JP2018168051A - Manufacturing apparatus of silicon carbide single crystal ingot and manufacturing method of silicon carbide single crystal ingot - Google Patents

Manufacturing apparatus of silicon carbide single crystal ingot and manufacturing method of silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2018168051A
JP2018168051A JP2017069267A JP2017069267A JP2018168051A JP 2018168051 A JP2018168051 A JP 2018168051A JP 2017069267 A JP2017069267 A JP 2017069267A JP 2017069267 A JP2017069267 A JP 2017069267A JP 2018168051 A JP2018168051 A JP 2018168051A
Authority
JP
Japan
Prior art keywords
graphite
single crystal
crucible
graphite crucible
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017069267A
Other languages
Japanese (ja)
Other versions
JP6861557B2 (en
Inventor
藤本 辰雄
Tatsuo Fujimoto
辰雄 藤本
勝野 正和
Masakazu Katsuno
正和 勝野
佐藤 信也
Shinya Sato
信也 佐藤
昌史 牛尾
Masashi Ushio
昌史 牛尾
正史 中林
Masashi Nakabayashi
正史 中林
弘志 柘植
Hiroshi Tsuge
弘志 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017069267A priority Critical patent/JP6861557B2/en
Publication of JP2018168051A publication Critical patent/JP2018168051A/en
Application granted granted Critical
Publication of JP6861557B2 publication Critical patent/JP6861557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

To provide a manufacturing apparatus capable of manufacturing a high quality SiC single crystal ingot having less defect in a large-diameter single crystal growth by suppressing degradation of a heat insulator during a crystal growth, and a manufacturing method of SiC of single crystal ingot using the manufacturing method.SOLUTION: Provided are a manufacturing apparatus of a SiC single crystal ingot, the manufacturing apparatus being capable of exhausting sublimation gas leaking from a graphite crucible through a gap formed between a graphite shield member and an outer surface of a peripheral wall part by interposing the shield member interposed at least between the outer side surface of the peripheral wall part of the graphite crucible and an inner surface of the peripheral wall part covering the outer surface of the peripheral wall part, and a manufacturing method of the SiC single crystal ingot using the same manufacturing apparatus.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素単結晶インゴットの製造装置及び炭化珪素単結晶インゴットの製造方法に関するものである。詳しくは、炭化珪素単結晶インゴットの製造中における断熱材の劣化を抑制することができる炭化珪素単結晶インゴットの製造装置、及びこれを用いた炭化珪素単結晶インゴットの製造方法に関するものである。   The present invention relates to a silicon carbide single crystal ingot manufacturing apparatus and a silicon carbide single crystal ingot manufacturing method. Specifically, the present invention relates to a silicon carbide single crystal ingot manufacturing apparatus capable of suppressing deterioration of a heat insulating material during manufacture of a silicon carbide single crystal ingot, and a method for manufacturing a silicon carbide single crystal ingot using the same.

炭化珪素(SiC)は、優れた半導体特性を有するため、大電力制御用パワーデバイスを製造するためのウエハ用材料として大きな注目を集めている。特に、SiC単結晶ウエハから作製されるSiCショットキーバリアダイオードやMOSFET(Metal Oxide-Semiconductor Field Effect Transistor)をはじめとするSiCパワーデバイスの開発が進められており、耐電圧が1000Vを超え、かつ、導通時のオン抵抗が小さくできる長所を発揮できることから、変換時の電力損失が少ない大電力制御用インバーターをはじめとする各種の電力制御装置が開発されている。   Since silicon carbide (SiC) has excellent semiconductor characteristics, it has attracted much attention as a wafer material for manufacturing a power device for high power control. In particular, development of SiC power devices such as SiC Schottky barrier diodes and MOSFETs (Metal Oxide-Semiconductor Field Effect Transistors) fabricated from SiC single crystal wafers is underway, withstand voltage exceeding 1000V, and Various power control devices have been developed, including an inverter for large power control with low power loss at the time of conversion because it can exhibit the advantage of reducing the on-resistance during conduction.

SiC単結晶ウエハを得るためのSiC単結晶インゴットは、目下のところ、改良レーリー法と呼ばれる昇華再結晶法、あるいは技術的には同義であるが、昇華法と呼ばれる方法によって、製造されるのが一般的である(非特許文献1参照)。   An SiC single crystal ingot for obtaining an SiC single crystal wafer is currently manufactured by a sublimation recrystallization method called an improved Rayleigh method, or a method called a sublimation method, which is technically synonymous. It is general (refer nonpatent literature 1).

耐電圧特性やデバイス長期動作信頼性に優れるSiCパワーデバイスを安定的に実現するためには、SiC単結晶インゴットの欠陥密度を十分に小さくすることが必要である。例えば、パワーデバイス特性に影響を与えるSiC単結晶ウエハの欠陥として、マイクロパイプ欠陥や(0001)基底面上の刃状転位である基底面転位等が挙げられる。特に前者は、転位芯部分に直径が数μm以上の穴が貫通した構造を有する欠陥であり、SiC単結晶ウエハを得るために、インゴットから切り出したSiC単結晶基板にSiC単結晶薄膜をエピタキシャル成長させた際、このような欠陥がエピタキシャル薄膜作製後に薄膜部分に残留すると、逆耐圧特性等が著しく劣化してしまうことが知られている(非特許文献2参照)。このように、SiC単結晶ウエハにおいては、欠陥密度をできる限り低減化することがパワーデバイスとして応用する上で重要となっている。   In order to stably realize a SiC power device having excellent withstand voltage characteristics and long-term operation reliability of the device, it is necessary to sufficiently reduce the defect density of the SiC single crystal ingot. For example, the defects of the SiC single crystal wafer that affect the power device characteristics include micropipe defects and basal plane dislocations that are edge dislocations on the (0001) basal plane. In particular, the former is a defect having a structure in which a hole having a diameter of several μm or more penetrates in a dislocation core portion. In order to obtain a SiC single crystal wafer, a SiC single crystal thin film is epitaxially grown on a SiC single crystal substrate cut out from an ingot. In such a case, it is known that if such a defect remains in the thin film portion after the epitaxial thin film is produced, the reverse breakdown voltage characteristics and the like are significantly deteriorated (see Non-Patent Document 2). As described above, in the SiC single crystal wafer, it is important to reduce the defect density as much as possible for application as a power device.

上記のような欠陥の発生原因の一つとしては、一般的にパワーデバイスに好適な4H型のSiC単結晶を成長する場合に、それ以外の6Hや15R等の異種ポリタイプ結晶が生成・混入することのほか、シリコン液滴や異物等が混入すること等が挙げられる(非特許文献3参照)。このような成長擾乱が発生すると、4H型SiC結晶の原子配列が乱れるために、成長時にマイクロパイプや転位欠陥等が多量に発生する。近年の昇華法成長技術の進展に伴い、SiC単結晶ウエハは、その口径も150mmに及ぶ大口径化に及んでおり、このような大口径ウエハを取り出せる大型のSiC単結晶を成長する全成長プロセスにおいて、上記のような成長擾乱を起こさない、安定した成長条件を実現できる製造方法が求められている。   One of the causes of the above defects is that when a 4H type SiC single crystal suitable for power devices is grown, other types of polytype crystals such as 6H and 15R are generated and mixed. In addition to the above, silicon droplets, foreign matters and the like may be mixed (see Non-Patent Document 3). When such a growth disturbance occurs, the atomic arrangement of the 4H-type SiC crystal is disturbed, so that a large amount of micropipes, dislocation defects, and the like are generated during the growth. With the progress of sublimation growth technology in recent years, SiC single crystal wafers have reached a large diameter of 150 mm, and the entire growth process for growing large SiC single crystals from which such large diameter wafers can be taken out. Therefore, there is a demand for a manufacturing method that can realize stable growth conditions without causing the above-described growth disturbance.

昇華法においては、黒鉛製の耐熱容器である坩堝にSiC原料と種結晶を装填し、約2000℃以上の高温で、SiCの昇華現象を利用して単結晶成長を行う(非特許文献1参照)。このとき、成長に最適な坩堝内温度環境は、坩堝の周囲に配置される断熱材を工夫することで達成されることが通例である(特許文献1参照)。断熱材について、特別な構造を付与することで坩堝内部の温度分布を決めることも行われており(特許文献2参照)、昇華再結晶法においては高品質なSiC単結晶を得るための重要な一部を構成する。また、坩堝の外周部に高周波誘導を受けて発熱するサセプターを配置することも行われており、サセプター及び断熱材を含めた総合的なホットゾーン構造によって、坩堝内の温度環境の最適化が行われている実態がある(特許文献3参照)。   In the sublimation method, a SiC raw material and a seed crystal are charged into a crucible which is a heat-resistant container made of graphite, and single crystal growth is performed using a sublimation phenomenon of SiC at a high temperature of about 2000 ° C. or more (see Non-Patent Document 1). ). At this time, it is customary that the temperature environment in the crucible optimal for growth is achieved by devising a heat insulating material arranged around the crucible (see Patent Document 1). Regarding the heat insulating material, the temperature distribution inside the crucible is determined by giving a special structure (see Patent Document 2), and in the sublimation recrystallization method, it is important to obtain a high-quality SiC single crystal. Part of it. In addition, a susceptor that generates heat upon receiving high-frequency induction is placed on the outer periphery of the crucible, and the temperature environment in the crucible is optimized by a comprehensive hot zone structure including the susceptor and heat insulating material. (See Patent Document 3).

ところで、一般的な昇華法では、黒鉛製坩堝内にSiC原料と種結晶とを対向するように配置する(例えば特許文献1参照)ため、坩堝は基本的に複数のパーツに分割し、各パーツを継ぎ合わせて形成される。この継ぎ目は、例えば、各パーツにネジ構造等を付与して嵌合し、所望の坩堝構造を組み上げることが通例である。このようにして組み上げた坩堝は、カーボン繊維からなる断熱材や、それに成型用樹脂を浸透させた成型断熱材等で覆い、2000℃を超える高温に加熱することでSiC単結晶の成長が行われる。   By the way, in a general sublimation method, since a SiC raw material and a seed crystal are arranged to face each other in a graphite crucible (see, for example, Patent Document 1), the crucible is basically divided into a plurality of parts. Are formed by joining together. For example, this seam is usually provided by fitting each part with a screw structure or the like to assemble a desired crucible structure. The crucible assembled in this manner is covered with a heat insulating material made of carbon fiber or a molded heat insulating material infiltrated with a molding resin, and heated to a high temperature exceeding 2000 ° C. to grow a SiC single crystal. .

しかしながら、坩堝の継ぎ目からは、成長温度では原料の熱分解によって発生するSiC昇華ガスの内圧が上昇するため、坩堝外部へ向かって昇華ガスが漏出する。漏出した昇華ガスは、坩堝を覆う断熱材に浸透し、或いは断熱材の表面近傍に滞留して、坩堝内部と比較して温度が低い部分で優先的に固化することから、これが原因となって断熱材の断熱特性が変化したり、或いは劣化して、坩堝内部の温度分布を変化させてしまう。特に、SiC単結晶が大口径化すると、装填原料量が多くなるために成長中に発生する昇華ガス量も増加し、このため断熱材としての断熱特性変化が大きくなる。このような場合、坩堝内部の温度分布が変化して単結晶成長が不安定化し、所望のポリタイプ以外の異種ポリタイプが発生したりするなど、結晶品質が劣化し易くなる。   However, from the seam of the crucible, the internal pressure of the SiC sublimation gas generated by the thermal decomposition of the raw material increases at the growth temperature, so that the sublimation gas leaks toward the outside of the crucible. The leaked sublimation gas penetrates into the heat insulating material covering the crucible or stays in the vicinity of the surface of the heat insulating material and solidifies preferentially at a portion where the temperature is lower than the inside of the crucible. The heat insulation characteristic of the heat insulating material changes or deteriorates, and changes the temperature distribution inside the crucible. In particular, when the SiC single crystal is increased in diameter, the amount of charged raw material is increased, so that the amount of sublimation gas generated during growth is also increased, and the change in heat insulation characteristics as a heat insulating material is increased. In such a case, the temperature distribution inside the crucible changes, the single crystal growth becomes unstable, and a different polytype other than the desired polytype is generated, so that the crystal quality is liable to deteriorate.

上記のような断熱材の劣化を回避するためには、坩堝の継ぎ目を、例えば耐熱性接着剤等を用いて密着させ、内部から昇華ガスが漏出しないようにすることが効果的である。しかしながら、このように坩堝を完全に密閉してしまうと、高温で発生する昇華ガスの坩堝内圧力が上昇し、かえってシリコン液滴のような異相が晶出する成長擾乱(非特許文献4参照)が起こることが知られており(非特許文献3参照)、これが起点となって欠陥が発生するなど、結晶品質が劣化してしまう。   In order to avoid the deterioration of the heat insulating material as described above, it is effective that the seam of the crucible is brought into close contact with, for example, a heat resistant adhesive so that the sublimation gas does not leak from the inside. However, if the crucible is completely sealed in this way, the pressure inside the crucible of the sublimation gas generated at a high temperature increases, and on the contrary, a growth disturbance in which a different phase such as a silicon droplet is crystallized (see Non-Patent Document 4). (See Non-Patent Document 3), and this causes the crystal quality to deteriorate, such as the occurrence of defects.

一方で、坩堝と断熱材との間に所定の大きさの空隙を設けて、この空隙での雰囲気ガスの流れを利用することで、坩堝から漏出した昇華ガスを断熱材の外部まで搬送して、断熱材の劣化を防ぐ方法が知られている(特許文献4参照)。このような方法によれば、結晶成長中の最適な加熱条件の制御性を向上させることができ、良質の結晶品質を持つ炭化珪素単結晶の成長を可能にするが、SiC単結晶の大口径化に伴う昇華ガスの発生量の増加に対応するためには、更なる検討の余地がある。   On the other hand, a gap of a predetermined size is provided between the crucible and the heat insulating material, and the sublimation gas leaked from the crucible is conveyed to the outside of the heat insulating material by using the flow of the atmospheric gas in this space. A method for preventing deterioration of the heat insulating material is known (see Patent Document 4). According to such a method, it is possible to improve the controllability of optimum heating conditions during crystal growth and enable the growth of a silicon carbide single crystal having a good crystal quality, but the large diameter of the SiC single crystal. In order to cope with the increase in the amount of sublimation gas generated as a result of conversion, there is room for further study.

特開2002-308697号公報JP 2002-308697 A 特開2008-74662号公報JP 2008-74662 A 特表2003-523918号公報Special Table 2003-523918 特開2011-219295号公報JP 2011-219295 JP

Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) p.146Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) p.146 G. Wahab, A. Ellison, A. Henry and E. Janzen, Appl. Phys. Lett., vol.76 (2000) p.2725.G. Wahab, A. Ellison, A. Henry and E. Janzen, Appl. Phys. Lett., Vol.76 (2000) p.2725. 藤本、日本結晶成長学会誌Vol.42(2015)p.148.Fujimoto, Journal of Japanese Society for Crystal Growth Vol.42 (2015) p.148. R. C. Glass, D. Henshall, V. F. Tsvetkov and C. H. Carter, Jr, phys. Stat. sol. (b) 202 (1997) p.149.R. C. Glass, D. Henshall, V. F. Tsvetkov and C. H. Carter, Jr, phys. Stat. Sol. (B) 202 (1997) p.149.

上述したように、大口径SiC単結晶の成長においても、坩堝内部を高品質なSiC単結晶の成長に適した状態に維持することができ、成長過程における断熱材の断熱特性の経時劣化を回避して安定な成長を実現できる方法が望まれている。   As mentioned above, even in the growth of large-diameter SiC single crystals, the inside of the crucible can be maintained in a state suitable for the growth of high-quality SiC single crystals, avoiding deterioration over time in the heat insulating properties of the heat insulating material during the growth process. Therefore, a method that can realize stable growth is desired.

そこで、本発明は、SiC単結晶の成長中での断熱材の劣化を抑制することができ、特に、直径が100mm以上の大口径単結晶成長においても、欠陥の少ない高品質なSiC単結晶インゴットを製造することができる炭化珪素単結晶インゴットの製造装置、及び、これを用いた炭化珪素単結晶インゴットの製造方法を提供することを目的とするものである。   Therefore, the present invention can suppress deterioration of the heat insulating material during the growth of the SiC single crystal, and in particular, a high-quality SiC single crystal ingot with few defects even in the growth of a large-diameter single crystal having a diameter of 100 mm or more. It is an object of the present invention to provide a silicon carbide single crystal ingot production apparatus capable of producing a silicon carbide single crystal ingot and a method for producing a silicon carbide single crystal ingot using the same.

本発明者らは、上述した従来技術の問題を解決するために鋭意検討した結果、少なくとも、黒鉛製坩堝の周壁部外側面とこの周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて断熱材外部に排出することで、結晶成長中の断熱材の劣化を抑制することができ、欠陥密度が小さい高品質なSiC単結晶インゴットを製造できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have at least between the outer surface of the peripheral wall portion of the graphite crucible and the inner surface of the peripheral wall insulating material covering the outer surface of the peripheral wall portion. By interposing a graphite shielding member, the sublimation gas leaked from the graphite crucible is discharged to the outside of the heat insulating material through a gap formed between the graphite shielding member and the outer surface of the peripheral wall of the graphite crucible. The present inventors have found that a high-quality SiC single crystal ingot having a small defect density can be produced by suppressing the deterioration of the insulating material during growth, and the present invention has been completed.

すなわち、本発明の要旨は、
(1)炭化珪素原料が装填される坩堝本体と種結晶が取り付けられる坩堝蓋体とを有した黒鉛製坩堝、該黒鉛製坩堝の周囲に配置された断熱材、及び、該黒鉛製坩堝を加熱する加熱装置を備えて、炭化珪素原料を加熱して昇華ガスを発生させ、種結晶上に再結晶させる昇華再結晶法により炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造装置であって、
少なくとも黒鉛製坩堝の周壁部外側面と該周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを、該黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝の上壁部側及び/又は底壁部側から断熱材外部に排出するようにしたことを特徴とする炭化珪素単結晶インゴットの製造装置、
(2)前記黒鉛製遮蔽部材が、黒鉛製坩堝の底壁部外側面と該底壁部外側面を覆う底壁断熱材の内側面との間に介在する底壁遮蔽部を有して、黒鉛製坩堝から漏出した昇華ガスを、前記隙間を通じて、黒鉛製坩堝の上壁部側から断熱材外部に排出する(1)に記載の炭化珪素単結晶インゴットの製造装置、
(3)前記黒鉛製坩堝の上壁部外側面を覆う上壁断熱材が中央開口部を有しており、前記黒鉛製遮蔽部材が、該上壁断熱材の内側面と黒鉛製坩堝の上壁部外側面との間に介在すると共に、前記中央開口部の内周側面を覆うように延設されて円筒排気口を形成する上壁遮蔽部を有して、黒鉛製坩堝から漏出した昇華ガスを、前記隙間と連通した該円筒排気口から断熱材外部に排出する(2)に記載の炭化珪素単結晶インゴットの製造装置、
(4)前記加熱装置が誘導加熱方式の加熱装置であり、前記黒鉛製遮蔽部材は、該加熱装置で用いる高周波の浸透深さより薄い厚みを有する(1)〜(3)のいずれかに記載の炭化珪素単結晶インゴットの製造装置、
(5)直径100mm以上の炭化珪素単結晶インゴットを製造するものである(1)〜(4)のいずれかに記載の炭化珪素単結晶インゴットの製造装置。
(6)炭化珪素原料が装填される坩堝本体と種結晶が取り付けられる坩堝蓋体とを有した黒鉛製坩堝、該黒鉛製坩堝の周囲に配置された断熱材、及び、該黒鉛製坩堝を加熱する加熱装置を備えた炭化珪素単結晶インゴットの製造装置を用いて、炭化珪素原料を加熱して昇華ガスを発生させ、種結晶上に再結晶させる昇華再結晶法により炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、
少なくとも、黒鉛製坩堝の周壁部外側面と該周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを、該黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝の上壁部側及び/又は底壁部側から断熱材外部に排出することを特徴とする炭化珪素単結晶インゴットの製造方法、
である。
That is, the gist of the present invention is as follows.
(1) A graphite crucible having a crucible body loaded with a silicon carbide raw material and a crucible lid to which a seed crystal is attached, a heat insulating material disposed around the graphite crucible, and heating the graphite crucible A silicon carbide single crystal ingot producing apparatus for producing a silicon carbide single crystal ingot by a sublimation recrystallization method in which a silicon carbide raw material is heated to generate a sublimation gas and recrystallized on a seed crystal. And
At least a graphite shielding member is interposed between the outer surface of the peripheral wall portion of the graphite crucible and the inner surface of the peripheral wall heat insulating material covering the outer surface of the peripheral wall portion, and the sublimation gas leaked from the graphite crucible is shielded from the graphite shield. Through the gap formed between the member and the outer surface of the peripheral wall portion of the graphite crucible, the heat is discharged from the upper wall portion side and / or the bottom wall portion side of the graphite crucible to the outside of the heat insulating material. Production apparatus for silicon carbide single crystal ingot,
(2) The graphite shielding member has a bottom wall shielding portion interposed between the bottom wall portion outer surface of the graphite crucible and the inner surface of the bottom wall heat insulating material covering the bottom wall outer surface, The apparatus for producing a silicon carbide single crystal ingot according to (1), wherein the sublimation gas leaked from the graphite crucible is discharged to the outside of the heat insulating material from the upper wall portion side of the graphite crucible through the gap,
(3) The upper wall heat insulating material covering the outer surface of the upper wall portion of the graphite crucible has a central opening, and the graphite shielding member is disposed on the inner surface of the upper wall heat insulating material and the graphite crucible. Sublimation leaking from the graphite crucible, having an upper wall shielding portion that is interposed between the outer wall surface of the wall portion and extends to cover the inner peripheral side surface of the central opening to form a cylindrical exhaust port The apparatus for producing a silicon carbide single crystal ingot according to (2), wherein the gas is discharged from the cylindrical exhaust port communicating with the gap to the outside of the heat insulating material,
(4) The heating apparatus according to any one of (1) to (3), wherein the heating apparatus is an induction heating type heating apparatus, and the graphite shielding member has a thickness smaller than a high-frequency penetration depth used in the heating apparatus. Production apparatus for silicon carbide single crystal ingot,
(5) The apparatus for producing a silicon carbide single crystal ingot according to any one of (1) to (4), which produces a silicon carbide single crystal ingot having a diameter of 100 mm or more.
(6) A graphite crucible having a crucible body loaded with a silicon carbide raw material and a crucible lid body to which a seed crystal is attached, a heat insulating material disposed around the graphite crucible, and heating the graphite crucible A silicon carbide single crystal ingot is manufactured by a sublimation recrystallization method in which a silicon carbide raw material is heated to generate a sublimation gas and recrystallized on a seed crystal using a silicon carbide single crystal ingot manufacturing apparatus equipped with a heating device A silicon carbide single crystal ingot manufacturing method comprising:
At least, a sublimation gas leaked from the graphite crucible is interposed between the graphite crucible with a graphite shielding member interposed between the outer surface of the peripheral wall of the graphite crucible and the inner surface of the peripheral wall heat insulating material covering the outer surface of the peripheral wall. Silicon carbide is discharged from the top wall side and / or bottom wall side of the graphite crucible through the gap formed between the shielding member and the outer peripheral surface of the peripheral wall of the graphite crucible. Manufacturing method of single crystal ingot,
It is.

本発明における炭化珪素単結晶インゴットの製造装置では、坩堝を覆う断熱材が結晶成長中に劣化するのを防ぐことができることから、坩堝内の温度分布を最適に維持でき、欠陥の少ない高品質、SiC単結晶インゴットが簡便に製造可能になる。特に、直径100mm以上の大口径を有するSiC単結晶インゴットの製造において効果的であり、このようなSiC単結晶インゴットから切り出された大口径SiC単結晶基板より製造したSiC単結晶ウエハを用いれば、極めて高性能かつ信頼性に優れた電力制御用パワーデバイスを高効率で作製することができるようになる。   In the apparatus for producing a silicon carbide single crystal ingot in the present invention, since the heat insulating material covering the crucible can be prevented from deteriorating during crystal growth, the temperature distribution in the crucible can be optimally maintained, high quality with few defects, A SiC single crystal ingot can be easily manufactured. In particular, it is effective in the production of a SiC single crystal ingot having a large diameter of 100 mm or more in diameter, and if a SiC single crystal wafer manufactured from a large diameter SiC single crystal substrate cut out from such a SiC single crystal ingot is used, A power device for power control having extremely high performance and excellent reliability can be manufactured with high efficiency.

図1(a)、(b)は、本発明に係るSiC単結晶インゴットの製造装置(加熱装置は図示せず)の一例を説明するための模式図である。FIGS. 1A and 1B are schematic views for explaining an example of a SiC single crystal ingot manufacturing apparatus (heating apparatus not shown) according to the present invention. 図2は、黒鉛製坩堝の他の例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining another example of the graphite crucible. 図3は、昇華再結晶法(改良レーリー法)による単結晶成長装置の構成を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the configuration of a single crystal growth apparatus using a sublimation recrystallization method (improved Rayleigh method). 図4は、従来のSiC単結晶インゴットの製造装置(加熱装置は図示せず)を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a conventional SiC single crystal ingot manufacturing apparatus (heating apparatus not shown).

以下、本発明について詳しく説明する。
本発明は、炭化珪素(SiC)原料が装填される坩堝本体と種結晶が取り付けられる坩堝蓋体とを有した黒鉛製坩堝、該黒鉛製坩堝の周囲に配置された断熱材、及び、該黒鉛製坩堝を加熱する加熱装置を備えて、SiC原料を加熱して昇華ガスを発生させ、種結晶上に再結晶させる昇華再結晶法により、SiC単結晶インゴットを製造するSiC単結晶インゴットの製造装置に関し、少なくとも黒鉛製坩堝の周壁部外側面と該周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを、該黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝の上壁部側及び/又は底壁部側から断熱材外部に排出できるようにする。
The present invention will be described in detail below.
The present invention relates to a graphite crucible having a crucible body loaded with a silicon carbide (SiC) raw material and a crucible lid body to which a seed crystal is attached, a heat insulating material disposed around the graphite crucible, and the graphite A SiC single crystal ingot manufacturing apparatus that includes a heating device for heating a crucible, heats an SiC raw material, generates a sublimation gas, and recrystallizes on a seed crystal by a sublimation recrystallization method. The sublimation gas leaked from the graphite crucible by interposing a graphite shielding member between at least the outer peripheral surface of the peripheral wall portion of the graphite crucible and the inner surface of the peripheral wall heat insulating material covering the outer peripheral surface of the graphite crucible, Through a gap formed between the shield member and the outer peripheral surface of the peripheral wall of the graphite crucible, the heat can be discharged from the top wall side and / or the bottom wall side of the graphite crucible to the outside of the heat insulating material.

一般に、黒鉛製坩堝は、結晶成長のためのSiC原料や種結晶を装填し易くしたり、或いは、これらSiC原料と種結晶との間の結晶成長領域を大きくするなどの目的から、例えば、上記のように坩堝蓋体と坩堝本体のように2つの坩堝部材に分けたり、坩堝本体を更に上部本体と下部本体に分けるなどして、2つ乃至はそれ以上の坩堝部材に分割されており、これら坩堝部材を継ぎ合せて坩堝を形成する。その際、坩堝部材の継ぎ合せ部分は雄ネジと雌ネジのネジ構造にして螺合させたり、研削加工面同士で互いに嵌合するような機械的な結合のほか、耐熱接着剤等を用いて接合させることができるが、結晶成長温度での坩堝内部の昇華ガス圧力が過度に上昇しないように、少なくとも1箇所の継ぎ合せ部分は昇華ガスが漏出可能となるように、接着剤で接合させずに、ネジ構造や嵌め合い等によって機械的に結合させるのが通常である。   In general, a graphite crucible is easily loaded with a SiC raw material or a seed crystal for crystal growth, or for the purpose of increasing a crystal growth region between these SiC raw material and a seed crystal, for example, the above-mentioned It is divided into two or more crucible members by dividing the crucible body into two crucible members, such as a crucible lid body and a crucible body, or by further dividing the crucible body into an upper body and a lower body. These crucible members are joined together to form a crucible. At that time, the joint part of the crucible member is screwed into a male screw and female screw structure, or mechanically joined to each other between the ground surfaces, using a heat-resistant adhesive, etc. Can be bonded, but at least one seam is not bonded with an adhesive so that the sublimation gas can leak out so that the sublimation gas pressure inside the crucible at the crystal growth temperature does not rise excessively. Further, it is usually mechanically coupled by a screw structure or fitting.

図1(a)、(b)には、本発明に係るSiC単結晶インゴットの製造装置の一例が示されている(加熱装置は図示せず)。これらは、坩堝蓋体3の下面側と坩堝本体4の上面側との継ぎ合せ部分がネジ構造により螺合する黒鉛製坩堝5の例であり、坩堝蓋体3の下面側に雄ネジが形成され、坩堝本体4の上面側に雌ネジが形成されている。そして、この黒鉛製坩堝5の周壁部外側面とこの周壁部外側面を覆う周壁断熱材6の内側面との間に黒鉛製遮蔽部材11が介在することで、坩堝蓋体3と坩堝本体4との継ぎ目から漏出した昇華ガスは、黒鉛製遮蔽部材11と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、周壁断熱材6、底壁断熱材7及び上壁断熱材8からなる断熱材9の外部に排出され(この例では後述するように隙間と連通する円筒排気口12から排出され)、少なくとも周壁断熱材6の内側面に昇華ガスが流出するのを防ぐことができる。   FIGS. 1A and 1B show an example of an apparatus for producing an SiC single crystal ingot according to the present invention (a heating apparatus is not shown). These are examples of the graphite crucible 5 in which the joint portion between the lower surface side of the crucible lid body 3 and the upper surface side of the crucible body 4 is screwed by a screw structure, and a male screw is formed on the lower surface side of the crucible lid body 3. A female screw is formed on the upper surface side of the crucible body 4. Then, the graphite shielding member 11 is interposed between the outer peripheral surface of the peripheral wall portion of the graphite crucible 5 and the inner surface of the peripheral wall heat insulating material 6 covering the outer peripheral surface of the peripheral wall portion. The sublimation gas leaked from the joint between the peripheral wall heat insulating material 6, the bottom wall heat insulating material 7 and the upper wall heat insulating material 8 is passed through a gap formed between the graphite shielding member 11 and the outer surface of the peripheral wall portion of the graphite crucible. To prevent the sublimation gas from flowing out to at least the inner surface of the peripheral wall heat insulating material 6. it can.

図2は、図1とは異なる構造の黒鉛製坩堝5の例が示されており、坩堝蓋体3の下面側と坩堝本体4の上面側との継ぎ合せ部分を互いに相補的な形状にして嵌合することもできる。また、坩堝本体4を上部本体4aと下部本体4bとに分割して、この図2に示したように、これらの継ぎ合せ部分を互いに相補的な形状にして嵌合してもよく、ネジ構造により螺合するようにしてもよい。この図2に示したような黒鉛製坩堝5の場合でも、先と同様に、坩堝蓋体3と坩堝本体4との継ぎ目や坩堝本体4の継ぎ目(上部本体4aと下部本体4bとの継ぎ目)から漏出した昇華ガスは、黒鉛製遮蔽部材11と黒鉛製坩堝5の周壁部外側面との間に形成された隙間を通じて断熱材9の外部に排出され(この例では後述するように黒鉛製坩堝の上壁部側から断熱材外部に排出され)、少なくとも周壁断熱材6の内側面に昇華ガスが流出するのを防ぐことができる。   FIG. 2 shows an example of a graphite crucible 5 having a structure different from that shown in FIG. 1. The seam between the lower surface side of the crucible lid 3 and the upper surface side of the crucible body 4 is made complementary to each other. It can also be fitted. Further, the crucible body 4 may be divided into an upper body 4a and a lower body 4b, and these seam portions may be fitted in complementary shapes as shown in FIG. May be screwed together. Even in the case of the graphite crucible 5 as shown in FIG. 2, the seam between the crucible lid 3 and the crucible body 4 and the seam of the crucible body 4 (the seam between the upper body 4a and the lower body 4b). The sublimation gas leaked from the gas is discharged to the outside of the heat insulating material 9 through a gap formed between the graphite shielding member 11 and the outer peripheral surface of the graphite crucible 5 (in this example, as will be described later, the graphite crucible is described later). It is possible to prevent the sublimation gas from flowing out to at least the inner surface of the peripheral wall heat insulating material 6.

本発明における黒鉛製遮蔽部材11は、少なくとも黒鉛製坩堝5の周壁部外側面とこの周壁部外側面を覆う周壁断熱材6の内側面との間に配置されて、黒鉛製坩堝5の周壁部外側面から漏出した昇華ガスが周壁断熱材6側に流出しないように遮断することができ、昇華ガスが、黒鉛製遮蔽部材11と黒鉛製坩堝5の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝5の上壁部側から排出されたり、底壁部側から排出されたり、これら両方から排出されるようにすることができればよいが、例えば、図1(a)、(b)に示したように、黒鉛製遮蔽部材11が、黒鉛製坩堝5の底壁部外側面とこの底壁部外側面を覆う底壁断熱材7の内側面との間に底壁遮蔽部11aを有して、昇華ガスが上記隙間を通じて黒鉛製坩堝5の上壁部側から断熱材外部に排出されるようにし、昇華ガスが底壁断熱材7側に流出するのを防ぐようにするのが好ましい。   The graphite shielding member 11 in the present invention is disposed between at least the outer peripheral surface of the graphite crucible 5 and the inner surface of the peripheral wall heat insulating material 6 covering the outer peripheral surface of the graphite crucible 5. The sublimation gas leaked from the outer surface can be blocked from flowing out to the peripheral wall heat insulating material 6 side, and the sublimation gas is formed between the graphite shielding member 11 and the outer surface of the peripheral wall portion of the graphite crucible 5. As long as it can be discharged from the upper wall side of the graphite crucible 5 or from the bottom wall side through the gap, it can be discharged from both, for example, FIG. As shown in b), the graphite shielding member 11 has a bottom wall shielding portion between the outer surface of the bottom wall portion of the graphite crucible 5 and the inner surface of the bottom wall heat insulating material 7 covering the outer surface of the bottom wall portion. 11a, whether the sublimation gas passes through the gap, the upper wall side of the graphite crucible 5 So as to be discharged to the heat insulating material externally, sublimation gas is preferably set to prevent the outflow of the bottom wall heat insulating material 7 side.

このうち、図1(b)は、黒鉛製坩堝5の上壁部外側面を断熱材で覆わずに開放した製造装置の例であるが、図1(a)のように、黒鉛製坩堝5の上壁部外側面を上壁断熱材8で覆うようにしてもよい。その場合には、黒鉛製遮蔽部材11が、この上壁断熱材8の内側面と黒鉛製坩堝5の上壁部外側面との間に位置する上壁遮蔽部11bを有するようにするのがよいが、一般に、この上壁断熱材8には、坩堝蓋体3の温度を測定する目的であったり、熱放出により種結晶1の中心部の温度を周辺部に比べて低下させる目的等から中央開口部10が設けられることから、好ましくは、この上壁遮蔽部11bの一端が、上壁断熱材8に形成された中央開口部10の内周側面を覆うように延設されて、上壁遮蔽部11bの端部が中央開口部10内で円筒排気口12を形成するのがよい。これにより、この図1の例における黒鉛製遮蔽部材11は、黒鉛製坩堝5の底壁部外側面に底壁遮蔽部11aを有し、黒鉛製坩堝5の上壁部外側面に上壁遮蔽部11bを有して、黒鉛製坩堝5の外側面(上壁部外側面、周壁部外側面、及び底壁部外側面)と断熱材9の内側面(上壁断熱材内側面、周壁断熱材内側面、及び底壁断熱材内側面)との間に形成された隙間が円筒排気口12と連通して、黒鉛製坩堝5から漏出した昇華ガスがこの円筒排気口12より断熱材9の外部に排出され、昇華ガスが断熱材の内側面に流出するのを防ぐことができる。   Among these, FIG.1 (b) is an example of the manufacturing apparatus which open | released without covering the upper wall part outer surface of the graphite crucible 5 with a heat insulating material, but the graphite crucible 5 is like FIG.1 (a). You may make it cover the upper wall part outer surface with the upper wall heat insulating material 8. FIG. In that case, the graphite shielding member 11 has an upper wall shielding portion 11b located between the inner side surface of the upper wall heat insulating material 8 and the upper wall portion outer side surface of the graphite crucible 5. Generally, the upper wall heat insulating material 8 is used for the purpose of measuring the temperature of the crucible lid 3 or for the purpose of lowering the temperature of the central portion of the seed crystal 1 as compared with the peripheral portion by heat release. Since the central opening 10 is provided, it is preferable that one end of the upper wall shielding part 11b is extended so as to cover the inner peripheral side surface of the central opening 10 formed in the upper wall heat insulating material 8, and It is preferable that the end of the wall shielding part 11 b forms the cylindrical exhaust port 12 in the central opening 10. Thereby, the graphite shielding member 11 in the example of FIG. 1 has the bottom wall shielding portion 11a on the outer surface of the bottom wall portion of the graphite crucible 5, and the upper wall shielding on the outer surface of the upper wall portion of the graphite crucible 5. The outer surface of the graphite crucible 5 (upper wall portion outer surface, peripheral wall portion outer surface and bottom wall portion outer surface) and the inner surface of the heat insulating material 9 (upper wall heat insulating material inner surface, peripheral wall heat insulation) The gap formed between the inner side surface of the material and the inner side surface of the bottom wall heat insulating material communicates with the cylindrical exhaust port 12, and the sublimation gas leaked from the graphite crucible 5 flows into the insulating material 9 from the cylindrical exhaust port 12. It is possible to prevent the sublimation gas from being discharged to the outside and flowing out to the inner surface of the heat insulating material.

なお、黒鉛製遮蔽部材11と黒鉛製坩堝5の周壁部外側面との間に形成された隙間を通じて排出される昇華ガスの排出箇所は、これらの例に限られずに、黒鉛製坩堝5の上壁部側のいずれかから断熱材9の外部に排出されるようにしてもよく、或いは、底壁部側から断熱材9の外部に排出されるようにしてもよい。   In addition, the discharge location of the sublimation gas discharged through the gap formed between the graphite shielding member 11 and the outer peripheral surface of the graphite crucible 5 is not limited to these examples. You may make it discharge | emit from the wall part side to the exterior of the heat insulating material 9, or you may make it discharge | emit it to the exterior of the heat insulating material 9 from the bottom wall part side.

また、このような黒鉛製遮蔽部材11については、例えば、黒鉛製坩堝5の形状にあわせて、単一の黒鉛ブロックを削り出して加工するなどして、底壁遮蔽部11aを備えた継ぎ目の無い一体部品の底付き円筒部材として作製するようにしてもよい。また、必要に応じて、黒鉛製坩堝5の上壁部外側面に対応する板状の黒鉛部材を用意して、これに上壁断熱材8の中央開口部10に対応した穴あけ加工を行い、更には、円筒排気口12を形成するための円筒状の黒鉛部材を用意して、耐熱接着剤等でこれらを上記の底付き円筒部材に接合して上壁遮蔽部11bを設けるようにしてもよい。或いは、黒鉛ブロックから黒鉛製坩堝5の周壁部外側面に対応する筒状の黒鉛部材を削り出して、底壁遮蔽部11aを形成する板状の黒鉛部材や、上記のような上壁遮蔽部11bを形成する各黒鉛部材を耐熱接着剤等で接合するようにしてもよい。ここで、耐熱接着剤としては、例えば、日清紡績(株)社製商品名ST−201等のような市販のカーボン接着用耐熱性接着剤を用いることができる。また、このような耐熱性接着剤以外にも、例えば、フェノール樹脂等の高分子材料をエチルアルコール等の有機溶媒に溶解した接着剤であったり、更には、これらにカーボン粉末を混合させた接着剤等を用いることもできる。また、接着力を増加するために、黒鉛部材に接着剤を塗布して約200℃以上の加熱処理を行うようにしてもよい。   For such a graphite shielding member 11, for example, a single graphite block is cut out and processed in accordance with the shape of the graphite crucible 5, and the seam provided with the bottom wall shielding portion 11 a is processed. You may make it produce as a cylindrical member with the bottom of the integral part which does not exist. Further, if necessary, a plate-like graphite member corresponding to the outer surface of the upper wall portion of the graphite crucible 5 is prepared, and drilling processing corresponding to the central opening portion 10 of the upper wall heat insulating material 8 is performed on this. Furthermore, a cylindrical graphite member for forming the cylindrical exhaust port 12 is prepared, and these are joined to the above-mentioned cylindrical member with a bottom with a heat-resistant adhesive or the like so as to provide the upper wall shielding part 11b. Good. Alternatively, a plate-like graphite member that forms the bottom wall shielding portion 11a by cutting out a cylindrical graphite member corresponding to the outer surface of the peripheral wall portion of the graphite crucible 5 from the graphite block, or the upper wall shielding portion as described above You may make it join each graphite member which forms 11b with a heat resistant adhesive agent. Here, as the heat-resistant adhesive, for example, a commercially available heat-resistant adhesive for carbon bonding such as trade name ST-201 manufactured by Nisshinbo Co., Ltd. can be used. In addition to such a heat-resistant adhesive, for example, an adhesive obtained by dissolving a polymer material such as a phenol resin in an organic solvent such as ethyl alcohol, or an adhesive obtained by mixing carbon powder with these. An agent or the like can also be used. In order to increase the adhesive strength, an adhesive may be applied to the graphite member and heat treatment at about 200 ° C. or higher may be performed.

また、この黒鉛製遮蔽部材11の厚みについては、例えば、装置の運搬等でのハンドリング時に破損したりしないように、少なくとも0.5mmの厚みを有するものを用いるのがよい。一方で、厚みの上限については、加熱装置が通電加熱方式(抵抗加熱方式)のものを用いるときには特に制限はないが、誘導加熱方式の加熱装置を用いる場合には、黒鉛製遮蔽部材の厚みは、加熱装置で用いる高周波の浸透深さよりも薄くなるようにするのがよい。   Moreover, as for the thickness of the graphite shielding member 11, for example, a material having a thickness of at least 0.5 mm may be used so that the graphite shielding member 11 is not damaged during handling during transportation of the apparatus. On the other hand, the upper limit of the thickness is not particularly limited when the heating device uses an electric heating method (resistance heating method), but when an induction heating method heating device is used, the thickness of the graphite shielding member is It is better to make it thinner than the penetration depth of the high frequency used in the heating device.

ここで、高周波の浸透深さに関して、黒鉛製坩堝や黒鉛製遮蔽部材等のような黒鉛材に高周波の電磁波を印加した場合、表面近傍に渦電流が発生し、そのジュール熱により加熱される際に、渦電流は表皮効果により表面から深さ方向へ指数関数的に減少する。そのため、渦電流が表面における強さの0.368倍に減少した点までの深さを浸透深さと定義することができる。この浸透深さδ(cm)は、次の式で表される。

Figure 2018168051
Here, regarding high-frequency penetration depth, when high-frequency electromagnetic waves are applied to a graphite material such as a graphite crucible or a graphite shielding member, an eddy current is generated near the surface and heated by its Joule heat. In addition, the eddy current decreases exponentially from the surface to the depth due to the skin effect. Therefore, the depth to the point where the eddy current is reduced to 0.368 times the strength at the surface can be defined as the penetration depth. This penetration depth δ (cm) is expressed by the following equation.
Figure 2018168051

ここで、ρは電気抵抗率(μΩ・cm)、μは比透磁率(非磁性体では1)、fは電磁波の周波数(Hz)である(例えば、株式会社ベストシステムホームページ参照:http://www.best-system-t3.com/)。工業用等方性カーボン材料の場合、室温での代表的な電気抵抗値15μΩ・mを採用し、10kHzの電磁波を印加する場合には、浸透深さは約1.9cm(=19mm)となる。浸透深さは、結晶成長が行われる高温(2000℃以上)での電気抵抗率を用いる必要があるが、工業用カーボン材料は、材質にもよるが概ね大きな温度依存性は無いと近似できる(例えば、軽量標準総合センター:https://www.nmij.jp/~nmijclub/netsu/docimgs/1-iwashita.pdf)ことから、室温での計算値δで評価が可能である。なお、電気抵抗率の温度変化が無視できない場合は、成長温度での値を反映した修正を適宜行うようにすればよい。   Here, ρ is the electrical resistivity (μΩ · cm), μ is the relative magnetic permeability (1 for non-magnetic materials), and f is the frequency (Hz) of the electromagnetic wave (for example, see Best System Homepage: http: / /www.best-system-t3.com/). In the case of an industrial isotropic carbon material, when a typical electric resistance value of 15 μΩ · m at room temperature is adopted and an electromagnetic wave of 10 kHz is applied, the penetration depth is about 1.9 cm (= 19 mm). . The penetration depth needs to use electrical resistivity at a high temperature (2000 ° C. or higher) at which crystal growth is performed, but an industrial carbon material can be approximated as having almost no large temperature dependency although it depends on the material ( For example, the lightweight standard synthesis center: https://www.nmij.jp/~nmijclub/netsu/docimgs/1-iwashita.pdf), it is possible to evaluate with a calculated value δ at room temperature. If the temperature change of the electrical resistivity cannot be ignored, correction that reflects the value at the growth temperature may be performed as appropriate.

黒鉛製遮蔽部材の厚みが高周波の浸透深さ以上であると、黒鉛製遮蔽部材自体が主たる発熱体となり、この遮蔽部材の構造が影響して、最適な坩堝内温度分布を変化させてしまうおそれがある。一般的に用いられる誘導加熱方式の加熱装置における周波数(一般的には7〜10kHz程度)であれば、黒鉛材料の電気抵抗率値にも依るが高周波の浸透深さを考慮すると黒鉛製遮蔽部材の厚さは浸透深さよりも十分に小さいことが必要となる。上記の場合では概ね15mm以下程度であるのがよいが、好ましい黒鉛製遮蔽部材の厚みは1mm以上10mm以下であるのがよく、より好ましくは2mm以上5mm以下であるのがよい。なお、上述したように、通電加熱方式の加熱装置を用いる場合、黒鉛製遮蔽部材11の厚みの上限は特に制限されないが、例えば、誘導加熱方式の加熱装置の場合と同程度にすることができる。   If the thickness of the graphite shielding member is greater than or equal to the penetration depth of the high frequency, the graphite shielding member itself becomes the main heating element, and the structure of this shielding member may affect the temperature distribution in the crucible optimally. There is. If it is a frequency (generally about 7 to 10 kHz) in a commonly used induction heating type heating apparatus, it depends on the electrical resistivity value of the graphite material, but considering the penetration depth of the high frequency, a graphite shielding member The thickness needs to be sufficiently smaller than the penetration depth. In the above case, the thickness is preferably about 15 mm or less, but the preferable thickness of the graphite shielding member is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 5 mm or less. As described above, when an electric heating type heating device is used, the upper limit of the thickness of the graphite shielding member 11 is not particularly limited. For example, the upper limit of the thickness of the graphite shielding member 11 can be set to the same level as that of an induction heating type heating device. .

本発明におけるSiC単結晶インゴットの製造装置は、上記のような黒鉛製遮蔽部材が、少なくとも黒鉛製坩堝の周壁部外側面とこの周壁部外側面を覆う周壁断熱材の内側面との間に介在する以外には、公知の製造装置と同様にすることができる。そして、本発明においては、黒鉛製坩堝から漏出した昇華ガスは、黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて断熱材外部に排出され、少なくとも周壁断熱材6の内側面に昇華ガスが流出するのを防いで、断熱材の特性劣化を回避することができる。好ましくは、図2に示したように、黒鉛製遮蔽部材11が、黒鉛製坩堝5の底壁部外側面とこの底壁部外側面を覆う底壁断熱材7の内側面との間に介在する底壁遮蔽部11aを有したり、図1に示したように、更に、黒鉛製坩堝5の上壁部外側面とこの上壁部外側面を覆う上壁断熱材8の内側面との間に介在する上壁遮蔽部を有するなどして、昇華ガスがこれら全ての断熱材9の内側面に流出するのを防いで、断熱材9の特性劣化を回避することができる。そのため、例えば、成長開始から終了まで坩堝内の最適な温度分布を維持することができ、また、直径が100mm(4インチ)以上であったり、150mm(6インチ)以上のような大口径のSiC単結晶インゴットを製造するために坩堝内により多くのSiC原料が装填される場合に、特に顕著な効果を発揮するものである。   In the SiC single crystal ingot producing apparatus according to the present invention, the graphite shielding member as described above is interposed between at least the outer peripheral surface of the peripheral wall of the graphite crucible and the inner surface of the peripheral heat insulating material covering the outer peripheral surface of the peripheral wall. Other than this, it can be the same as a known manufacturing apparatus. In the present invention, the sublimation gas leaked from the graphite crucible is discharged to the outside of the heat insulating material through a gap formed between the graphite shielding member and the outer peripheral surface of the graphite crucible, and at least the peripheral wall heat insulating material. It is possible to prevent the sublimation gas from flowing out to the inner surface of 6, and to avoid the characteristic deterioration of the heat insulating material. Preferably, as shown in FIG. 2, the graphite shielding member 11 is interposed between the outer surface of the bottom wall portion of the graphite crucible 5 and the inner surface of the bottom wall heat insulating material 7 covering the outer surface of the bottom wall portion. Or a bottom wall shielding portion 11a to be used, and as shown in FIG. 1, the upper wall portion outer surface of the graphite crucible 5 and the inner surface of the upper wall heat insulating material 8 covering the outer surface of the upper wall portion By having an upper wall shielding part interposed therebetween, the sublimation gas can be prevented from flowing out to the inner side surfaces of all of these heat insulating materials 9, and deterioration of the characteristics of the heat insulating material 9 can be avoided. Therefore, for example, the optimum temperature distribution in the crucible can be maintained from the start to the end of the growth, and the SiC having a large diameter such as a diameter of 100 mm (4 inches) or more or 150 mm (6 inches) or more. This is particularly effective when a large amount of SiC raw material is charged in the crucible to produce a single crystal ingot.

また、上記のようにして得られた大口径のSiC単結晶インゴットから切り出した、大口径SiC単結晶基板上には、例えば、化学気相蒸着法(CVD法)等によりSiC単結晶薄膜をエピタキシャル成長させることで、実質的に基板の全領域において、基底面転位のような欠陥が極めて少ないエピタキシャルウエハを作製することができる。そして、このようなエピタキシャルウエハを使用することで、電力変換特性に優れた各種のパワーデバイスを効率よく得ることが可能になる。   In addition, on a large-diameter SiC single crystal substrate cut out from the large-diameter SiC single crystal ingot obtained as described above, an SiC single crystal thin film is epitaxially grown by, for example, chemical vapor deposition (CVD). By doing so, an epitaxial wafer having very few defects such as basal plane dislocations can be produced in substantially the entire region of the substrate. By using such an epitaxial wafer, it is possible to efficiently obtain various power devices having excellent power conversion characteristics.

以下、本発明について、実施例に基づき説明するが、本発明はこれらの内容に制限されるものではない。   Hereinafter, although the present invention is explained based on an example, the present invention is not limited to these contents.

(実施例1)
先ず、昇華再結晶法によるSiC単結晶インゴットの製造に関して、その概略を説明する。図3には、昇華再結晶法による単結晶成長装置の一般的な例が示されている。SiC単結晶基板からなる種結晶1は、坩堝5を形成する黒鉛製の坩堝蓋体3の内壁面に取り付けられ、SiC原料(SiC粉末)2は、同じく坩堝5を形成する黒鉛製の坩堝本体4に充填されている。このようにしてなる黒鉛製坩堝5は、二重石英管13の内部の黒鉛支持棒18に設置され、円周方向の温度不均一性を解消するために、1rpm未満の回転速度で黒鉛製坩堝5が回転可能な機構になっており、結晶成長中はほぼ一定速度で常に回転するようになっている。黒鉛製坩堝5の周囲には、熱シールドのための断熱材(断熱保温材)9が設置されている。二重石英管13は、真空排気装置14により高真空排気(10-3Pa以下)することができ、かつ内部雰囲気をアルゴンガスにより圧力制御することができる。また、二重石英管13の外周には、ワークコイル15が設置されており、高周波電流を流すことにより黒鉛製坩堝5を加熱し、SiC原料2及び種結晶1を所望の温度に加熱することができる。坩堝温度5の計測は、二重石英管13の上部方向の中央部に直径2〜4mmの光路16を設け、坩堝蓋体3の外側表面に設けられた断熱材抜熱穴(中央開口部)10から輻射光を取り出し、二色温度計17を用いて行う。なお、本発明においては黒鉛製坩堝5と断熱材9との間に黒鉛製遮蔽部材が位置するが、図3ではこれを図示しておらず、詳しくは、以下で説明するとおりである。
Example 1
First, an outline of the production of a SiC single crystal ingot by the sublimation recrystallization method will be described. FIG. 3 shows a general example of a single crystal growth apparatus using a sublimation recrystallization method. A seed crystal 1 made of an SiC single crystal substrate is attached to the inner wall surface of a graphite crucible lid 3 that forms a crucible 5, and an SiC raw material (SiC powder) 2 is a graphite crucible body that also forms the crucible 5. 4 is filled. The graphite crucible 5 thus configured is installed on the graphite support rod 18 inside the double quartz tube 13 and is used to eliminate the temperature non-uniformity in the circumferential direction at a rotational speed of less than 1 rpm. 5 is a rotatable mechanism, and always rotates at a substantially constant speed during crystal growth. Around the graphite crucible 5, a heat insulating material (heat insulating heat insulating material) 9 for heat shielding is installed. The double quartz tube 13 can be highly evacuated (10 −3 Pa or less) by the evacuation device 14, and the internal atmosphere can be pressure controlled by argon gas. In addition, a work coil 15 is installed on the outer periphery of the double quartz tube 13, and the graphite crucible 5 is heated by flowing a high-frequency current to heat the SiC raw material 2 and the seed crystal 1 to a desired temperature. Can do. The crucible temperature 5 is measured by providing an optical path 16 having a diameter of 2 to 4 mm at the center in the upper direction of the double quartz tube 13, and a heat insulating material heat removal hole (center opening) provided on the outer surface of the crucible lid 3. Radiant light is extracted from 10 and the two-color thermometer 17 is used. In the present invention, a graphite shielding member is located between the graphite crucible 5 and the heat insulating material 9, but this is not shown in FIG. 3 and will be described in detail below.

すなわち、この実施例1においては、種結晶1として、口径102mm、厚さ1.5mmの{0001}4H型SiC単結晶基板を準備し、(000−1)面(C面)が成長面となるように坩堝蓋体3の内側面に貼り付けた。そして、SiC原料2であるSiC粉末を装填した坩堝本体4に対して、図1(a)に示したように、坩堝蓋体3の下面側と坩堝本体4の上面側とをネジ構造により螺合して、昇華ガスが漏出可能となるように継ぎ目部分を形成した。なお、坩堝蓋体3と坩堝本体4とからなる黒鉛製坩堝5は、周壁部、底壁部、上壁部ともに厚みは全て15mmである。   That is, in Example 1, a {0001} 4H type SiC single crystal substrate having a diameter of 102 mm and a thickness of 1.5 mm is prepared as the seed crystal 1, and the (000-1) plane (C plane) is the growth plane. It was affixed on the inner surface of the crucible lid 3 so as to be. Then, as shown in FIG. 1A, the lower surface side of the crucible lid body 3 and the upper surface side of the crucible body 4 are screwed into the crucible body 4 loaded with SiC powder as the SiC raw material 2 by a screw structure. In addition, a seam portion was formed so that the sublimation gas could leak. The graphite crucible 5 composed of the crucible lid 3 and the crucible body 4 has a thickness of 15 mm for all of the peripheral wall portion, the bottom wall portion, and the upper wall portion.

黒鉛製の遮蔽部材11については、この黒鉛製坩堝5の形状にあわせて、単一の黒鉛ブロックから底壁遮蔽部11aを備えた継ぎ目の無い一体部品の底付き円筒部材を作製した。また、黒鉛製坩堝5の上壁部外側面に対応する板状の黒鉛部材を用意し、その中央部に穴あけ加工を行い、更に、穴あけ加工により形成された開口部に対応した大きさの円筒状の黒鉛部材を用意して、市販のカーボン接着用耐熱性接着剤(日清紡績(株)社製ST-201)で接着し、上壁遮蔽部11bを形成した。そして、底付き円筒部材に黒鉛製坩堝5を収容し、上記のカーボン接着用耐熱性接着剤を用いて上壁遮蔽部11bを接着させた後、それぞれカーボンフェルト製の周壁断熱材6、底壁断熱材7、及び上壁断熱材8を配置して、図1(a)に示したように、黒鉛製坩堝5の外側面とこれらの断熱材9の内側面との間に、黒鉛製遮蔽部材11が介在されるようにした。ここで使用した黒鉛製遮蔽部材11を形成する黒鉛材料(黒鉛ブロックや、板状、筒状の各黒鉛部材)の電気抵抗率は9μΩmである。また、黒鉛製遮蔽部材11の厚みは全て5mmであり、ワークコイル15に流す高周波電流(9.8kHz)の浸透深さ(約15mm)より薄い厚みである。また、カーボンフェルト製の断熱材9の厚みは10mmであり、上壁断熱材8には中央開口部10が形成され、その内周側面を覆うように、上壁遮蔽部11bの端部によって直径25mm、黒鉛製坩堝5の上壁部外側面からの高さが15mmの円筒排気口12が形成されるようにした。   As for the graphite shielding member 11, a bottomed cylindrical member having a bottom wall shielding portion 11a and having a seamless wall was manufactured from a single graphite block in accordance with the shape of the graphite crucible 5. In addition, a plate-like graphite member corresponding to the outer surface of the upper wall portion of the graphite crucible 5 is prepared, a hole is drilled in the center, and a cylinder having a size corresponding to the opening formed by the drilling process A graphite member was prepared and bonded with a commercially available heat-resistant adhesive for carbon bonding (ST-201 manufactured by Nisshinbo Co., Ltd.) to form the upper wall shielding part 11b. Then, the graphite crucible 5 is accommodated in the bottomed cylindrical member, and the upper wall shielding portion 11b is bonded using the above-described heat-resistant adhesive for carbon bonding, and then the peripheral wall heat insulating material 6 made of carbon felt and the bottom wall, respectively. The heat insulating material 7 and the upper wall heat insulating material 8 are arranged, and as shown in FIG. 1A, the graphite shielding is provided between the outer surface of the graphite crucible 5 and the inner surface of these heat insulating materials 9. The member 11 was interposed. The electrical resistivity of the graphite material (graphite block, plate-like, and cylindrical graphite members) that forms the graphite shielding member 11 used here is 9 μΩm. Further, the thickness of the graphite shielding member 11 is 5 mm, which is thinner than the penetration depth (about 15 mm) of the high-frequency current (9.8 kHz) flowing through the work coil 15. Moreover, the thickness of the carbon felt-made heat insulating material 9 is 10 mm, and a central opening 10 is formed in the upper wall heat insulating material 8, and the diameter is formed by the end of the upper wall shielding portion 11 b so as to cover the inner peripheral side surface. A cylindrical exhaust port 12 having a height of 25 mm and a height of 15 mm from the outer surface of the upper wall portion of the graphite crucible 5 was formed.

このようにして断熱材9と上壁遮蔽部11とで被覆した黒鉛製坩堝5を二重石英管13内の黒鉛支持棒18に載せて配置した。そして、二重石英管13内を真空排気した後、ワークコイル15に電流を流し、坩堝蓋体3の表面温度を1700℃まで上げた。その後、雰囲気ガスとして高純度アルゴンガス(純度99.9995%)と高純度窒素ガス(純度99.9995%)の混合ガスを流入させ、二重石英管13内の圧力を約80kPaに保ちながら、坩堝蓋体3の表面温度を目標温度である2250℃まで上昇させた。雰囲気ガス中の窒素濃度は7%とした。その後、成長圧力である1.3kPaに約30分かけて減圧した。この際の坩堝内のSiC原料2と種結晶1との間の温度勾配は約20℃/cmである。そして、成長時間を100時間として結晶成長を行い、その後、直ちに冷却した。   The graphite crucible 5 covered with the heat insulating material 9 and the upper wall shielding part 11 in this way was placed on the graphite support rod 18 in the double quartz tube 13. Then, after evacuating the double quartz tube 13, an electric current was passed through the work coil 15 to raise the surface temperature of the crucible lid 3 to 1700 ° C. Thereafter, a mixed gas of high-purity argon gas (purity 99.9995%) and high-purity nitrogen gas (purity 99.9995%) is introduced as an atmospheric gas, and the pressure in the double quartz tube 13 is maintained at about 80 kPa while maintaining the pressure in the crucible lid 3. The surface temperature was raised to the target temperature of 2250 ° C. The nitrogen concentration in the atmospheric gas was 7%. Thereafter, the pressure was reduced to 1.3 kPa as a growth pressure over about 30 minutes. At this time, the temperature gradient between the SiC raw material 2 and the seed crystal 1 in the crucible is about 20 ° C./cm. Then, crystal growth was performed with a growth time of 100 hours, and then immediately cooled.

得られたSiC単結晶インゴットの口径は約102.3mmであり、成長面形状は緩やかな凸形状をしており、結晶成長先端の結晶中心近傍の高さは約34mmであった。また、インゴットの外周側面や結晶成長端面、並びに種結晶の裏面(結晶成長端面の反対側)を目視と実体顕微鏡とで観察したところ、亜粒界等のマクロ欠陥の発生は一切なく、成長結晶はほぼ種結晶と同等の良好な結晶品質が実現されていることを確認した。   The diameter of the obtained SiC single crystal ingot was about 102.3 mm, the growth surface shape was a gentle convex shape, and the height near the crystal center at the tip of crystal growth was about 34 mm. Moreover, when the outer peripheral side surface of the ingot, the crystal growth end surface, and the back surface of the seed crystal (opposite side of the crystal growth end surface) were observed visually and with a stereomicroscope, no macro defects such as subgrain boundaries were generated, and the grown crystal Confirmed that good crystal quality equivalent to that of the seed crystal was realized.

また、得られたSiC単結晶インゴットについて、研削、切断及び研磨加工を行い、直径100mm、厚さ0.35mmの形状を有し、かつ結晶c軸(六方晶<0001>軸)が<11−20>方向へ4度傾いた4度オフウエハを作製した。このウエハの取り出し位置はインゴットの最上部、すなわち結晶成長端から採取したところ、ウエハは全面が4H型ポリタイプで構成されていた。更に、このウエハを500℃に加熱して溶融したKOH(水酸化カリウム)に約3分間浸漬してエッチングを行い、転位ピットを形成させた。現れたピットの中で、基底面転位に対応する貝殻状のエッチピット(P. Wu, Journal of Crystal Growth, Vol.312 (2010) p.1193)の個数をウエハ全面で計測し、ウエハの面積で割ることで単位面積当たりの基底面転位密度を求めたところ、100mmウエハの全面で67個/cmという極めて小さい密度値が実現されていた。 Further, the obtained SiC single crystal ingot was ground, cut and polished to have a diameter of 100 mm and a thickness of 0.35 mm, and the crystal c axis (hexagonal <0001> axis) was <11−. A 4-degree off-wafer was produced that was inclined 4 degrees in the 20> direction. When the wafer was taken out from the top of the ingot, that is, from the crystal growth end, the entire surface of the wafer was composed of 4H type polytype. Further, the wafer was heated to 500 ° C. and immersed in molten KOH (potassium hydroxide) for about 3 minutes for etching to form dislocation pits. Among the pits that appeared, the number of shell-shaped etch pits (P. Wu, Journal of Crystal Growth, Vol. 312 (2010) p. 1193) corresponding to the basal plane dislocation was measured over the entire wafer surface. As a result, the basal plane dislocation density per unit area was obtained, and an extremely small density value of 67 / cm 2 was realized on the entire surface of the 100 mm wafer.

(比較例1)
図4に示したように、黒鉛製遮蔽部材11を使用せずに、黒鉛製坩堝5の外側面と断熱材9の内側面とが互いに接するようにし、また、この黒鉛製坩堝5は、周壁部、底壁部、上壁部ともに厚みが全て20mmとなるようにして(すなわち誘導加熱される黒鉛の加熱条件が実施例1と同程度となるようにして)、これら以外は実施例1と同様にして結晶成長を行った。
(Comparative Example 1)
As shown in FIG. 4, without using the graphite shielding member 11, the outer surface of the graphite crucible 5 and the inner surface of the heat insulating material 9 are in contact with each other. The thickness of all of the part, the bottom wall part, and the upper wall part is 20 mm (that is, the heating conditions of the graphite to be induction-heated are the same as those in Example 1). Crystal growth was performed in the same manner.

得られたSiC単結晶インゴットの口径は約101.9mmであり、インゴットを詳しく観察したところ、成長面の形状はインゴット周辺部がやや凹面形状をしており、結晶成長先端の結晶中心近傍の高さは約29mmであった。このインゴット周辺部には亜粒界が発生しており、ラマン分光装置を用いて詳しく調べたところ、6H型の異種ポリタイプが混入していることが判明した。また、実施例1と同様に、インゴットの最上部から直径100mm、厚さ0.35mmの4度オフウエハを作製し、実施例1と同様に溶融KOHエッチング法により基底面転位密度を評価したところ、ウエハ周辺部で貝殻状のエッチピット密度が極めて大きく、基底面転位密度は569,000個/cmの値が得られた。 The diameter of the obtained SiC single crystal ingot was about 101.9 mm. When the ingot was observed in detail, the shape of the growth surface was slightly concave on the periphery of the ingot. The thickness was about 29 mm. Subgrain boundaries are generated in the periphery of the ingot, and when examined in detail using a Raman spectroscopic device, it was found that a 6H-type different polytype was mixed. Further, as in Example 1, a 4 degree off wafer having a diameter of 100 mm and a thickness of 0.35 mm was produced from the top of the ingot, and the basal plane dislocation density was evaluated by the molten KOH etching method as in Example 1, The shell-like etch pit density was extremely high at the periphery of the wafer, and a basal plane dislocation density of 569,000 pieces / cm 2 was obtained.

(黒鉛製遮蔽部材の厚み評価試験)
誘導加熱による黒鉛製遮蔽部材の厚みの影響を調べるために、以下のようにしてSiC単結晶インゴットの試験製造を行った。使用した種結晶は全て口径153mm、厚さ2.5mmの{0001}基板からなる4H型SiC単結晶基板であり、(000−1)面(C面)が成長面となるように坩堝蓋体3の内側面に貼り付けた。そして、SiC原料2であるSiC粉末を装填した坩堝本体4に対して、実施例1と同様に、坩堝蓋体3の下面側と坩堝本体4の上面側とをネジ構造により螺合して、昇華ガスが漏出可能となるように継ぎ目部分を形成した。
(Thickness evaluation test of graphite shielding member)
In order to examine the influence of the thickness of the graphite shielding member due to induction heating, a test production of a SiC single crystal ingot was performed as follows. The seed crystal used is a 4H type SiC single crystal substrate made of a {0001} substrate having a diameter of 153 mm and a thickness of 2.5 mm, and the crucible lid so that the (000-1) plane (C plane) is the growth plane. 3 was affixed to the inner surface. Then, with respect to the crucible main body 4 loaded with SiC powder as the SiC raw material 2, the lower surface side of the crucible lid 3 and the upper surface side of the crucible main body 4 are screwed together by a screw structure in the same manner as in Example 1. A seam portion was formed so that the sublimation gas could leak.

黒鉛製遮蔽部材11については、上記坩堝蓋体3と坩堝本体4とからなる黒鉛製坩堝5の形状にあわせて、単一の黒鉛ブロックから底壁遮蔽部11aを備えた継ぎ目の無い一体部品の底付き円筒部材を使用した。この底付き円筒部材に上記の黒鉛製坩堝5を収容し、それぞれ厚さ15mmのカーボンフェルト製の周壁断熱材6、及び底壁断熱材7を配置して、図1(b)に示したように、黒鉛製坩堝5の上壁部外側面を断熱材で覆わずに開放として、黒鉛製坩堝5の外側面とこれらの断熱材9の内側面との間に、黒鉛製遮蔽部材11が介在されるようにした。ここで、黒鉛製坩堝5の上壁部外側面には、周壁断熱材6と黒鉛製遮蔽部材11とが同じ高さとなるように、それぞれ長さ30mmで突出するようにした。   With respect to the graphite shielding member 11, a seamless integral part including a bottom wall shielding portion 11 a from a single graphite block is formed in accordance with the shape of the graphite crucible 5 including the crucible lid body 3 and the crucible body 4. A bottomed cylindrical member was used. As shown in FIG. 1B, the graphite crucible 5 described above is accommodated in the bottomed cylindrical member, and a carbon felt peripheral wall heat insulating material 6 and a bottom wall heat insulating material 7 each having a thickness of 15 mm are disposed. Further, the outer surface of the upper wall portion of the graphite crucible 5 is opened without being covered with a heat insulating material, and a graphite shielding member 11 is interposed between the outer surface of the graphite crucible 5 and the inner surface of these heat insulating materials 9. It was made to be. Here, the outer peripheral surface of the upper wall portion of the graphite crucible 5 was projected with a length of 30 mm so that the peripheral wall heat insulating material 6 and the graphite shielding member 11 had the same height.

この評価試験では、下記表1に示したように、黒鉛製坩堝5の厚みと黒鉛製遮蔽部材11との厚みの合計が25mmとなるようにして(周壁部側、底壁部側ともに)、それぞれの厚みを変化させた。また、黒鉛製坩堝5の上壁部の厚み(坩堝蓋体3の厚み)は25mmで固定とした。このようにして断熱材9と上壁遮蔽部11とで被覆した黒鉛製坩堝5を二重石英管13内の黒鉛支持棒18に載せて配置し、結晶成長条件は実施例1の場合と同様にして、成長時間を140時間として結晶成長を行った。   In this evaluation test, as shown in Table 1 below, the total thickness of the graphite crucible 5 and the graphite shielding member 11 is 25 mm (both the peripheral wall portion side and the bottom wall portion side), The thickness of each was changed. The thickness of the upper wall portion of the graphite crucible 5 (thickness of the crucible lid 3) was fixed at 25 mm. The graphite crucible 5 covered with the heat insulating material 9 and the upper wall shielding portion 11 in this way is placed on the graphite support rod 18 in the double quartz tube 13, and the crystal growth conditions are the same as in the first embodiment. Then, crystal growth was performed with a growth time of 140 hours.

成長後、直ちに冷却して、インゴットを取り出して目視と実体顕微鏡とで表面を観察し、また、実施例1と同様にして、口径が150mmの4度オフウエハを作製して、溶融KOHエッチング法により貝殻状エッチピットをカウントすることで基底面転位密度を求めた。結果を表1にまとめて示す。   After the growth, it is immediately cooled, the ingot is taken out, and the surface is observed visually and with a stereomicroscope. Also, in the same manner as in Example 1, a four-degree off-wafer with a diameter of 150 mm is produced and melted by KOH etching. The basal plane dislocation density was obtained by counting shell-like etch pits. The results are summarized in Table 1.

Figure 2018168051
Figure 2018168051

表1に示したように、図1(b)に示す構造を有する製造装置では、黒鉛製遮蔽部材11の厚さが5mm以下の場合に、成長面の形状が緩やかな凸形状のSiC単結晶インゴットが得られており、成長が良好であったことを反映して、基底面転位密度も100個/cm程度のきわめて小さい、欠陥の少ないSiC単結晶インゴットが得られていることが判る。他方、黒鉛製遮蔽部材11の厚さが10mm以上になると、高周波加熱によるインゴット製造では、成長端面の形状の凹面性が次第に強くなり、6Hや15Rといった4H型以外の異種ポリタイプが混入する現象が現れている。これは、黒鉛製坩堝5の上壁部外側面にはみ出している黒鉛製遮蔽部材11の厚さが大きくなったことで、高周波誘導によるこの遮蔽部材11部分での発熱が大きくなり、坩堝内の温度分布を大きく変える状況に至ったためであると考えられ、黒鉛製遮蔽部材11の厚みが15mmであったり、特に、黒鉛製遮蔽部材11の厚みが20mmとなると、得られたSiC単結晶インゴットには、異種ポリタイプの混入によりマイクロパイプをはじめとする各種の欠陥が過度に多量発生してしまい、それによってKOHエッチングによる転位密度の評価が正確にできなかった。また、黒鉛製遮蔽部材11の厚みが15mmの場合の結果から、浸透深さの計算値(約15mm)となってはいるものの、高温での電気抵抗値の変動等を考慮した場合、良好な成長安定性を得るためには15mmよりも十分に小さい値とすることが好ましく、工業的には10mm以下とすることが求められることが示された。 As shown in Table 1, in the manufacturing apparatus having the structure shown in FIG. 1 (b), when the thickness of the graphite shielding member 11 is 5 mm or less, the convex SiC single crystal having a gentle growth surface is formed. Reflecting that the ingot was obtained and the growth was good, it can be seen that a SiC single crystal ingot with a very small basal plane dislocation density of about 100 / cm 2 and few defects was obtained. On the other hand, when the thickness of the graphite shielding member 11 is 10 mm or more, ingot production by high frequency heating has a tendency that the concave shape of the shape of the growth end face becomes gradually stronger, and a different polytype other than the 4H type such as 6H and 15R is mixed. Appears. This is because the thickness of the graphite shielding member 11 protruding from the outer surface of the upper wall portion of the graphite crucible 5 is increased, and heat generation at the shielding member 11 portion due to high frequency induction is increased. This is thought to be due to the fact that the temperature distribution is greatly changed. When the thickness of the graphite shielding member 11 is 15 mm, or particularly when the thickness of the graphite shielding member 11 is 20 mm, the obtained SiC single crystal ingot is obtained. In this case, various kinds of defects such as micropipes were generated in an excessive amount due to the mixing of different polytypes, so that the dislocation density by KOH etching could not be evaluated accurately. Further, from the result when the thickness of the graphite shielding member 11 is 15 mm, the calculated value of the penetration depth (about 15 mm) is obtained, but it is good when the fluctuation of the electrical resistance value at high temperature is taken into consideration. In order to obtain the growth stability, it is preferable that the value is sufficiently smaller than 15 mm, and that it is required to be 10 mm or less industrially.

以上に示す結果より、本発明の製造装置であれば、坩堝内の昇華ガス圧の過度な上昇が避けられて、かつ昇華ガスによる断熱材の特性劣化を抑制して、安定した大口径SiC単結晶インゴットの製造を可能にすることができる。そのため、異種ポリタイプの混入が無く、低欠陥密度のSiC単結晶ウエハを安定して製造することができるようになる。   From the results shown above, with the production apparatus of the present invention, an excessive increase in the sublimation gas pressure in the crucible can be avoided, and the property deterioration of the heat insulating material due to the sublimation gas can be suppressed, and a stable large-diameter SiC unit can be obtained. Crystalline ingots can be produced. Therefore, it is possible to stably manufacture a SiC single crystal wafer having a low defect density without mixing different types of polytypes.

1:種結晶、2:炭化珪素原料、3:坩堝蓋体、4:坩堝本体、4a:上部本体、4b下部本体、5:黒鉛製坩堝、6:周壁断熱材、7:底壁断熱材、8:上壁断熱材、9:断熱材、10:中央開口部、11:黒鉛製遮蔽部材、11a:底壁遮蔽部、11b:上壁遮蔽部、12:円筒排気口、13:二重石英管、14:真空排気装置、15:ワークコイル、16:光路、17:二色温度計、18:黒鉛支持棒。
1: seed crystal, 2: silicon carbide raw material, 3: crucible lid, 4: crucible body, 4a: upper body, 4b lower body, 5: graphite crucible, 6: peripheral wall heat insulating material, 7: bottom wall heat insulating material, 8: upper wall heat insulating material, 9: heat insulating material, 10: central opening, 11: graphite shielding member, 11a: bottom wall shielding portion, 11b: upper wall shielding portion, 12: cylindrical exhaust port, 13: double quartz Tube: 14: vacuum exhaust device, 15: work coil, 16: optical path, 17: two-color thermometer, 18: graphite support rod.

Claims (6)

炭化珪素原料が装填される坩堝本体と種結晶が取り付けられる坩堝蓋体とを有した黒鉛製坩堝、該黒鉛製坩堝の周囲に配置された断熱材、及び、該黒鉛製坩堝を加熱する加熱装置を備えて、炭化珪素原料を加熱して昇華ガスを発生させ、種結晶上に再結晶させる昇華再結晶法により炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造装置であって、
少なくとも黒鉛製坩堝の周壁部外側面と該周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製の遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを、該黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝の上壁部側及び/又は底壁部側から断熱材外部に排出するようにしたことを特徴とする炭化珪素単結晶インゴットの製造装置。
A graphite crucible having a crucible main body loaded with a silicon carbide raw material and a crucible lid body to which a seed crystal is attached, a heat insulating material disposed around the graphite crucible, and a heating device for heating the graphite crucible A silicon carbide single crystal ingot for producing a silicon carbide single crystal ingot by a sublimation recrystallization method in which a silicon carbide raw material is heated to generate a sublimation gas and recrystallized on a seed crystal,
At least a graphite shielding member is interposed between the outer peripheral surface of the peripheral wall of the graphite crucible and the inner surface of the peripheral heat insulating material covering the outer peripheral surface of the graphite crucible, and the sublimation gas leaked from the graphite crucible is made of the graphite crucible. Through the gap formed between the shielding member and the outer peripheral surface of the peripheral wall of the graphite crucible, the heat is discharged from the upper and / or bottom wall side of the graphite crucible to the outside of the heat insulating material. An apparatus for producing a silicon carbide single crystal ingot.
前記黒鉛製遮蔽部材が、黒鉛製坩堝の底壁部外側面と該底壁部外側面を覆う底壁断熱材の内側面との間に介在する底壁遮蔽部を有して、黒鉛製坩堝から漏出した昇華ガスを、前記隙間を通じて、黒鉛製坩堝の上壁部側から断熱材外部に排出する請求項1に記載の炭化珪素単結晶インゴットの製造装置。   The graphite shielding member has a bottom wall shielding portion interposed between an outer side surface of the bottom wall portion of the graphite crucible and an inner side surface of the bottom wall heat insulating material covering the outer surface of the bottom wall portion. The apparatus for producing a silicon carbide single crystal ingot according to claim 1, wherein the sublimation gas leaked from the gas is discharged from the upper wall side of the graphite crucible to the outside of the heat insulating material through the gap. 前記黒鉛製坩堝の上壁部外側面を覆う上壁断熱材が中央開口部を有しており、前記黒鉛製遮蔽部材が、該上壁断熱材の内側面と黒鉛製坩堝の上壁部外側面との間に介在すると共に、前記中央開口部の内周側面を覆うように延設されて円筒排気口を形成する上壁遮蔽部を有して、黒鉛製坩堝から漏出した昇華ガスを、前記隙間と連通した該円筒排気口から断熱材外部に排出する請求項2に記載の炭化珪素単結晶インゴットの製造装置。   The upper wall heat insulating material covering the outer surface of the upper wall portion of the graphite crucible has a central opening, and the graphite shielding member is disposed on the inner surface of the upper wall heat insulating material and outside the upper wall portion of the graphite crucible. A sublimation gas leaked from the graphite crucible, having an upper wall shielding portion that is interposed between the side surface and extends to cover the inner peripheral side surface of the central opening to form a cylindrical exhaust port, The apparatus for producing a silicon carbide single crystal ingot according to claim 2, wherein the silicon carbide single crystal ingot is discharged from the cylindrical exhaust port communicating with the gap to the outside of the heat insulating material. 前記加熱装置が誘導加熱方式の加熱装置であり、前記黒鉛製遮蔽部材は、該加熱装置で用いる高周波の浸透深さより薄い厚みを有する請求項1〜3のいずれかに記載の炭化珪素単結晶インゴットの製造装置。   The silicon carbide single crystal ingot according to any one of claims 1 to 3, wherein the heating device is an induction heating type heating device, and the graphite shielding member has a thickness thinner than a high-frequency penetration depth used in the heating device. Manufacturing equipment. 直径100mm以上の炭化珪素単結晶インゴットを製造するものである請求項1〜4のいずれかに記載の炭化珪素単結晶インゴットの製造装置。   The apparatus for producing a silicon carbide single crystal ingot according to any one of claims 1 to 4, wherein the silicon carbide single crystal ingot having a diameter of 100 mm or more is produced. 炭化珪素原料が装填される坩堝本体と種結晶が取り付けられる坩堝蓋体とを有した黒鉛製坩堝、該黒鉛製坩堝の周囲に配置された断熱材、及び、該黒鉛製坩堝を加熱する加熱装置を備えた炭化珪素単結晶インゴットの製造装置を用いて、炭化珪素原料を加熱して昇華ガスを発生させ、種結晶上に再結晶させる昇華再結晶法により炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、
少なくとも、黒鉛製坩堝の周壁部外側面と該周壁部外側面を覆う周壁断熱材の内側面との間に黒鉛製遮蔽部材を介在させて、黒鉛製坩堝から漏出した昇華ガスを、該黒鉛製遮蔽部材と黒鉛製坩堝の周壁部外側面との間に形成された隙間を通じて、黒鉛製坩堝の上壁部側及び/又は底壁部側から断熱材外部に排出することを特徴とする炭化珪素単結晶インゴットの製造方法。

A graphite crucible having a crucible body loaded with a silicon carbide raw material and a crucible lid body to which a seed crystal is attached, a heat insulating material disposed around the graphite crucible, and a heating device for heating the graphite crucible A silicon carbide single crystal ingot is produced by a sublimation recrystallization method in which a silicon carbide raw material is heated to generate a sublimation gas and recrystallized on a seed crystal using a silicon carbide single crystal ingot production apparatus equipped with A method for producing a single crystal ingot, comprising:
At least, a sublimation gas leaked from the graphite crucible is interposed between the graphite crucible with a graphite shielding member interposed between the outer surface of the peripheral wall of the graphite crucible and the inner surface of the peripheral wall heat insulating material covering the outer surface of the peripheral wall. Silicon carbide is discharged from the top wall side and / or bottom wall side of the graphite crucible through the gap formed between the shielding member and the outer peripheral surface of the peripheral wall of the graphite crucible. A method for producing a single crystal ingot.

JP2017069267A 2017-03-30 2017-03-30 Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method Active JP6861557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017069267A JP6861557B2 (en) 2017-03-30 2017-03-30 Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069267A JP6861557B2 (en) 2017-03-30 2017-03-30 Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method

Publications (2)

Publication Number Publication Date
JP2018168051A true JP2018168051A (en) 2018-11-01
JP6861557B2 JP6861557B2 (en) 2021-04-21

Family

ID=64019294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069267A Active JP6861557B2 (en) 2017-03-30 2017-03-30 Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method

Country Status (1)

Country Link
JP (1) JP6861557B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215660A (en) * 2021-05-07 2021-08-06 哈尔滨科友半导体产业装备与技术研究院有限公司 Silicon carbide single crystal growth method capable of reducing heater loss
CN113622030A (en) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 Method for preparing silicon carbide single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
JP2013245136A (en) * 2012-05-25 2013-12-09 Showa Denko Kk Apparatus for producing silicon carbide single crystal
JP2015166298A (en) * 2014-03-04 2015-09-24 株式会社フジクラ Apparatus and method for manufacturing single crystal
WO2016051485A1 (en) * 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
JP2017037944A (en) * 2015-08-07 2017-02-16 エルシード株式会社 VAPOR GROWTH DEVICE OF FLUORESCENT SiC MATERIAL AND VAPOR GROWTH METHOD OF FLUORESCENT SiC MATERIAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
JP2013245136A (en) * 2012-05-25 2013-12-09 Showa Denko Kk Apparatus for producing silicon carbide single crystal
JP2015166298A (en) * 2014-03-04 2015-09-24 株式会社フジクラ Apparatus and method for manufacturing single crystal
WO2016051485A1 (en) * 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
JP2017037944A (en) * 2015-08-07 2017-02-16 エルシード株式会社 VAPOR GROWTH DEVICE OF FLUORESCENT SiC MATERIAL AND VAPOR GROWTH METHOD OF FLUORESCENT SiC MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215660A (en) * 2021-05-07 2021-08-06 哈尔滨科友半导体产业装备与技术研究院有限公司 Silicon carbide single crystal growth method capable of reducing heater loss
CN113622030A (en) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 Method for preparing silicon carbide single crystal

Also Published As

Publication number Publication date
JP6861557B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP5453899B2 (en) Method for manufacturing silicon carbide single crystal substrate and silicon carbide single crystal substrate
KR102160863B1 (en) Silicon carbide single crystal wafer
JP5931825B2 (en) Method for producing silicon carbide single crystal ingot
KR101960209B1 (en) Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP6594146B2 (en) Method for producing silicon carbide single crystal ingot
US11131038B2 (en) Furnace for seeded sublimation of wide band gap crystals
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP6200018B2 (en) Silicon carbide single crystal wafer
JP2010254520A (en) Silicon carbide single crystal substrate and method for manufacturing the same
JP2014234331A (en) Manufacturing method of silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
US9799735B2 (en) Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2019156660A (en) Method for manufacturing silicon carbide single crystal
JP5143139B2 (en) Single crystal growth equipment
JP6861557B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP2008115033A (en) Graphite crucible for growing silicon carbide single crystal and apparatus for producing silicon carbide single crystal
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP2005132703A (en) Method for manufacturing silicon carbide substrate, and silicon carbide substrate
JP6594148B2 (en) Silicon carbide single crystal ingot
KR20130033838A (en) Apparatus for fabricating ingot
JP2017154953A (en) Silicon carbide single crystal production apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350