JP2018162194A - Hydrogen production apparatus - Google Patents

Hydrogen production apparatus Download PDF

Info

Publication number
JP2018162194A
JP2018162194A JP2017061274A JP2017061274A JP2018162194A JP 2018162194 A JP2018162194 A JP 2018162194A JP 2017061274 A JP2017061274 A JP 2017061274A JP 2017061274 A JP2017061274 A JP 2017061274A JP 2018162194 A JP2018162194 A JP 2018162194A
Authority
JP
Japan
Prior art keywords
gas
reformed gas
reformer
supplied
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017061274A
Other languages
Japanese (ja)
Other versions
JP6830017B2 (en
Inventor
雅史 大橋
Masafumi Ohashi
雅史 大橋
信 稲垣
Makoto Inagaki
信 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2017061274A priority Critical patent/JP6830017B2/en
Publication of JP2018162194A publication Critical patent/JP2018162194A/en
Application granted granted Critical
Publication of JP6830017B2 publication Critical patent/JP6830017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production apparatus that can effectively separate water vapor from a reformed gas, compared with the case where a separation film is used to separate the water vapor only on the upstream side of a compressor.SOLUTION: A compressor compresses a reformed gas supplied from a reformer. A separation film of a separation part allows the passage of water vapor out of a reformed gas supplied from the compressor, to separate it.SELECTED DRAWING: Figure 1

Description

本発明は、水素製造装置に関する。   The present invention relates to a hydrogen production apparatus.

水素を得るための水素製造装置としては、原料炭化水素を改質装置で改質ガスに改質した後、PSA(Pressure Swing Adsorption)装置へ供給するものが知られている(例えば、特許文献1参照)。   As a hydrogen production apparatus for obtaining hydrogen, an apparatus for reforming raw material hydrocarbons into reformed gas by a reformer and then supplying the reformed gas to a PSA (Pressure Swing Adsorption) apparatus is known (for example, Patent Document 1). reference).

また、改質後の改質ガスを昇圧してPSA装置へ供給する水素製造装置も知られている(例えば、特許文献2参照)。   There is also known a hydrogen production apparatus that boosts the reformed gas after reforming and supplies the reformed gas to a PSA apparatus (see, for example, Patent Document 2).

特開平8−225302号公報JP-A-8-225302 特開2003−335502号公報JP 2003-335502 A

従来、水素製造装置には、改質ガスから水蒸気を分離するために、改質ガスを冷却して除湿するためにチラーが用いられている。チラーを稼動させるための動力は大きく、このため、水素製造装置を稼動させるための動力も大きくなっていた。そこで、分離膜を用いて大気圧の改質ガスから水蒸気を分離することが考えられる。   Conventionally, in a hydrogen production apparatus, a chiller is used to cool and dehumidify the reformed gas in order to separate water vapor from the reformed gas. Power for operating the chiller is large, and thus power for operating the hydrogen production apparatus has also been increased. Therefore, it is conceivable to separate water vapor from the reformed gas at atmospheric pressure using a separation membrane.

本発明の課題は、分離膜を用いて圧縮機の上流側だけで水蒸気を分離する場合と比して、改質ガスから水蒸気を効果的に分離することである。   The subject of this invention is isolate | separating water vapor | steam from reformed gas effectively compared with the case where water vapor | steam is isolate | separated only in the upstream of a compressor using a separation membrane.

第一態様では、炭化水素原料を改質して水素を主成分とした改質ガスを生成する改質器と、前記改質器から供給された改質ガスを圧縮する圧縮機と、前記圧縮機から供給された改質ガスから、少なくとも水蒸気を通過させることで分離する第一分離膜を有する第一分離部と、を備えることを特徴とする。   In the first aspect, a reformer that reforms a hydrocarbon raw material to generate a reformed gas mainly composed of hydrogen, a compressor that compresses the reformed gas supplied from the reformer, and the compression And a first separation section having a first separation membrane that separates the reformed gas supplied from the apparatus by allowing at least water vapor to pass therethrough.

この構成によると、圧縮機によって圧縮された改質ガスが第一分離部へ供給される。そして、第一分離部の第一分離膜は、改質ガスから、水蒸気を通過させることで分離する。ここで、第一分離部へ供給される改質ガスは、圧縮機によって圧縮されている。このため、第一分離膜を境に差圧が大きくなり、第一分離膜を用いて圧縮機の上流側だけで改質ガスから水蒸気を分離する場合と比して、改質ガスから水蒸気を効果的に分離することができる。   According to this configuration, the reformed gas compressed by the compressor is supplied to the first separation unit. And the 1st separation membrane of a 1st separation part isolate | separates by allowing water vapor | steam to pass through from reformed gas. Here, the reformed gas supplied to the first separation unit is compressed by a compressor. For this reason, the differential pressure becomes larger at the boundary of the first separation membrane, and the steam is removed from the reformed gas compared to the case where the first separation membrane is used to separate the steam from the reformed gas only on the upstream side of the compressor. Can be separated effectively.

第二態様では、前記改質器から改質ガスが供給され、前記圧縮機へ改質ガスを供給する第二分離部であって、前記改質器から供給された改質ガスから、少なくとも水蒸気を通過させることで分離する第二分離膜を有する前記第二分離部を備えることを特徴とする。   In the second aspect, a reforming gas is supplied from the reformer and the reforming gas is supplied to the compressor. The second separation unit supplies at least steam from the reforming gas supplied from the reformer. The second separation part having a second separation membrane that separates by passing the liquid is provided.

この構成によると、改質器と圧縮機との間に配置されている第二分離部の第二分離膜は、改質ガスから、水蒸気を通過させることで分離する。そして、水蒸気が分離された改質ガスが、圧縮機へ供給される。このため、水蒸気が分離されていない改質ガスが圧縮機へ供給される場合と比して、体積が減少することで、改質ガスを圧縮させるための動力を削減することができる。   According to this structure, the 2nd separation membrane of the 2nd separation part arrange | positioned between a reformer and a compressor isolate | separates by passing water vapor | steam from reformed gas. Then, the reformed gas from which the water vapor has been separated is supplied to the compressor. For this reason, compared with the case where the reformed gas from which water vapor | steam is not isolate | separated is supplied to a compressor, the motive power for compressing reformed gas can be reduced by reducing a volume.

第三態様では、前記第一分離膜は、改質ガスから、二酸化炭素を通過させることで分離し、ガス流れ方向において、前記第一分離部の下流側に配置され、改質ガスを不純物と水素とに分離して水素を精製する水素精製器を備えることを特徴とする。   In the third aspect, the first separation membrane is separated from the reformed gas by passing carbon dioxide, and is disposed downstream of the first separator in the gas flow direction, and the reformed gas is used as an impurity. A hydrogen purifier is provided that purifies hydrogen by separating it into hydrogen.

この構成によると、改質器によって生成された改質ガスから水蒸気を分離する第一分離膜は、改質ガスから、二酸化炭素を通過させることで分離する。このため、改質ガスに含まれる二酸化炭素が分離されていない場合と比して、水素を精製する水素精製器を小型化することができる。   According to this structure, the 1st separation membrane which isolate | separates water vapor | steam from the reformed gas produced | generated by the reformer isolate | separates by passing a carbon dioxide from reformed gas. For this reason, compared with the case where the carbon dioxide contained in reformed gas is not isolate | separated, the hydrogen purifier which refine | purifies hydrogen can be reduced in size.

また、改質ガスから二酸化炭素を除去することで、水素精製器を小型化することができる。   Moreover, the hydrogen purifier can be downsized by removing carbon dioxide from the reformed gas.

第四態様では、前記改質器は、水蒸気改質反応によって炭化水素原料から改質ガスを生成し、少なくとも前記第一分離膜によって分離された水蒸気を改質用水として前記改質器に戻す流路管を備えることを特徴とする。   In the fourth aspect, the reformer generates a reformed gas from the hydrocarbon raw material by a steam reforming reaction, and at least the steam separated by the first separation membrane is returned to the reformer as reforming water. A road pipe is provided.

この構成によると、第一分離膜によって分離された水蒸気は、流路管を流れて改質用水として改質器へ戻される。そして、改質ガスと、水蒸気を改質用水として改質器に戻すためのスイープガスとの差圧が大きいため、安価な膜で高い分離性能が得られる。このように、第一分離膜によって分離された水蒸気を改質用水として用いることができる。   According to this configuration, the water vapor separated by the first separation membrane flows through the flow path pipe and is returned to the reformer as reforming water. Since the differential pressure between the reformed gas and the sweep gas for returning the steam to the reformer as reforming water is large, high separation performance can be obtained with an inexpensive membrane. Thus, the water vapor separated by the first separation membrane can be used as the reforming water.

第五態様では、前記第一分離膜の水蒸気通過側に流すスイープガスとして、前記改質器に供給される炭化水素原料を用いることを特徴とする。   In the fifth aspect, a hydrocarbon raw material supplied to the reformer is used as a sweep gas that flows to the water vapor passage side of the first separation membrane.

この構成によると、改質ガスから分離膜を通してスイープガスに微量の水素が入り込むため、炭化水素原料に含まれている硫黄分を水添脱硫によって低減することができる。   According to this configuration, since a small amount of hydrogen enters the sweep gas from the reformed gas through the separation membrane, the sulfur content contained in the hydrocarbon raw material can be reduced by hydrodesulfurization.

第六態様では、前記第一分離膜の水蒸気通過側に流すスイープガスとして、前記改質器に供給される燃焼用空気を用いることを特徴とする。   In a sixth aspect, combustion air supplied to the reformer is used as a sweep gas that flows to the water vapor passage side of the first separation membrane.

この構成によると、水素製造装置に用いられる気体の中で流量が多い燃焼用空気をスイープガスとして用いることで、水蒸気の分離性能が向上し、分離膜の膜面積を小さくすることができる。   According to this configuration, by using combustion air having a large flow rate in the gas used in the hydrogen production apparatus as the sweep gas, the water vapor separation performance is improved, and the membrane area of the separation membrane can be reduced.

本態様では、分離膜を用いて圧縮機の上流側だけで水蒸気を分離する場合と比して、効果的に改質ガスから水蒸気を分離することができる。   In this embodiment, it is possible to effectively separate the water vapor from the reformed gas as compared with the case where the water vapor is separated only on the upstream side of the compressor using the separation membrane.

本発明の第1実施形態に係る水素製造装置を示した概略構成図である。It is the schematic block diagram which showed the hydrogen production apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る水素製造装置の多重筒型改質器を示した断面図である。It is sectional drawing which showed the multiple cylinder type reformer of the hydrogen production apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る水素製造装置を示した概略構成図である。It is the schematic block diagram which showed the hydrogen production apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る水素製造装置の多重筒型改質器を示した断面図である。It is sectional drawing which showed the multiple cylinder type reformer of the hydrogen production apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る水素製造装置を示した概略構成図である。It is the schematic block diagram which showed the hydrogen production apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る水素製造装置の多重筒型改質器を示した断面図である。It is sectional drawing which showed the multiple cylinder type reformer of the hydrogen production apparatus which concerns on 3rd Embodiment of this invention.

<第1実施形態>
本発明の第1実施形態に係る水素製造装置の一例を図1、図2に従って説明する。
<First Embodiment>
An example of the hydrogen production apparatus according to the first embodiment of the present invention will be described with reference to FIGS.

本第1実施形態に係る水素製造装置10は、図1に示されるように、多重筒型改質器12と、改質用水を供給する改質用水供給部30と、燃焼用空気を供給する空気供給部18とを備えている。さらに、水素製造装置10は、分離膜14を有する分離部50と、分離膜16を有する分離部70と、改質ガスを圧縮する圧縮機80と、水素を精製する水素精製器90とを備えている。この水素製造装置10は、炭化水素原料から水素を製造するものである。本第1実施形態では、炭化水素原料の一例として都市ガスが用いられる場合について説明する。   As shown in FIG. 1, the hydrogen production apparatus 10 according to the first embodiment supplies a multi-cylinder reformer 12, a reforming water supply unit 30 that supplies reforming water, and combustion air. And an air supply unit 18. Furthermore, the hydrogen production apparatus 10 includes a separation unit 50 having a separation membrane 14, a separation unit 70 having a separation membrane 16, a compressor 80 that compresses reformed gas, and a hydrogen purifier 90 that purifies hydrogen. ing. This hydrogen production apparatus 10 produces hydrogen from a hydrocarbon raw material. In the first embodiment, a case where city gas is used as an example of a hydrocarbon raw material will be described.

(多重筒型改質器12)
多重筒型改質器12は、図2に示されるように、多重に配置された複数の筒状壁21、22、23、24を有している。複数の筒状壁21、22、23、24は、例えば円筒状や楕円筒状に形成される。複数の筒状壁21、22、23、24のうち内側から一番目の筒状壁21の内部には、燃焼室25が形成されており、この燃焼室25の上部には、バーナ26が下向きに配置されている。このバーナ26には、補給管38から水素製造装置10のオフガスが燃料として供給される。多重筒型改質器12は、改質器の一例である。さらに、この燃焼室25の上端部には、空気供給部18(図1参照)から燃焼用空気を供給するための空気供給管40が接続されている。
(Multiple cylinder reformer 12)
As shown in FIG. 2, the multiple cylinder reformer 12 has a plurality of cylindrical walls 21, 22, 23, and 24 arranged in multiple. The plurality of cylindrical walls 21, 22, 23, 24 are formed in, for example, a cylindrical shape or an elliptical cylindrical shape. A combustion chamber 25 is formed inside the first cylindrical wall 21 from the inside out of the plurality of cylindrical walls 21, 22, 23, 24, and a burner 26 faces downward at the upper part of the combustion chamber 25. Is arranged. The burner 26 is supplied with the off gas of the hydrogen production apparatus 10 from the supply pipe 38 as fuel. The multiple cylinder reformer 12 is an example of a reformer. Further, an air supply pipe 40 for supplying combustion air from the air supply unit 18 (see FIG. 1) is connected to the upper end of the combustion chamber 25.

一番目の筒状壁21と二番目の筒状壁22との間には、燃焼排ガス流路27が形成されている。燃焼排ガス流路27の下端部は、燃焼室25と連通されており、燃焼排ガス流路27の上端部には、ガスを排出するためのガス排出管28が接続されている。燃焼室25から排出された燃焼排ガスは、燃焼排ガス流路27を下側から上側に流れ、ガス排出管28を通じて外部に排出される。   A flue gas flow path 27 is formed between the first cylindrical wall 21 and the second cylindrical wall 22. A lower end portion of the combustion exhaust gas passage 27 communicates with the combustion chamber 25, and a gas exhaust pipe 28 for discharging gas is connected to the upper end portion of the combustion exhaust gas passage 27. The flue gas discharged from the combustion chamber 25 flows from the lower side to the upper side through the flue gas passage 27 and is discharged to the outside through the gas discharge pipe 28.

また、二番目の筒状壁22と三番目の筒状壁23との間には、第一流路31が形成されている。この第一流路31の上部は、予熱流路32として形成されており、この予熱流路32の上端部には、分離部50、70(図1参照)を通った都市ガスを供給するための原料供給管33と、改質用水供給部30(図1参照)から改質用水を供給するための改質用水供給管34とが接続されている。さらに、二番目の筒状壁22と三番目の筒状壁23との間には、螺旋部材35が設けられており、この螺旋部材35により、予熱流路32は、螺旋状に形成されている。原料供給管33は、流路管の一例である。   A first flow path 31 is formed between the second cylindrical wall 22 and the third cylindrical wall 23. An upper portion of the first flow path 31 is formed as a preheating flow path 32, and an upper end portion of the preheating flow path 32 is used to supply city gas that has passed through the separation sections 50 and 70 (see FIG. 1). A raw material supply pipe 33 and a reforming water supply pipe 34 for supplying reforming water from the reforming water supply unit 30 (see FIG. 1) are connected. Further, a spiral member 35 is provided between the second cylindrical wall 22 and the third cylindrical wall 23, and the preheating channel 32 is formed in a spiral shape by the spiral member 35. Yes. The raw material supply pipe 33 is an example of a flow path pipe.

予熱流路32には、分離部50、70(図1参照)を通った都市ガスが原料供給管33から供給され、さらに、改質用水供給部30の改質用水が改質用水供給管34から供給される。都市ガス及び改質用水は、予熱流路32を上側から下側に流れ、二番目の筒状壁22を介して燃焼排ガスと熱交換され水が気化される。この予熱流路32では、都市ガス及び気相の改質用水(水蒸気)が混合されることにより、混合ガスが生成される。   The preheating channel 32 is supplied with city gas that has passed through the separation parts 50 and 70 (see FIG. 1) from the raw material supply pipe 33, and the reforming water in the reforming water supply part 30 is further supplied with the reforming water supply pipe 34. Supplied from The city gas and the reforming water flow from the upper side to the lower side through the preheating channel 32, and heat exchange with the combustion exhaust gas is performed through the second cylindrical wall 22 to vaporize the water. In the preheating channel 32, the mixed gas is generated by mixing the city gas and the reforming water (steam) in the gas phase.

また、第一流路31における予熱流路32の下側には、改質触媒層36が設けられており、予熱流路32にて生成された混合ガスは、改質触媒層36へ供給される。改質触媒層36では、燃焼排ガス流路27を流れる燃焼排ガスからの熱を受けて混合ガスが水蒸気改質反応によって、水素を主成分とする改質ガスが生成される。   The reforming catalyst layer 36 is provided below the preheating channel 32 in the first channel 31, and the mixed gas generated in the preheating channel 32 is supplied to the reforming catalyst layer 36. . In the reforming catalyst layer 36, the mixed gas receives heat from the flue gas flowing through the flue gas passage 27, and the mixed gas generates a reformed gas containing hydrogen as a main component by a steam reforming reaction.

さらに、三番目の筒状壁23と四番目の筒状壁24との間には、第二流路42が形成されている。第二流路42の下端部は、第一流路31の下端部と連通されている。第二流路42の下部は、改質ガス流路43として形成されており、第二流路42の上端部には、改質ガス排出管44が接続されている。   Further, a second flow path 42 is formed between the third cylindrical wall 23 and the fourth cylindrical wall 24. The lower end of the second flow path 42 is in communication with the lower end of the first flow path 31. A lower portion of the second flow path 42 is formed as a reformed gas flow path 43, and a reformed gas discharge pipe 44 is connected to an upper end portion of the second flow path 42.

また、第二流路42における改質ガス流路43よりも上側には、CO変成触媒層45が設けられており、改質触媒層36にて生成された改質ガスは、改質ガス流路43を通過した後、CO変成触媒層45へ供給される。CO変成触媒層45では、改質ガスに含まれる一酸化炭素と水蒸気が反応して、水素と二酸化炭素に変換され、一酸化炭素が低減される。   Further, a CO shift catalyst layer 45 is provided above the reformed gas channel 43 in the second channel 42, and the reformed gas generated in the reformed catalyst layer 36 is converted into the reformed gas flow. After passing through the passage 43, it is supplied to the CO shift catalyst layer 45. In the CO conversion catalyst layer 45, carbon monoxide and water vapor contained in the reformed gas react to be converted into hydrogen and carbon dioxide, and carbon monoxide is reduced.

さらに、CO変成触媒層45の上側には、酸化剤ガス供給管46が接続されており、第二流路42におけるCO変成触媒層45よりも上側には、CO選択酸化触媒層47が設けられている。酸化剤ガス供給管46を通じて取り入れられた酸化剤ガス、及び、CO変成触媒層45を通過した改質ガスは、CO選択酸化触媒層47へ供給される。CO選択酸化触媒層47では、例えば白金やルテニウム等の貴金属触媒上で一酸化炭素が酸素と反応して二酸化炭素に変換され、一酸化炭素が除去される。CO変成触媒層45及びCO選択酸化触媒層47で一酸化炭素が低減された改質ガスは、改質ガス排出管44を通じて排出される。   Further, an oxidant gas supply pipe 46 is connected to the upper side of the CO shift catalyst layer 45, and a CO selective oxidation catalyst layer 47 is provided above the CO shift catalyst layer 45 in the second flow path 42. ing. The oxidant gas introduced through the oxidant gas supply pipe 46 and the reformed gas that has passed through the CO shift catalyst layer 45 are supplied to the CO selective oxidation catalyst layer 47. In the CO selective oxidation catalyst layer 47, for example, carbon monoxide reacts with oxygen on a noble metal catalyst such as platinum or ruthenium to be converted into carbon dioxide, and carbon monoxide is removed. The reformed gas in which carbon monoxide is reduced in the CO shift catalyst layer 45 and the CO selective oxidation catalyst layer 47 is discharged through the reformed gas discharge pipe 44.

多重筒型改質器12にて生成された改質ガスは、図1に示したように、分離部50、圧縮機80、分離部70、及び水素精製器90をこの順番で流れる。つまり、ガスの流れ方向において、上流側から下流側に、多重筒型改質器12、分離部50、圧縮機80、分離部70、及び水素精製器90がこの順番で配置されている。   As shown in FIG. 1, the reformed gas generated in the multi-cylinder reformer 12 flows through the separation unit 50, the compressor 80, the separation unit 70, and the hydrogen purifier 90 in this order. That is, the multi-cylinder reformer 12, the separation unit 50, the compressor 80, the separation unit 70, and the hydrogen purifier 90 are arranged in this order from the upstream side to the downstream side in the gas flow direction.

(分離部50)
分離部50は、図1に示されるように、改質ガスから水蒸気を通過(透過)させる分離膜14と、分離膜14によって仕切られている供給室52と透過室54とを有している。供給室52には、多重筒型改質器12からの改質ガスが流れる改質ガス排出管44と、圧縮機80へ供給される改質ガスが流れる連絡流路管56とが接続されている。そして、改質ガス排出管44を流れて供給室52へ供給された改質ガスに含まれる水蒸気は、分離膜14を通過して供給室52から透過室54へ流れる。水蒸気が分離された改質ガスは、連絡流路管56を流れて圧縮機80へ供給される。分離膜14は第二分離膜の一例で、分離部50は、第二分離部の一例である。
(Separation unit 50)
As shown in FIG. 1, the separation unit 50 includes a separation membrane 14 that allows water vapor to pass (permeate) from the reformed gas, and a supply chamber 52 and a permeation chamber 54 that are partitioned by the separation membrane 14. . Connected to the supply chamber 52 are a reformed gas discharge pipe 44 through which the reformed gas from the multi-cylinder reformer 12 flows and a communication channel pipe 56 through which the reformed gas supplied to the compressor 80 flows. Yes. Then, the water vapor contained in the reformed gas supplied to the supply chamber 52 through the reformed gas discharge pipe 44 passes through the separation membrane 14 and flows from the supply chamber 52 to the permeation chamber 54. The reformed gas from which the water vapor has been separated flows through the communication channel pipe 56 and is supplied to the compressor 80. The separation membrane 14 is an example of a second separation membrane, and the separation unit 50 is an example of a second separation unit.

一方、透過室54には、スイープガスとしての都市ガスが流れるガス供給管58に連通している供給管60と、多重筒型改質器12へ供給される都市ガスが流れる原料供給管33に連通している供給管62とが接続されている。スイープガスとして透過室54へ供給された都市ガスは、分離膜14を通過した水蒸気を含み、供給管62及び原料供給管33を流れて多重筒型改質器12へ供給される。   On the other hand, the permeation chamber 54 includes a supply pipe 60 communicating with a gas supply pipe 58 through which city gas as a sweep gas flows, and a raw material supply pipe 33 through which city gas supplied to the multi-tubular reformer 12 flows. A supply pipe 62 that is in communication is connected. The city gas supplied as the sweep gas to the permeation chamber 54 includes water vapor that has passed through the separation membrane 14, flows through the supply pipe 62 and the raw material supply pipe 33, and is supplied to the multi-cylinder reformer 12.

水蒸気分離膜としては、有機高分子膜、無機材料膜、有機高分子−無機材料複合膜、液体膜などが挙げられる。   Examples of the water vapor separation membrane include an organic polymer membrane, an inorganic material membrane, an organic polymer-inorganic material composite membrane, and a liquid membrane.

(圧縮機80)
圧縮機80には、供給室52からの改質ガスが流れる連絡流路管56と、分離部70へ供給される改質ガスが流れる連絡流路管66とが接続されている。圧縮機80は、分離部50から供給された大気圧の改質ガスをポンプで圧縮し、分離部70へ供給する。
(Compressor 80)
Connected to the compressor 80 are a communication channel pipe 56 through which the reformed gas from the supply chamber 52 flows and a communication channel pipe 66 through which the reformed gas supplied to the separation unit 70 flows. The compressor 80 compresses the reformed gas at atmospheric pressure supplied from the separation unit 50 with a pump and supplies the compressed gas to the separation unit 70.

(分離部70)
分離部70は、改質ガスから水蒸気を分離する分離膜16と、分離膜16によって仕切られている供給室72と透過室74とを有している。供給室72には、圧縮機80からの改質ガスが流れる連絡流路管66と、水素精製器90へ供給される改質ガスが流れる連絡流路管68とが接続されている。
(Separation part 70)
The separation unit 70 includes a separation membrane 16 that separates water vapor from the reformed gas, a supply chamber 72 and a permeation chamber 74 that are partitioned by the separation membrane 16. Connected to the supply chamber 72 are a communication channel pipe 66 through which the reformed gas from the compressor 80 flows, and a communication channel pipe 68 through which the reformed gas supplied to the hydrogen purifier 90 flows.

そして、連絡流路管66を流れて供給室72へ供給された改質ガスに含まれる水蒸気は、分離膜16を通過して供給室72から透過室74へ流れる。水蒸気が分離された改質ガスは、連絡流路管68を流れて水素精製器90へ供給される。分離膜16は第一分離膜の一例で、分離部70は、第一分離部の一例である。   The water vapor contained in the reformed gas that has flowed through the communication channel pipe 66 and supplied to the supply chamber 72 passes through the separation membrane 16 and flows from the supply chamber 72 to the permeation chamber 74. The reformed gas from which the water vapor has been separated flows through the communication channel pipe 68 and is supplied to the hydrogen purifier 90. The separation membrane 16 is an example of a first separation membrane, and the separation unit 70 is an example of a first separation unit.

一方、透過室74には、スイープガスとしての都市ガスが供給されるガス供給管58と、多重筒型改質器12へ供給される都市ガスが流れる原料供給管33とが接続されている。スイープガスとして透過室74へ供給された都市ガスは、分離膜16を通過した水蒸気を含み、原料供給管33を流れて多重筒型改質器12へ供給される。   On the other hand, a gas supply pipe 58 to which a city gas as a sweep gas is supplied and a raw material supply pipe 33 through which the city gas supplied to the multiple cylinder reformer 12 flows are connected to the permeation chamber 74. The city gas supplied as the sweep gas to the permeation chamber 74 includes water vapor that has passed through the separation membrane 16, flows through the raw material supply pipe 33, and is supplied to the multi-cylinder reformer 12.

水蒸気分離膜としては、有機高分子膜、無機材料膜、有機高分子−無機材料複合膜、液体膜などが挙げられる。   Examples of the water vapor separation membrane include an organic polymer membrane, an inorganic material membrane, an organic polymer-inorganic material composite membrane, and a liquid membrane.

(水素精製器90)
水素精製器90には、分離部70からの改質ガスが流れる連絡流路管68と、多重筒型改質器12へ供給される水素精製器90のオフガスが流れる補給管38とが接続されている。水素精製器90には、一例として、PSA装置が使用されている。この水素精製器90が改質ガスを不純物と水素とに分離することで、水素が精製される。
(Hydrogen purifier 90)
Connected to the hydrogen purifier 90 are a communication channel pipe 68 through which the reformed gas from the separation unit 70 flows, and a replenishment pipe 38 through which the off-gas of the hydrogen purifier 90 supplied to the multi-tubular reformer 12 flows. ing. As an example, a PSA apparatus is used for the hydrogen purifier 90. The hydrogen purifier 90 separates the reformed gas into impurities and hydrogen, thereby purifying hydrogen.

水素精製器90のオフガスは、補給管38を流れて燃料として多重筒型改質器12のバーナ26(図2参照)へ供給される。   The off-gas of the hydrogen purifier 90 flows through the supply pipe 38 and is supplied as fuel to the burner 26 (see FIG. 2) of the multiple cylinder reformer 12.

(作用)
次に、水素製造装置10の作用について説明する。
(Function)
Next, the operation of the hydrogen production apparatus 10 will be described.

都市ガスは、図1に示されるように、ガス供給管58及び供給管60を流れて分離部50の透過室54を通り、供給管62及び原料供給管33を流れて多重筒型改質器12へ供給される。同様に、都市ガスは、ガス供給管58を流れて分離部70の透過室74を通り、原料供給管33を流れて多重筒型改質器12へ供給される。   As shown in FIG. 1, the city gas flows through the gas supply pipe 58 and the supply pipe 60, passes through the permeation chamber 54 of the separation unit 50, flows through the supply pipe 62 and the raw material supply pipe 33, and is a multi-tube reformer 12 is supplied. Similarly, the city gas flows through the gas supply pipe 58, passes through the permeation chamber 74 of the separation unit 70, flows through the raw material supply pipe 33, and is supplied to the multiple cylinder reformer 12.

多重筒型改質器12へ供給された都市ガスは、多重筒型改質器12で改質ガスに生成される。この改質ガスは、改質ガス排出管44を流れて分離部50の供給室52へ供給される。供給室52へ供給された改質ガスに含まれる水蒸気は、分離膜14を通過して供給室52から透過室54へ流れる。そして、スイープガスとして透過室54へ供給された都市ガスは、分離膜14を通過した水蒸気を含み、供給管62及び原料供給管33を流れて多重筒型改質器12へ供給される。   The city gas supplied to the multiple cylinder reformer 12 is generated into the reformed gas by the multiple cylinder reformer 12. The reformed gas flows through the reformed gas discharge pipe 44 and is supplied to the supply chamber 52 of the separation unit 50. The water vapor contained in the reformed gas supplied to the supply chamber 52 passes through the separation membrane 14 and flows from the supply chamber 52 to the permeation chamber 54. The city gas supplied as the sweep gas to the permeation chamber 54 includes the water vapor that has passed through the separation membrane 14, flows through the supply pipe 62 and the raw material supply pipe 33, and is supplied to the multiple cylinder reformer 12.

一方、分離膜14によって水蒸気が分離された改質ガスは、連絡流路管56を流れて圧縮機80へ供給され、圧縮機80によって圧縮される。そして、圧縮された改質ガスは、連絡流路管66を流れて分離部70の供給室72へ供給される。供給室72へ供給された改質ガスに含まれる水蒸気は、分離膜16を通過して供給室72から透過室74へ流れる。そして、スイープガスとして透過室74へ供給された都市ガスは、分離膜16を通過した水蒸気を含み、原料供給管33を流れて多重筒型改質器12へ供給される。   On the other hand, the reformed gas from which the water vapor has been separated by the separation membrane 14 flows through the connecting flow path pipe 56, is supplied to the compressor 80, and is compressed by the compressor 80. The compressed reformed gas flows through the communication channel pipe 66 and is supplied to the supply chamber 72 of the separation unit 70. The water vapor contained in the reformed gas supplied to the supply chamber 72 passes through the separation membrane 16 and flows from the supply chamber 72 to the permeation chamber 74. The city gas supplied to the permeation chamber 74 as a sweep gas contains the water vapor that has passed through the separation membrane 16, flows through the raw material supply pipe 33, and is supplied to the multiple cylinder reformer 12.

さらに、分離膜16によって水蒸気が分離された改質ガスは、連絡流路管68を流れて水素精製器90へ供給される。水素精製器90へ供給された改質ガスが不純物と水素とに分離されることで、水素が精製される。   Further, the reformed gas from which the water vapor has been separated by the separation membrane 16 flows through the communication channel pipe 68 and is supplied to the hydrogen purifier 90. Hydrogen is purified by separating the reformed gas supplied to the hydrogen purifier 90 into impurities and hydrogen.

一方、水素精製器90のオフガスは、補給管38を流れて燃料として多重筒型改質器12のバーナ26(図2参照)へ供給される。   On the other hand, the off-gas of the hydrogen purifier 90 flows through the supply pipe 38 and is supplied as fuel to the burner 26 (see FIG. 2) of the multiple cylinder reformer 12.

(まとめ)
以上説明したように、分離部70へ供給される改質ガスは、圧縮機80によって圧縮されている。このため、分離膜16を境に供給室72と透過室74との間に大きな差圧(水蒸気の分圧差)が生じることで、分離膜を用いて圧縮機の上流側だけで水蒸気を分離する場合と比して、効果的に改質ガスから水蒸気を分離することができる。
(Summary)
As described above, the reformed gas supplied to the separation unit 70 is compressed by the compressor 80. For this reason, a large differential pressure (steam partial pressure difference) is generated between the supply chamber 72 and the permeation chamber 74 with the separation membrane 16 as a boundary, so that the water vapor is separated only on the upstream side of the compressor using the separation membrane. Compared to the case, water vapor can be effectively separated from the reformed gas.

また、圧縮機80へ供給される改質ガスは、分離部50によって水蒸気が分離される。このように、圧縮機80には水蒸気が分離された改質ガスが供給されるため、水蒸気が分離されていない(水蒸気を含んでいる)改質ガスが圧縮機80へ供給される場合と比して、改質ガスの体積が減少することで、改質ガスを圧縮させるための動力を削減することができる。   Further, the reformed gas supplied to the compressor 80 is separated from water vapor by the separation unit 50. Thus, since the reformed gas from which the water vapor is separated is supplied to the compressor 80, the reformed gas from which the water vapor is not separated (including water vapor) is supplied to the compressor 80. Thus, the power for compressing the reformed gas can be reduced by reducing the volume of the reformed gas.

また、スイープガスとして透過室54、74へ供給された都市ガスが、分離膜14、16を通過した水蒸気を含み、原料供給管33を流れて多重筒型改質器12へ供給される。このため、分離膜14、16によって分離した水蒸気を、水蒸気改質反応用の水分として利用することができる。さらに、改質ガスから分離膜を通してスイープガスに微量の水素が入り込むため、都市ガスに含まれている硫黄分を水添脱硫によって低減することができる。   Further, the city gas supplied as the sweep gas to the permeation chambers 54 and 74 includes water vapor that has passed through the separation membranes 14 and 16, flows through the raw material supply pipe 33, and is supplied to the multi-cylinder reformer 12. Therefore, the water vapor separated by the separation membranes 14 and 16 can be used as water for the steam reforming reaction. Furthermore, since a small amount of hydrogen enters the sweep gas from the reformed gas through the separation membrane, the sulfur content contained in the city gas can be reduced by hydrodesulfurization.

また、改質ガスに含まれる水蒸気を分離するためにチラーを用いる場合と比して、水素製造装置10を稼動させるための動力を削減することができる。   Moreover, the power for operating the hydrogen production apparatus 10 can be reduced as compared with the case where a chiller is used to separate water vapor contained in the reformed gas.

<第2実施形態>
本発明の第2実施形態に係る水素製造装置110の一例を図3、図4に従って説明する。なお、第2実施形態については、第1実施形態と異なる部分を主に説明する。
Second Embodiment
An example of the hydrogen production apparatus 110 according to the second embodiment of the present invention will be described with reference to FIGS. In addition, about 2nd Embodiment, a different part from 1st Embodiment is mainly demonstrated.

(構成)
水素製造装置110の多重筒型改質器112の予熱流路32の上端部には、図4に示されるように、原料供給管133が接続されている。図3に示されるように、原料供給管133から都市ガスが直接、多重筒型改質器112へ供給される。多重筒型改質器112は、改質器の一例である。
(Constitution)
As shown in FIG. 4, a raw material supply pipe 133 is connected to the upper end portion of the preheating channel 32 of the multiple cylinder reformer 112 of the hydrogen production apparatus 110. As shown in FIG. 3, the city gas is directly supplied from the raw material supply pipe 133 to the multiple cylinder reformer 112. The multi-cylinder reformer 112 is an example of a reformer.

分離部50の分離膜14は、水蒸気を通過(透過)させることで、改質ガスから水蒸気を分離する。   The separation membrane 14 of the separation unit 50 separates water vapor from the reformed gas by allowing water vapor to pass (permeate).

分離部70の分離膜16は、水蒸気及び二酸化炭素を通過(透過)させることで、改質ガスから水蒸気及び二酸化炭素を分離する。   The separation membrane 16 of the separation unit 70 separates water vapor and carbon dioxide from the reformed gas by allowing water vapor and carbon dioxide to pass (permeate).

二酸化炭素及び水蒸気を分離する分離膜としては、例えば、「Zi Tong et al., ’Water vapor and CO2 transport through amine−containing facilitated transport membranes’, Reactive & Functional Polymers (2014)に記載の膜を用いてもよい。   As a separation membrane for separating carbon dioxide and water vapor, for example, “Zi Tong et al., 'Water vapor and CO2 transporting through amine-contaminating transported membrane members”, Reactive circa 20 Also good.

また、二酸化炭素及び水蒸気を分離する分離膜として、二酸化炭素分離膜と水蒸気分離膜とを組み合わせてもよい。   Further, a carbon dioxide separation membrane and a water vapor separation membrane may be combined as a separation membrane for separating carbon dioxide and water vapor.

二酸化炭素分離膜としては、有機高分子膜(ゴム状高分子膜、イオン交換樹脂膜等)、無機材料膜、有機高分子−無機材料複合膜、液体膜(アミン水溶液膜、イオン液体膜等)などが挙げられる。   Carbon dioxide separation membranes include organic polymer membranes (rubber-like polymer membranes, ion exchange resin membranes, etc.), inorganic material membranes, organic polymer-inorganic material composite membranes, liquid membranes (amine aqueous solution membranes, ionic liquid membranes, etc.) Etc.

また、分離部50の透過室54には、空気供給部18からの燃焼用空気が流れる空気輸送管158と連通している連絡流路管160と、多重筒型改質器112へ供給される燃焼用空気が流れる空気供給管40と連通している連絡流路管162とが接続されている。スイープガスとして透過室54へ供給された燃焼用空気は、分離膜14を通過した水蒸気を含み、連絡流路管162及び空気供給管40を流れて多重筒型改質器112へ供給される。   In addition, the permeation chamber 54 of the separation unit 50 is supplied to the communication channel pipe 160 communicating with the air transport pipe 158 through which the combustion air from the air supply unit 18 flows and to the multiple cylinder reformer 112. A communication channel pipe 162 communicating with the air supply pipe 40 through which combustion air flows is connected. Combustion air supplied as a sweep gas to the permeation chamber 54 includes water vapor that has passed through the separation membrane 14, flows through the communication flow path pipe 162 and the air supply pipe 40, and is supplied to the multi-cylinder reformer 112.

分離部70の透過室74には、空気供給部18からの燃焼用空気が流れる空気輸送管158と、多重筒型改質器112へ供給される燃焼用空気が流れる空気供給管40とが接続されている。スイープガスとして透過室74へ供給された燃焼用空気は、分離膜16を通過した水蒸気及び二酸化炭素を含み、空気供給管40を流れて多重筒型改質器112へ供給される。   Connected to the permeation chamber 74 of the separation unit 70 are an air transport pipe 158 through which combustion air from the air supply unit 18 flows and an air supply pipe 40 through which combustion air supplied to the multi-cylinder reformer 112 flows. Has been. Combustion air supplied as a sweep gas to the permeation chamber 74 includes water vapor and carbon dioxide that have passed through the separation membrane 16, flows through the air supply pipe 40, and is supplied to the multi-cylinder reformer 112.

(作用)
次に、水素製造装置110の作用について説明する。
(Function)
Next, the operation of the hydrogen production apparatus 110 will be described.

都市ガスは、図3に示されるように、原料供給管133を流れて多重筒型改質器112へ供給される。多重筒型改質器112へ供給された都市ガスは、多重筒型改質器112で改質ガスに生成される。この改質ガスは、分離部50、圧縮機80、分離部70、及び水素精製器90をこの順番で流れ、水素が精製される。   As shown in FIG. 3, the city gas flows through the raw material supply pipe 133 and is supplied to the multiple cylinder reformer 112. The city gas supplied to the multi-cylinder reformer 112 is generated as reformed gas by the multi-cylinder reformer 112. The reformed gas flows through the separation unit 50, the compressor 80, the separation unit 70, and the hydrogen purifier 90 in this order, and the hydrogen is purified.

また、スイープガスとしての燃焼用空気は、透過室54、74を通り、水蒸気及び二酸化炭素を含み、多重筒型改質器112へ供給される。そして、二酸化炭素は、ガス排出管28から排出される。   Further, the combustion air as the sweep gas passes through the permeation chambers 54 and 74, contains water vapor and carbon dioxide, and is supplied to the multi-cylinder reformer 112. The carbon dioxide is discharged from the gas discharge pipe 28.

さらに、改質ガスとスイープガスとの差圧が大きいため、安価な膜で高い分離性能が得られる。   Furthermore, since the differential pressure between the reformed gas and the sweep gas is large, high separation performance can be obtained with an inexpensive membrane.

水素製造装置110では、分離膜16を用いることで改質ガスに含まれる二酸化炭素を分離する。このため、分離膜16によって改質ガスに含まれる二酸化炭素が分離されない場合と比して、水素精製器90を小型化することができる。   The hydrogen production apparatus 110 separates carbon dioxide contained in the reformed gas by using the separation membrane 16. For this reason, compared with the case where the carbon dioxide contained in the reformed gas is not separated by the separation membrane 16, the hydrogen purifier 90 can be downsized.

また、分離膜16によって改質ガスに含まれる二酸化炭素が分離されていない場合と比して、水素精製器90を小型化しない場合には水素精製器90による水素回収率を向上させることができる。   Further, compared to the case where carbon dioxide contained in the reformed gas is not separated by the separation membrane 16, the hydrogen recovery rate by the hydrogen purifier 90 can be improved when the hydrogen purifier 90 is not downsized. .

また、スイープガスとして、多重筒型改質器112へ供給される燃焼用空気を用いている。このように、水素製造装置110に用いられる気体の中で流量が多い燃焼用空気をスイープガスとして用いることで、分離膜14による水蒸気の分離性能、並びに分離膜16による水蒸気及び二酸化炭素の分離性能が向上し、分離膜14、16の膜面積を小さくすることができる。   In addition, combustion air supplied to the multi-cylinder reformer 112 is used as the sweep gas. As described above, by using combustion air having a large flow rate in the gas used in the hydrogen production apparatus 110 as a sweep gas, the separation performance of water vapor by the separation membrane 14 and the separation performance of water vapor and carbon dioxide by the separation membrane 16 are used. And the membrane area of the separation membranes 14 and 16 can be reduced.

なお、第2実施形態の他の作用については、水蒸気を含んだ都市ガスが、原料供給管33を流れて多重筒型改質器112へ供給される以外の第1実施形態の作用と同様である。   In addition, about another effect | action of 2nd Embodiment, the city gas containing water vapor | steam is the same as the effect | action of 1st Embodiment except flowing through the raw material supply pipe | tube 33 and supplying to the multi-cylinder reformer 112. is there.

<第3実施形態>
本発明の第3実施形態に係る水素製造装置210の一例を図5、図6に従って説明する。なお、第3実施形態については、第1実施形態と異なる部分を主に説明する。
<Third Embodiment>
An example of the hydrogen production apparatus 210 according to the third embodiment of the present invention will be described with reference to FIGS. In addition, about 3rd Embodiment, a different part from 1st Embodiment is mainly demonstrated.

(構成)
水素製造装置210の多重筒型改質器212の予熱流路32の上端部には、図6に示されるように、原料供給管133が接続されている。原料供給管133から都市ガスが直接、多重筒型改質器212へ供給される。多重筒型改質器212は、改質器の一例である。
(Constitution)
As shown in FIG. 6, a raw material supply pipe 133 is connected to the upper end portion of the preheating channel 32 of the multiple cylinder reformer 212 of the hydrogen production apparatus 210. The city gas is supplied directly from the raw material supply pipe 133 to the multiple cylinder reformer 212. The multi-cylinder reformer 212 is an example of a reformer.

分離部70の分離膜16は、水蒸気及び二酸化炭素を通過(透過)させることで、改質ガスから水蒸気及び二酸化炭素を分離する。   The separation membrane 16 of the separation unit 70 separates water vapor and carbon dioxide from the reformed gas by allowing water vapor and carbon dioxide to pass (permeate).

分離部70の透過室74には、図5に示されるように、水素精製器90のオフガスが流れる連絡流路管260と、分離部50の透過室54へ供給される水素精製器90のオフガスが流れる連絡流路管262とが接続されている。そして、スイープガスとして透過室74へ供給された水素精製器90のオフガスは、分離膜16を通過した水蒸気及び二酸化炭素を含み、連絡流路管262を流れて分離部50の透過室54へ供給される。   In the permeation chamber 74 of the separation unit 70, as shown in FIG. 5, the communication channel pipe 260 through which the off gas of the hydrogen purifier 90 flows and the off gas of the hydrogen purifier 90 supplied to the permeation chamber 54 of the separation unit 50. Is connected to the connecting flow channel pipe 262 through which the gas flows. The off-gas of the hydrogen purifier 90 supplied as the sweep gas to the permeation chamber 74 includes water vapor and carbon dioxide that have passed through the separation membrane 16, flows through the communication channel pipe 262, and is supplied to the permeation chamber 54 of the separation unit 50. Is done.

分離部50の分離膜14は、水蒸気及び二酸化炭素を通過(透過)させることで、改質ガスから水蒸気及び二酸化炭素を分離する。   The separation membrane 14 of the separation unit 50 separates water vapor and carbon dioxide from the reformed gas by allowing water vapor and carbon dioxide to pass (permeate).

分離部50の透過室54には、分離部70からの水素精製器90のオフガスが流れる連絡流路管262と、多重筒型改質器212のバーナ26へ供給される水素精製器90のオフガスが流れる補給管38とが接続されている。そして、スイープガスとして透過室54へ供給された水素精製器90のオフガスは、分離膜14を通過した水蒸気及び二酸化炭素を含み、補給管38を流れて多重筒型改質器212のバーナ26へ燃料として供給される。   In the permeation chamber 54 of the separation unit 50, the off-gas of the hydrogen purifier 90 supplied to the communication channel pipe 262 through which the off-gas of the hydrogen purifier 90 from the separation unit 70 flows and the burner 26 of the multiple cylinder reformer 212. Is connected to the supply pipe 38 through which the gas flows. The off-gas of the hydrogen purifier 90 supplied to the permeation chamber 54 as a sweep gas contains water vapor and carbon dioxide that have passed through the separation membrane 14, flows through the supply pipe 38, and goes to the burner 26 of the multi-cylinder reformer 212. Supplied as fuel.

(作用)
次に、水素製造装置210の作用について説明する。
(Function)
Next, the operation of the hydrogen production apparatus 210 will be described.

都市ガスは、図5に示されるように、原料供給管133を流れて多重筒型改質器212へ供給される。多重筒型改質器212へ供給された都市ガスは、多重筒型改質器212で改質ガスに生成される。この改質ガスは、分離部50、圧縮機80、分離部70、及び水素精製器90をこの順番で流れ、水素が精製される。   As shown in FIG. 5, the city gas flows through the raw material supply pipe 133 and is supplied to the multiple cylinder reformer 212. The city gas supplied to the multiple cylinder reformer 212 is generated as reformed gas by the multiple cylinder reformer 212. The reformed gas flows through the separation unit 50, the compressor 80, the separation unit 70, and the hydrogen purifier 90 in this order, and the hydrogen is purified.

さらに、水素精製器90からのオフガスは、透過室74、透過室54をこの順番で通り、多重筒型改質器212のバーナ26へ燃料として供給される
水素製造装置210では、分離膜14、16を用いることで改質ガスに含まれる二酸化炭素を分離する。このため、分離膜14、16によって改質ガスに含まれる二酸化炭素が分離されない場合と比して、水素精製器90を小型化することができる。
Further, off-gas from the hydrogen purifier 90 passes through the permeation chamber 74 and the permeation chamber 54 in this order, and is supplied as fuel to the burner 26 of the multiple cylinder reformer 212. In the hydrogen production apparatus 210, the separation membrane 14, 16 is used to separate carbon dioxide contained in the reformed gas. For this reason, compared with the case where the carbon dioxide contained in reformed gas is not isolate | separated by the separation membranes 14 and 16, the hydrogen purifier 90 can be reduced in size.

また、分離膜14、16によって改質ガスに含まれる二酸化炭素が分離されていない場合と比して、水素精製器90を小型化しない場合には水素精製器90による水素回収率を向上させることができる。   Further, compared with the case where carbon dioxide contained in the reformed gas is not separated by the separation membranes 14 and 16, the hydrogen recovery rate by the hydrogen purifier 90 is improved when the hydrogen purifier 90 is not downsized. Can do.

また、第3実施形態の他の作用については、水蒸気を含んだ都市ガスが、原料供給管33を流れて多重筒型改質器12へ供給される以外の第1実施形態の作用と同様である。   The other actions of the third embodiment are the same as the actions of the first embodiment except that the city gas containing water vapor flows through the raw material supply pipe 33 and is supplied to the multi-cylinder reformer 12. is there.

なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、分離膜14、16は、改質ガスから二酸化炭素も分離したが、二酸化炭素を分離しなくてもよい。この場合には、改質ガスから二酸化炭素を分離することで奏する作用は奏しない。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It is clear to the contractor. For example, in the above embodiment, the separation membranes 14 and 16 also separate carbon dioxide from the reformed gas, but the carbon dioxide may not be separated. In this case, the effect of separating carbon dioxide from the reformed gas is not achieved.

また、上記実施形態では、水素製造装置10、110、210は、分離部50を備えたが、分離部50を備えていなくてもよい。しかし、この場合には、分離部50を備えることで奏する作用は奏しない。   Moreover, in the said embodiment, although the hydrogen production apparatuses 10, 110, and 210 were provided with the separation part 50, the separation part 50 does not need to be provided. However, in this case, the function provided by the separation unit 50 is not achieved.

また、上記実施形態では、炭化水素原料の一例として都市ガスが用いられているが、メタンを主成分とする都市ガス以外の炭化水素原料、例えば、プロパンなどの炭化水素を主成分とするガスや、炭化水素系液体が用いられても良い。   Moreover, in the said embodiment, although city gas is used as an example of a hydrocarbon raw material, hydrocarbon raw materials other than the city gas which has methane as a main component, for example, gas which has hydrocarbons, such as propane as a main component, A hydrocarbon-based liquid may be used.

また、上記実施形態では、特に説明しなかったが、都市ガス以外の炭化水素原料が用いられる場合に、多重筒型改質器12、112、212は、上記以外の構造(使用される炭化水素原料に適した構造)に変更されても良い。   Although not particularly described in the above embodiment, when a hydrocarbon raw material other than city gas is used, the multi-cylinder reformers 12, 112, and 212 have a structure other than the above (the hydrocarbon used) The structure may be changed to a structure suitable for the raw material.

また、上記実施形態では、水素製造装置10、110、210は、1個の多重筒型改質器12、112、212を備えたが、水素製造装置が複数個の多重筒型改質器12、112、212を備えてもよい。   In the above embodiment, the hydrogen production apparatuses 10, 110, and 210 include one multi-cylinder reformer 12, 112, 212. However, the hydrogen production apparatus includes a plurality of multi-cylinder reformers 12. 112, 212 may be provided.

また、上記実施形態では、特に説明しなかったが、一方のスイープガスとして、都市ガスを用い、他方のスイープガスとして、燃焼用の空気を用いてもよい。   Further, although not particularly described in the above embodiment, city gas may be used as one sweep gas and combustion air may be used as the other sweep gas.

また、本実施形態に係る水素製造装置10、110、210は、燃料電池システムに好適に用いられるが、燃料電池システム以外の機器やシステムに用いられても良い。   Moreover, although the hydrogen production apparatuses 10, 110, and 210 according to the present embodiment are suitably used for the fuel cell system, they may be used for devices and systems other than the fuel cell system.

10 水素製造装置
12 多重筒型改質器(改質器の一例)
14 分離膜(第二分離膜の一例)
16 分離膜(第一分離膜の一例)
33 原料供給管(流路管の一例)
50 分離部(第二分離部の一例)
70 分離部(第一分離部の一例)
80 圧縮機
90 水素精製器
110 水素製造装置
112 多重筒型改質器(改質器の一例)
210 水素製造装置
212 多重筒型改質器(改質器の一例)
10 Hydrogen production equipment 12 Multiple cylinder type reformer (an example of reformer)
14 Separation membrane (example of second separation membrane)
16 Separation membrane (example of first separation membrane)
33 Raw material supply pipe (an example of a flow pipe)
50 Separation part (example of second separation part)
70 Separating part (an example of a first separating part)
80 Compressor 90 Hydrogen purifier 110 Hydrogen production device 112 Multiple cylinder reformer (an example of reformer)
210 Hydrogen production device 212 Multiple cylinder type reformer (an example of a reformer)

Claims (6)

炭化水素原料を改質して水素を主成分とした改質ガスを生成する改質器と、
前記改質器から供給された改質ガスを圧縮する圧縮機と、
前記圧縮機から供給された改質ガスから、少なくとも水蒸気を通過させることで分離する第一分離膜を有する第一分離部と、
を備える水素製造装置。
A reformer that reforms a hydrocarbon raw material to generate a reformed gas mainly composed of hydrogen;
A compressor for compressing the reformed gas supplied from the reformer;
A first separation unit having a first separation membrane that is separated from the reformed gas supplied from the compressor by passing at least water vapor;
A hydrogen production apparatus comprising:
前記改質器から改質ガスが供給され、前記圧縮機へ改質ガスを供給する第二分離部であって、前記改質器から供給された改質ガスから、少なくとも水蒸気を通過させることで分離する第二分離膜を有する前記第二分離部を備える請求項1に記載の水素製造装置。   A reforming gas is supplied from the reformer, and is a second separation unit that supplies the reformed gas to the compressor, by passing at least water vapor from the reformed gas supplied from the reformer. The hydrogen production apparatus according to claim 1, comprising the second separation unit having a second separation membrane to be separated. 前記第一分離膜は、改質ガスから、二酸化炭素を通過させることで分離し、
ガス流れ方向において、前記第一分離部の下流側に配置され、改質ガスを不純物と水素とに分離して水素を精製する水素精製器を備える請求項1又は2に記載の水素製造装置。
The first separation membrane is separated from the reformed gas by passing carbon dioxide,
3. The hydrogen production apparatus according to claim 1, further comprising a hydrogen purifier that is disposed downstream of the first separation unit in the gas flow direction and separates the reformed gas into impurities and hydrogen to purify hydrogen.
前記改質器は、水蒸気改質反応によって炭化水素原料から改質ガスを生成し、
少なくとも前記第一分離膜によって分離された水蒸気を改質用水として前記改質器に戻す流路管を備える請求項1又は2に記載の水素製造装置。
The reformer generates a reformed gas from a hydrocarbon raw material by a steam reforming reaction,
3. The hydrogen production apparatus according to claim 1, further comprising a flow path pipe that returns at least water vapor separated by the first separation membrane to the reformer as reforming water.
前記第一分離膜の水蒸気通過側に流すスイープガスとして、前記改質器に供給される炭化水素原料を用いる請求項1から4の何れか1項に記載の水素製造装置。   The hydrogen production apparatus according to any one of claims 1 to 4, wherein a hydrocarbon raw material supplied to the reformer is used as a sweep gas that flows to the water vapor passage side of the first separation membrane. 前記第一分離膜の水蒸気通過側に流すスイープガスとして、前記改質器に供給される燃焼用空気を用いる請求項1から4の何れか1項に記載の水素製造装置。
The hydrogen production apparatus according to any one of claims 1 to 4, wherein combustion air supplied to the reformer is used as a sweep gas that flows to the water vapor passage side of the first separation membrane.
JP2017061274A 2017-03-27 2017-03-27 Hydrogen production equipment Active JP6830017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061274A JP6830017B2 (en) 2017-03-27 2017-03-27 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061274A JP6830017B2 (en) 2017-03-27 2017-03-27 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2018162194A true JP2018162194A (en) 2018-10-18
JP6830017B2 JP6830017B2 (en) 2021-02-17

Family

ID=63859693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061274A Active JP6830017B2 (en) 2017-03-27 2017-03-27 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP6830017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100463A1 (en) * 2018-11-12 2020-05-22 東京瓦斯株式会社 Hydrogen production apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327307A (en) * 1999-05-19 2000-11-28 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for producing ultrahigh-purity hydrogen
JP2002260702A (en) * 2001-03-02 2002-09-13 Daikin Ind Ltd Reformer and fuel cell system equipped with same
JP2006305463A (en) * 2005-04-28 2006-11-09 Mitsubishi Heavy Ind Ltd Gas separation apparatus and gas separation method
US20090044701A1 (en) * 2007-07-20 2009-02-19 Fabrice Giroudiere Hydrogen purification process that uses a combination of membrane separation units
WO2012086836A1 (en) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ Gas separation device, membrane reactor, and hydrogen production device
JP2016184550A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Gas manufacturing apparatus
JP6017660B1 (en) * 2015-10-26 2016-11-02 東京瓦斯株式会社 Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327307A (en) * 1999-05-19 2000-11-28 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for producing ultrahigh-purity hydrogen
JP2002260702A (en) * 2001-03-02 2002-09-13 Daikin Ind Ltd Reformer and fuel cell system equipped with same
JP2006305463A (en) * 2005-04-28 2006-11-09 Mitsubishi Heavy Ind Ltd Gas separation apparatus and gas separation method
US20090044701A1 (en) * 2007-07-20 2009-02-19 Fabrice Giroudiere Hydrogen purification process that uses a combination of membrane separation units
WO2012086836A1 (en) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ Gas separation device, membrane reactor, and hydrogen production device
JP2016184550A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Gas manufacturing apparatus
JP6017660B1 (en) * 2015-10-26 2016-11-02 東京瓦斯株式会社 Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100463A1 (en) * 2018-11-12 2020-05-22 東京瓦斯株式会社 Hydrogen production apparatus
JP2020079178A (en) * 2018-11-12 2020-05-28 東京瓦斯株式会社 Hydrogen production apparatus

Also Published As

Publication number Publication date
JP6830017B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
EP2141119B1 (en) Method of hydrogen production and carbon dioxide recovery and apparatus therefor
US8911519B2 (en) Method and apparatus for hydrogen production and carbon dioxide recovery
JP2017088490A (en) Hydrogen production apparatus
CN106000016B (en) Gas separation system and method for producing enriched gas
JP2019055892A (en) Hydrogen production equipment
JP2018162195A (en) Hydrogen production apparatus
JP6830017B2 (en) Hydrogen production equipment
JP6530123B1 (en) Hydrogen production equipment
JP6764384B2 (en) Hydrogen production equipment
JP6983086B2 (en) Hydrogen production equipment
JP5039471B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP7213156B2 (en) Hydrogen production equipment
JP7197374B2 (en) Hydrogen production system
JP6553273B1 (en) Hydrogen production equipment
JP5039470B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP2018162193A (en) Hydrogen production apparatus
JP7213155B2 (en) Hydrogen production equipment
JP2019055891A (en) Hydrogen production equipment
JP2019137589A (en) Hydrogen production apparatus
JP2018162198A (en) Hydrogen production apparatus
JP2020079174A (en) Hydrogen production apparatus
AU2013204804B2 (en) Method and apparatus for hydrogen production and carbon dioxide recovery
JP6553272B1 (en) Multi-tubular reformer and hydrogen production apparatus
JP2018083729A (en) Hydrogen manufacturing apparatus, hydrogen manufacturing system including the same, and hydrogen manufacturing method
JP7181080B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6830017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250