 are provided so as to face each other. Since the packings 11 and 11 are bent toward the inside of the groove 8, when the concave joint 6 and the convex joint 7 are fitted, the packings 11 and 11 expand toward the inside of the groove. .

図8に示されるように、前記パッキン11,11の外側には、前記開口の両側からそれぞれ開口中央方向に向けて延びる板バネ状の補助パッキン12,12’を設けることにより、前記止水部9を二重のパッキン13によって構成することが望ましい。   As shown in FIG. 8, on the outside of the packings 11, 11, leaf spring-shaped auxiliary packings 12, 12 ′ extending from both sides of the opening toward the center of the opening are provided, whereby the water stop portion 9 is preferably constituted by a double packing 13.

前記パッキン11及び補助パッキン12,12’の取り付けは、図8に示されるように、溝部8に対し、各パッキン間に配設されたスペーサー16、及び補助パッキン12、12’の外側に配設された押え金具17を介して、ボルト15によって固設されている。前記スペーサー16は、内側が、前記溝部8の側壁内側より内方に突出して設けられ、好ましくは中間で折り曲げ加工された前記パッキン11の屈曲位置まで延在している。   As shown in FIG. 8, the packing 11 and the auxiliary packings 12 and 12 ′ are attached to the groove portion 8 outside the spacers 16 and the auxiliary packings 12 and 12 ′ disposed between the packings. It is fixed by a bolt 15 through the presser fitting 17. The inner side of the spacer 16 is provided so as to protrude inward from the inner side of the side wall of the groove portion 8, and preferably extends to a bending position of the packing 11 that is bent in the middle.

前記補助パッキン12、12’は、両側からそれぞれ開口中央方向に向けてほぼ直線状に延びる板厚約0.3mm程度の2枚の板状体を対向させることによって構成され、外側端部が凹継手6側に固定され、開口中央端側が自由端とされることにより板バネとして作用するものである。前記補助パッキン12、12’同士は、開口中央部で重なり代を有するように設けられている。前記補助パッキン12、12’のうち、前記重なり代で外側に配置される一方の補助パッキン12は、前記重なり代で内側に配置される他方の補助パッキン12’より外側に長く形成されており、前記補助パッキン12の自由端は、対向する側壁に固定された前記スペーサー16に支持され、外側からの耐圧向上が図られている。   The auxiliary packings 12 and 12 'are configured by opposing two plate-like bodies having a thickness of about 0.3 mm extending substantially linearly from both sides toward the center of the opening, and the outer end portions are recessed. It is fixed to the joint 6 side, and acts as a leaf spring by making the opening center end side a free end. The auxiliary packings 12 and 12 'are provided so as to have an overlap margin at the center of the opening. Of the auxiliary packings 12 and 12 ', one auxiliary packing 12 arranged outside in the overlap margin is formed longer outside the other auxiliary packing 12' arranged inside in the overlap margin, The free end of the auxiliary packing 12 is supported by the spacer 16 fixed to the opposite side wall, and the pressure resistance from the outside is improved.

一方、前記重なり代で内側に配置される他方の補助パッキン12’は、一方の補助パッキン12より短く形成され、好ましくは開口中央部を若干越えた位置まで形成されており、凸継手7を嵌挿させたときに、外側の補助パッキン12と干渉して、拡開不能となることを防止している。   On the other hand, the other auxiliary packing 12 ′ arranged on the inner side in the overlap margin is formed shorter than the one auxiliary packing 12, preferably slightly beyond the center of the opening. When it is inserted, it is prevented from interfering with the outer auxiliary packing 12 and becoming unexpandable.

図8に示されるように、前記パッキン11、11及び補助パッキン12、12’からなる二重のパッキン13の間には、止水滑材14を充填することが望ましい。前記止水滑材14としては、高水圧に対する耐久性が高い油脂系の止水滑材を用いることが好ましく、特に、シールド機のワイヤーブラシ間に地下水や裏込材が浸入するのを防ぐために用いられるテールシーラー(登録商標、松村石油化成株式会社製)が好適である。前記止水滑材14は、凹継手6と凸継手7を嵌合させる際には凸継手7の平板部材18が嵌挿する際の滑剤として機能し、嵌合完了後には止水材として機能するものである。   As shown in FIG. 8, it is desirable to fill a waterstop material 14 between the double packing 13 including the packings 11 and 11 and the auxiliary packings 12 and 12 ′. As the water-stopping material 14, it is preferable to use an oil-based water-stopping material that has high durability against high water pressure, and in particular, to prevent intrusion of groundwater or backing material between the wire brushes of the shield machine. The tail sealer (registered trademark, manufactured by Matsumura Petroleum Chemical Co., Ltd.) to be used is suitable. The waterstop lubricant 14 functions as a lubricant when the flat joint 18 of the convex joint 7 is inserted when the concave joint 6 and the convex joint 7 are fitted, and functions as a waterstop after completion of the fitting. To do.

前記凹継手6は、前記係止部10、10を有する構造部6Aと、この構造部6Aの開口側端部の両側に固設された所定の肉厚を有するフラットバーからなる側壁部6B、6Bとから構成された分割構造とすることが好ましい。前記側壁部6Bは、前記止水部9を止め付ける、部材長手方向に沿って間隔をあけて取り付けられる複数の前記ボルト15、15…によって構造部6A側に固設されている。この側壁部6B、6Bの開口側端部には前記止水部9が設けられている。前記凹継手6を分割構造とすることによって、前記構造部6Aが継手構造に作用する引張力などの力を受け持つことができるようになる。また、構造部6Aとは別に側壁部6Bを、前記止水部9のパッキン11、11及び補助パッキン12、12’を止め付けるボルト15で固定する構造としたので、止水部9の取付け性が向上するようになる。   The concave joint 6 includes a structure portion 6A having the locking portions 10 and 10 and a side wall portion 6B made of a flat bar having a predetermined thickness fixed to both sides of the opening side end of the structure portion 6A. It is preferable to have a divided structure composed of 6B. The side wall portion 6B is fixed to the structure portion 6A side by a plurality of bolts 15, 15... That are attached to the water stop portion 9 at intervals along the longitudinal direction of the member. The water stop portion 9 is provided at the opening side end portions of the side wall portions 6B and 6B. By making the concave joint 6 into a split structure, the structure portion 6A can take on a force such as a tensile force acting on the joint structure. In addition to the structure portion 6A, the side wall portion 6B is fixed by the bolts 15 for fixing the packings 11 and 11 and the auxiliary packings 12 and 12 'of the water stop portion 9, so that the water stop portion 9 can be attached. Will be improved.

前記構造部6Aは鋳物製又は熱押型鋼製とすることが好ましい。鋳物又は熱押型鋼で構成することによって、凹継手6の耐力が向上するとともに、前記構造部6Aと側壁部6B、6Bとからなる分割構造とした上で、製作コストが嵩む鋳物部分又は熱押型鋼部分を構造部6Aのみとし、側壁部6Bに規格品のフラットバーなどを用いることによって、製作コストが削減できるとともに、製作性を向上させることができるようになる。   The structure portion 6A is preferably made of cast metal or hot stamped steel. By constituting the casting or hot stamped steel, the proof strength of the concave joint 6 is improved, and a divided structure consisting of the structural part 6A and the side wall parts 6B and 6B is used, and the casting part or hot stamping is expensive. By using only the structural part 6A as the mold steel part and using a standard flat bar or the like for the side wall part 6B, the manufacturing cost can be reduced and the manufacturability can be improved.

一方、前記凸継手7は、図6に示されるように、前記溝部8の開口から溝部8内に挿入される平板部材18を備えるとともに、前記平板部材18の先端に、前記溝部8内に形成された係止部10と係止するように両側に突出する突起部16、16を備え、全体形状が横T字状を成している。凸継手7としては、図9に示されるように、両側に突出する突起部16を有さず、全体形状が横I字状を成していてもよい。   On the other hand, as shown in FIG. 6, the convex joint 7 includes a flat plate member 18 that is inserted into the groove portion 8 from the opening of the groove portion 8, and is formed in the groove portion 8 at the tip of the flat plate member 18. Protrusions 16, 16 projecting on both sides so as to be engaged with the engaged locking part 10 are provided, and the overall shape forms a horizontal T-shape. As shown in FIG. 9, the convex joint 7 does not have the protrusions 16 protruding on both sides, and the overall shape may be a horizontal I-shape.

図6に示されるように、凹継手6と凸継手7の嵌合時に、前記凸継手7の平板部材18が前記パッキン11、11及び補助パッキン12、12’を夫々拡開させるように変形させながら前記両側のパッキン13の間に嵌挿される。前記平板部材18が嵌挿された状態では、図6に示されるように、両側のパッキン11、11及び補助パッキン12、12’がそれぞれ拡開しながらバネ作用により平板部材18に圧接されている。このように、両側壁に突設された止水ゴムの先端が接することにより止水する従来の構造とは異なり、拡開した板バネ状のパッキン11、11及び補助パッキン12、12’が圧接することにより止水しているため、平板部材18(凸継手7)の施工誤差の吸収が大きくなり、より確実に止水性が確保できるようになる。   As shown in FIG. 6, when the concave joint 6 and the convex joint 7 are fitted, the flat plate member 18 of the convex joint 7 is deformed so as to expand the packings 11 and 11 and the auxiliary packings 12 and 12 ′, respectively. However, it is inserted between the packings 13 on both sides. In the state in which the flat plate member 18 is inserted, as shown in FIG. 6, the packings 11 and 11 and the auxiliary packings 12 and 12 ′ on both sides are in contact with the flat plate member 18 by a spring action while expanding. . In this way, unlike the conventional structure in which water is stopped when the tips of the water-stopping rubbers projecting on both side walls contact, the expanded leaf spring-shaped packings 11 and 11 and the auxiliary packings 12 and 12 'are pressed against each other. Since the water is stopped by doing so, the absorption of the construction error of the flat plate member 18 (convex joint 7) is increased, and water stoppage can be secured more reliably.

前記凹継手6と凸継手7の嵌合後、前記凹継手6の溝部8内であって、前記凸継手7との隙間に、グラウト材が充填され前記凹継手6と凸継手7とが一体化される。前記グラウト材としては、コンクリートやモルタルなどが使用され、流動性が良く、無収縮性を有するものが好適である。これによって、隣り合う鋼殻エレメント間で力の伝達が可能となる。   After fitting the concave joint 6 and the convex joint 7, a grout material is filled in the groove 8 of the concave joint 6, and the concave joint 6 and the convex joint 7 are integrated. It becomes. As the grout material, concrete, mortar, or the like is used, and a material having good fluidity and no shrinkage is preferable. This enables force transmission between adjacent steel shell elements.

〔他の形態例〕
(1)上記形態例では、幅方向に可変断面とした例を示したが、図12に示されるように、高さ方向に可変断面とすることも可能である。すなわち、本発明に係る可変断面トンネルでは、トンネルの幅方向のみ又は高さ方向のみを変化させるようにしてもよいし、トンネルの幅方向及び高さ方向の両方を変化させるようにしてもよい。
[Other examples]
(1) In the above embodiment, the variable cross section in the width direction is shown. However, as shown in FIG. 12, the variable cross section can be formed in the height direction. That is, in the variable section tunnel according to the present invention, only the width direction or height direction of the tunnel may be changed, or both the width direction and height direction of the tunnel may be changed.

(2)上記形態例では、発進側から到達側にかけて徐々に断面寸法を拡大させるようにした外殻構造体1の例を示したが、逆に到達側から発進側にかけて徐々に断面寸法を縮小させるようにした外殻構造体1とすることも可能である。 (2) In the above embodiment, the example of the outer shell structure 1 in which the cross-sectional dimension is gradually increased from the starting side to the reaching side is shown, but conversely, the cross-sectional dimension is gradually reduced from the reaching side to the starting side. It is also possible to make the outer shell structure 1 to be made to be.

(3)上記形態例では、隣り合う鋼殻エレメント2,3の継手部において、凹継手24、26の張出部材23、25の張出長さを徐々に変化させることにより、トンネル方向に可変断面の外殻構造体を構築するようにしたが、仮に、凹継手24と凸継手38の関係が逆の場合は、貫入済みの鋼殻エレメントの凸継手38の張出長さを徐々に変化させ、貫入させる鋼殻エレメント3の凹継手24の張出長を一定としておくようにしてもよい。なお、凸継手と凹継手の関係は、本形態例で示したように、貫入済みの鋼殻エレメント2の凹継手24に対して、凸継手38を連結しながら後行の鋼殻エレメント3を貫入させるようにするのが望ましい。 (3) In the above embodiment, in the joint portions of the adjacent steel shell elements 2 and 3, the projecting lengths of the projecting members 23 and 25 of the concave joints 24 and 26 are gradually changed to be variable in the tunnel direction. An outer shell structure having a cross section is constructed. However, if the relationship between the concave joint 24 and the convex joint 38 is reversed, the protruding length of the convex joint 38 of the steel shell element that has already been penetrated is gradually changed. The protruding length of the concave joint 24 of the steel shell element 3 to be penetrated may be made constant. As shown in the present embodiment, the relationship between the convex joint and the concave joint is such that the succeeding steel shell element 3 is connected to the concave joint 24 of the steel shell element 2 that has been penetrated while the convex joint 38 is connected. It is desirable to make it penetrate.

1…外殻構造体、2…中央部鋼殻エレメント、3・4…拡幅用連結鋼殻エレメント、5…等幅用連結鋼殻エレメント、6(24・26・34)…凹継手、7(38)…凸継手、23・25・33・37…張出部材、45…掘削機、46…補助カッター   DESCRIPTION OF SYMBOLS 1 ... Outer shell structure, 2 ... Center part steel shell element, 3.4 ... Connection steel shell element for widening, 5 ... Connection steel shell element for equal width, 6 (24, 26, 34) ... Concave joint, 7 ( 38) ... Convex joint, 23, 25, 33, 37 ... Overhang member, 45 ... Excavator, 46 ... Auxiliary cutter

Claims (6)

角型中空断面の鋼殻エレメントを順次、貫入済みの鋼殻エレメントと継手同士を連結させながら貫入する手順を繰り返して、地盤中に前記鋼殻エレメントによる閉合断面の外殻構造体を構築した後、この外殻構造体の内部土砂を除去することによりトンネルを構築する外殻先行トンネル構築方法において、
前記継手部は、隣り合う鋼殻エレメント間において、一方側の鋼殻エレメントから他方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凹継手と、他方側の鋼殻エレメントから一方側の鋼殻エレメントに向けて突出する張出部材の先端に設けられた凸継手とを嵌合させた構造とされ、
隣り合う鋼殻エレメントの継手部において、前記凹継手及び凸継手の内の一方側の張出部材の張出長さを徐々に変化させることにより、トンネル方向に可変断面の外殻構造体を構築することを特徴とする外殻先行トンネル構築方法。
After constructing an outer shell structure with a closed cross section by the steel shell element in the ground by repeating the procedure of inserting the steel shell element with a square hollow cross section in sequence while connecting the steel shell element and the joints. In the outer shell preceding tunnel construction method of constructing a tunnel by removing the inner earth and sand of this outer shell structure,
The joint portion includes a concave joint provided at the tip of an overhang member that protrudes from one steel shell element to the other steel shell element between adjacent steel shell elements, and the other steel shell element. It is a structure in which a convex joint provided at the tip of the overhang member protruding toward the steel shell element on one side is fitted,
Constructing an outer shell structure with a variable cross section in the tunnel direction by gradually changing the extension length of one of the concave and convex joints at the joint of adjacent steel shell elements A method for constructing an outer shell preceding tunnel, characterized by:
前記各鋼殻エレメントは、角型中空断面の最大幅寸法と最大高さ寸法とから規定される基本断面寸法をトンネル方向に一定としてある請求項1記載の外殻先行トンネル構築方法。   2. The outer shell preceding tunnel construction method according to claim 1, wherein each of the steel shell elements has a basic cross-sectional dimension defined by a maximum width dimension and a maximum height dimension of a square hollow section in a tunnel direction. 貫入済みの鋼殻エレメントの凹継手に対して、次順の鋼殻エレメントの凸継手を連結させながら貫入する手順とする請求項1,2いずれかに記載の外殻先行トンネル構築方法。   The outer shell preceding tunnel construction method according to any one of claims 1 and 2, comprising a procedure in which a concave joint of a steel shell element that has already been penetrated is connected while a convex joint of the next steel shell element is connected. 鋼殻エレメントにおける角型中空断面の継手配設面において、両側部又は片側部に、断面欠損部分を形成することにより段状部を形成し、非断面欠損部分の端部から隣接する鋼殻エレメントに向けて延びる張出部材を設けるとともに、この張出部材の先端に前記凹継手が設けられ、かつ前記張出部材の張出長さを徐々に変化させるとともに、前記凹継手は前記段状部内に位置している請求項3記載の外殻先行トンネル構築方法。   A steel shell element that forms a stepped portion by forming a cross-sectional defect portion on both sides or one side portion on the joint arrangement surface of the square hollow cross section in the steel shell element, and is adjacent from the end of the non-cross-sectional defect portion A projecting member extending toward the projecting member, the concave joint is provided at the tip of the projecting member, and the projecting length of the projecting member is gradually changed. The outer shell preceding tunnel construction method according to claim 3, which is located at 鋼殻エレメントの隅部から隣接する鋼殻エレメントに向けて突出する張出部材の先端に凸継手が設けられ、かつ前記張出部材の張出長さは一定とされている請求項3,4いずれかに記載の外殻先行トンネル構築方法。   5. A projecting joint is provided at the tip of a projecting member projecting from a corner of the steel shell element toward an adjacent steel shell element, and the projecting length of the projecting member is constant. The outer shell preceding tunnel construction method according to any one of the above. 前記鋼殻エレメントを貫入させる際に使用される掘削機は、正面掘削部の形状が前記鋼殻エレメントの角型中空断面形状に整合し、かつ胴体部に前記継手部に対応する土砂部分を掘削するための補助カッターを備えている請求項1〜5いずれかに記載の外殻先行トンネル構築方法。   The excavator used for penetrating the steel shell element excavates the earth and sand portion corresponding to the joint portion in the body portion, and the shape of the front excavation portion matches the square hollow cross-sectional shape of the steel shell element. The outer shell preceding tunnel construction method according to any one of claims 1 to 5, further comprising an auxiliary cutter.
JP2017066730A 2017-03-30 2017-03-30 Outer shell leading tunnel construction method Active JP6901889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066730A JP6901889B2 (en) 2017-03-30 2017-03-30 Outer shell leading tunnel construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066730A JP6901889B2 (en) 2017-03-30 2017-03-30 Outer shell leading tunnel construction method

Publications (2)

Publication Number Publication Date
JP2018168597A true JP2018168597A (en) 2018-11-01
JP6901889B2 JP6901889B2 (en) 2021-07-14

Family

ID=64019426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066730A Active JP6901889B2 (en) 2017-03-30 2017-03-30 Outer shell leading tunnel construction method

Country Status (1)

Country Link
JP (1) JP6901889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613212A (en) * 2019-01-03 2019-04-12 同济大学 The experimental rig that simulation buried pipeline is influenced by tunnel excavation
JP7473427B2 (en) 2020-09-04 2024-04-23 戸田建設株式会社 Joint structure of steel shell element and its construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211507A (en) * 1991-04-05 1993-05-18 Toda Corporation Method of making a huge elongated space of square or rectangular cross section under the ground
JPH112089A (en) * 1997-06-11 1999-01-06 Kido Kensetsu Kogyo Kk Propulsive pipe joint structure
JP2003138558A (en) * 2001-11-07 2003-05-14 Data Tou:Kk Connected steel pipe sheet pile, steel pipe connection structure using the same, steel pipe sheet pile wall, and soil cement continuous wall
JP2005248655A (en) * 2004-03-08 2005-09-15 Kumagai Gumi Co Ltd Cylinder unit
JP2007191979A (en) * 2006-01-23 2007-08-02 Nishimatsu Constr Co Ltd Element, element joining structure, and element joining method
JP2014062378A (en) * 2012-09-20 2014-04-10 Taisei Corp Shield excavation machine and construction method for shield tunnel
JP2015071904A (en) * 2013-10-03 2015-04-16 戸田建設株式会社 Joint structure of steel shell element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211507A (en) * 1991-04-05 1993-05-18 Toda Corporation Method of making a huge elongated space of square or rectangular cross section under the ground
JPH112089A (en) * 1997-06-11 1999-01-06 Kido Kensetsu Kogyo Kk Propulsive pipe joint structure
JP2003138558A (en) * 2001-11-07 2003-05-14 Data Tou:Kk Connected steel pipe sheet pile, steel pipe connection structure using the same, steel pipe sheet pile wall, and soil cement continuous wall
JP2005248655A (en) * 2004-03-08 2005-09-15 Kumagai Gumi Co Ltd Cylinder unit
JP2007191979A (en) * 2006-01-23 2007-08-02 Nishimatsu Constr Co Ltd Element, element joining structure, and element joining method
JP2014062378A (en) * 2012-09-20 2014-04-10 Taisei Corp Shield excavation machine and construction method for shield tunnel
JP2015071904A (en) * 2013-10-03 2015-04-16 戸田建設株式会社 Joint structure of steel shell element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613212A (en) * 2019-01-03 2019-04-12 同济大学 The experimental rig that simulation buried pipeline is influenced by tunnel excavation
CN109613212B (en) * 2019-01-03 2021-09-14 同济大学 Test device for simulating influence of tunnel excavation on underground pipeline
JP7473427B2 (en) 2020-09-04 2024-04-23 戸田建設株式会社 Joint structure of steel shell element and its construction method

Also Published As

Publication number Publication date
JP6901889B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
KR101069705B1 (en) Method for installing waterproofing steel plate in construction of undergound tunnel
CN107060803B (en) Tunnel construction method by utilizing pipe curtain grouting
KR100984883B1 (en) The construction method of shield tunneling
KR101179778B1 (en) Method for constructing underground structure
KR101149895B1 (en) Reinforcement block for pillar of tunnel
KR101524303B1 (en) The wall members and underground wall, underground wall construction method using the same
KR101662091B1 (en) Water proofing wallusing internal water proof member and the structure construction method therewith
KR102233572B1 (en) Inverse casing for perforating ground bore and inverse casing manufacturing method thereof
KR101069702B1 (en) Method for installing waterproofing steel plate and soil-drop preventing plate in construction of undergound tunnel
JP2018168597A (en) Method for constructing outer shell precedent tunnel
KR102239089B1 (en) Underaround continued wall structure using casing and pile continuous connection and method therefor
JP3829319B2 (en) Construction method of underground hollow structure and its underground hollow structure
KR102113291B1 (en) Soil retaining wall using phc pile and construction method thererof
KR101594085B1 (en) Underground structure construction method using mail-pipe and sub-pipe
KR102382034B1 (en) Construction method of continuous cut off wall
KR102072889B1 (en) Construction method of smallcaliber composite pile wall using small drilling rig at adjacent building proximity section
JP6115956B2 (en) Steel shell element joint structure
US6554544B1 (en) Method to build a water seal, creep-line increasing cutoff
JP6785591B2 (en) Construction method of the end structure of the leading element and the continuous underground wall
KR102310086B1 (en) Waterproof steel plate installation method using waterproof steel plate propulsion set and method of forming underground composite structure using the same
KR102289576B1 (en) Top-down type underground structure construction method using earth support plate
JPH0988105A (en) Excavation method for underground structure
KR20210146507A (en) Apparatus of guide casing for a ground excavator
JP2012241478A (en) Method for extending earth retaining wall and earth retaining wall structure
JP4127378B2 (en) Structure of earth retaining wall and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R150 Certificate of patent or registration of utility model

Ref document number: 6901889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150